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Abstract

Railway induced vibrations in the built environment may lead to annoyance
to people and malfunctioning of sensitive equipment, which necessitates the
development of effective mitigation measures. Mitigation measures on the
transmission path try to reduce the ground vibrations propagating from
the railway track to, for example, nearby buildings. Because of the high
computational cost of numerical simulations, mitigation measures on the
transmission path are usually designed by trial and error. Only a limited
number of relatively simple design geometries is explored, leaving much room
for further improvement. The aim of this work is therefore to look for novel
wave barrier designs with an improved performance.

As double walls are shown to be effective in reducing air-borne sound trans-
mission, the performance of double wall barriers in reducing ground vibration
transmission is investigated using the efficient two-and-a-half-dimensional finite
element methodology. Double wall barriers are shown to perform hardly better
than single wall barriers, except if the wall thicknesses and the spacing between
the walls are tuned to optimally reflect waves.

To improve the performance of wave barriers, topology optimization is used to
optimally distribute material in the soil in a domain in the vicinity of the railway
track. The results demonstrate the high potential of optimized designs in terms
of performance improvement and volume reduction. Topology optimization
often leads to designs with small features, which are sensitive to geometric
imperfections and may be hard to manufacture. A robust approach is therefore
used, leading to designs which can be simplified with little deterioration of
performance.
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Beknopte samenvatting

Trillingen ten gevolge van treinverkeer in de bebouwde omgeving kunnen
zorgen voor menselijke hinder en storing van gevoelige apparatuur, wat
de ontwikkeling van effectieve trillingsreducerende maatregelen noodzakelijk
maakt. Maatregelen op het transmissiepad proberen de grondtrillingen te
verminderen die zich van het spoor naar bijvoorbeeld nabijgelegen gebouwen
verspreiden. Vanwege de hoge rekenkost van numerieke simulaties worden
trillingsreducerende maatregelen op het transmissiepad meestal door trial and
error ontworpen. Slechts een beperkt aantal relatief eenvoudige geometrieën
worden hierbij onderzocht, waardoor er veel ruimte is voor verdere verbetering.
Het doel van dit werk is daarom om te zoeken naar nieuwe ontwerpen van
trillingsreducerende schermen met een verbeterde prestatie.

Aangezien dubbele wanden effectief zijn in het reduceren van luchtgeluidstrans-
missie, wordt de prestatie van dubbele wandschermen bij het reduceren van de
voortplanting van trillingen in de grond onderzocht met behulp van de efficiënte
twee-en-een-half-dimensionale eindige elementen methodologie. Dubbele wand-
schermen blijken nauwelijks beter te werken dan enkele wandschermen, behalve
als de wanddiktes en de afstand tussen de wanden bepaald zijn zodanig dat de
golven optimaal gereflecteerd worden.

Om de prestaties van trillingsschermen te verbeteren wordt topologische
optimalisatie gebruikt om materiaal optimaal te verdelen over een domein
in de grond in de nabijheid van het spoor. De resultaten tonen het hoge
potentieel van geoptimaliseerde ontwerpen op het vlak van prestatieverbetering
en volumevermindering. Topologische optimalisatie leidt vaak tot ontwerpen
die gevoelig zijn voor geometrische imperfecties en moeilijk te vervaardigen
zijn. Een robuuste aanpak wordt daarom gebruikt, wat leidt tot ontwerpen die
kunnen worden vereenvoudigd zonder de prestaties sterk te verslechteren.
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3.10 Insertion loss ĨL(x = 15 m, ky, z = 0 m, ω) for (a) the single stiff
wall barrier (wall thickness 2tw = 2 m) and (b) the double stiff
wall barrier (wall thickness tw = 1 m and spacing d = 4 m) in
sandy soil. Superimposed are the analytical dispersion curve for
Timoshenko’s bending mode around the x-axis (black dashed
line), the Rayleigh wave slowness (black solid line), and the
frequency-slowness curves which show the phase shift between
wave fronts in the reference case and in the case of stiffening
(black dotted lines). For the double wall barrier, the dispersion
curves caused by the standing waves between the walls are added
(gray solid lines). . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Definition of the wavenumber components for Rayleigh waves. . 59

3.12 Amplitude of the vertical displacement ûz and insertion loss
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insertion loss ÎLz (Eq. (5.11)) as a function of the frequency for
the reference design in figure 5.4 (dashed line) and the optimized
design (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xxvi LIST OF FIGURES
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the insertion loss ÎL at a frequency of 25 Hz (figure 5.8a) and (d)
the influence of the projection threshold η on the insertion loss
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(Eq. (5.13)) as a function of the frequency for the reference
design in figure 5.4 (dashed line), the robust optimized design in
figure 5.19a (dashed-dotted line), and the post-processed design
(solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.22 Pyramid for the construction of rectangular objects. The
function µo

e describing this pyramid is built from the auxiliary
functions Ao

1, Ao
2, Ao

3, and Ao
4. . . . . . . . . . . . . . . . . . . . 127

5.23 Construction of the element density field for the shape optimiza-
tion problem: (a) pyramid densities µ1, (a) pyramid densities µ2,
(c) total densities ρ̃, and (d) element densities ρ̄ for a sharpness
parameter β = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.24 Convergence of the optimization problem for the shape optimiza-
tion problem (figure 5.25). . . . . . . . . . . . . . . . . . . . . . 130

5.25 (a) Shape optimized design maximizing IL over the frequency
range 20 − 80 Hz (discretized with 10 frequencies), and (b)
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insertion loss ÎL0 m at a frequency of (a) 25 Hz, (d) 50 Hz, and
(g) 20 − 80 Hz. Designs optimizing the averaged insertion loss
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Chapter 1

Introduction

1.1 Problem outline

Railway induced vibrations in the built environment are a major environmental
concern. These vibrations are generated at the wheel-rail interface, for example
by rail or wheel unevenness, rail joints, or parametric excitation, and propagate
as elastic waves in the underlying soil (figure 1.1). Interaction with buildings
results in discomfort to people and malfunctioning of sensitive equipment in
the frequency range between 1 and 80 Hz. At frequencies between 16 and
250 Hz, ground-borne vibrations can cause re-radiated or structure-borne noise
by vibrating walls and floors [118].

The growing need for public transportation in populated areas, the construction
of buildings close to railway lines, and the increasing sensitivity of equipment
have necessitated the development of vibration mitigation measures. For
existing tracks, mitigation measures that hinder the wave propagation in the
soil have the advantage of not requiring modification or renewal of railway
infrastructure. Railway operators are often not keen on modifying railway
lines, as this not only leads to modification costs, but also to loss of profits due
to the closure of the line.

Currently, only a limited number of simple design geometries for mitigation
measures have been investigated, mostly single wall barriers with a rectangular
cross section. The geometry plays an important role in the performance of
mitigation measures, but only the influence of the width and the height of
barriers has been assessed [65]. The depth of the mitigation measure for
example determines to what extent incoming waves are reflected or refracted.

1
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Source

Receiver

Figure 1.1: Railway induced vibrations in the built environment.

Furthermore, the geometry influences the stiffness which has proven to be
important in the performance of mitigation measures in the soil [53]. This
demonstrates the importance of the design geometry, indicating the potential
of improved performance by exploring novel shapes.

1.2 State of the art

This section provides a state of the art of some aspects considered in this work.
First, an overview is given of mitigation measures for railway induced vibration.
Next, a state of the art in topology optimization is given.

1.2.1 Mitigation measures for railway induced vibration

In order to reduce environmental ground vibration due to railway traffic,
mitigation measures at the source, on the transmission path and at the receiver
can be applied. Mitigation measures at the source include rail grinding [131],
soft railpads [88], under-sleeper pads [123], ballast mats [49] and floating slab
tracks [120]. Mitigation measures at the receiver include foundation design
and base isolation [159]. Mitigation measures on the transmission path aim
at impeding propagation of ground vibrations from source to receiver. They
are particularly appealing in situations with existing track and buildings, since
these can be left unmodified.
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Open trenches (figure 1.2a) can be used as mitigation measure on the
transmission path [101, 174]. They start to be effective for depths larger than
half the Rayleigh wavelength [74]. The effectiveness of an open trench is almost
independent of the trench width [27]. Due to stability reasons and the possible
presence of ground water, however, the open trenches can only be built for
small depths. They can be stabilized by using sloped or walled trenches [100],
which hardly effect the performance [65].

Alternatively, a soft wave barrier can be used (figure 1.2b). Soft barriers can be
constructed for example using rubber chips [107, 183], gas-filled cushions [125]
and polystyrene sandwich panels [74]. The barrier depth again determines
the frequency range of effectiveness. The vibration reduction increases with
decreasing stiffness of the in-fill material and with increasing barrier width [65].

Stiff wall barriers (figure 1.2c) can also be effective mitigation measures.
Examples include concrete walls [4, 9], a row of concrete piles [102], sheet
pile walls [7, 64], and jet grouting [50]. The effectiveness is influenced by
both the impedance and the stiffness of the barrier. For large depths, the
difference in impedance will result in reflection of incoming Rayleigh waves.
The bending stiffness of the wall prevents the propagation of waves for small
trace wavelengths compared to the bending wavelength of the barrier [53].

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Mitigation measures on the transmission path: (a) open trench,
(b) soft wave barrier, (c) stiff wall barrier, (d) subgrade stiffening, (e) wave
impeding block, and (f) heavy mass on the surface.

Up to now, single wall barriers with a rectangular cross section have mostly
been studied. In building acoustics, however, it is well known that double walls
can reduce sound levels much better than single walls, especially between the
double wall resonance frequency and the first cavity resonance frequency [70].
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Double wall barriers for environmental ground vibration have, despite their
potential, not been investigated.

Subgrade stiffening (figure 1.2d) is often applied in the case of soft soils to
improve the soil beneath the track, including the embankment and the top
layers beneath and next to the track. It can lead to an increased bearing
capacity, reduction of settlements, a decrease in the risk of failure, and a
better earthquake resistance [3]. Subgrade stiffening has moreover shown to be
effective as mitigation measure [9, 53]. Several soil improvement techniques can
be applied, such as vibro compaction and replacement [13], deep soil mixing [14],
lime-cement columns [88], jet grouting [130] and vacuum consolidation [69].
There is, however, a risk for track uplifting [51], making it less suitable as
vibration mitigation measure.

Wave impeding blocks (figure 1.2e) in the soil under or next to the track
aim at modifying the wave propagation in the soil. Both solid [134] and
honeycomb [157] structures have been studied as wave impeding blocks. For a
soft layer on a rigid bedrock, it is known that a cut-on frequency exists below
which the propagating waves remain evanescent [145]. Installing a sufficiently
stiff wave impeding block in the soil reduces the thickness of the top layer,
therefore increasing the cut-on frequency. The installing of wave impeding
blocks, however, may amplify the vibration levels at higher frequencies [134].
Takemiya and Fujiwara [158] pointed out that the wave impeding block is only
effective if its width is sufficiently large compared with the wavelength.

Instead of inserting material into the soil, stone baskets or concrete blocks can
be placed on the surface (figure 1.2f). The incident surface waves are scattered
by these wave reflectors, reducing the transmitted wave field [110]. The best
performance is found for soft soils and heavy masses, as a low mass-spring
resonance frequency leads to a strong vibration reduction [63]. The walls can
also be used as a noise barrier, therefore reducing both airborne sound and
vibration propagation in the soil.

As subgrade stiffening has the risk of track uplifting and wave impeding
blocks need to be very large in order to be effective, these are not preferred
as mitigation measures for existing tracks. The effectiveness of the other
mitigation measures strongly depends on the soil profile, and soft soils are found
to be generally beneficial [65]. Soft wave barriers have the best performance
for soft fill materials, but the stiffness can be affected by the confining pressure
due to the soil, the presence of groundwater, chemical components in the soil
and freeze/thaw cycles, influencing their lifetime [121]. Stiff barriers have the
ability to be very effective in reducing vibrations at low frequencies [50, 62].
The cost of soft and stiff barriers is expected to be larger than for heavy
masses next to the track and is mainly determined by the cost of the inserted
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material, the installation cost (which also depends on the soil type), the cost
for determining the soil properties, and the cost for evaluating the vibration
levels [121]. Barriers have, however, hardly a visual impact, opposed to heavy
masses next to the track [121].

Complex design geometries have rarely been considered. Because of the
high computational cost of numerical simulations, mitigation measures on the
transmission path are usually designed by trial and error. This leads to designs
which are underperforming in cost-effectiveness. Because of its potential for
finding novel, optimized designs, topology optimization can be adopted to
improve the design of current mitigation measures on the transmission path.
A state of the art relating to structural optimization with focus on topology
optimization is therefore given next.

1.2.2 Structural optimization

In structural optimization, a design problem is formulated as a mathematical
optimization problem where the total cost of a structure is minimized for a
given performance. Alternatively, the performance is maximized while the
cost is specified in advance. Structural optimization approaches are commonly
categorized in three groups: size, shape, and topology optimization [43]. In
size optimization the cross-sectional dimensions of members such as beams
or plates are optimized. The layout of these members has been specified
a priori [86]. Traditionally, they are considered as continuous optimization
problems. In practice, however, the design variables can only take discrete
values, for example when selecting a beam from a steel catalog, making the
problems hard to solve [160]. Moreover, the members are often subjected to
a large number of constraints, and it takes a lot of effort to take these into
account [168].

In shape optimization problems, the geometry of a structure is optimized.
A distinction can be made between two approaches. In the first approach,
the finite element node coordinates are used as design variables [182]. This
approach provides much design freedom [113], but often leads to large
optimization problems which possess some numerical instabilities [85]. In
the second approach, the boundary is parametrized, for example using spline
functions [32], tackling these issues at the expense of modeling effort [10].

Topology optimization searches for the most efficient distribution of a given
amount of material in a specified design domain. Topology optimization
simultaneously optimizes not only the size and the shape of the design,
but also the topology, making it possible to obtain novel, improved design
geometries. Classically, the book of Bendsøe and Sigmund [23] is suggested



6 INTRODUCTION

as an introduction in topology optimization. For more recent advances in
methodology and application, the review paper of Deaton and Grandhi [59]
can be recommended.

Topology optimization was originally developed for static mechanical problems,
but has since then been used for a variety of applications including problems
governed by wave propagation [140]. A lot of research has been performed
in the field of photonic crystal waveguide design. These electromagnetic
waveguides are designed based on the band-gap phenomenon in periodic
structures, obstructing wave propagation for specific frequencies [29, 97]. An
overview of the applications within nano-photonics is given by Jensen and
Sigmund [98].

Next to photonic band-gaps due to electromagnetic waves, also phononic band-
gaps due to elastic and acoustic waves have been investigated. Sigmund and
Jensen [149] maximize the bandwidth of phononic band-gap materials and
minimize the transmitted wave amplitude of a band-gap structure subjected
to harmonic loading. Jensen [96] discusses a two-dimensional problem, where
an incoming plane pressure or shear wave is maximally reflected or dissipated
by an optimal periodic distribution of scattering or absorbing inclusions.

Structural optimization has also been applied to acoustic design problems.
Pioneering work in the application of topology optimization to acoustic
problems is done by Wadbro and Berggren [171], who optimize an acoustic
horn that efficiently radiates sound. In room acoustics, topology optimization
has been used to optimally distribute reflecting material along the ceiling
or walls of a room [67]. Christiansen et al. [44] use topology optimization
to minimize the average pressure level in an acoustic cavity, which is later
validated experimentally [45]. The application of noise barriers has also received
some attention. Duhring et al. [67] optimize an outdoor barrier to reduce the
sound power level behind the barrier. A similar problem is considered by Yoon
et al. [181] who use a mixed finite element approach. Kook et al. [108] minimize
the maximum main loudness. Greiner et al. [79] apply shape optimization using
genetic algorithms to optimize Y-shaped noise barriers. Shape optimization is
also used by Abe et al. [1] to optimize noise barriers for railway viaducts.

Topology optimized designs are often only optimal for the specific problem
considered. Small variations in the physical system might result in a
strongly deteriorated performance. Robust optimization techniques have been
developed to take these uncertainties into account. Sources of uncertainty
considered in robust optimization include load conditions [20, 35, 68], material
properties [11, 39, 111], support conditions [127], and geometric imperfections.
Several types of geometric imperfections have been studied: over- and
underetching [111, 143, 147, 172], misplacement of material [94], and local
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material failure [95].

1.3 Objectives and contributions

Only simple design geometries for mitigation measures on the transmission
path have been considered whose dimensions are obtained by trial and error.
However, current construction methods of wave barriers provide a wider
flexibility in design geometry. Improvements are expected when considering
more complex and optimized designs, which will be explored in this work.

The objectives are therefore to (1) study novel design geometries which have the
potential to improve the current performance and (2) develop a methodology
to optimize the design of mitigation measures. Because of its potential for
identifying novel design geometries, topology optimization is adopted as the
main tool for design optimization.

The main contributions are:

• The performance of a double wall barrier is investigated using a 2.5D
FE-PML model. A comparison is made between the single and double
walls, and the influence of geometric and material parameters is assessed
by examining the free vibrations of the wall structure and by analyzing an
equivalent one-dimensional model. It is shown that double wall barriers
only perform better than single wall barriers for specific geometries.

• It is investigated whether using topology optimization to design mit-
igation measures for railway induced vibration leads to geometries
outperforming the simple shapes previously investigated. The results
of this work demonstrate the high potential of optimized designs as they
lead to a considerable performance improvement and volume reduction.

