Choosing the best embedded processing
platform for on-board UAV image processing ?

Dries Hulens, Jon Verbeke, and Toon Goedemé

EAVISE, KU Leuven,
Sint-Katelijne-Waver, Belgium
{dries.hulens, jon.verbeke, toon.goedeme}@kuleuven.be

Abstract. Nowadays, complex image processing algorithms are a ne-
cessity to make UAVs more autonomous. Currently, the processing of
images of the on-board camera is often performed on a ground station,
thus severely limiting the operating range. On-board processing has nu-
merous advantages, however determining a good trade-off between speed,
power consumption and weight of a specific hardware platform for on-
board processing is hard. Many hardware platforms exist, and finding
the most suited one for a specific vision algorithm is difficult. We present
a framework that automatically determines the most-suited hardware
platform given an arbitrary complex vision algorithm. Our framework
estimates the speed, power consumption and flight time of this algorithm
for multiple hardware platforms on a specific UAV. We demonstrate this
methodology on two real-life cases and give an overview of the present
top processing CPU-based platforms for on-board UAV image process-
ing.

Keywords: UAV, Vision, On-board, Real-Time, Speed Estimation, Power
Estimation, Flight Time Estimation

1 Introduction

Nowadays UAVs (Unmanned Aerial Vehicles) are used in a variety of tasks such
as surveillance, inspection, land surveying,...They are mostly manually con-
trolled remotely or follow a predefined flight path, while collecting interesting
images of the environment. These images are often analyzed offline since the
processing power of these UAVs is limited. Otherwise a wireless link is provided
to do the processing of the images on a ground station giving the instructions to
the UAV. To be more autonomous and operate more robustly, UAVs should be
equipped with processing power so that images can be processed on-board. This
will ensure that UAVs can analyze and react in real-time on the images and that
they can fly much further since a wireless link is not necessary. Recent advances
concerning embedded platforms show an ongoing increase in processing power at
reasonable power consumption and weight. Currently, it even becomes possible to
employ these complex hardware platforms under UAVs. However, since various
parameters need to be taken into account, finding an optimal hardware platform

2 Choosing the best embedded processing platform

Fig. 1. Parrot AR Drone (left) and XBird 250 (right) carrying an Odroid hardware
platform for real-time vision processing.

for a specific algorithm is not trivial. Example applications that need on-board
complex image processing are e.g. visual SLAM for 3D sense and avoid, the
detection and tracking of people for surveillance purposes, navigating through
the corridor between trees in an orchard for counting fruit, the automation of
a film crew by UAVs, a vision-based navigation system to automatically clean
solar panels,. .. Determining the optimal trade-off between the processing capa-
bilities and the physical constraints is a daunting task because of their variety.
Therefore, in this paper we answer the question: Which hardware platform is
best suited to perform a particular image processing task on a UAV? A hard-
ware platform can be a simple embedded processor (e.g. a Raspberry PI) or
even a small computer like a laptop, depending on the processing power that
is needed. Using these under a UAV impose severe constraints on the hardware
platforms: they should be lightweight, small and have adequate processing power
at low power consumption to maintain long flight times. To determine the effec-
tive processing speed of a particular algorithm on a specific hardware platform,
one should implement the algorithm on each specific platform. Acquiring a large
variety of test platforms to determine the most suitable one evidently is not time
nor cost efficient. Therefore, in this paper we present a framework that, given a
specific algorithm, estimates the processing speed, power consumption and flight
time on a large set of hardware platforms, without the need to acquire any of
them. For this we rely on two benchmark algorithms. This paper provides data
for a number of hardware platforms only restricted in the fact that they are
CPU-based. However since our framework is generic, new platforms can easily
be added to the framework. An overview of the platforms that we have included
can be found in Table 1. The framework will be evaluated on two real cases. In
the first case we track a person with a UAV using a face detection algorithm
[2]. For this, we search for a hardware platform that can run the face detector
at 4fps while minimizing the power consumption (e.g. maximum flight time).
In our second case the UAV should visually navigate through a fruit orchard
corridor, running a vantage point detection algorithm [1] on-board at 10fps.