The original contributions related to the methodology include:

• The adjoint method is applied to compute the sensitivities with respect
to the design variables. This allows computing the gradient by means of
only one additional analysis. Analytical expressions for the sensitivities
are needed and are therefore derived in this work for one-dimensional, two-
dimensional, and two-and-a-half-dimensional models. These expressions
are applied to multiple objective and constraint functions. The
sensitivities are verified by means of the finite difference method.

• A methodology is developed to find simplified designs. By applying
a robust optimization approach, designs are obtained which are less
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sensitive to deviations in the design geometry. These designs can be
simplified with only little deterioration. A shape optimization can
further optimize the design. An alternative is presented which optimizes
the layout of discrete objects. The method developed by Guest [81]
considered circular shapes and is extended to rectangular shapes and
convex polygons. The method is then applied for finding simple designs.

1.4 Organization of the text

The text can be divided in two main parts. In the first part (chapters 2 and 3),
wave barriers are analyzed whose potential is shown by successful applications
in other fields such as photonics and acoustics. In the second part (chapters
4 to 6), structural optimization is applied to discover novel design geometries.
The two parts are further sub-divided according to the loading type, namely
plane waves, line loads, and point loads. An overview is given in table 1.1.

Chapter 1 introduces the thesis by presenting the problem statement and the
state of the art for mitigation measures for railway induced vibrations, wave
propagation models, and structural optimization. The original contributions
are highlighted and the organization of the text is clarified.

Chapter 2 gives an introduction of wave propagation in one-dimensional
elastic media, focusing on periodic series of alternating layers as wave barrier
for incoming plane waves. The existence of stopbands in infinite periodic series
is shown and the influence of the number of periodic cells is studied.

Chapter 3 analyzes the performance of double wall barriers for mitigation
of ground vibration transmission by 2.5D FE-PML models. A comparison is
made with single wall barriers and a physical interpretation is given by studying
the performance in the frequency-wavenumber domain and by comparing the
behaviour with equivalent one-dimensional models. The influence of geometric
and material properties is investigated.

Chapter 4 introduces the concepts of topology optimization, discusses its
application to elastodynamics, and presents the adjoint method for the
computation of the sensitivities. A one-dimensional optimization problem is
presented where the transmission of plane waves in a full space is minimized.
Multiple objective functions are considered, namely for harmonic sources at a
known frequency, at a frequency in a given range, and broadband sources.

Chapter 5 discusses the application of topology optimization for designing
wave barriers close to the surface of a halfspace excited by a line load. As
the designs are shown to be sensitive to geometric imperfections, a robust
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Table 1.1: Organization of the text.

Analysis Optimization
Chapter 2 Chapter 4

Plane waves ?

Chapter 5

Line loads
?

Chapter 3 Chapter 6

Point loads
?

optimization approach is subsequently used. Furthermore, this chapter deals
with the issue of feasibility.

Chapter 6 focuses on topology optimization taking three-dimensional wave
propagation into account by using a 2.5D FE-PML model. A similar problem
to the one in chapter 5 is first considered, but now for point loads exciting
the surface. The influence of the barrier length on the optimized design is
analyzed by applying the spatial windowing technique. To conclude, a case
study is presented in which the model is expanded with a building and coupled
to a track excited by the axle loads of a passing train.
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Chapter 7 summarizes the main conclusions of the thesis and gives some
recommendations for further research.



Chapter 2

Periodic wave barriers for

one-dimensional elastic wave

propagation

2.1 Introduction

This chapter investigates the wave transmission through one-dimensional
periodic stacking of layers. The problem considered is shown in figure 2.1.
A homogeneous elastic full space is divided in two by a periodic layered elastic
medium. When an incoming wave arrives at the periodic configuration, a part
of the energy is transmitted, a part is reflected and a part is dissipated in the
structure. The frequency domain formulation allows for a simple analysis of
harmonic wave propagation through one-dimensional media.

Wave propagation in one-dimensional media has been studied for a long
time [2]. In the field of elastodynamics, the direct stiffness method [104]
has been developed, considering wave propagation in linear elastic horizontally
layered media. This method is similar to the Haskell-Thomson transfer matrix
approach [87, 161], but the direct stiffness method has as advantages that
the stiffness matrices are symmetric, they involve half as many degrees of
freedom as transfer matrices, and the method is robust for thick layers and
high frequency by the implementation of limiting expressions [103]. The direct
stiffness method has been implemented in MATLAB in the EDT toolbox
developed at the Structural Mechanics Section of KU Leuven [142].

11
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I

R

T

Figure 2.1: Waves propagating through a periodic layered elastic medium.
A part of the incoming wave with amplitude I is transmitted (T ), a part is
reflected (R) and a part is dissipated.

Periodic one-dimensional media have already been extensively studied in many
domains [34, 128]. The most important applications nowadays can be found
in the field of photonics [141]. The periodicity leads to the well-known pass-
and stopbands [99]. Yariv and Yeh [179] have calculated an expression for the
dispersion relation between the wavenumber and the frequency and proposed
an analytical expression for the reflectivity of a multi-periodic structure [180].
A similar expression for the transmittance is determined using the transfer
matrix method [21, 152].

Next to photonics, where the governing waves are electromagnetic, research
on periodic one-dimensional media has also been done in the case of elastic
waves, primarily in the field of composite materials. An example are the locally
resonant sonic materials developed by the group of Sheng [116]. Dispersion
curves are derived using the transfer matrix method by Hussein et al. [91, 92] for
both infinite and finite structures. The same authors also designed a periodic
structure with the multiscale dispersive design methodology by first designing
a periodic unit cell [93].

In this chapter, wave propagation through one-dimensional periodic elastic
media is studied, both for a single layer and for a periodic stacking of layers.
The theory discussed in this chapter will be used in the next chapter to
interpret the performance of double wall barriers. In chapter 4, optimized
one-dimensional designs are shown which consist of periodic stacking of layers.
This chapter gives the underlying explanation of these optimization results by
analyzing their performance.
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The chapter is organized as follows. The direct stiffness formulation is
introduced first. In section 2.3, the wave propagation through a single layer
with finite thickness in a homogeneous full space is studied. Next, the
wave propagation through a periodic stacking of layers is discussed and the
phenomenon of stop- and passbands is addressed (section 2.4).

2.2 Direct stiffness formulation

This section introduces the governing elastodynamic equations, as can be found
in for example [2] or [60], and presents the direct stiffness formulation [60, 104].

2.2.1 Governing equations

A P-wave propagates in the x-direction and causes a displacement component
ux(x, t) as a function of time t. The equation of motion in the x-direction is [2]:

∂σxx

∂x
+ ρbx = ρ

∂2ux

∂t2
(2.1)

In this expression, ρ is the density of the material and ρbx is the body force in
the x-direction. In the case of constrained wave propagation, the normal stress
σxx in the x-direction is equal to [2]:

σxx = (λ+ 2µ)ǫxx (2.2)

where λ and µ are the Lamé coefficients and the strain ǫxx is found from the
following linear strain-displacement relation [2]:

ǫxx =
∂ux

∂x
(2.3)

When no body forces are present, equation (2.1) reduces to the following partial
differential equation [2]:

∂2ux

∂x2
=

1

C2
p

∂2ux

∂t2
(2.4)

where Cp =

√

λ+ 2µ

ρ
is the dilatational wave velocity.

Consider now the following Fourier transform pair [71, 165]:

ûx(x, ω) =

∞
∫

−∞

ux(x, t)e−iωtdt (2.5)



14 PERIODIC WAVE BARRIERS FOR ONE-DIMENSIONAL ELASTIC WAVE PROPAGATION

ux(x, t) =
1

2π

∞
∫

−∞

ûx(x, ω)e+iωtdω (2.6)

where a hat above a variable denotes its representation in the frequency domain
and i is the imaginary unit. The forward Fourier transform of the partial
differential equation (2.4) results in the following differential equation for the
transformed displacement ûx(x, ω) [60]:

∂2ûx

∂x2
+
ω2

C2
p

ûx = 0 (2.7)

With the wavenumber given by kp =
ω

Cp
, this equation becomes [60]:

∂2ûx

∂x2
+ k2

pûx = 0 (2.8)

The solution of this differential equation is given by [60]:

ûx(x, ω) = Pe−ikpx +Ne+ikpx (2.9)

where the amplitudes P and N refer to waves propagating in the positive and
in the negative x-direction, respectively. The axial strain ǫ̂xx(x, ω) becomes:

ǫ̂xx(x, ω) =
∂ûx

∂x
= −ikpPe

−ikpx + ikpNe
+ikpx (2.10)

and the normal stress σ̂xx(x, ω) is equal to:

σ̂xx(x, ω) = (λ+ 2µ)ǫ̂xx(x, ω) (2.11)

2.2.2 Element dynamic stiffness matrices

The direct stiffness method can be used to model one-dimensional wave
propagation [104]. This method is similar to the finite element method: a
layered medium is modelled as an assembly of layers, and element stiffness
matrices are used to express the relation between displacements and tractions
at the element boundaries. In this section, the element stiffness matrices are
derived according to [60]. The stiffness matrix is then assembled from the
element stiffness matrices in the same way as for the finite element method. A
distinction is made between semi-infinite and finite layers.
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Semi-infinite layer Consider the case of a semi-infinite layer given by
figure 2.2a. In this one-dimensional semi-infinite layer, without any applied
forces, waves can only propagate in the positive x-direction as Sommerfeld’s
radiation condition [151] should be met. The displacement ûx1 at the end x = 0
of the layer can be derived from equation (2.9):

ûx1 = ûx(0, ω) = P (2.12)

ûx1

t̂x1

x
[1]

(a)

ûx1

t̂x1

ûx2

t̂x2

x
[1] [2]

(b)

Figure 2.2: One-dimensional (a) semi-infinite and (b) finite layer.

The traction vector t̂x1 at the end x = 0 of the semi-infinite layer can be derived
from equations (2.10) and (2.11):

t̂x1 = t̂x(0, ω) = −σ̂xx(0, ω) = −(λ+ 2µ)ǫ̂xx(0, ω)

= (λ+ 2µ)ikpP
(2.13)

Elimination of the unknown amplitude P from equations (2.12) and (2.13)
results in the following relation between the traction t̂x1 and the displacement
ûx1 [60]:

t̂x1 = ikp(λ+ 2µ)ûx1 = iωρCpûx1 (2.14)

This can be written in the form:

K̂eûe = t̂
e

(2.15)

Here, ûe = {ûx1} is the displacement vector, t̂
e

=
{

t̂x1

}

is the traction vector

and K̂e is the 1×1 dynamic stiffness matrix of the one-dimensional semi-infinite
layer [60]:

K̂e =
[

iωρCp

]

(2.16)
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Finite layer Consider now the case of a semi-infinite layer given by figure 2.2b.
The displacements at both ends z = 0 and z = L of the layer are equal to:

ûe =

{

ûx1

ûx2

}

=

{

ûx(0, ω)
ûx(L, ω)

}

=

[

1 1
e−ikpL e+ikpL

]{

P
N

}

(2.17)

The tractions at both ends x = 0 and x = L of the layer are equal to:

t̂
e

=

{

t̂x1

t̂x2

}

=

{

−σ̂xx(0, ω)
σ̂xx(L, ω)

}

= (λ+ 2µ)ikp

[

1 −1
−e−ikpL e+ikpL

]{

P
N

}

(2.18)

Elimination of the unknown amplitudes P and N from equations (2.17)

and (2.18) results in the following relation between the tractions t̂
e

and the
displacements ûe [60]:

{

t̂x1

t̂x2

}

=
ωρCp

sin kpL

[

cos kpL −1
−1 cos kpL

]{

ûx1

ûx2

}

(2.19)

This can be written in the general form:

K̂eûe = t̂
e

(2.20)

Here, ûe = {ûx1, ûx2}T
is the displacement vector, t̂

e
=
{

t̂x1, t̂x2

}T
is the

traction vector and K̂e is the 2 × 2 dynamic stiffness matrix of the one-
dimensional finite layer [60]:

K̂e =
ωρCp

sin kpL

[

cos kpL −1
−1 cos kpL

]

(2.21)

2.2.3 Amplification problem

A one-dimensional amplification problem is considered as illustrated in
figure 2.3. The first layer is a semi-infinite halfspace. In this layer, there is
an incident wave with amplitude I that is partly reflected by the other layers.
The displacement field in the semi-infinite layer is given by:

û1
x(x, ω) = Ie−ikpx +Re+ikpx (2.22)

where kp is the wave number in the semi-infinite layer. At interface [a] (x = 0),
the displacement is equal to:

ûxa = û1
x(0, ω) = I +R (2.23)
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1 2 3 4

I

R

x
[a]

Figure 2.3: One-dimensional amplification problem.

The traction is equal to:

t̂xa = σ̂1
xx(0, ω) = (λ + 2µ)ikp(−I +R) (2.24)

Elimination of the unknown amplitude R from these equations results in [60]:

t̂x1 = (λ+ 2µ)ikp(ûx1 − 2I) = iωρCp(ûx1 − 2I) (2.25)

Recall that for a semi-infinite layer, the stiffness matrix is given by equa-
tion (2.16). The above equation can therefore be written as [60]:

t̂
e

= K̂e(ûe − 2I) (2.26)

or:
K̂eûe = t̂

e
+ 2K̂eI (2.27)

This equation is assembled in the global equilibrium equation K̂û = p̂ where K̂

is the stiffness matrix, û the global displacement vector, and p̂ the load vector.

2.3 A layer embedded in a full space

In this section, the propagation of dilatational waves through a layer embedded
in a homogeneous full space is studied. To better understand the underlying
physical mechanisms, first wave transmission at an interface between two
materials is discussed.
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2.3.1 Wave reflection and transmission at an interface

The reflection and transmission of waves at the interface between two materials
is well known in the domain of elastodynamics. Expressions for these
coefficients are for example shown in [2].

At an interface between two materials, a part of the incoming wave (with
amplitude I) is reflected (R) and a part is transmitted (T ) (figure 2.4). The
waves travel with a speed Cp1 in the first and Cp2 in the second semi-infinite
halfspace. The corresponding wavenumbers are kp1 = ω/Cp1 and kp2 = ω/Cp2.
The displacement fields in the first and second halfspace are written as:

{

û1
x(x, ω) = Ie−ikp1x +Re+ikp1x x ≤ 0

û2
x(x, ω) = Te−ikp2x 0 ≤ x

(2.28)

1 2

I

R

T

x
[a]

Figure 2.4: Two semi-infinite halfspaces with different properties, in contact at
x = 0.

The displacement ûxa at interface [a] is obtained using the direct stiffness
method. As the stiffness matrix is K̂ = [iωρ1Cp1 + iωρ2Cp2] and the load
vector is p̂ = [2iωρ1Cp1I], this displacement is equal to:

ûxa =
2

1 +K
(2.29)

where K is the ratio of the impedances Zp1 and Zp2 of the two materials:

K =
Zp2

Zp1
=
ρ2Cp2

ρ1Cp1
(2.30)
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As ûxa = û1
x(0, ω) = I + R = û2

x(0, ω) = T , the amplitude of the reflected and
transmitted wave are given by [2]:

R =
1 −K

1 +K
I = rI (2.31)

T =
2

1 +K
I = tI (2.32)

In these expressions, r is the reflection and t is the transmission coefficient.
They are defined as the ratio of the reflected, respectively transmitted, and the
incoming wave amplitude.

The reflection and transmission coefficients (r and t) only depend on the
impedance ratio K. Figure 2.5 shows this dependence. The transmission
coefficient t decreases with the impedance ratio K.

Impedance ratio K [−]
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Figure 2.5: The reflection (dashed-dotted line) and transmission (solid line)
coefficients (r and t).

The displacement field corresponding to the transmitted waves in the semi-
infinite halfspace is given by:

û2
x(x, ω) = Te−ikp2x =

2

1 +K
Ie−ikp2x (2.33)

The absolute value of the displacement is independent of x and is equal to
T = tI. Figure 2.6 shows the wave field at 50 Hz and 100 Hz for wave velocities
Cp1 = 200 m/s and Cp2 = 400 m/s and mass densities ρ1 = ρ2 = 2000 kg/m3.
The corresponding impedance ratio K is equal to 2. In the left halfspace, there
is constructive and destructive interference between the incoming and reflected
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waves. In the right halfspace, the wavelength is twice as large and the amplitude
is only two third of the modulus of the incoming wave.
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Figure 2.6: Real part, imaginary part and modulus of the wave field for a
homogeneous full space (dotted line) and two different semi-infinite halfspaces
(solid line) at (a) 50 Hz and (b) 100 Hz.

2.3.2 Wave reflection and transmission through a layer

embedded in a homogeneous full space

A layer with finite thickness is embedded in a homogeneous full space, as shown
in figure 2.7. An incoming wave (I) is partly reflected by the layer (R) and
a part is transmitted through the layer (T ). The displacement field in the
layer consists of waves that travel in both directions (A and B), and that are
reflected and transmitted at the boundaries. The displacement fields in the
different parts are given by:











û1−
x (x, ω) = Ie−ikp1(x+L2) +Re+ikp1(x+L2) x ≤ −L2

û2
x(x, ω) = Ae−ikp2x +Be+ikp2x −L2 ≤ x ≤ 0

û1+
x (x, ω) = Te−ikp1x 0 ≤ x

(2.34)
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Figure 2.7: A layer with finite thickness embedded in a homogeneous full space.

The direct stiffness method is again applied to find the displacements at the
interfaces [a] and [b]:

[

iωρ1Cp1 + ωρ2Cp2 cotkp2L2 −ωρ2Cp2 csc kp2L2

−ωρ2Cp2 csc kp2L2 iωρ1Cp1 + ωρ2Cp2 cotkp2L2

]{

ûxa

ûxb

}

=

{

2iωρ1Cp1I
0

}

(2.35)

Solving this results in the displacement ûxb = û1+
x (0, ω) = T , and the

transmitted wave field û1+
x (x, ω) [116]:

û1+
x (x, ω) = Te−ikp1x =

4KIe−ikp1x

(1 +K)2e+ikp2L2 − (1 −K)2e−ikp2L2
= tI (2.36)

The amplitude of the transmitted wave is given by:

|û1+
x | =

2KI
√

4K2 cos2(kp2L2) + (1 +K2)2 sin2(kp2L2)
= |t|I (2.37)

For a given thickness L2, this value is equal to I (or |t| = 1) if kp2L2 = nπ, n =
0 . . .∞, or:

f =
nCp2

2L2
(2.38)
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For a given frequency, the thicknesses of the layer where |û1+
x | = I (for a given

wavelength λp2 =
Cp2

f
) are:

L2 =
nλp2

2
(2.39)

For kp2L2 = (m+ 1/2)π, m = 0 . . .∞, |û1+
x | is minimal and equal to

2K

1 +K2
,

i.e. for frequencies f satisfying:

f =
(2m+ 1)Cp2

4L2
(2.40)

or for thicknesses L2:

L2 =
(2m+ 1)λp2

4
(2.41)

The wave transmission has therefore a minimum when the thickness of the layer
is equal to a quarter of the wavelength.

Consider for example Cp1 = 200 m/s, ρ1 = 2000 kg/m3, L2 = 2 m, and
ρ2 = 2000 kg/m3. Figure 2.8 shows the modulus of the transmission coefficients
for three different cases: Cp2 = 200 m/s (K = 1), Cp2 = 100 m/s (K = 0.5),
and Cp2 = 400 m/s (K = 2). For Cp2 = Cp1 = 200 m/s, the waves propagate
through a homogeneous full space and the modulus of the transmission
coefficient is |t| = 1 for all frequencies. For Cp2 = 100 m/s, the modulus of the
transmission coefficient |t| is maximal and equal to 1 for f = 25, 50, 75, . . . Hz
and minimal and equal to 0.8 for f = 12.5, 37.5, 62.5, . . . Hz. For Cp2 = 400 m/s,
the modulus of the transmission coefficient |t| is maximal and equal to 1 for f =
100, 200, 300, . . . Hz and minimal and equal to 0.8 for f = 50, 150, 250, . . . Hz.

For the last case (Cp1 = 200 m/s, ρ1 = 2000 kg/m3, L2 = 2 m, Cp2 = 400 m/s,
and ρ2 = 2000 kg/m3), the wave fields at 50 Hz and 100 Hz are plotted in
figure 2.9. At 50 Hz, the incoming wave is partly reflected by the layer, and
the transmitted wave amplitude is reduced to four fifth of the incoming wave
amplitude. On the contrary, at 100 Hz, nothing is reflected by the layer and the
amplitude of the transmitted wave is equal to the amplitude of the incoming
wave.

2.4 Periodic stacking of layers

2.4.1 Bloch waves

In this section, a periodic stacking of layers is considered. Every periodic cell
consists of a layer of material 1 with thickness L1 and a layer of material 2
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Figure 2.8: Modulus of the transmission coefficient |t| for a layer embedded in
a full space with impedance ratio K = 1 (dotted line), K = 0.5 (dashed-dotted
line), and K = 2 (solid line).
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Figure 2.9: Real part, imaginary part and modulus of the wave field for a
homogeneous full space (dotted line) and for a layer embedded in this full
space with thickness 2 m (solid solid line) at (a) 50 Hz and (b) 100 Hz.

with thickness L2 and has a total thickness L = L1 +L2. A part of the infinite
periodic structure is shown in figure 2.10. The displacements in the different
layers can be expressed as:











ûn−1
x1 (x, ω) = Cn−1e

−ikp1x +Dn−1e
+ikp1x −L1 ≤ x ≤ 0

ûn
x2(x, ω) = Ane

−ikp2(x−L2) +Bne
+ikp2(x−L2) 0 ≤ x ≤ L2

ûn
x1(x, ω) = Cne

−ikp1(x−L) +Dne
+ikp1(x−L) L2 ≤ x ≤ L

(2.42)
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Figure 2.10: Part of the infinite periodic structure.

From the continuity of displacements and the stress equilibrium at interfaces
[a] and [b], a relation can be derived between Cn−1 and Dn−1 on the left hand
side and Cn and Dn on the right hand side of periodic cell n. These can be
written in the following matrix form:

{

Cn−1

Dn−1

}

= H

{

Cn

Dn

}

(2.43)

Here, the transfer matrix H is equal to:

H =

[

H11 H12

H21 H22

]

(2.44)

with (similar to the expressions in [179]):

H11 = e+ikp1L1

[

cos(kp2L2) +
i

2

(

K +
1

K

)

sin(kp2L2)

]

H12 = e−ikp1L1

[

i

2

(

K − 1

K

)

sin(kp2L2)

]

H21 = e+ikp1L1

[

− i

2

(

K − 1

K

)

sin(kp2L2)

]

H22 = e−ikp1L1

[

cos(kp2L2) − i

2

(

K +
1

K

)

sin(kp2L2)

]

(2.45)
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The periodicity gives rise to so-called Bloch waves. These waves are
characterized by the following eigenvalue problem with λj = e±ikL as the
complex eigenvalues [179]:

[

H11 H12

H21 H22

]{

Cn

Dn

}

= e±ikL

{

Cn

Dn

}

(2.46)

where L = L1+L2 and k is the wavenumber of the Bloch wave. The eigenvalues
of a 2 × 2 matrix are the roots of the characteristic equation:

det(H − λI) = λ2
j − Tr(H)λj + det(H) = 0 (2.47)

In this expression, Tr(H) is the trace of the matrix H, equal to H11 +H22. The
determinant det(H) = H11H22 − H21H12 is equal to 1 (see appendix A). The
roots of this equation are:

λj =
Tr(H)

2
±

√

(

Tr(H)

2

)2

− det(H) =
Tr(H)

2
± i

√

1 −
(

Tr(H)

2

)2

(2.48)

Since λj = e±ikL = cos kL± i sin kL, the following applies [37]:

cos(kL) =
Tr(H)

2

= cos(kp1L1) cos(kp2L2) − 1

2

(

K +
1

K

)

sin(kp1L1) sin(kp2L2)

(2.49)

This is a dispersion relation between the wavenumber k and the frequency ω,
since the wavenumbers kp1 = ω/Cp1 and kp2 = ω/Cp2 depend on the frequency
ω.

Consider the same material properties as before: Cp1 = 200 m/s, ρ1 =
2000 kg/m3, and ρ2 = 2000 kg/m3. The thicknesses of the layers are L1 = 1 m
and L2 = 2 m (L = L1 + L2 = 3 m). Furthermore, three values of Cp2

are considered: Cp2 = 200 m/s (K = 1), Cp2 = 100 m/s (K = 0.5), and
Cp2 = 400 m/s (K = 2). Figure 2.11 shows the function cos(kL) appearing in
equation (2.49) for the different cases. Figure 2.12 shows the real and imaginary
part of the wavenumber k. At the frequencies where the right hand side of
equation (2.49) gives a value between −1 and 1, a real-valued wavenumber k is
obtained. However, in the range of frequencies where the absolute value of the
right-hand side of equation (2.49) is larger than 1, the wavenumber k becomes
complex. As a consequence, the passing wave is not only subjected to a phase
shift, but is also attenuated. In this range, a stopband occurs.
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Figure 2.11: The function cos(kL) (equation (2.49)) as a function of the
frequency with impedance ratio K = 1 (dotted line), K = 0.5 (dashed-dotted
line), and K = 2 (solid line).
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2.4.2 Stopbands

In this subsection, the location and width of the stopbands is determined.
Figure 2.13 shows the stopbands in the (kp1L1, kp2L2) plane by plotting
equation (2.49) for cos(kL) < −1 and cos(kL) > 1. The location of the
stopbands is primarily dependent on the values of kp1L1 and kp2L2, while
the width of the stopbands is primarily dependent on the value of K. The
location of the stopbands is shown schematically in figure 2.14. Expressions for
the location and the width of the stopbands are derived below.
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Figure 2.13: Stop bands in the (kp1L1, kp2L2) plane for an impedance ratio (a)
K = 1.5, (b) K = 2, (c) K = 5, and (d) K = 10.
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It can be shown that for kp1L1 + kp2L2 = nπ, n = 1 . . .∞, | cos(kL)| is always
larger than or equal to 1 (figure 2.14):

cos(kL) = cos(kp1L1) cos(kp2L2) − 1

2

(

K +
1

K

)

sin(kp1L1) sin(kp2L2)

= cos(kp1L1) cos(nπ − kp1L1)

− 1

2

(

K +
1

K

)

sin(kp1L1) sin(nπ − kp1L1)

=



















1 +
(1 −K)2

2K
sin2(kp1L1) for n even

−1 − (1 −K)2

2K
sin2(kp1L1) for n odd

(2.50)

kp1L1 [−]

k
p

2
L

2
[−

]

0
0

π

π

2π

2π

3π

3π

4π

4π

5π

5π

6π

6π

Figure 2.14: (kp1L1, kp2L2) pairs corresponding to the frequencies fcs close to
the center of the stopbands (solid lines), the frequencies fns where no stopbands
are observed (dashed lines), and the frequencies fmc for which the function
cos kL has a maximum (plus marks).

Since the impedance ratio K ≥ 0, it holds that
(1 −K)2

2K
≥ 0 (and

(1 − K)2

2K
=

0 for K = 1). Also sin2(kp1L1) ≥ 0 (and sin2(kp1L1) = 0 for kp1L1 = mπ, m =
0 . . .∞), which means that the function cos(kL) ≥ 1 for n even and cos(kL) ≤
−1 for n odd. As a consequence, the frequencies fcs for which kp1L1 +kp2L2 =
nπ, n = 1 . . .∞ are located in a stopband if the impedance ratio K 6= 1 and if
kp1L1 6= mπ, m = 0 . . .∞ (figure 2.14). These frequencies fcs are located near
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to the center of the stopbands:

ωcs =
nπ

L1

Cp1
+

L2

Cp2

(2.51)

or:
fcs =

n

2

(

L1

Cp1
+

L2

Cp2

) (2.52)

There are two exceptions for these frequencies fcs to be located in a stopband:
for an impedance ratio K = 1 and for kp1L1 = mπ, m = 0 . . .∞. The latter
expression defines the frequencies fns where no stopbands are observed:

ωns =
mπCp1

L1
(2.53)

or:

fns =
mCp1

2L1
(2.54)

Alternatively, the frequencies where no stopbands are observed can be obtained
from kp2L2 = mπ, m = 0 . . .∞.

The most pronounced stopbands occur at frequencies for which |cos(kL)| has
a maximum. As the maxima are found at frequencies fmc for which cos(kp1L1)
and cos(kp2L2) are equal to zero, these frequencies satisfy the equations
kp1L1 = (p + 1/2)π, p = 0 . . .∞ and kp2L2 = (q + 1/2)π, q = 0 . . .∞
(figure 2.14), or:

fmc =
(2p+ 1)Cp1

4L1
=

(2q + 1)Cp2

4L2
(2.55)

The case where p = q = 0 is called the quarter wave-stack condition [179], since
the thicknesses of the layers are equal to the quarter of the wavelengths λ1 and
λ2:

L1 =
λ1

4
=
Cp1

4f
and L2 =

λ2

4
=
Cp2

4f
(2.56)

This condition, that can also be written as kp1L1 = kp2L2 =
π

2
, is of particular

importance, as will be shown later on.

The width of the stopbands can be derived for the special case where kp1L1 =
kp2L2. Indeed, equation (2.49) becomes:

cos(kL) = cos2(kp1L1) − 1

2

(

K +
1

K

)

sin2(kp1L1)

= 1 − (1 +K)2

2K
sin2(kp1L1)

(2.57)
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Since
(1 +K)

2

2K
≥ 0 (as the impedance ratio K ≥ 0) and sin2(kp1L1) ≥ 0, it

holds that cos(kL) ≤ 1. As a consequence, the stopbands are located between
the frequencies where cos(kL) = −1, or:

(1 +K)
2

2K
sin2(kp1L1) = 2 ⇔ sin2(kp1L1) =

4K

(1 +K)
2

⇔ sin(kp1L1) =
±2

√
K

1 +K

(2.58)

The points (kp1L1)1 = arcsin

(

2
√
K

1 +K

)

and (kp1L1)2 = π − arcsin

(

2
√
K

1 +K

)

are solutions of this equation, and hence:

∆(kp1L1) = π − 2 arcsin

(

2
√
K

1 +K

)

(2.59)

Note that ∆(kp1L1) = 0 for an impedance ratio K = 1 and that ∆(kp1L1) = π
for K = 0 and K = ∞. For the latter cases, the width is equal to the distance
between stopband frequencies, implying that the entire frequency range is a
stopband. Figure 2.15 shows ∆(kp1L1) as a function of the impedance ratio K.
The width increases with the difference in impedance, as was previously shown
in figure 2.13. The width ∆f of the stopbands in terms of frequency is:

∆f =
Cp1

2πL1
∆(kp1L1) =

Cp1

L1

[

1

2
− 1

π
arcsin

(

2
√
K

1 +K

)]

(2.60)

2.4.3 Transmission for a stacking of periodic layers

Consider different periodic unit cells consisting of two different layers stacked
one after the other, as shown in figure 2.16. The solution of the wave
propagation in a row of N periodic cells is easily obtained from the transfer
matrix in equation (2.43):

{

C0

D0

}

=

[

H11 H12

H21 H22

]N {
CN

DN

}

(2.61)

The N -th power of an unimodular matrix can be computed based on the
following Chebyshev identity [180] (see appendix A):

[

H11 H12

H21 H22

]N

=

[

H11ΨN−1 − ΨN−2 H12ΨN−1

H21ΨN−1 H21ΨN−1 − ΨN−2

]

(2.62)
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Figure 2.15: The width ∆(kp1L1) = ∆(kp2L2) of the stopbands as a function
of the impedance ratio K.
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Figure 2.16: Periodic stacking of layers.

with ΨN is equal to:

ΨN =
sin((N + 1)kL)

sin(kL)
(2.63)

As waves only propagate in the positive direction, the amplitude of the wave
propagating in negative direction is equal to DN = 0, and the transmission
coefficient t after N periodic cells is equal to:

t =
CN

C0
=

1

H11ΨN−1 − ΨN−2
(2.64)
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For example when N = 1, ΨN−1 = 1 and ΨN−2 = 0, resulting in:

CN =
C0

H11
=

I

e+ikp1L1

[

cos(kp2L2) +
i

2

(

K +
1

K

)

sin(kp2L2)

]

=
4KIe−ikp1L1

(1 +K)2e+ikp2L2 − (1 −K)2e−ikp2L2

(2.65)

which is identical to expression (2.36) previously obtained, if in this equation
x is evaluated at L1.

For these periodic media, the modulus of the transmission coefficient |t| is equal

to 1 if kL =
nπ

N
, n = 1 . . .N − 1. For these values, ΨN−1 is equal to:

ΨN−1 =
sin(NkL)

sin(kL)
=

sin (nπ)

sin
(nπ

N

) = 0 (2.66)

Furthermore, ΨN−2 is equal to:

ΨN−2 =
sin((N − 1)kL)

sin(kL)

=

sin

((

1 − 1

N

)

nπ

)

sin
(nπ

N

)

=
sin (nπ) cos

(nπ

N

)

− cos (nπ) sin
(nπ

N

)

sin
(nπ

N

)

= − cos (nπ) = ∓1

(2.67)

Therefore, the following holds for the transmission coefficient t:

t =
1

H11ΨN−1 − ΨN−2
= ±1 (2.68)

which proves that the modulus of the transmission coefficient |t| is equal to 1

for kL =
nπ

N
, n = 1 . . .N − 1.

Consider again the following material properties: Cp1 = 200 m/s, ρ1 =
2000 kg/m3, ρ2 = 2000 kg/m3, L1 = 1 m, and L2 = 2 m (L = 3 m).
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Figure 2.17: Modulus of the transmission coefficient |t| for (a) two (b) three,
(c) four, and (d) ten periodic cells with K = 1 (dotted line), K = 0.5 (dashed-
dotted line), and K = 2 (solid line). The gray areas indicate the theoretical
stopbands for K = 2 as predicted by equations (2.52) and (2.60).

Furthermore, three values of Cp2 are considered: Cp2 = 200 m/s (K = 1),
Cp2 = 100 m/s (K = 0.5), and Cp2 = 400 m/s (K = 2). Figure 2.17 shows
the modulus of the transmission coefficient for different numbers of periodic
cells. The location of the stopbands corresponds to the predicted frequency
ranges shown in figure 2.12, where the stopbands occur for complex values of
the wavenumber k. The location of the stopbands in the frequency range is
therefore approximated by equation (2.52). For Cp2 = 400 m/s, kp1L1 = kp2L2,
and the width of the stopbands is given by equation (2.60). The frequency
bands with low transmission are more pronounced for an increasing number of
periodic cells. An increasing number of periodic cells leads to a lower minimum
transmission coefficient in the stopbands (figure 2.18).