The main contributions of this paper are:

Choosing the best embedded processing platform 3

Name Processor Memory| Weight | Power |Volume (cm?)
(gram) | (Watt)
Desktop Intel 17-3770 20GB 740 107 4500
Raspberry PI | ARM1176JZF-S | 512MB 69 3,6 95
Odroid U3 Samsung Exynos | 2GB 52 6,7 79
Odroid XU3 | Samsung Exynos| 2GB 70 11 131
Jetson Cortex A15 2GB 185 12,5 573
mini-ITX atom|Intel Atom D2500| 8GB 427 23,5 1270
mini-ITX I7 Intel 17-4770S 16GB 684 68 1815
Nuc Intel 15-4250U 8GB 550 20,1 661
Brix Intel 17-4500 8GB 172 26 261

Table 1. Overview hardware platforms that we have tested for our framework.

— State-of-the-art overview of the current best CPU-based processing plat-
forms for complex image processing on-board a UAV.

— Present experimental results of benchmark computer vision experiments on
each of these state-of-the-art platforms.

— We propose a generic model to estimate the processing speed, power con-
sumption and UAV flight time of any given image processing algorithm on
a variety of hardware platforms.

— Validation of the proposed generic model on two real cases (people detec-
tion/tracking and vision-based navigation).

This paper is structured as follows: in the next section we give an overview of the
related work on this topic. In section 3 we briefly discuss the hardware platforms
that we used in the framework. In section 4 we present our framework and in
section 5 we verify our framework with some experiments and show our results.

2 Related Work

Currently, UAVs are often used to capture images of the environment which are
then processed afterwards e.g. surveying [12]. For this the UAVs are controlled
manually or by means of GPS. However, our main focus is on autonomously
flying UAVs. To enable this, UAVs mainly rely on vision algorithms. Therefore,
algorithms like path planning and obstacle avoidance (e.g. object detection) are
used to steer the UAV to a certain position [7,13,14]. Due to their compu-
tational complexity, on-board UAV processing is often practically unfeasible.
Therefore, in these approaches, a ground station (with desktop computer) is
used to process the images and steer the UAV. However this severely limits their
operating range. In cases where on-board processing currently is employed, only
light-weight algorithms are used. For example [10] use sky segmentation (color
segmentation), running on a Pentium III processor, to detect and avoid objects
in the sky. [8] use a marker detection system to follow a predefined path.[17] use
line detection, running on a Cortex-A9, for the inspection of pole-like structures.
[9] track an IR-LED-pattern mounted on a moving platform, using a ATmega

4 Choosing the best embedded processing platform

644P controller and [15] filters laser scanner data on an Atom-based processing
platform to estimate crop height. However, our real-life test case algorithms are
much more complex. To implement more complex algorithms on a UAV often
FPGAs or ASICs are used since they offer an optimal trade-off between weight,
power consumption and processing power. [11] designed an FPGA based path
planning algorithm, and [6] evaluate other hardware like ASICs as on-board vi-
sion processing platform. However, translating e.g. OpenCV code (C, C++ or
python) to hardware (using e.g. VHDL) is a tedious and time consuming task.
[16] use a high-end processing platform for on-board path planning and obstacle
avoidance. This is possible since, in their case, power consumption or weight
is less relevant because they use an octacopter with a large carrying capacity.
Currently, work exists which achieves real-time performance of complex vision
algorithms on UAV mounted embedded platforms [18-20]. However, their algo-
rithms are specifically adapted or designed to perform real-time performance on
a targeted hardware platform. We aim to develop a framework that performs the
opposite operation; i.e. given a specific algorithm we determine the most suited
hardware platform. To resolve all problems mentioned above, in this paper we
present a framework that automatically determines the most suitable hardware
platform given a user’s computer vision algorithm from state-of-the-art, afford-
able (from $30 to $800), embedded platforms. Our framework enables the use
of complex computer vision algorithms which run in real-time on-board of the
UAV, directly programmed in OpenCV.

3 State-of-the-art image processing platforms

Nowadays, a number of CPU-based processing platforms are available which are
lightweight and powerful and therefore suited for the task at hand. An overview
is given in Table 1.We will describe them briefly, in order of ascending process-
ing power (and thus increasing weight). A well-known lightweight processing
platform is the Raspberry PI. The PI is a small, low-cost 1GHz ARM11 based
hardware platform developed for educational purposes. The main advantage of
this small platform is that it runs a linux-based distribution, which allows the
compilation and usage of well-known vision libraries e.g. OpenCV. Of course,
the processing speed is limited, but simple vision algorithms, like e.g. face de-
tection based on skin color segmentation, run at real-time performance. The PI
is equipped with a Broadcom GPU which recently became open-source. A more
powerful alternative for the PI is the family of Odroid platforms. One of those
platforms is the U3 that is even smaller than the PI and has an ARM based
1.7GHz Quad-Core Samsung processor that is also used in smartphones. Speed
tests on the U3 indicated that this platform is 20 times faster than the Rasp-
berry PI. The XU3 is another Odroid platform which has a Samsung Exynos5422
Cortex-A15 2.0GHz quad core and a Cortex-A7 quad core processor making him
two times faster as the U3. The XU3 has a fan to cool the processor where the
U3 is passively cooled. Both the U3 and XU3 are equipped with an eMMC slot
which is a much faster alternative for the SD card. Another novel and promising