The corresponding wave fields at 50 Hz and 100 Hz are shown for Cp2 = 400 m/s
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Figure 2.18: Modulus of the transmission coefficient |t| at the center frequency
of the first stopband (i.e. at 50 Hz) as a function of the number of periodic cells
for K = 2.

for two periodic cells in figure 2.19, for three periodic cells in figure 2.20, and
for four periodic cells in figure 2.21. Equation (2.52) predicts a stopband at
50 Hz. On the contrary, at 100 Hz, the modulus of the transmission coefficient
|t| is equal to 1, as is predicted by equation (2.54).
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{û

x
/
I
}

−10 −5
−2

−1

0

0

1

2

5
Coordinate x [m]

|û
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Figure 2.19: Real part, imaginary part and modulus of the wave field for a
homogeneous full space (dotted line) and for two periodic cells embedded in
this full space with thicknesses L1 = 1 m and L2 = 2 m (solid line) at (a) 50 Hz
and (b) 100 Hz..
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|û
x
/
I
|

−15 −10 −5
0

0

0.5

1

1.5

2

5

Figure 2.20: Real part, imaginary part and modulus of the wave field for a
homogeneous full space (dotted line) and for three periodic cells embedded in
this full space with thicknesses L1 = 1 m and L2 = 2 m (solid line) at (a) 50 Hz
and (b) 100 Hz.
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|û
x
/
I
|

−15 −10 −5
0

0

0.5

1

1.5

2

5

(b) Coordinate x [m]

R
e

{û
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|û
x
/
I
|

−15 −10 −5
0

0

0.5

1

1.5

2

5

Figure 2.21: Real part, imaginary part and modulus of the wave field for a
homogeneous full space (dotted line) and for four periodic cells embedded in
this full space with thicknesses L1 = 1 m and L2 = 2 m (solid line) at (a) 50 Hz
and (b) 100 Hz.
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2.5 Conclusion

In this chapter, wave propagation through one-dimensional elastodynamic
media was studied. An incoming wave is partly reflected by and partly
transmitted through a periodic stacking of layers. The one-dimensional wave
propagation is modeled using the direct stiffness method.

The performance of a layer embedded in a homogeneous full space is studied.
Constructive and destructive interference of the incoming and reflected waves
result in standing waves, which contain spatial nodes where the amplitude
of the wave field has a minimum and anti-nodes where the amplitude has a
maximum. A part is transmitted through the layer, and the amplitude of the
transmitted wave field has a minimum for layer thicknesses equal to one fourth,
three fourth, ... of the wavelength.

Periodic stacking of layers results in stopbands, frequency bands where the
transmission is attenuated. Bloch’s theory is applied to determine the location
and the width of the stopbands. For layer thicknesses equal to one fourth
of the wavelength, referred to as the quarter wave stack condition, the most
pronounced stopbands occur. Lower amplitudes of the transmitted wave field
are found for a higher number of periodic cells.

The theoretical results from this chapter are used in the next chapters
for analyzing the performance of double wall barriers in chapter 3 and for
interpreting the topology optimization results in chapter 4.



Chapter 3

Double wall barriers for

three-dimensional elastic

wave propagation

3.1 Introduction

This chapter discusses the performance of single and double stiff wall barriers
the reduction of ground vibration transmission. In acoustics, the sound
transmission through single and double walls is often predicted using analytical
models. For infinite and thin single walls without flexural rigidity, the well-
known mass law applies predicting that the sound reduction increases with
6 dB per octave [56]. When the flexural rigidity is taken into account, trace
matching between the incident air waves and the bending waves of the plate
leads to coincidence which decreases the sound reduction of the plate [55].

Analytical models for double walls show the presence of mass-spring-mass
resonance above which the sound reduction increases with 18 dB per octave [70].
Cavity resonances, corresponding to standing waves in the cavity, appear at
higher frequencies and decrease the sound reduction [24, 70]. As in building
acoustics, double walls can reduce sound levels much better than single walls
between the double wall resonance frequency and the first cavity resonance
frequency [70], it is analyzed in this chapter whether a double wall barrier has
advantages compared to a single wall barrier.

The aim of the barrier is to mitigate ground vibrations caused by passing trains.

37
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The train loading can be modeled in a simplified way as a series of incoherent
point sources. To assess the barrier’s performance, the response caused by
a vertical point load is analyzed. The considered wave propagation problem
is shown in figure 3.1. One specific case, with fixed geometry and material
properties, representing a jet grouting wall in a sandy soil is analyzed in this
chapter. Afterwards, the influence of the geometry and the material properties
is evaluated.

Figure 3.1: A semi-infinite halfspace excited by a point load at the surface. A
double wall barrier is introduced to reduce the wave propagation close to the
surface of the halfspace.

Previous studies have shown that accounting for three-dimensional effects
is crucial when wave impeding barriers for railway induced vibrations are
considered [53]. The numerical solution of three-dimensional elastodynamic
problems is computationally demanding. The high computational cost limits
the practical use of three-dimensional finite element (FE) models. This
is especially the case when multiple solutions have to be calculated, for
example for stochastic problems and for the iterative optimization procedures
investigated in this text. A number of assumptions are often made in an
attempt to reduce the computational effort. The resulting models exploit
the (assumed) regularity of the problem geometry. If the structure can be
assumed to be periodic, a Floquet transform can be used to obtain the solution
of the original three–dimensional problem based on the discretization of a
single periodic cell [38, 46, 84]. In many cases, the structure can be assumed
to have an invariant cross section. In this case, a computationally efficient
two-and-a-half-dimensional (2.5D) approach can be applied, where the Fourier
transform from the longitudinal coordinate to the wavenumber domain allows
for the representation of the three-dimensional radiated wave field on a two-
dimensional mesh [73, 75, 144, 153].
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The 2.5D concept has been used for many applications. 2.5D finite elements
(FE) were used by Gavrić to model thin-walled [76] and solid [77] waveguides.
Stamos and Beskos [153] consider 2.5D boundary elements (BE) to model the
seismic response of long lined tunnels embedded in a halfspace. By using
a dynamic substructuring technique, the complex structure is modeled for
example by means of finite elements, while boundary elements are used for the
regular soil [73]. These formulations have been used by Sheng et al. [144] and
Andersen en Nielsen [9] for the prediction of railway traffic induced vibrations,
and by Lombaert et al. [117] for the prediction of road traffic induced vibrations.

Instead of using boundary elements, finite elements can be used where spurious
reflections at the boundaries are prevented with, for example, absorbing
boundary conditions [124], infinite elements [28, 166], or perfectly matched
layers (PMLs) [17, 25]. In a 2.5D framework, a 2.5D finite-infinite element
approach proposed by Yang and Hung [177] and a 2.5D perfectly matched
layer technique described by François et al. [72] have been proposed. The
latter approach is used in this work.

The problem is introduced in section 3.2, after which the 2.5D FE-PML method
is presented (section 3.3). In section 3.4, the performance of double and single
wall barriers are analyzed and in section 3.5, a physical interpretation is given.
Finally, the influence of the geometry and the material properties are discussed
(section 3.6).

3.2 Problem description

The problem considered is a (double) wall barrier with invariant cross section in
a halfspace which is assumed homogeneous to facilitate physical interpretation
(figure 3.2). Table 3.1 lists the material properties of the homogeneous
halfspace, which are typical for sandy soils, and of the inserted walls, which are
stiffer than the surrounding soil and typical for jet grouting.

The halfspace is excited at the surface by a point source. In order to define the
geometry, the right-handed Cartesian frame of reference in figure 3.2 is chosen,
where the origin coincides with the position of the source point. The vibration
levels at three receivers are analyzed, located at (x = 15 m, y = 0 m, z = 0 m),
(x = 15 m, y = 5 m, z = 0 m), and (x = 15 m, y = 15 m, z = 0 m). These
positions will be referred to as receiver 1, receiver 2, and receiver 3, respectively.

The performance of a double wall barrier is benchmarked against the one of
a single wall barrier with the same depth and volume of material. The wall
barriers are located symmetrically with respect to the center of the source and
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Figure 3.2: The three-dimensional wave propagation problem with a double
wall barrier. The mesh is added as illustration only and is not the actual finite
element mesh.

Table 3.1: Material properties of the original homogeneous halfspace and the
stiff wall barrier.

Homogeneous Stiff wall
halfspace barrier

Mass density ρ [kg/m3] 2000 2000
Dilatational wave velocity Cp [m/s] 400 950
Shear wave velocity Cs [m/s] 200 550
Dilatational material damping ratio βp [%] 2.5 2.5
Shear material damping ratio βs [%] 2.5 2.5

the first receiver. The single wall barrier has a thickness 2tw = 2 m and the
center axis is located at a distance of 7.5 m from the point source. The two
walls of the double wall barrier have a thickness of tw = 1 m. The center axis of
both walls is located at a distance of respectively 5 m and 10 m from the point
source (the spacing between the walls is d = 4 m).
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The performance of the wall barrier depends on the material properties and
the geometry of the wall. Two phenomena play a role. First, for deep walls,
incident waves are reflected, reducing wave transmission [4]. Second, the
bending stiffness of the wall prevents the propagation of waves when the trace
wavelength (the distance between two wave fronts in the direction along the
barrier) is smaller than the bending wavelength of the barrier, similar to the
coincidence phenomenon in building acoustics [53]. The two phenomena will
be referred to as the reflection effect and the stiffness effect.

The depth of the barrier, 7.5 m, is large enough for both effects to play a role
in the performance. Waves are reflected by the barrier if the depth is larger
than 0.6 times the Rayleigh wavelength [27]. Furthermore, wave propagation
is prevented by the bending stiffness of the wall at frequencies larger than the
critical frequency ωc [53]:

ωc ≈ C2
R

h

√

12ρ

E
(3.1)

where h is the depth, ρ the mass density, and E the elastic modulus of
the barrier and CR is the Rayleigh wave velocity of the soil. The latter is
approximately calculated as (e.g. [2]):

CR =
0.862 + 1.14ν

1 + ν
Cs (3.2)

where ν is the Poisson ratio of the homogeneous halfspace material. For the
material properties in table 3.1, the Rayleigh wave velocity of the soil is equal
to 186.3 m/s. For frequencies above fc = 2.9 Hz, the barrier is therefore deep
enough (7.5 m) to mobilize the bending stiffness of the barrier around the x-axis,
while for frequencies above 14.9 Hz, it is also deep enough to reflect incoming
waves.

3.3 Two-and-a-half dimensional finite element method

When the structure has an invariant cross section, a computationally efficient
two-and-a-half-dimensional (2.5D) approach can be applied, where a Fourier
transform from the longitudinal coordinate to the wavenumber domain allows
for the representation of the three-dimensional wave field on a two-dimensional
mesh. The methodology used in this text was developed by François et al. [72,
73].

The derivation for elastic 2.5D volume elements with an invariant cross section
is addressed in this section. First the governing equations are discussed.
Subsequently, the domain is discretized and the finite element equations are
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derived. To take into account the radiation of waves to infinity, perfectly
matched layers (PMLs) are added at the boundaries of the finite element mesh.
Only volume elements are discussed, while appendix B covers the two-and-a-
half dimensional finite element method for elastic shell elements, which will be
used in chapter 6.

3.3.1 Governing equations

In an elastic three-dimensional domain Ω (figure 3.3), the stresses σ̂ij and the
displacements ûi satisfy the following equilibrium equations [2]:
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(3.3)

where ω is the circular frequency and ρ is the mass density.

Γu
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n
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Gt

A
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z

Figure 3.3: Domain Ω with longitudinal invariant cross-section A and Dirichlet
(Γu) and Neumann boundary (Γt) conditions.
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By separating the in-plane coordinates x and z and the longitudinal variable
y, the equilibrium equations become:
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which can be written as:
(

LT
1 + LT

2

∂

∂y

)

σ̂ = −ω2ρû (3.5)

Linear elastic constitutive behavior is assumed [2], leading to the following
relation between stresses and strains:
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(3.6)

where λ and µ are the Lamé coefficients, and C = (λ+ 2µ) cp + µcs the
constitutive tensor. Note that λ + 2µ = ρC2

p is the constrained modulus and
µ = ρC2

s is the shear modulus, with Cp and Cs the dilatational and shear wave
velocity, respectively.
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Following the correspondence principle [136, 137], hysteretic damping is
modeled in the frequency domain by the introduction of complex material
properties, denoted by a prime (′):

{

(λ+ 2µ)
′
= (λ+ 2µ) (1 + 2iβp)

µ′ = µ(1 + 2iβs)
(3.7)

where βp and βs represent the hysteretic material damping ratio for the
dilatational waves and the shear waves, respectively.

The strains are calculated from the displacements [2]:
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∂ûz

∂z

γ̂xy =
∂ûx
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∂ûx

∂z
+
∂ûz
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(3.8)

These equations can be summarized as:
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At the boundaries of the elastic domain, Neumann boundary conditions are
imposed [2]:

t̂n = σ̂ · n = t̄n (3.10)

with n the unit outward normal vector of the boundary Γt and t̄n the imposed
tractions on the boundary. The equilibrium equations in equation (3.5) and
the Neumann boundary conditions in equation (3.10) are formulated in a weak
form by considering a virtual displacement field v̂ on the domain Ω:
∫

Ω

v̂T

[(

LT
1 + LT

2

∂

∂y

)

σ̂

]

dΩ + ω2

∫

Ω

v̂TρûdΩ −
∫

Γt

v̂T
(

t̂n − t̄n
)

dΓ = 0

(3.11)



TWO-AND-A-HALF DIMENSIONAL FINITE ELEMENT METHOD 45

Integration by parts and application of the divergence theorem leads to:

∫

Γ

v̂Tt̂ndΓ −
∫

Ω

[(

L1 + L2
∂

∂y

)

v̂

]T

σ̂dΩ + ω2

∫

Ω

v̂TρûdΩ

−
∫

Γt

v̂T
(

t̂n − t̄n
)

dΓ = 0

(3.12)

Since Γ = Γt ∪ Γu with Γu the part of Γ on which homogeneous Dirichlet
conditions are applied, this equation becomes:

∫

Γu

v̂Tt̂ndΓ −
∫

Ω

[(

L1 + L2
∂

∂y

)

v̂

]T

σ̂dΩ +ω2

∫

Ω

v̂TρûdΩ +

∫

Γt

v̂Tt̄ndΓ = 0

(3.13)
As the virtual displacement field v̂ is chosen to satisfy the Dirichlet conditions
on the boundary Γu, the first integral vanishes:

∫

Ω

[(

L1 + L2
∂

∂y

)

v̂

]T

σ̂dΩ − ω2

∫

Ω

v̂TρûdΩ =

∫

Γt

v̂Tt̄ndΓ (3.14)

3.3.2 Discretization

As the cross section is longitudinally invariant, the finite element discretization
of the displacements û is written as [73]:

û(x, y, z, ω) ≈ N(x, z)û(y, ω) (3.15)

where N(x, z) are shape functions defined over the cross section and û(y, ω)
is the discretized displacement vector which is a function of the longitudinal
coordinate y and the frequency ω.

The strains therefore become:

ǫ̂ = L1Nû + L2N
∂û

∂y
= B1û + B2

∂û

∂y
(3.16)

with B1 = L1N and B2 = L2N. The stresses are given by:

σ̂ = Cǫ̂ = CB1û + CB2
∂û

∂y
(3.17)

A standard Galerkin procedure [33] is followed, where the same discretization
is used for the virtual displacement vector v̂ as for the displacement vector û:

v̂(x, y, z, ω) ≈ N(x, z)v̂(y, ω) (3.18)
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The virtual work formulation in equation (3.14) now becomes:

− ω2

∫

Ω

v̂TNTρNûdΩ +

∫

Ω

(

v̂TBT
1 +

(

∂v̂

∂y

)T

BT
2

)

C

(

B1û + B2
∂û

∂y

)

dΩ

=

∫

Γt

v̂TNTt̄ndΓ

(3.19)

This equation is further elaborated, rewriting the volume integrals as an integral
over the longitudinal coordinate y and the cross section A:

− ω2

∫

y

v̂T

(∫

A

NTρNdA

)

ûdy +

∫

y

v̂T

(∫

A

BT
1 CB1dA

)

ûdy

+

∫

y

v̂T

(∫

A

BT
1 CB2dA

)

∂û

∂y
dy +

∫

y

(

∂v̂

∂y

)T (∫

A

BT
2 CB1dA

)

ûdy

+

∫

y

(

∂v̂

∂y

)T (∫

A

BT
2 CB2dA

)

∂û

∂y
dy =

∫

y

v̂T

(∫

Gt

NTt̄nds

)

dy

(3.20)

where Gt is the intersection of the surface Γt with the plane y = 0.

Integration by parts on the terms containing derivatives
∂v̂

∂y
leads to:

− ω2

∫

y

v̂T

(∫

A

NTρNdA

)

ûdy +

∫

y

v̂T

(∫

A

BT
1 CB1dA

)

ûdy

+

∫

y

v̂T

(∫

A

BT
1 CB2dA

)

∂û

∂y
dy −

∫

y

v̂T

(∫

A

BT
2 CB1dA

)

∂û

∂y
dy

−
∫

y

v̂T

(∫

A

BT
2 CB2dA

)

∂2û

∂y2
dy =

∫

y

v̂T

(∫

Gt

NTt̄nds

)

dy

(3.21)

where one of the terms resulting from the integration by parts is omitted as it
is equal to zero due to Sommerfeld’s radiation condition [151].

Since this equation holds for any virtual displacement v̂, it is equivalent to [73]:

− ω2Mû(y, ω) + K0û(y, ω) + K1 ∂û(y, ω)

∂y
+ K2 ∂

2û(y, ω)

∂y2
= p̂(y, ω) (3.22)

with:

M =

∫

A

NTρNdA (3.23)
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K0 =

∫

A

BT
1 CB1dA (3.24)

K1 =

∫

A

BT
1 CB2dA−

∫

A

BT
2 CB1dA (3.25)

K2 = −
∫

A

BT
2 CB2dA (3.26)

p̂(y, ω) =

∫

Gt

NTt̄n (x, y, z, ω) ds (3.27)

The differential equation (3.22) is solved by a Fourier transform of the
longitudinal coordinate y to the longitudinal wavenumber ky [71]:

f̃(ky) = F
[

f̂ (y) ; ky

]

=

∞
∫

−∞

e+ikyy f̂ (y) dy (3.28)

f̂(y) = F−1
[

f̃(ky); y
]

=
1

2π

∫ ∞

−∞

e−ikyy f̃(ky)dky (3.29)

This results in the following equation [73]:

(

−ω2M + K0 − ikyK1 − k2
yK2

)

ũ (ky, ω) = p̃ (ky, ω) (3.30)

where a tilde above a variable denotes its representation in the frequency-
wavenumber domain. For reasons of brevity, these equilibrium equations are
written as follows:

K̃kũk = p̃
k

(3.31)

where K̃k = −ω2M + K0 − ikykK1 − k2
ykK2, ũk = ũ (kyk, ω), and p̃

k
=

p̃ (kyk, ω). The dependence on the frequency ω is implicitly considered.

The response û(y) in the spatial domain is obtained by the inverse Fourier
transform from the wavenumber ky to the coordinate y in equation (3.29). To
compute this Fourier transform, it is often discretized as [48, 66]:

ûl =
1

2π

Nk
∑

k=1

ũke
−i2π(l−1)(k−1)/N ∆ky (3.32)

which can be computed with a Fast Fourier Transform (FFT) algorithm.
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3.3.3 Perfectly matched layers

Perfectly matched layers (PMLs) are added at the boundaries of the finite
element domain to prevent spurious reflections [72]. The coordinates in the
PML layer in the direction normal to the interface between the elastodynamic
domain and the PML domain are denoted by s. The complex stretched
coordinates s̄ are then defined by [41, 40]:

s̄ =

s
∫

0

λs (s) ds (3.33)

where λs (s) is a stretching function. In the elastodynamic domain, the
stretching functions are λs = 1, making the stretched coordinates s̄ equal to
the coordinates s. In order to attenuate both propagating and evanescent
waves, the following stretching functions are classically used in the PML
domain [17, 18, 25, 41]:

λs (s) = 1 + f e
s (s) − i

fp
s (s)

a0
(3.34)

with fp
s (s) and f e

s (s) the attenuation functions for propagating and evanescent
waves, respectively, and the dimensionless frequency a0 taken as a0 = ωL/Cs

with L a characteristic length, chosen as the thickness of the PML layer. The
following linear attenuation functions are applied [16, 26]:

f e
s (s) = f e

s0

s

L
(3.35)

fp
s (s) = fp

s0

s

L
(3.36)

In this text, the values f e
s0 = 0 and fp

s0 = 20 are used for the attenuation
coefficients, as suggested by Basu and Chopra [17] and François et al. [72].

The mass and stiffness matrices are derived considering the stretched coordi-
nates. The partial derivative with respect to s̄ is equal to [72]:

∂

∂s̄
=

1

λs (s)

∂

∂s
(3.37)
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For the 2.5D geometry under consideration, stretching is applied to the x- and
z-coordinates only. This results in the following modified equilibrium equations:
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(3.38)

which can be written as:
(

L̄T
1 + LT

2

∂

∂y

)

σ̂ = −ω2ρû (3.39)

Similarly, the strain tensor becomes:

ǫ̂ =

(

L̄1 + L2
∂

∂y

)

û (3.40)

To avoid integration by parts of the stretching functions λx and λz in the weak
form of the virtual work equation, the equilibrium equation (3.39) is multiplied
with a factor λxλz [72]:

λxλz

(

L̄T
1 + LT

2

∂

∂y

)

σ̂ + ω2λxλzρû = 0 (3.41)

The following equation is found in the wavenumber domain by applying the
same procedure as before [72]:

(

−ω2M̄ + K̄0 − ikyK̄1 − k2
yK̄2

)

ũ (ky, ω) = ˜̄p (ky, ω) (3.42)

where:

M̄ =

∫

A

λxλzNTρNdA (3.43)

K̄0 =

∫

A

λxλzB̄T
1 CB̄1dA (3.44)

K̄1 =

∫

A

λxλzB̄T
1 CB2dA−

∫

A

λxλzBT
2 CB̄1dA (3.45)
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K̄2 = −
∫

A

λxλzBT
2 CB2dA (3.46)

ˆ̄p(y, ω) =

∫

Gt

λxλzNTt̄n (x, y, z, ω) ds (3.47)

with B̄1 = L̄1N.

3.4 Analysis of a double wall barrier

The aim is to analyze the performance of the double wall barrier in reducing
ground vibration caused by passing trains. The displacement field resulting
from a passing train can be modeled in a simplified way, applying axle loads
as a series of incoherent point loads [119, 169]. First, the displacement field
resulting from a point load is evaluated. Second, the simplified model with
incoherent point loads is applied to assess the response for train loading.

3.4.1 Point load

In a homogeneous halfspace excited by a vertical unit point load, cylindrical
wave fronts propagate through the soil. The amplitude decreases with the
distance to the point source as a result of geometric attenuation and material
damping in the soil. Figures 3.4a and 3.5a show the real part of the
vertical displacement field respectively at 25 Hz and 50 Hz for the homogeneous
halfspace.

The wave propagation is altered when the single or double wall, introduced in
section 3.2, is inserted in the halfspace. Figures 3.4 and 3.5 show the real part
of the vertical displacement and the corresponding insertion loss for both cases
at 25 Hz and 50 Hz respectively, with the insertion loss ÎL defined as:

ÎL(x, y, z, ω) = 20 log10

∣

∣ûref
z (x, y, z, ω)

∣

∣

|ûz(x, y, z, ω)| (3.48)

where ûref
z (x, y, z, ω) is the vertical displacement before and ûz(x, y, z, ω) the

vertical displacement after introducing the considered mitigation measure in
the soil.

The waves are partly reflected by the barriers. The reflected waves
interfere constructively and destructively with the incoming waves, causing the
alternating regions of low and high insertion loss at the surface. For the double
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Figure 3.4: Real part of the vertical displacement ûz at 25 Hz resulting from a
unit point load for (a) the original homogeneous halfspace, (b) the single stiff
wall barrier (wall thickness 2tw = 2 m), and (c) the double stiff wall barrier
(wall thickness tw = 1 m and spacing d = 4 m) in sandy soil. Corresponding
insertion loss ÎL for (d) the single stiff wall barrier and (e) the double stiff wall
barrier in sandy soil.
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Figure 3.5: Real part of the vertical displacement ûz at 50 Hz resulting from a
unit point load for (a) the original homogeneous halfspace, (b) the single stiff
wall barrier (wall thickness 2tw = 2 m), and (c) the double stiff wall barrier
(wall thickness tw = 1 m and spacing d = 4 m) in sandy soil. Corresponding
insertion loss ÎL for (d) the single stiff wall barrier and (e) the double stiff wall
barrier in sandy soil.
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wall barrier, interference is also found between waves traveling in between both
walls.

The insertion loss behind the wall barrier is positive at the surface, meaning
that the transmission of Rayleigh waves is reduced. The insertion loss is higher
at larger distances in the y-direction. This is due to the stiffness effect, as will
be discussed in subsection 3.5.1.

Figure 3.6 shows the amplitude of the vertical displacement and the insertion
loss as a function of the frequency for the three receiver points (defined in
figure 3.2). At low frequencies, the depth of the wall barrier is small compared
to the penetration depth of the incoming surface waves, resulting in low
insertion losses. From about 25 Hz, corresponding to a shear wavelength equal
to 7.5 m, an insertion loss between 5 dB and 13 dB is obtained.

For receivers 1 and 2, the insertion loss for the double wall barrier is only slightly
higher than for the single wall barrier for most of the frequency range. At larger
distances, for example for receiver 3, the single wall barrier has a slightly better
performance than the double wall barrier for the frequency range considered.
For this receiver, however, the amplitude is considerably lower than for receivers
1 and 2 resulting from the longer distance to the source, and therefore the better
performance is less significant.

3.4.2 Train loading

In the previous section, the performance of the double wall barrier has been
studied for a point source at the surface. However, the goal is to mitigate
ground vibration caused by passing trains. The time history of the vibration
velocity due to a moving train can be subdivided into three parts: an increasing
level when the train approaches the receiver where the response is measured,
an approximately stationary level when the train passes the receiver and a
decreasing level when the train moves away from the receiver. Previous
studies have indicated that the stationary part of the response can be well
approximated using a simplified model for train loading, applying the dynamic
axle loads at fixed positions as a series of incoherent point loads of the same
magnitude [169].

The axle positions are taken from a typical four-car EMU train, with a car
length of 26.4 m, and a total length of 105.6 m. The bogie center distance
is 19 m and the distance between two axles of a bogie is 2.7 m. The train,
represented by a series of point loads parallel to the y-axis, has its center at the
origin in figure 3.2. The y-coordinates of the axle loads are shown in figure 3.7.
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Figure 3.6: Amplitude of the vertical displacement |ûz| resulting from a point
load for the original halfspace (dotted line), the single stiff wall barrier (dashed
line; wall thickness 2tw = 2 m), and the double stiff wall barrier (solid line;
wall thickness tw = 1 m and spacing d = 4 m) in sandy soil at the different
receiver points: (a) receiver 1, (c) receiver 2, and (e) receiver 3 (figure 3.2).
Corresponding insertion loss ÎL for the single stiff wall barrier (dashed line) and
the double stiff wall barrier (solid line) in sandy soil at the different receiver
points: (b) receiver 1, (d) receiver 2, and (f) receiver 3.
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Figure 3.7: The axle positions of a typical four-car EMU train.

The amplitude of the vertical displacement and insertion loss at receiver 1 are
shown in figure 3.8 for the considered single and double stiff wall barriers (with
a wall thickness tw = 1 m and a spacing d = 4 m between the two walls).
As a result of geometric attenuation and material damping in the soil, the
excitation points closest to the receiver point contribute most to the response
at the receiver point. Therefore, the insertion loss is similar to the insertion loss
found for a point source at the closest axle position. The double wall barrier
performs slightly better than the single wall barrier over the entire frequency
range considered, but again this improvement is limited.
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Figure 3.8: (a) Amplitude of the vertical displacement ûz at receiver 1
(figure 3.2) resulting from a train load for the original halfspace (dotted line),
the single stiff wall barrier (dashed line; wall thickness 2tw = 2 m), and the
double stiff wall barrier (solid line; wall thickness tw = 1 m and spacing d = 4 m)
in sandy soil. (b) Corresponding insertion loss ÎL for the single stiff wall barrier
(dashed line) and the double stiff wall barrier (solid line) in sandy soil.

To conclude, the single and double wall barrier similarly perform over the
frequency range considered. The double wall barrier has a slightly better
performance in the area closest to the source, which is also the area with the
highest vibration levels. As a similar performance is found for a point load
and a train load, the physical interpretation is limited to the simplest case of
a point load.
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3.5 Physical interpretation

As stated in section 3.4, it is known from literature that two phenomena play
an important role for the performance of single wall barriers: the stiffness
effect [53] and reflection [74]. The role of these phenomena for double wall
barriers is investigated in this section.

3.5.1 The stiffness effect

Free vibration of a single wall The stiffness effect of a single wall barrier can
be explained by considering the dispersion relations for free vibration. Without
any excitation, equation (3.30) becomes:

(

−ω2M + K0 − ikyK1 − k2
yK2

)

ũ(ky, ω) = 0 (3.49)

The dispersion curves for the beam are calculated by computing the longi-
tudinal wavenumber ky as a function of the circular frequency ω. Since
equation (3.49) is a quadratic equation in ky, this equation is reformulated
to a linear equation as follows [164]:

[

−ω2M + K0 0

0 I

]{

ũ1

ũ2

}

= ky

[

iK1 K2

I 0

]{

ũ1

ũ2

}

(3.50)

where ũ1 = ũ and ũ2 = kyũ. This corresponds to a generalized eigenvalue
problem of the form Ax = λBx where the eigenvalues λ represent the
wavenumbers ky and the first half of the eigenvectors x represent the
corresponding mode shapes.

In this way, the dispersion relations and the corresponding mode shapes are
calculated for the single wall barrier. The dispersion curves are computed for
frequencies f from 0 Hz to 100 Hz in steps of 2 Hz. For f = 0 Hz, the system in
equation (3.50) becomes ill-conditioned. Therefore, a small value is considered
instead. Figure 3.9 shows the dispersion curves as a function of the frequency
f and the slowness py, which is defined as py = ky/ω = 1/Cy with Cy the
longitudinal wave velocity. At low frequencies, four eigenvalues are found. Two
shear-bending modes, a torsion mode and a longitudinal mode are distinguished.
The other modes propagate only from a certain cut-on frequency.

The dispersion relations for the modes propagating at 0 Hz have also been
computed by means of analytical expressions presented in the literature and
derived in appendix C. For the longitudinal waves, the following expression
holds [135]:

− ρAω2 + EAk2
y = 0 (3.51)
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Figure 3.9: (a) Dispersion curves for the single stiff wall (with a width of 2 m
and a height of 7.5 m). Dispersion curves computed from equation (3.50) are
indicated with gray dots. The analytically calculated dispersion curves are
superimposed: the longitudinal mode (solid line), Timoshenko’s bending mode
around the x-axis (dashed line), Timoshenko’s bending mode around the z-axis
(dotted line), and Barr’s torsion mode (dashed-dotted line). The associated
modes at f ≈ 0 Hz (from high to low value of py) are displayed for (b) the
shear-bending mode around the z-axis, (c) the shear-bending mode around the
x-axis, (d) the torsion mode, and (e) the longitudinal mode.

where A is the area of the cross section, ρ is the mass density, and E is Young’s
modulus of the beam. For the bending waves, Timoshenko’s theory leads to
the following dispersion relation [163]:

− ρAω2 + EIk4
y − ρI

(

1 +
E

κG

)

ω2k2
y +

ρ2I

κG
ω4 = 0 (3.52)

with I the moment of inertia, G the shear modulus of the beam, and κ the
shear coefficient. For rectangular solid beams, κ = 10(1 + ν)/(12 + 11ν) [54].
The dispersion relation for the torsional waves can be described by Barr’s
theory [15]:

− ρIpω
2 +GItk

2
y − ρIφ

Ip

Ip − It

(

κ′ +
E

G

)

ω2k2
y + EIφκ

′ Ip

Ip − It
k4

y

+ ρ2 Iφ

G

Ip

Ip − It
ω4 = 0

(3.53)

In this equation, Ip is the polar second moment of inertia, It is the torsion
constant and Iφ is the warping constant. The non-dimensional parameter κ′

adjusts the wave velocity to the Rayleigh wave velocity at zero wavelength [154]
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and is equal to 0.84 for ν = 0.25. These dispersion curves are plotted in
figure 3.9 as well, and clearly correspond with the dispersion curves found by
solving equation (3.50).

Since the loading is vertical, it is mainly the bending mode around the x-axis
which is activated and therefore determines the mitigation mechanism of the
wall barrier. When the wavenumber ky exceeds the free bending dispersion
curve kb of the barrier, which corresponds to a trace wavelength λy smaller
than the bending wavelength λb, the bending stiffness of the barrier will hinder
the wave transmission [53].

Insertion loss in the frequency-wavenumber domain Since the calculations
are performed in the frequency-wavenumber domain, the insertion loss in a
point can easily be plotted as a function of the frequency f and the longitudinal
slowness py = ky/ω. This is done in figure 3.10 for both the single and double
wall barrier.
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Figure 3.10: Insertion loss ĨL(x = 15 m, ky, z = 0 m, ω) for (a) the single stiff
wall barrier (wall thickness 2tw = 2 m) and (b) the double stiff wall barrier
(wall thickness tw = 1 m and spacing d = 4 m) in sandy soil. Superimposed
are the analytical dispersion curve for Timoshenko’s bending mode around the
x-axis (black dashed line), the Rayleigh wave slowness (black solid line), and
the frequency-slowness curves which show the phase shift between wave fronts
in the reference case and in the case of stiffening (black dotted lines). For
the double wall barrier, the dispersion curves caused by the standing waves
between the walls are added (gray solid lines).

When the longitudinal wavenumber ky exceeds the Rayleigh wavenumber kR,
corresponding to a slowness pR = 1/CR = 5.37 × 10−3 s/m, the lateral
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wavenumber kx =
√

k2
R − k2

y is imaginary and the wave in the x-direction

becomes evanescent. Consequently, the free field response is very small for
these wavenumbers. Therefore, an upper limit of 6 × 10−3 s/m is considered
for the slowness py shown in figure 3.10.

Since the P-wave travels faster in the stiffer wall barrier than in the surrounding
soil, there is a phase shift between wave fronts in the reference case and in the
case with the wall barrier for slownesses up to the P-wave slowness, pp =
1/Cp = 2.5 × 10−3 s/m. This phase shift can be expressed for n = 0 · · · ∞
by [53]:

(√

k2
R1 − k2

y −
√

k2
p1 − k2

y

)

∆x− ω
w

Cp2 − Cp1
= 2πn (3.54)

where w is the thickness of the wall barrier (equal to 2tw) and ∆x the distance
between source and receiver (equal to 15 m).