Choosing the best embedded processing platform 5

platform is the Jetson TK1 Development Kit with an on-board NVIDIA GPU
and a quad-core ARM15 CPU, making the platform especially useful for GPU
based vision algorithms. In this paper we only perform experiments on the CPU
but in future work the GPU will also be evaluated. The Jetson has several 10
ports making it easy to communicate with sensors or inertial measurement units
(IMUs), it even has a sata connection for a hard-drive. The CPU speed is com-
parable with the U3, but when GPU vision algorithms are used this platforms
really shines. A more powerful family of hardware platforms are the Mini-ITX
platforms. Mini-ITX platforms all have the same dimensions (17 x 17¢m) but
can be equipped with different processors and I0. They are basically small com-
puters with the same IO as a normal desktop computer. The mini-ITX platforms
can be classified into two categories: the Atom platforms that can be compared
with netbooks and the 17-3000 platforms that can be compared with desktops.
The Atom Mini-ITX platform has a 1.86GHz Fanless Dual Core processor like
in many netbooks computers. Its speed is comparable with the U3 and therefore
less interesting due to its larger size, power consumption and weight. Unlike the
previous, the Intel i7-3770 platform has a quad core processor and is much faster.
This platform is one of the fastest platforms we have tested in this paper. It is
five times faster than the XU3 and even faster than our reference system that
we used (normal desktop computer). Together with a power supply that can be
connected to a LiPo battery and a SSD hard drive, this platform can handle
complex image processing algorithms on-board a UAV. The disadvantage of this
platform is its power consumption and weight. The next family of platforms
are the Brix and Nuc barebone mini-computers. These computers are designed
to be mounted on the back of a monitor and have a size of 11 x 11em. These
platforms consume less power than the Mini-ITX I7 platform but are twice as
slow, which is still very fast for such a small computer. The Brix has an Intel
17-4500 quad-core processor and is comparable in speed with the Nuc that has
an Intel 15-4250U processor. When stripping down the casing of these two plat-
forms, the Brix only weighs 172g (SSD included) compared to the Nuc that still
weigh 550g, giving the Brix the most interesting specs to mount on a UAV for
complex image processing algorithms. Section 5.1 gives an overview of the tests
we have performed on these platforms.

4 Approach

The goal of our framework is to find the best hardware platform to run a user’s
new vision algorithm on a UAV. The main criterion we try to optimize is the
amount the processing platform reduces the UAV’s flight time. Indeed, both
because of the hardware platform’s own weight and of its electrical power con-
sumption it drains the battery during flight. The best platform is found when
a vision algorithm can run on it at a certain required speed (in fps frames per
second), while it consumes as little as possible and the weight of the platform
is as low as possible in order to extend flight time. The required speed can be
much lower than the maximum speed that the algorithm can run on a certain

6 Choosing the best embedded processing platform

platform, e.g. a face detector that runs at 100 fps but only 20 fps is required for
a certain application. The power consumption reduces dramatically when reduc-
ing the frame rate of the algorithm on the same platform. We propose a generic

Easy benchmark alg

Difficult benchmark alg : Reference
) system (e.g. pc)
VYV V¥ Fps
Complexity
estimator
e bt B LA
- D T _
| | New algorlthml | i Processing r i [Fpson
| | i sPeed 1 :: platform A
: estimator : 11 T B
| | 1 v 1 : i
1 [
| | : Power :]
| Fps needed -'—'—V estimator P
1 [
! i [
| | i EWelghtof platform i i1 [Power
| | 1 Motor f——ip | consumption
UAVspecs-|—|——> efficiency ! O platform A|"
| : b -
| | .
LY ' P
| 1L, | Flighttime 1 | 1. | Flight Time
| | 1 estimator T ," for platform A
Battery specs| mr———t—) [OTPTatTo
 —
I o b T
L __ Userinput |] Board Al Y
o BoardBi i
1 Board Ci