In figure 3.10, the dispersion curve for the bending mode around the x-axis is
superimposed. As the bending stiffness around the x-axis is proportional to
the width of the barrier, the single and the double wall barrier both have the
same bending stiffness. Therefore, the free bending dispersion curves of both
barriers coincide. The insertion losses become very high when the slowness py

exceeds the value pb corresponding to free bending waves around the x-axis
of the barrier, or, reciprocally, for wavelengths λy smaller than the bending
wavelength λb. The wave transmission is then dominated by the stiffness of
the wall, resulting in a reduction of the displacements. The single and double
wall barrier have therefore the best performance at receiver points located at
larger distances y along the barrier, as was indicated before.

3.5.2 Reflection

Standing waves The insertion loss in the frequency-slowness domain (fig-
ure 3.10) is similar for the single and the double wall barrier. However, there are
frequency-slowness pairs for which the insertion loss for the double wall barrier
is smaller. For these frequency-wavenumber pairs, standing waves occur in
the space between the two walls as a result of constructive and destructive
interference of surface waves. This leads to an increase of the transmitted wave
field, as in the case of cavity resonance in building acoustics [70].

Standing waves appear when the distance between the two walls is equal to an
integer (m) multiple of half the wavelength in the x-direction:

d =
mλx

2
=
mπ

kx
=

mCR

2f cos θ
(3.55)
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Here, use is made of the relation kx = kR cos θ (figure 3.11). After
reformulation, where use is made of the relation sin θ = ky/kR, the (positive)
dispersion relation for the standing waves becomes:

ky = kR

√

1 −
(

mCR

2df

)2

(3.56)

θ

kx

ky kR

x

y
z

Figure 3.11: Definition of the wavenumber components for Rayleigh waves.

These dispersion relations are superimposed in figure 3.10b. The cut-on
frequencies fco, i.e. the frequencies for which ky = 0, are given by:

fco =
mCR

2d
(3.57)

Values of the first cut-on frequency fco lower than 100 Hz are only found for
distances d larger than CR/(2 × 100 Hz) = 0.93 m. For smaller distances,
there are no standing waves in the frequency range considered. For increasing
frequency, or decreasing wavelength, the wavenumber ky approaches the
Rayleigh wavenumber kR = ω/CR.

The frequency-wavenumber pairs in figure 3.10b where the insertion loss is
small, indeed correspond to the dispersion relation for standing waves. This
explains the weaker performance of the double wall barrier for y = 15 m
(figure 3.6f), as the stiffness effect is affected by the standing waves.

Influence of the geometry Although in building acoustics, the double walls
perform much better between the mass-spring-mass resonance and the first
cavity resonance, this does not seem to be the case for double wall barriers
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in soil. However, the one-dimensional analysis in chapter 2 showed a clear
improvement for multiple wave barriers as a result of stopbands. The location
of these stopbands depends on the wave velocities of the considered materials
and the thickness of the different layers (equation (2.52)). The analysis of
section 3.4 has therefore been repeated for multiple values of the wall thickness
tw and the spacing d between the walls.

Figure 3.12 shows the amplitude of the vertical displacement and the insertion
loss (equation (3.48)) at receiver 1 (defined in figure 3.2) for multiple values
of the wall thickness tw and the spacing d between the walls. For a small wall
thickness (tw = 0.5 m), the insertion loss for a double wall is similar to the
insertion loss for the single wall and the results are relatively insensitive to
the spacing d between the walls. Since the wall thickness tw of each wall is
small compared to the wavelength of the transmitted wave, the performance
of the wall barrier is mainly determined by its bending stiffness around the
x-axis, which is the same for the single and double wall. For a wall thickness
tw = 1 m, the performance of the single and double wall barriers improves
as a larger thickness implies a larger stiffness of the barriers. The difference
in performance between the single and double wall barrier is, however, still
hardly significant. For a wall thickness tw = 2 m, a larger difference between
the performance of the single wall barrier and double wall barrier is observed.
At some frequencies, the performance is considerably better than for a single
wall barrier. The distance between the walls clearly influences the performance.

The insertion loss for the single and double wall barrier is plotted in the
frequency-slowness domain in figure 3.13 for a wall thickness tw = 2 m and
a spacing d = 4 m between the walls. The insertion loss for slownesses py

above the slowness pb corresponding to free bending waves around the x-axis
of the barrier is similar for the single and double wall barrier, except for the
decreased insertion losses due to the standing wave phenomenon. For small
values of the slowness py, however, higher insertion losses are observed for the
double wall barrier. The barrier’s performance for a line load, corresponding
to py = 0 s/m, is therefore analyzed.

In figure 3.14, the insertion loss computed for a line load is compared with the
insertion loss computed for a point load. The displacements for the line load
are obtained using equation (3.30) where the longitudinal wavenumber ky is set
to 0. The insertion losses obtained in both cases are similar. At low frequencies,
the difference between the performance of single and double barriers is rather
small. At higher frequencies, where the difference in performance becomes
significant, the depth of the wall is large compared to the penetration depth
of the incoming Rayleigh wave and the wave propagation is determined by
reflection. Reflection plays a role for depths larger than 0.6 times the Rayleigh
wavelength [27], i.e. for frequencies above 14.9 Hz. For higher frequencies, it can
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original halfspace single wall barrier (thickness 2tw)
double wall barriers: d = 0.5 m d = 1 m d = 2 m d = 4 m

Figure 3.12: Amplitude of the vertical displacement ûz and insertion loss ÎL
at receiver 1 (figure 3.2) resulting from a point load for a wall thickness tw
of (a)-(b) 0.5 m, (c)-(d) 1 m, and (e)-(f) 2 m in sandy soil. For the original
halfspace, the amplitude is shown with a dotted line, for the single stiff wall
barrier (wall thickness 2tw) with a dashed line. The results are plotted for
different distances d between the walls: 0.5 m, 1 m , 2 m, and 4 m (from light
gray to black solid lines).
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Figure 3.13: Insertion loss ĨL(x = 15 m, ky, z = 0 m, ω) for (a) the single stiff
wall barrier (wall thickness 2tw = 2 m) and (b) the double stiff wall barrier
(wall thickness tw = 2 m and spacing d = 4 m) in sandy soil. Superimposed
are the analytical dispersion curve for Timoshenko’s bending mode around the
x-axis (black dashed line), the Rayleigh wave slowness (black solid line), and
the frequency-slowness curves which show the phase shift between wave fronts
in the reference case and in the case of stiffening (black dotted lines). For
the double wall barrier, the dispersion curves caused by the standing waves
between the walls are added (gray solid lines).

therefore be expected that an equivalent one-dimensional model of the wave
transmission can give insight in the interpretation of the response due to a
line and point load. A one-dimensional equivalent model furthermore allows to
verify the similarity with double wall behavior in acoustics.

The equivalent one-dimensional model shown in figure 3.15 is used. The model
consists of a homogeneous full space which is intersected by a (double) wall
barrier. An incoming wave with amplitude I arrives at the wall barrier and
is partly reflected (R) and partly transmitted (T ). The insertion loss ÎL1D is
calculated as:

ÎL1D = 20 log10

∣

∣

∣

∣

I

T

∣

∣

∣

∣

(3.58)

where the amplitude T of the transmitted wave field is calculated with the
direct stiffness method.

The acoustic and elastodynamic performance of the double wall is investigated
by considering two different background media: air and sandy soil. In the
first case, the double wall barrier is situated into air, with a wave velocity
C1 of 340 m/s and a mass density ρ1 of 1.2 kg/m3. A damping ratio of 2.5%
is assumed. The material properties of the double wall barrier are given in
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Figure 3.14: Insertion loss ÎL at receiver 1 (figure 3.2) for the single stiff wall
barrier (dashed line; wall thickness 2tw = 2 m) and the double stiff wall barrier
(solid line; wall thickness tw = 2 m and spacing d = 4 m) in sandy soil, for both
a point load (2.5D model, black line) and line load (2D model, gray line).

I

R
T

dtw tw

Double wall barrierSurrounding domain
(Material 1)

Surrounding domain
(Material 1)

Figure 3.15: The one-dimensional wave propagation problem with a double
wall barrier.

table 3.1. In the one-dimensional model, only the wave velocity in the direction
of the wave transmission plays a role. In order to enable a comparison with the
results of the second case, the Rayleigh wave velocity of the barrier is used in
the model. The results are shown in figure 3.16 for both the single and double
wall barrier.

For the single wall with a thickness 2tw, the well-known mass-law applies [56],
which can be written as:

ÎL1D = 10 log10

[

1 +

(

ωρ2t

ρ1C1

)2
]

≈ 20 log10

(

ωρ2t

ρ1C1

)

(3.59)

where a subscript 1 stands for the air and the subscript 2 stands for the wall.
This relation gives an increase of the insertion loss ÎL1D by 6 dB per octave
band.



64 DOUBLE WALL BARRIERS FOR THREE-DIMENSIONAL ELASTIC WAVE PROPAGATION

Frequency [Hz]

In
se

rt
io

n
lo

ss
ÎL
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Figure 3.16: Insertion loss ÎL1D for the one-dimensional problem as a function
of the frequency in the case of the single stiff wall barrier (dashed line; wall
thickness 2tw = 2 m) and the double stiff wall barrier (solid line; wall thickness
tw = 2 m and spacing d = 4 m) in air. Superimposed are the mass law (thin
line with circles), the value of the resonance frequency (dotted vertical line),
and the theoretical values for frequencies above this frequency (thin line with
triangles).

At low frequencies, the performance of the double wall (with spacing d = 4 m)
is similar. However, from a certain frequency onwards, the two performances
diverge. This frequency is the double wall resonance frequency f0, which can
be calculated by considering two masses connected by a spring [70]:

f0 =
1

2π

√

ρ1C
2
1

d

2

ρ2t
(3.60)

For frequencies above the double wall resonance frequency, the performance is
theoretically approximated by [70]:

ÎL1D ≈ 20 log10

[

ω3dρ2
2t

2
w

2ρ2
1C

3
1

]

(3.61)

which corresponds to an increase of 18 dB per octave band. The double wall
therefore performs better as compared to a single wall with the same total
thickness (2tw). This is the so-called double wall phenomenon [70]. At higher
frequencies, cavity resonance appears, adversely affecting the performance,
which is still better, however, than for the single wall.

In soil, the physics are different however. This is illustrated by considering
again the problem in figure 3.15, with the properties in table 3.1 for both the
wall barrier and the surrounding soil. The wave velocities corresponding to
the Rayleigh waves in the three-dimensional case are used in this equivalent
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one-dimensional model. The resulting performance is shown in figure 3.17 for
both the single and double wall barrier.
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Figure 3.17: Insertion loss ÎL1D for the one-dimensional problem as a function
of the frequency in the case of the single stiff wall barrier (dashed line; wall
thickness 2tw = 2 m) and the double stiff wall barrier (solid line; wall thickness
tw = 2 m and spacing d = 4 m) in sandy soil. Superimposed are the stopband
frequencies in equation (2.52) (gray lines).

For the single wall barrier, the insertion loss is very low at low frequencies. For
higher frequencies, the insertion loss goes up to 21 dB at 100 Hz. Therefore, the
insertion loss is much lower than for the wall barrier located in air. Furthermore,
the performance of the single wall does not follow the mass law as it depends
on the impedance ratio for the original soil and the wall barrier and on the
wave velocity in and the thickness of the wall barrier.

Similarly, also the double wall barrier behaves differently in soil. The insertion
loss goes up to 22.5 dB at 100 Hz and therefore exceeds the insertion loss
for single wall barriers at higher frequencies. Moreover, larger values are
observed at particular frequencies, where less energy is transmitted, caused
by the stopband phenomenon for multiple wave barriers described in chapter 2.
The location of the stopbands can be predicted using equation (2.52). These
frequencies are superimposed in figure 3.17 and correspond well with the
maxima found in the insertion loss for the one-dimensional problem. Note
that the insertion loss does not go to zero in between the stopbands, due to
the effect of material damping (not considered in chapter 2).

Table 3.2 compares these stopband frequencies with the local maxima observed
in the insertion loss for the different models (1D, 2D, and 2.5D). A good
agreement is found between the different models for the local maxima in the
insertion loss. Although no local maximum is found beneath 37 Hz for the 2.5D
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model, the insertion loss in figure 3.14 shows a change in curvature around
21 Hz, indicating an increase resulting from this stopband effect.

Table 3.2: Theoretical frequencies calculated with equation (2.52) compared
with local maxima in the insertion loss for respectively the 1D, 2D, and 2.5D
model.

Stopband Local Local Local
frequencies fstop maxima 1D maxima 2D maxima 2.5D

20 Hz 21 Hz
39 Hz 40 Hz 36 Hz 37 Hz
59 Hz 60 Hz 58 Hz 58 Hz
79 Hz 80 Hz 84 Hz 84 Hz

The influence of the geometry can thus be explained using the one-dimensional
model. Figure 3.18 shows the insertion loss for the one-dimensional problem for
wall thicknesses tw ∈ [0, 3] and spacings d ∈ [0, 4] at three different frequencies:
20 Hz, 40 Hz, 60 Hz, and 80 Hz. The lines corresponding to k1d + k2tw = nπ
for n = 1, 2, . . . , which indicate for which geometries the center location of a
stopband is situated at this frequency, are superimposed. For the considered
frequencies, these lines more or less intersect the point with tw = 2 m and
d = 4 m.

For each frequency, there are local optima at certain thickness-distance pairs.
At these optima, the thickness of the walls (tw) and the intermediate soil (d)
are equal to a quarter of the Rayleigh wavelength (p = 1 · · · ∞, q = 1 · · · ∞):











topt
w =

(2p− 1)λR2

4
=

(2p− 1)CR2

4f

dopt =
(2q − 1)λR1

4
=

(2q − 1)CR1

4f

(3.62)

At 20 Hz, the optimal geometry consists of topt
w = (2p− 1) × 6.3 m and dopt =

(2q − 1) × 2.3 m. Since the optimal thickness topt
w is much larger than the

maximum value of 2 m considered in the 2.5D computation, the quarter wave-
stack condition cannot be satisfied for low frequencies, and the geometry has
only a small effect on the insertion loss. At 40 Hz, the optimal geometry consists
of topt

w = (2p−1)×3.1 m and dopt = (2q−1)×1.2 m. A large thickness is again
needed for the optimal geometry, but the 2.5D layout with tw = 2 m and d =
4 m in figure 3.12 is located closer to a quarter wave-stack geometry, resulting in
a higher improvement in the performance than at 20 Hz. At 60 Hz, the optimal
geometry consists of topt

w = (2p − 1) × 2.1 m and dopt = (2q − 1) × 0.8 m. For
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Figure 3.18: Insertion loss for the one-dimensional problem ÎL1D as a function
of the wall thickness tw and the distance d between the walls in the case of the
double stiff wall barrier in sandy soil at (a) 20 Hz, (b) 40 Hz, (c) 60 Hz, and
(d) 80 Hz. The lines corresponding to k1d + k2tw = nπ for n = 1, 2, . . . are
superimposed.

p = 1 and q = 3, we have an optimal wall thickness topt
w = 2.1 m and an optimal

spacing dopt = 3.9 m. This geometry is close to the 2.5D layout with tw = 2 m
and d = 4 m, where a high value was found at 60 Hz. At 80 Hz, the optimal
parameters become topt

w = (2p − 1) × 1.6 m and dopt = (2q − 1) × 0.6 m. For
p = 1 and q = 4, we have an optimal wall thickness topt

w = 1.6 m and an optimal
spacing dopt = 4.1 m, again rather close to the 2.5D layout with tw = 2 m and
d = 4 m.

It is clear that the thickness and the spacing between the walls influence the
reflection of incoming waves. For small thicknesses, the quarter wave-stack
geometry is only obtained at high frequencies, and the distance between the
walls has no large influence. However, for large thicknesses, the quarter wave-
stack condition plays an important role and increases the performance of the
double wall barrier in the range of interest.
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3.6 Influence of the material parameters

Influence of the barrier properties It is now investigated how the perfor-
mance changes when the jet grouting walls are replaced by concrete slurry
walls. The wall has a mass density ρ = 2500 kg/m3, a dilatational wave velocity
Cp = 3795 m/s, a shear wave velocity Cs = 2191 m/s, and material damping
ratios βp = βs = 2.5 %. A concrete wall thickness tw of 0.5 m is considered
here. The distance between the walls is again d = 4 m.

Figure 3.19 shows the amplitude of the vertical displacement and the
corresponding insertion loss at receiver 1 (defined in figure 3.2). Although
the insertion loss has rather large values in both the case of the single and
double wall barrier, the double wall barrier does not perform better than the
single wall barrier over the frequency range considered. Because of the high
stiffness of the wall, a large wall thickness would be needed to satisfy the quarter
wave-stack condition in the frequency range.
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Figure 3.19: (a) Amplitude of the vertical displacement ûz at receiver 1
(figure 3.2) resulting from a point load for the original halfspace (dotted line),
the single concrete wall barrier (dashed line; wall thickness 2tw = 2 m) and the
double concrete wall barrier (solid line; wall thickness tw = 0.5 m and spacing
d = 4 m) in sandy soil. (b) Corresponding insertion loss ÎL at receiver 1 for the
single concrete wall barrier (dashed line) and the double concrete wall barrier
(solid line) in sandy soil.