Fig. 2. Overview of our framework

calculation model that estimates the flight time reduction for an arbitrary vision
algorithm on a specific embedded processing platform. As seen in Figure 2 this
model consists of six blocks. In the first block the user’s new algorithm and two
benchmark algorithms are executed on a reference system (e.g. the user’s desk-
top computer) and their frame rate is given to the next block where the relative
complexity of the new algorithm is estimated. With this, for each hardware plat-
form, its speed is estimated in the next block. Then the power consumption of
every platform, while running the new algorithm at a certain required speed, is
estimated. In the next block the power consumption of the UAV carrying each
hardware platform is calculated. Finally, in the last block the flight-time of the
UAV, carrying each hardware platform running the new algorithm at a certain
speed, is estimated. In the next subsections these blocks are discussed in detail.

Choosing the best embedded processing platform 7
4.1 Complexity and Processing Speed Estimator

To estimate the speed of a new algorithm on every hardware platform we first
estimate the complexity of this algorithm. For the sake of simplicity, we assume a
linear relation between the processing speed and the complexity of the algorithm.
We will validate this linearity assumption in section 5. The speed of the algorithm
(farg = ﬁ) on the reference system, e.g. the user’s desktop PC, is used as
measurement for the complexity (Caig). We empirically measure the relative
complexity of the new algorithm with respect to two reference (benchmark)
algorithms. The first benchmark algorithm is an easy algorithm that we let
correspond with 0% complexity (C7). For this algorithm we chose the OpenCV
implementation of a 3x3 median filter on a color image of 640x480 pixels. The
second algorithm is a more difficult algorithm that corresponds to a complexity
of 100% (C3), where OpenCV’s HOG person detector is applied to an image of
640x426 pixels. Our Complezity estimator uses the execution time of these two
benchmark algorithms (77 and T3) and the user’s new algorithm (7,;,) running
on the reference system to calculate the complexity of the new algorithm (see
Figure 3). The complexity is then calculated as:

Talg - Tl

Cos =1, 1,

Co+C4 (1)

We assume a linear relation between the computational complexity and the
speed of these vision algorithms because they all do mainly the same operations,
like applying filters on an image and extracting features. Vision algorithms are
always data intensive but most of the time not computationally intensive. Note
that code optimizations for specific architectures evidently affect the results.
Details like memory usage are not taken into account in this simple model,
because the memory on the advanced hardware platforms is easy expandable.
Moreover, in our model we only assume CPU-based processing platforms, no
other architectures such as GPU or FPGA for which a code translation step
would be necessary. In section 5 the validity of this linear relation is verified.

Now that the complexity of the new algorithm (Cly4) is known, the speed of
the algorithm can be estimated on every platform by following Figure 3 in the
other direction, as demonstrated in Figure 4 for two fictitious platforms. The
simple and difficult algorithm is run on every platform what results in a 77 and
T5 for each platform. Because Cgq4 is known from the previous step, T4y can
now be calculated for each platform:

Calg - Cl

Talg = 02

(T —T)+ T (2)
At this point the speed (faig = ﬁm) of a new algorithm can be estimated

for each hardware platform, hence in the next step we can estimate the power
consumption of the new algorithm on each platform.

8 Choosing the best embedded processing platform

A S Complexity (%)
C2100% ¥

Calg

C1 0%

(1/f reference
system)

Fig. 3. Linear complexity model. Complexity Caig (red) is estimated with 71, 75 and
Taig as input (green)

A S Complexity (%)
C2100% 9

Calg o

C10%

T (1/f on
platform #)

Fig. 4. Calculating T (red) for each processing platform (blue and orange) with
known Coig, T'1 and T2

Choosing the best embedded processing platform 9

4.2 Power Estimator

In UAV applications flight time is of utmost importance. Therefore our frame-
work estimates the power consumption of each hardware platform running the
new algorithm at the required speed. We performed experiments to determine
the relation between processing speed and power consumption, indicating that a
linear model is again a good approximation (see Section 5). When the maximum
speed of the algorithm is not required, the power consumption can be lower than
when the algorithm is running at full speed. By taking the required fps as an
input of the Power Estimation Block we can estimate the power consumption
more precisely for each platform.

To calculate the power consumption Py, of a certain algorithm, the power
consumption of each platform is measured when in idle state P;g. (doing noth-
ing) and when running all cores at full speed P, (algorithm running at full
speed). Together with the required speed (in frames per second) frq and the
maximum speed of the algorithm f,,, the power consumption of the platform
can be linearly interpolated as follows:

Pmam - Pidle
fmam

In this step we also have to eliminate hardware platforms which do not reach

the required fps (when TL < freq)- At this point the power consumption of

alg
every remaining platform, running the user’s new algorithm at a certain speed,
is known. In the next step the power consumption of the UAV itself, carrying

the platform as payload, is calculated.

Palg = freq + Pidle (3)

4.3 Motor Efficiency

In [4] a model has been developed that enables the user to estimate the power
consumption of a multicopter at hover. The performance estimates are based
on momentum disk theory and blade element theory of helicopters combined
with empirically determined correction factors for multicopters [3]. The model
requires the user to input several parameters such as weight, number of pro-
pellers n,.0ps and propeller radius . The model uses some empirical param-
eters such as the Figure of Merit FM (basically the propeller efficiency), the
motor efficiency nmotor (including the electronic speed controller efficiency) and
an installed-to-hover power ratio w of 2 (based on industry standards).
The empirical parameters were determined with actual tests on several motors
and propellers which are middle grade RC components. The user can (slightly)
change these as their multicopter might have higher or lower grade components.
We will use this model to estimate the power consumption of the UAV carrying
the hardware platform.During hover and slow forward flight it can be assumed
that thrust T, (approximately) equals the total weight force Wi, in Newton
(Wiot = Muorg = (Muav + Mplatform)g) and the hover power per propeller can
be calculated through the disk loading DL, induced velocity v; and air density

10 Choosing the best embedded processing platform

DL = — et (4)

TR2Nprops

DL

Pho’umeo = Tho’uvihov = Wtotvihov = Wtot % (5)

PhO'Ut heo

Pho'Ureal = FM77 ;
motor

Calculating the power consumption of the multicopter based on hover conditions
is a rather safe method as during slow forward flight the required power actually
decreases by 10% and most multicopter operations take place in this regime [5].

Together with the hardware power consumption P4, the total electrical
power consumption P, can be calculated as:

P, —WtOth_pLJrP (7)
et FMT]motor atg

At this stage the total power consumption of the UAV, carrying the hardware
platform that is running a certain algorithm, is known. In the next subsection
the flight time is estimated.

4.4 Flight Time Estimator

The flight time for every platform can be estimated since the power consumption
of every platform running an algorithm at a certain speed together with the
power consumption of the UAV itself carrying each of the platforms is known
now. These two values together with the capacity of the batteries are the inputs
of this block. Nowadays most UAVs are using lithium polymer batteries because
of their good capacity vs weight ratio. Nevertheless the capacity mentioned on
the batteries applies only as long as the remaining battery voltage is above a
certain value. Therefore most of the time 75% of the battery’s capacity is taken
as a more fair value to calculate the flight time. Flight time is subsequently
calculated as follows:

0-75‘/batcbat

Tiignt(h) = .,

(8)
where Chq is the capacity mentioned on the battery in Ah, Vi is the voltage
of the battery and P;,; is the total power consumption of the UAV at hover (eq.
7).

At this point the main question “Which hardware platform is best suited to
perform a particular image processing task on a UAV?” can be answered, which
we will demonstrate in the next section for our two example algorithms.

Choosing the best embedded processing platform 11

5 Experiments and Results

We performed extensive experiments to validate our framework using a wide
variety of platforms and multiple algorithms. In the first subsection we per-
formed multiple speed tests of two algorithms to compare the different hardware
platforms. In the next subsection we proof that the assumption of a linear com-
plexity and power model holds. Finally we present validation experiments on
two computer vision-based real-life cases: face detection and tracking on a UAV
for people following and visual navigation to find the corridor in an orchard for
fruit counting/inspection.

5.1 Speed tests of two algorithms on each hardware platform

In our first test the processing speed of the OpenCV implementation of a HOG
person detector and a Viola and Jones face detector is measured on all platforms.
Thereby speed can be compared for every hardware platform. The result can be
seen in Figure 5. In Figure 6 we display the ratio of the measured speed of these
two algorithms and the power consumption of every platform while running the
two algorithms. Figure 7 displays the ratio of the speed and the volume of the
hardware platforms and in Figure 8 the ratio of the processing speed and the
weight of the platforms is shown.