In figure 3.20, the insertion loss is shown as a function of the frequency f and
the slowness py. The insertion loss again has high values above the bending
wave dispersion curve, and is for the double wall barrier reduced by the standing
waves in between the two walls. Because of the large stiffness of the wall, the
bending wave dispersion curve is situated in the lower part of the slowness
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range, resulting in a high insertion loss caused by the stiffness effect for a large
slowness range and therefore in a high insertion loss as observed in figure 3.19.

Frequency f [Hz]

S
lo

w
n
es

s
p

y
[s
/
m

]

0
0

1

2

3

4

5

6

20 40 60 80 100

×10−3

(a)

Frequency f [Hz]
S
lo

w
n
es

s
p

y
[s
/
m

]
0
0

1

2

3

4

5

6

20 40 60 80 100

×10−3

(b)
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Figure 3.20: Insertion loss ĨL(x = 15 m, ky, z = 0 m, ω) for (a) the single
concrete wall barrier (wall thickness 2tw = 2 m) and (b) the double concrete
wall barrier (wall thickness tw = 0.5 m and spacing d = 4 m) in sandy soil.
Superimposed are the analytical dispersion curve for Timoshenko’s bending
mode around the x-axis (black dashed line) and the Rayleigh wave slowness
(black solid line). For the double wall barrier, the dispersion curves caused by
the standing waves between the walls are added (gray solid lines).

Influence of the soil properties The effectiveness of the barrier also depends,
for given barrier properties, on the material properties of the soil. Consider
soft clay, with a mass density ρ = 2500 kg/m3, a dilatational wave velocity
Cp = 120 m/s, a shear wave velocity Cs = 60 m/s, and material damping
ratios βp = βs,conc = 2.5 %. Figure 3.21 shows the amplitude of the vertical
displacement and the insertion loss as a function of the frequency at receiver 1
(defined in figure 3.2). The insertion loss is rather large for the entire frequency
range considered.

In figure 3.22, the insertion loss is shown as a function of the frequency f and
the slowness py. As the soil has a lower Rayleigh wave velocity, there are more
standing waves in the frequency range considered. Moreover, the Rayleigh
wavenumber kR increases for a softer soil. As a consequence, the response at
the receiver positions is increasingly dominated by the effect of the bending
stiffness. This results in an increased performance of the barrier.

To conclude, for a large difference in stiffness between the soil and the barrier,
the stiffness effect dominates and the single and double wall barrier have a
similar performance. For a smaller difference in stiffness, reflection of incoming
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Figure 3.21: (a) Amplitude of the vertical displacement ûz at receiver 1
(figure 3.2) resulting from a point load for the original halfspace (dotted line),
the single stiff wall barrier (dashed line; wall thickness 2tw = 2 m) and the
double stiff wall barrier (solid line; wall thickness tw = 1 m and spacing d = 4 m)
in soft clay soil. (b) Corresponding insertion loss ÎL at receiver 1 for the single
stiff wall barrier (dashed line) and the double stiff wall barrier (solid line) in
soft clay soil.
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Figure 3.22: Insertion loss ĨL(x = 15 m, ky, z = 0 m, ω) for (a) the single stiff
wall barrier (wall thickness 2tw = 2 m) and (b) the double stiff wall barrier
(wall thickness tw = 1 m and spacing d = 4 m) in soft clay soil. Superimposed
are the analytical dispersion curve for Timoshenko’s bending mode around the
x-axis (black dashed line) and the Rayleigh wave slowness (black solid line).
For the double wall barrier, the dispersion curves caused by the standing waves
between the walls are added (gray solid lines).
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waves becomes more important, and a good choice of the thickness and the
distance between the walls improves the performance of the double wall barrier.

3.7 Conclusion

This chapter discussed the performance of double wall barriers. These barriers
are located between the source and the receivers to reduce the transmission
of environmental ground vibration. A computationally efficient two-and-a-half
dimensional finite element method is used, where the three-dimensional wave
field is represented on a two-dimensional mesh by using the Fourier transform
from the longitudinal coordinate to the wavenumber domain.

A double wall barrier into a homogeneous soil is discussed. This double wall
barrier is compared with a single wall barrier with the same volume and depth
(7.5 m). A similar insertion loss is found for a simplified train load and a point
load located at the closest axle position have a similar insertion loss.

The performance of the single and double wall barriers depends on two
phenomena. The first is the stiffness effect, where the bending stiffness of
the barrier will hinder wave transmission for trace wavelengths λy smaller
than the bending wavelength λb. For trace wavelengths smaller than the
Rayleigh wavelength λR, the wave in the x-direction becomes evanescent. The
stiffness effect therefore applies for trace wavelengths λy between the Rayleigh
wavelength λR and the bending wavelength λb. As the first relates to the
stiffness of the soil and the second to the stiffness of the barrier, the response
will be dominated by the stiffness effect for large differences between the two
stiffnesses.

For low differences between the two stiffnesses, the performance for high trace
wavelengths λy becomes more important. The performance is then dominated
by the second discussed phenomenon: reflection. It was shown that an
equivalent one-dimensional model, which was introduced in chapter 2, can be
used to assess the reflection effect of the barrier. The stopband phenomenon is
again observed, and an optimal performance is found for thicknesses equal to
a quarter of the wavelength.

However, large wall thicknesses and distances between the walls are needed
to satisfy the quarter wave-stack condition. In the next chapters, topology
optimization is used to find novel, improved design geometries.





Chapter 4

Topology optimization for

one-dimensional elastic wave

propagation

4.1 Introduction

The propagation of plane harmonic waves through a one-dimensional periodic
domain was analyzed in chapter 2. Depending on the material properties and
the thicknesses of the layers, stop- and passbands may arise. In this chapter, the
optimal layer configuration in a finite design domain is investigated. Topology
optimization [23] is used to obtain the optimized designs.

The general problem considered in this chapter is shown in figure 4.1. A plane
wave is propagating through a full space. It encounters a domain located in
the full space that reflects waves. In this design domain, a wave barrier is
constructed by inserting layers with material different from the background
material. This layered structure is optimized such that the transmittance
through the design domain is minimized.

In Hussein et al. [91], one-dimensional periodic cells are designed using
genetic algorithms. The use of non-gradient approaches, however, is in this
case inefficient since a lot of function evaluations are needed [148]. Lee et
al. [114] considered a topology optimization problem optimizing the layout
of an acoustical foam consisting of air and poroelastic layers. The transfer
matrix method was used to model the wave propagation and the inefficient

73
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?

Figure 4.1: General problem: a harmonic wave propagating in a full space
encounters the design domain.

finite difference method was used to calculate the sensitivities. The adjoint
method was used by Bellido and Donoso [19] for topology optimization of two
layers in an elastic rod in the case of harmonic excitation.

The chapter is organized as follows. First, density based topology optimization
is introduced in its general form, including regularization techniques, continua-
tion schemes, the derivation of the sensitivities, and the optimization algorithm
used. Next, the one-dimensional optimization problem is formulated for three
types of excitation and the corresponding results are discussed.

4.2 Topology optimization method

4.2.1 Density based approach

In topology optimization problems, a design domain Ωdes is considered where
material Ωins ⊂ Ωdes is inserted (figure 4.2). Topology optimization simulta-
neously optimizes the size, shape and topology of the inserted material [23].
The material can be distributed over the entire domain, there can be holes in
the inserted design, and the different features of the design are not necessarily
connected.

In density based topology optimization, the most widely used approach is
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Ωdes

Ωins

Figure 4.2: Material distribution in a design domain.

the so-called first discretize, then optimize strategy [89]. In contrast to the
approach where the discretization is performed last, such an approach allows
using existing software for solving the partial differential equations (such
as finite element or direct stiffness software). Furthermore, mathematical
difficulties encountered with the optimization in function spaces are avoided.
This approach is therefore also adopted in this work. The discretization of the
design variables is most easily done with the same mesh as the one used to
solve the partial differential equations.

For each element e in the design domain Ωdes, the material distribution is
parametrized using element densities ρe. The value ρe = 0 indicates that
element e has the properties of the background material, while ρe = 1
corresponds to the properties of the inserted material:

ρe =

{

0 if e ∈ Ωdes \ Ωins

1 if e ∈ Ωins

(4.1)

where Ωins is the domain where material is inserted.

The goal is to distribute the material in the design domain such that the
performance of the resulting structure is optimized for particular load cases
given some constraints. Solving the optimization problem allows finding
the best compromise between the performance and the cost, for example by
optimizing the stiffness of a structure for a given amount of material. The
topology optimization problem is generally formulated as:

min
ρ

f (ρ,u (ρ))

s. t. h (ρ,u (ρ)) ≤ 0

ρe ∈ {0, 1} ∀e ∈ Ωdes

(4.2)
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where f is the objective function, h is the vector of inequality constraints, ρ

is the vector containing the design variables ρe for e = 1 . . .Ne, and u are the
state variables.

The state variables u ∈ C
nDOF

correspond to the displacement vector found
with the direct stiffness method or the finite element method (see previous
chapters). In general, these state equations have the following form:

g (ρ,u) = K (ρ) u − p = 0 (4.3)

where K ∈ CnDOF
×nDOF

is the (dynamic) stiffness matrix, and p ∈ CnDOF

is the
load vector. In this work, the load vector is assumed to be independent of the
design variables, although this can easily be generalized. Through this equation,
the state variables u are a function of the design variables ρ. Alternatively,
the state variables u can be added as optimization variables, with the state
equation (4.3) added as constraint to the optimization problem. This is referred
to as the simultaneous analysis and design (SAND) approach, whereas the
optimization problem presented in equation (4.2) is referred to as the nested
approach (sometimes called NAND: nested analysis and design).

The optimization variables in the optimization problem (equation (4.2)) can
take only integer values (0 or 1). This integer formulation can for example
be solved using so-called hard kill methods where material in an element is
added (ρe = 1) or removed (ρe = 0). Examples are the Evolutionary Structural
Optimization (ESO) [90, 175] and the Bi-directional ESO (BESO) [176] method.
This approach has, however, been criticized. Critics include the absence of a
relation between the criteria imposed on the different elements and the aimed
objective function, doubts about the efficiency, and the difficulties in extending
the procedure to other constraints or multi-load problems [138]. In the common
density based approach, the discrete optimization problem is transformed into
a continuous problem by allowing the design variables ρe to vary continuously
in the interval [0, 1]. The following relaxed problem is solved:

min
ρ

f (ρ,u (ρ))

s. t. h (ρ,u (ρ)) ≤ 0

0 ≤ ρe ≤ 1 ∀e ∈ Ωdes

(4.4)

This problem is much more easily solved with available optimization methods,
as gradient-based methods can be applied.

The displacement vector u is solved from equation (4.3), in which the stiffness
matrix K depends on the material parameters α of the problem (mass
density, Young’s modulus, constrained modulus, shear modulus, wave velocity,
impedance, etc.). The considered parameter α should be equal to the property
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αref of the background material if ρe = 0 and equal to the property αins of the
inserted material if ρe = 1. Since the relaxed problem in equation (4.4) is solved,
the design variable ρe can take all real values between 0 and 1. A material
interpolation scheme is therefore needed to relate the material parameters to
the intermediate design variables.

The simplest material interpolation is a linear interpolation between the
properties of the two materials:

α = (1 − ρe)αref + ρeαins = αref + ρe (αins − αref) (4.5)

This often leads to gray designs, however, where there are regions with
intermediate design variables, i.e. design variables with values not close
to 0 or 1. The corresponding intermediate material parameters have no
physical interpretation (except for some advanced composite materials) and
are therefore unwanted. In topology optimization, the so-called Solid Isotropic
Material with Penalization (SIMP) approach [22, 139] is often used, where
intermediate densities are made less favorable by reducing their relative cost-
efficiency. For structural optimization, the material interpolation is often done
between a void phase (αref = 0) and a material phase (αins 6= 0), and the SIMP
interpolation has the form α = ρp

eαins with p > 1 the penalization parameter.
This is generalized here for a two-material optimization:

α = αref + ρp
e (αins − αref) (4.6)

This interpolation function is shown in figure 4.3 for p = 3. Over the
entire interval (0, 1), the curve lies below the linear interpolation curve. For
intermediate densities ρe, the material parameters α are close to those of the
background material αref . The performance is therefore hardly changed, while
the cost, which is often related to the volume and therefore proportional to the
sum of the design variables ρe, increases. It is therefore not efficient to add
material with intermediate design variables, leading to more 0/1 designs. Note
however, that this interpolation only works when a volume constraint is active.

For two-material problems, the following interpolation function is often
used [23]:

α = (1 − ρe)
p
αref + ρp

eαins (4.7)

This interpolation function is shown in figure 4.3 as well for p = 3. It is clear
that for static optimization problems, for which often a higher stiffness leads
to a better performance, the design variables will be pushed to the extremes,
i.e. ρe = 0 and ρe = 1.

However, for the problems considered in this work, not only stiffness, but
also impedance plays a role. In chapter 2, it was shown that the impedance
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ρe

0 0.25 0.5 0.75 1

αref

αins

Figure 4.3: Different material interpolations: linear interpolation (dashed line),
SIMP interpolation (solid line) and classical two-material interpolation (dashed-
dotted line) for a value p = 3 of the penalization parameter.

ratio determines the transmission and reflection at an interface. A higher
impedance ratio reduces the transmission through a layer. When equation (4.7)
is used as interpolation for material properties that are proportional to the
mass density or the wave velocity, the optimization will result in a gray layer
(0 < ρe < 1) between the white (ρe = 0) and black (ρe = 1) regions, as the
impedance ratio between the materials in the black and gray region are larger
than the impedance ratio between the materials in the black and white region
(figure 4.3).

The classical two-material interpolation scheme in equation (4.7) is therefore
not used in this work. In general, linear interpolation (equation (4.5)) is used for
material parameters that determine the mass (such as the mass density ρ), and
the SIMP interpolation in equation (4.6) is used for parameters that determine
the stiffness (such as the constrained modulus ρC2

p and the shear modulus ρC2
s ).

Unless stated otherwise, the penalization parameter p is set to 3. However,
when the performance is only determined by the difference in impedance, more
particularly for the one-dimensional wave propagation problem considered in
this chapter, the linear interpolation in equation (4.5) is used, as the difference
in impedances pushes the design variables to a 0/1 design. The phenomenon
where 0/1 designs are obtained without penalization is in the literature referred
to as self-penalization. This is for example observed in the case of piezoelectric
composites [173], and is found for the optimization problems considered in this
chapter.
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4.2.2 Regularization techniques and continuation schemes

Topology optimization has some classical numerical issues, such as mesh
dependency, meaning that the solution depends on the level of discretization,
and checkerboarding, which concerns the formation of adjacent black and white
elements arranged in checkerboard patterns due to the artificial stiffness given
to these patterns e.g. by the finite element model [150]. To prevent these
numerical issues in topology optimization and to restrain the complexity of
the final design, the densities or sensitivities are controlled with regularization
techniques [59].

Two classes of regularization techniques can be distinguished: constraint and
filtering techniques. The latter is the most popular largely due to its ease
of implementation. Filtering techniques are also used in this text as they
allow formulating the robust topology optimization problem considered in
section 5.3. Most common are the density [30, 36] and sensitivity [150] filter,
which modify the density or sensitivity of an element based on the densities
or sensitivities of the neighbouring elements. Filters based on the solution
of Helmholtz-type differential equations were also developed [105, 112]. These
filters reduce computational requirements as no neighbourhood information has
to be computed and stored.

In density filtering, the physical material distribution is represented by a new
field of variables ρ̃e which are obtained by smoothing the design variables ρe:

ρ̃e =

∑Ne

i=1 weiviρi
∑Ne

j=1 wejvj

(4.8)

where vi is the volume of element i and the filter kernel wei is typically
determined by the following linear conic function:

wei = max (R− rei, 0) (4.9)

with R the chosen filter radius, determining the minimum length scale of the
optimized design, and rei the center-to-center distance between elements e and
i. The filter kernel wei is maximal for i = e (rei = 0) and equal to the filter
radius R. For larger distances rei, the filter kernel decreases linearly with the
distance from element e. For elements i at a distance rei larger than the filter
radius R, the filter kernel is zero. For a filter radius smaller than 1 element,
the filtered densities ρ̃e are equal to the design variables ρe.

Although density (and sensitivity) filters efficiently solve the mesh-dependency
and checkerboarding, an unwanted consequence of this kind of filtering is the
formation of gray transition zones between black and white regions. Several
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Figure 4.4: Linear conic function used for density filtering [94].

schemes have been developed to resolve this issue by projecting the filtered
densities to 0 or 1. These are called projection filters and include morphology-
based filters [146] and density filters followed by a Heaviside projection [82]. In
this work, the latter are used as the mechanisms causing the 0/1 designs can
be interpreted more easily and as they allow defining the robust optimization
problem in section 5.3. The physical distribution is again represented by a new
field of variables ρ̄e which are obtained by applying the following Heaviside
projection function to the filtered variables ρ̃e:

ρ̄e = H(ρ̃e − η) =

{

0 if ρ̃e < η

1 if ρ̃e ≥ η
(4.10)

where H(x) is the Heaviside step function and η is the projection threshold.