Processing speed

100
& 10
=
o 1
a
U
a
0,01 I
Q < Q Q& <& CN > el R
N T RS
& - ¥ @ ® o)
< & RS £ P
O & > o
& N _
& é‘
B HOG person detector m Viola and Jones face detector

Fig. 5. Speed (logarithmic) of HOG person detector (blue) and Viola and Jones Face
detector (orange) for every platform.

As seen in Figures 5 - 8, the Mini ITX Intel I7 platform is one of the fastest but
also very heavy. The Jetson and Atom platforms score below average compared
to the other platforms because the Jetson is a processing platform designed for
GPU implementations and the Atom is already an older generation of CPUs. The
Nuc and Brix have a similar speed and power consumption, but the Brix is much
lighter and smaller. The two Odroid platforms are similar in power consumption,
volume and weight but the XU3 is twice as fast as the U3 platform. Overall, the
Brix scores best when all test are taken into account.

12 Choosing the best embedded processing platform

Fps/Watt
0,6
0,5
04
0,3
o I I I I I
0,1
, N I II -]
™ .
\E_@Q ‘\0(4 ?}{\ !@00 ‘o@ (.\Q 3P) 3 ‘b‘\+
& & b d."' & L &
Q < S & & P
N & Q@s IS o
+ ~

B HOG person detector m Viola and Jones face detector

Fig. 6. Processing speed / power consumption ratio for every hardware platform.

Fps/Volume
0,06

0,05
0,04
0,03
0,02
T il
o =M [| | I
> §

2 < QA e & CN Sl &+
) N N S N L«
F v F PSS F
< & & & S
. &,\ ‘!.\@ & (o)
W

B HOG person detector M Viola and Jones Face detector

Fig. 7. Processing speed / volume ratio for every hardware platform.

Fps/Gram

0,09
0,08
0,07
0,06

0,05
0,04
0,03
0,02 I I
0,01
"0 I .I I = T
& & $;

R g IS & &
U & & & © &
o« QU P S
& N P IS
& &

W HOG person detector W Viola and Jones face detector

Fig. 8. Processing speed / gram ratio for every hardware platform.

Choosing the best embedded processing platform 13

5.2 Validation of Models

In section 4.1 we assumed a linear relation between the complexity of a vision
algorithm and the execution speed (the higher the execution time of the algo-
rithm the more complex it is). The linearity is validated by estimating the speed
of our two real-case-algorithms, on a desktop computer, for every platform and
comparing it with the real speed of these algorithms on every platform. In Figure
9 the percentage deviation between estimated fps and measured fps is given for
the two algorithms. As seen, the error is not greater than 10% which is indicating
that the assumption of a linear model for the estimation of the complexity can
be taken as valid.

12,00
10,00

8,00

6,00
M Face detection alg
400 m Orchard alg
0,00 I I
Q\ \t* >

oQ \)“ d‘ ‘jo‘\

Deviation (%)
(=]

=}
=]

& &

Qz o o>
_\9\3

Fig. 9. Deviation between estimated fps and measured fps of our two real-case-
algorithms.

As mentioned in Section 4.2 there is also a linear relation between the power
consumption and the processing speed of an algorithm running on a hardware
platform. To verify this statement the power consumption of each hardware
platform is measured while incrementally increasing the processing speed. As
seen in Figure 10, the power consumption increases indeed practically linear
with the processing speed for each processing platform.

5.3 Framework Validation on Two Real Cases

For two application cases, we demonstrated the use of the proposed model to
find out which hardware platform is best suited for on-board computer vision
processing. For both cases a Parrot AR Drone and a XBird 250 is used, of which
the forward looking camera is used to capture images for our algorithms. In the
first real case, the UAV should follow a single person. The detection of the person
is done by using the OpenCV implementation of Viola and Jones face detector
[2]. This algorithm should run at least at 4 fps. In the second case the UAV
should navigate through a fruit orchard. Therefore an orchard-path-detection

14 Choosing the best embedded processing platform

50 o
//' —o— Brix
e
=40 S —e—1TX17
£ o
2 g o—Nuc
=i =
:%\ ITX Atom
& 20 —#—Jetson

— —e— Raspberry P
Xu3
L, u3
0 500 1000 1500 2000 2500
Speed Algorithm (fps)

50
— Brix
40 - —e—[TX17

£l —
2 / —e—Nuc
b ITX Atom
H _ o8
s 20 = i > —e— Jetson
° e
% o+—" g —e— Raspberry Pl
10 e
&= Xu3

u3
0 20 40 60 80 100
Speed Algorithm (%)

Fig. 10. Power consumption of each platform measured while increasing the speed
(top: in fps, bottom: in %) of the easy (Median filter) algorithm.

algorithm is used to find the middle and the vanishing point of the corridor [1].
In this algorithm, filters are applied on the image for preprocessing, followed by
a Hough transform to find straight lines (the corridor) and a Kalman filter to
predict and track the middle and vanishing point of the corridor. This algorithm
should run at least at 10 fps to fly smoothly through the orchard.

Algorithm Speed |Complexity
(fps) (%)
Desktop| Desktop
Benchmark 1 (median)| 2040 0
Benchmark 2 (HOG) 9,91 100
Orchard 388 2,08
Face 22,44 43,9

Table 2. Algorithm complexity estimation results.

We ran both algorithms on a normal desktop computer to know their speed
with which their complexity is estimated (Table 2). When their complexity is
known their speed on every hardware platform is estimated (Equation 2), to-
gether with their power consumption (Equation 3) on every platform. At this
stage some hardware platforms are discarded because they do not reach the
required speed. Thereafter, the total power consumption of the UAV carrying
every hardware platform, running the algorithm, is calculated (Equation 7). Fi-
nally, flight time is estimated with Equation 8. Results can be seen in Table

Choosing the best embedded processing platform 15

Algorithm Face Orchard

Est. Est. li?st. Est. Est. li?st.
Platform ||speed power ﬂ}ght speed power ﬂ}ght

(fps) consump. tln.le (fps) consump. tlrfle

(Watt) |(min) (Watt) |(min)

Desktop 22,44 388
Nuc 10,75 11,48 4,6 199 8,04 4,8
ITX i7 28,88 34,6 3,3 || 483,9 31,8 3.4
Brix 13,21 13,44 8,3 /243,14 9,17 8,9
ITX atom 24,76 40,28 21,55 5
Jetson 9,25 16,52 5,71 9,3
RPI 10,39 e 4o
XU3 5,06 7,39 116 (| 19,5 6,44 11,9
U3 4,5 14,8 3,55 13,4

Table 3.

Results of our framework for the face detection and orchard algorithm. Plat-

forms in red are eliminated because they do not reach the required speed. The platform
in green is the best platform to run this algorithm on, on the specific UAV.

Face Orchard
Power consumption|(Watt)|(%)|(Watt)|(%)
Algorithm 7,39 (17,2 3,55 |9,6
Board weight 7 16,3 5 13,5
UAV weight 26 |60,6| 26 70
IMU 2,55 59| 2,55 |69

Table 4. Power consumption of each part of the system.

Alg. Est. |Measured| | Estimated | Measured || Estimated | Mleasured
speed| speed |[|flight time|flight time||/flight time|flight time
AR Drone|AR Drone|| XBird XBird
(fps) (fps) (min) (min) (min) (min)
Face 5,06 4,9 11,6 124 7.4 7.12
Orchard|| 14,8 14,97 13,4 12,7 8,1 7,54
Table 5. Estimated and measured data.

3 and Table 4. Table 4 indicates that the power consumption of the algorithm
can’t be ignored when using small UAVs.

Secondly, we verified the estimated flight time by attaching the proposed
hardware platform on both the AR Drone and XBird while running the specific
algorithm. Flight time is measured while hovering, as seen in Table 5 the devia-
tion between estimated and measured data is very small (less than 7%) indicating
that our framework indeed finds the best hardware platform for a specific vi-
sion algorithm and estimates the speed and flight time very precisely. Note that,
when the UAV runs the orchard or face algorithm the flight time reduces with
30.21% and 39.58% as compared to the flight time without payload.

16 Choosing the best embedded processing platform

6 Conclusion and Future Work

We developed a framework that finds the best hardware platform for a specific
vision processing algorithm that should run at a certain speed on-board a UAV.
Furthermore the speed of the algorithm running on each platform is estimated.
Thanks to this framework researchers can find a suitable hardware platform
without buying them all to test their algorithm on. A second novelty of our
framework is that flight time can be estimated for the user’s UAV, carrying the
proposed platform. We validated the framework with success on two real test
cases allowing us to find a suitable hardware platform for our application and to
estimate the flight time with our AR Drone and XBird carrying this platform.
Also, we made this model available via an online front end that other re-
searchers can use to find the best platform for their algorithm and even add their
own hardware to the framework and expand the database of hardware platforms
(www. eavise.be/Virtual Cameraman.html). In the future we will keep adding new
state-of-the-art platforms and extend the framework with GPU platforms.

Acknowledgements

This work is funded by KU Leuven via the CAMETRON project.

References

1. Hulens Dries and Vanderstegen Maarten: UAV autonoom laten vliegen in een boom-
gaard. Dept of Industr. Eng., College University Lessius (2012)

2. Viola Paul and Jones Michael: Rapid object detection using a boosted cascade of
simple features. Computer Vision and Pattern Recognition, CVPR (2001)

3. Prouty Raymond W: Helicopter performance, stability, and control. (1995)

4. Verbeke J., Hulens D., Ramon H., Goedemé T. and De Schutter J.: The Design and
Construction of a High Endurance Hexacopter suited for Narrow Corridor. (2014)

5. Theys B., Dimitriadis G., Andrianne T., Hendrick P. and De Schutter J.: Wind
Tunnel Testing of a VTOL MAV Propeller in Tilted Operating Mode. ICUAS (2014)

6. Ehsan Shoaib and McDonald-Maier Klaus D: On-board vision processing for small
UAVs: Time to rethink strategy. Adaptive Hardware and Systems. NASA/ESA
Conference (2009)

7. Suzuki Taro, Amano Yoshiharu and Hashizume Takumi: Development of a SIFT
based monocular EKF-SLAM algorithm for a small unmanned aerial vehicle. SICE
Annual Conference (SICE), (2011)

8. Meier Lorenz, Tanskanen Petri, Fraundorfer Friedrich and Pollefeys Marc: Pixhawk:
A system for autonomous flight using onboard computer vision. Robotics and au-
tomation (ICRA), IEEE international conference(2011)

9. Wenzel Karl Engelbert, Masselli Andreas and Zell Andreas: Automatic take off,
tracking and landing of a miniature UAV on a moving carrier vehicle. Journal of
intelligent & robotic systems, Springer (2011)

10. McGee Tim G, Sengupta Raja and Hedrick Karl: Obstacle detection for small
autonomous aircraft using sky segmentation. Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference

Choosing the best embedded processing platform 17

11. Kok Jonathan, Gonzalez Luis Felipe and Kelson Neil: FPGA implementation of
an evolutionary algorithm for autonomous unmanned aerial vehicle on-board path
planning. Evolutionary Computation, IEEE Transactions (2013)

12. Siebert Sebastian and Teizer Joche: Mobile 3D mapping for surveying earthwork
projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Con-
struction, Elsevier (2014)

13. Ferrick Allen, Fish Jesse, Venator Edward and Lee Gregory S: UAV obstacle avoid-
ance using image processing techniques. Technologies for Practical Robot Applica-
tions (TePRA), (2012) IEEE International Conference

14. Lin Yucong and Saripalli Srikanth: Path planning using 3D Dubins Curve for Un-
manned Aerial Vehicles. Unmanned Aircraft Systems (ICUAS), (2014) International
Conference

15. Anthony David, Elbaum Sebastian, Lorenz Aaron and Detweiler Carrick: On
crop height estimation with UAVs. Intelligent Robots and Systems (IROS 2014),
IEEE/RSJ International Conference

16. Nieuwenhuisen Matthias and Behnke Sven: Hierarchical planning with 3d local
multiresolution obstacle avoidance for micro aerial vehicles. Proceedings of the
Joint Int. Symposium on Robotics (ISR) and the German Conference on Robotics
(ROBOTIK) (2014)

17. Sa Inkyu, Hrabar Stefan and Corke Peter: Inspection of pole-like structures using a
vision-controlled VTOL UAV and shared autonomy. Intelligent Robots and Systems
(IROS 2014), IEEE/RSJ International Conference

18. Shen Shaojie, Mulgaonkar Yash, Michael Nathan and Kumar Vijay: Vision-Based
State Estimation and Trajectory Control Towards High-Speed Flight with a Quadro-
tor. Robotics: Science and Systems (2013)

19. De Wagter Christophe, Tijmons Sjoerd, Remes Bart DW and de Croon Guido
CHE: Autonomous flight of a 20-gram flapping wing MAV with a 4-gram onboard
stereo vision system Robotics and Automation (ICRA), (2014) IEEE International
Conference

20. Forster Christian, Pizzoli Matia and Scaramuzza Daviden: SVO: Fast Semi-Direct
Monocular Visual Odometry. Proc. IEEE Intl. Conf. on Robotics and Automation
(2014)