For gradient based optimization, this function is approximated by a differ-
entiable function. Various approximations of the Heaviside function have
been proposed in the literature. In this work, the following relaxed Heaviside
projection is used [172]:

ρ̄e =
tanh (βη) + tanh (β(ρ̃e − η))

tanh (βη) + tanh (β(1 − η))
(4.11)

where β is a sharpness parameter, controlling the smoothness of the projection,
and the densities ρ̃e are obtained from equation (4.8). This expression for
the relaxed Heaviside projection is shorter, simpler, and faster to compute
compared to alternative expressions proposed in the literature [172]. Figure 4.5
shows this relaxed Heaviside projection for η = 0.5 and for different values of
the sharpness parameter β. Increasing the sharpness parameter β results in
a better approximation of the Heaviside step function, but also significantly
increases the nonlinearity of the function. As a rule of thumb for determining
a value for the sharpness parameter β, the projected design should contain one
layer of gray elements between the white and black regions.
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Figure 4.5: Approximate Heaviside projection function based on equation (4.11)
for η = 0.5 and for different values of β: 1, 2, 4, 8, 16, and 32 (light gray to
dark gray lines). These are compared with the Heaviside step function from
equation (4.10) (black line).

The projected variables represent the physical material distribution. As the
objective function and the constraints are defined in terms of the physical
material distribution, equation (4.4) becomes:

min
ρ

f (ρ̄,u (ρ̄))

s. t. h (ρ̄,u (ρ̄)) ≤ 0

0 ≤ ρe ≤ 1 ∀e ∈ Ωdes

(4.12)

with
g (ρ̄,u) = K (ρ̄) u − p = 0 (4.13)

where the stiffness matrix K depends on the element densities through the
material parameters αj , j = 1 . . .Nα. These are given by a linear (pj = 1) or
SIMP interpolation of the material properties of the background and inserted
material:

αj = αj,ref + ρ̄pj
e (αj,ins − αj,ref) (4.14)

An optimization problem is convex if the objective function f is convex, the
equality constraints gi = 0 are affine and the inequality constraints hi ≤ 0 are
convex [31]. In topology optimization, the objective function is typically non-
convex and the optimization problem in equation (4.12) is a non-convex large-
scale problem with a large number of design variables. Therefore many local
optima may exist. To avoid getting stuck in a local optimum in an early stage
of the optimization, continuation schemes can be used. In these schemes, some
regularization parameters are gradually changed such that the optimization
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problem starts from a smooth problem [150]. This problem is regularly changed
(for example every iteration) until the background problem is reached.

When using projection filters, two parameters can be used for the continuation
schemes: the sharpness parameter β of the Heaviside projection and the filter
radius R of the density filtering. As the sharpness parameter β controls the
smoothness of the Heaviside projection, a low value can be used at the beginning
of the optimization, which is slowly increased until the Heaviside step function
is well approximated. The filter radius can be altered as well, starting from a
large value which is gradually decreased until the intended value is reached.

Although these continuation schemes avoid getting stuck in a local optimum in
an early stage of the optimization, they do not guarantee that a global optimum
is obtained. Non-gradient based algorithms, such as genetic algorithms,
simulated annealing, and differential evolution schemes, are based on global
search techniques. However, in contrast to what is sometimes claimed, this
does not imply convergence to global optima. Furthermore, their efficiency can
be questioned [148].

4.2.3 Sensitivities

In this work, the optimization problem in equation (4.12) is solved with gradient
based algorithms. Efficiently computing the derivatives of the objective and the
constraint functions is essential as these have to be determined in each iteration
step. The computation of the sensitivities of an objective or constraint function
is discussed below. The objective function and the constraints are generally
formulated as φ (ρ̄ (ρ̃ (ρ)) ,u (ρ̄ (ρ̃ (ρ)))).

The objective and constraint functions are usually written in terms of the
physical element densities ρ̄. The derivatives of these functions to the design
variables ρ are obtained using the chain rule:

dφ

dρi
=

Ne
∑

e=1

dφ

dρ̄e

∂ρ̄e

∂ρ̃e

∂ρ̃e

∂ρi
(4.15)

The latter two factors result from the projection filter, and can be found by
taking the derivative of equation (4.11):

∂ρ̄e

∂ρ̃e
=

βsech2 (β (ρ̃e − η))

tanh (βη) + tanh (β(1 − η))
(4.16)

and of equation (4.8):
∂ρ̃e

∂ρi
=

wievi
∑Ne

j=1 wejvj

(4.17)
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Several techniques are available for the computation of the first term in

equations (4.15),
dφ

dρ̄e
. These include finite differences, the imaginary trick

method, the direct approach, and the adjoint approach. These are briefly
described below.

Finite differences Finite differences is a generally applicable numerical
differentiation method [132]. This method allows computing the derivative
of φ in the direction ∆ρ̄:

dφ

dρ̄
∆ρ̄ ≈ φ (ρ̄ + ǫ∆ρ̄,u (ρ̄ + ǫ∆ρ̄)) − φ (ρ̄,u (ρ̄))

ǫ
(4.18)

where ǫ is a small fixed number. Selecting a too large value of ǫ results in
linearization errors, while for too small values of ǫ numerical cancellation errors
might arise. An often used rule of thumb is ǫ =

√
ǫmach with ǫmach the machine

precision [132].

Imaginary trick method For real-valued analytic functions φ, the imaginary
trick method can be applied [61]:

dφ

dρ̄
∆ρ̄ ≈ Im {φ (ρ̄ + iǫ∆ρ̄,u (ρ̄ + iǫ∆ρ̄))}

ǫ
(4.19)

As there is no danger of numerical cancellation errors, the number ǫ can be
chosen very small and the derivative can be computed up to machine precision.
This method is most easily used in programming languages which do not declare
the type of variables beforehand. In this way, functions for real variables can
also be executed with complex variables.

The advantage of the finite difference method is that it can always be applied
even if the function is only available in compiled form. For both the finite
difference and the imaginary trich method, no analytic expression of the
gradient need to be derived. However, to determine the entire gradient, Ne

directional derivatives corresponding to every component of ρ have to be
computed. In topology optimization, the size Ne of this vector is considerable
as there is a large number of design variables. As this function often relates
to the state variables u, the system of state equations (4.13) also has to be
computed Ne + 1 times in the nested approach. This is of course very costly
from a computational point of view.
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Direct approach In the direct differentiation approach [42], the derivatives of
φ (ρ̄,u (ρ̄)) are computed as follows:

dφ

dρ̄e
=

∂φ

∂ρ̄e
+
∂φ

∂u

∂u

∂ρ̄e
+

∂φ

∂u∗

∂u∗

∂ρ̄e
(4.20)

where (·)∗ denotes the complex conjugate. The derivatives of the function φ
with respect to the complex state variables u are calculated analytically and
are given by:

∂φ

∂u
=

1

2

(

∂φ

∂uR
− i

∂φ

∂uI

)

(4.21)

∂φ

∂u∗
=

1

2

(

∂φ

∂uR
+ i

∂φ

∂uI

)

(4.22)

where uR = Re{u} and uI = Im{u} are the real and imaginary part of
the state vectors u. Note that for analytic functions, for which the Cauchy-

Riemann equations
∂φ

∂uI
= i

∂φ

∂uR
apply, the conjugate complex derivative in

equation (4.22) becomes equal to zero and the last term in equation (4.20)
disappears. Most functions, such as the simple example φ (u) = u, are
analytical. However, functions involving complex conjugate variables such as
φ (u) = u∗ are mostly not analytic.

In the direct approach, the derivatives of the state variables u with respect
to the element densities ρ̄e are computed by applying the implicit function
theorem to the governing state equations (4.13):

∂g

∂ρ̄e
=
∂K

∂ρ̄e
u + K

∂u

∂ρ̄e
= 0 ⇒ K

∂u

∂ρ̄e
= −∂K

∂ρ̄e
u (4.23)

This system resembles the system of state equations (4.13), but with a different

right hand side or loading. From this, the derivatives
∂u∗

∂ρ̄e
=

(

∂u

∂ρ̄e

)∗

are

calculated and introduced into equation (4.20).

Adjoint approach The adjoint approach is more efficient for topology
optimization problems, which have typically a large number of design variables.
By inserting equation (4.23) into equation (4.20), the following expression is



TOPOLOGY OPTIMIZATION METHOD 85

obtained:

dφ

dρ̄e
=

∂φ

∂ρ̄e
− ∂φ

∂u
K−1 ∂K

∂ρ̄e
u − ∂φ

∂u∗

(

K−1 ∂K

∂ρ̄e
u

)∗

=
∂φ

∂ρ̄e
− ∂φ

∂u
K−1 ∂K

∂ρ̄e
u −

(

∂φ

∂u
K−1 ∂K

∂ρ̄e
u

)∗

=
∂φ

∂ρ̄e
+ 2 Re

{

−∂φ

∂u
K−1 ∂K

∂ρ̄e
u

}

=
∂φ

∂ρ̄e
+ 2 Re

{

λT ∂K

∂ρ̄e
u

}

(4.24)

where use is made of the identity
∂φ

∂u∗
=

(

∂φ

∂u

)∗

for real-valued functions φ.

The adjoint vector λ ∈ C
nDOF

is calculated from the adjoint equation:

KTλ = −
(

∂φ

∂u

)T

(4.25)

This equation again resembles the system of the state equations (4.13). There
is, however, a different right-hand side, referred to as the adjoint load, and
the adjoint vector is pre-multiplied by the transpose of the stiffness matrix
instead of the stiffness matrix itself. In most cases, KT = K, but this is for
example not the case for the two-and-a-half-dimensional finite element model:
in expression (3.22), the transpose of the element stiffness matrix K1 is equal

to
(

K1
)T

= −K1 (see equation (3.25)).

Note that both the direct and adjoint approach require the derivatives
∂K

∂ρ̄e
of the stiffness matrix with respect to the element densities. The stiffness
matrix is related to the element densities through the material parameters αj ,
j = 1 . . .Nα. From equation (4.14), it follows that:

∂K

∂ρ̄e
=

Nα
∑

j=1

∂K

∂αj

∂αj

∂ρ̄e
=

Nα
∑

j=1

pj ρ̄
pj−1
e (αj,ins − αj,ref)

∂K

∂αj
(4.26)

The adjoint approach has the advantage that only one (instead ofNe) additional
equation similar to the state equation (4.13) needs to be computed for every
function φ, but the disadvantage is that an extra equation has to be solved for
each constraint. The direct approach is therefore advantageous when a large
number of constraints is present, while the adjoint approach is advantageous
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for a large number of element densities. In topology optimization, the number
of element densities is typically much larger than the number of constraints,
which makes the adjoint method much more efficient for topology optimization
problems. The adjoint method is also adopted in this work. As the sensitivities
have to be derived analytically, they are checked using finite differences or the
imaginary trick technique.

4.2.4 Optimization algorithm

As pointed out before, gradient based optimization algorithms are used to solve
the topology optimization problems in this work. In the nested approach, the
computational cost of the optimization algorithm is typically small compared
to the cost of computing the state variables and sensitivities. The method of
moving asymptotes (MMA) [155] is often used as gradient based optimization
algorithm. The Matlab implementation of Svanberg is used in this work [156].
MMA solves the following generalized optimization problem:

min
x

f0 (x)

s. t. fi (x) ≤ 0 i = 1 . . .m

xmin ≤ x ≤ xmax

(4.27)

where x ∈ Rn, are the design variables, f0 (x) is the objective function and
fi (x) are the constraints.

MMA is a sequential approximate optimization (SAO) method, in which a
separable convex first order approximating subproblem is constructed in every
iteration. The solution of the subproblem for the current iteration point x(k)

yields the next iteration point x(k+1). The MMA subproblems are given by:

min
x

f̃
(k)
0 (x)

s. t. f̃
(k)
i (x) i = 1 . . .m

α(k) ≤ x ≤ β(k) j = 1 . . . n

(4.28)

where α(k) and β(k) are the lower and upper bound of the current iteration
point x(k) which differ from the original bounds xmin and xmax as they also
limit the maximum step-length. MMA uses rational functions as approximating

functions f̃
(k)
0 (x) and f̃

(k)
i (x). The choice of these functions is based

on gradient information at the current iteration point and on lower and

upper asymptotes l
(k)
j and u

(k)
j which are updated in each iteration. The
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approximating functions are given by [156]:

f̃
(k)
i (x) =

n
∑

j=1

(

p
(k)
ij

u
(k)
j − xj

+
q

(k)
ij

xj − l
(k)
j

)

+ r
(k)
i (4.29)

with [156]:

p
(k)
ij =

(

u
(k)
j − x

(k)
j

)2
(

max

{

∂fi

∂xj

(

x(k)
)

, 0

}

+
ρi

xmax
j − xmin

j

)

(4.30)

q
(k)
ij =

(

x
(k)
j − l

(k)
j

)2
(

max

{

− ∂fi

∂xj

(

x(k)
)

, 0

}

+
ρi

xmax
j − xmin

j

)

(4.31)

r
(k)
i = fi

(

x(k)
)

−
n
∑

j=1

(

p
(k)
ij

u
(k)
j − x

(k)
j

+
q

(k)
ij

x
(k)
j − l

(k)
j

)

(4.32)

where the parameter ρi is a fixed small, positive number such as 10−5. Default

rules for updating the lower asymptotes l
(k)
j and the upper asymptotes u

(k)
j can

be found in [156].

The approximating functions f̃
(k)
i are always first order approximation func-

tions of the original function fi at the current iteration point x(k). Furthermore,
they are strictly convex, making the subproblem in equation (4.28) strictly
convex. These subproblems can therefore be solved to global optimality using
efficient convex optimization algorithms, such as interior-point algorithms.

4.3 Optimization of one-dimensional wave barriers

In this section, topology optimization is applied to a simple one-dimensional
problem. The problem is sketched, the sensitivities are derived and the
optimized designs are discussed.

4.3.1 Problem description

Figure 4.6 shows the optimization problem. Dilatational waves with amplitude
I propagate through a homogeneous full space of a certain material. To reduce
the wave transmission, stiffer material is inserted in the design domain, a region
with a width of 10 m that is situated between two halfspaces. The inserted
material partly reflects the incoming waves, decreasing the amplitude T of the
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ρ̄e = 1 ρ̄e = 0

Figure 4.6: One-dimensional topology optimization problem. The mesh is
added as illustration only and is not the actual one.

Table 4.1: Material properties used in the optimization of the one-dimensional
design.

Background Inserted
material material

Mass density ρ [kg/m3] 2000 2000
Dilatational wave velocity Cp [m/s] 200 400
Dilatational damping ratio βp [%] 0.0 0.0

transmitted waves. The material properties of the background and inserted
material are given in table 4.1.

The direct stiffness method (chapter 2) is used to calculate the displacement
field. The design domain is discretized using Ne layer elements. Each of these
elements is given an element density ρ̄e. Recall that elements with ρ̄e = 0
have the material properties of the background material, while elements with
ρ̄e = 1 have the material properties of the inserted material. The problem is
modeled by means of the direct stiffness method, using Ne layer elements and
two halfspaces at both sides of the design domain, resulting in a total of Ne +2
elements. The elements are numbered as follows: 0 (left halfspace), 1 (first
element design domain), . . .Ne (last element design domain), Ne + 1 (right
halfspace). By solving the state equation K̂û = p̂, the displacements vector

û = [û0 . . . ûNe+1]T is obtained.
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The transmission coefficient is defined as the ratio of the amplitudes of the
transmitted and incoming wave. For a harmonic wave with amplitude I = 1
of the incoming wave, the transmission coefficient is equal to the amplitude
T =

∣

∣ûNe+1

∣

∣ of the transmitted wave. The transmittance is defined as the

square of the modulus of the transmission coefficient, i.e. |t|2 =
∣

∣ûNe+1

∣

∣

2
.

Depending on the type of excitation, different optimization problems have
been studied for one-dimensional problems: (1) harmonic sources at a known
frequency, (2) broadband sources, and (3) harmonic sources at a frequency
situated in a given range. An example of a broadband source is the axle loading
of trains and road traffic, while pumps rotate at a certain (constant or variable)
frequency and are therefore harmonic sources. The different optimization
problems and the resulting designs are discussed in the following subsections.

4.3.2 Harmonic sources

Optimal distribution of the inserted material minimizes the transmittance.
As 0/1 designs are obtained without penalization (self-penalization), linear
material interpolation is used and no volume constraint is imposed. The only
constraint defines the limits of the element densities. For harmonic incident
waves, the optimization problem is given by:

min
ρ

f (û (ρ̄)) =

Ne+1
∑

j=0

lj |ûj |2 = ûHLû

s. t. 0 ≤ ρe ≤ 1 e = 1 . . . Ne

(4.33)

where (·)H is the Hermitian (or conjugate) transpose, û the displacement vector,
and lj is a weighting factor. L is a zero matrix with ones at the diagonal
elements corresponding to the degrees of freedom where the displacement is
to be minimized. As the amplitude of the transmitted wavefield is minimized,
lNe+1 = 1 (and lk = 0 ∀k 6= Ne + 1) or L (Ne + 1, Ne + 1) = 1. Note that since
I = 1, the objective function is equal to the transmittance.

The sensitivities are calculated using the adjoint method (equation (4.24)):

df

dρ̄e
= 2 Re

{

λT ∂K̂

∂ρ̄e
û

}

(4.34)

where the adjoint variable λ is obtained by solving the system of adjoint
equations (equation (4.25)):

K̂Tλ = −
(

∂φ

∂û

)T

= −Lû∗ (4.35)
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Note that the optimization problem in equation (4.33) is non-convex as the
objective function f (û (ρ̄)) is non-convex.

Optimization algorithms that can deal with non-convex problems, such as
MMA, should therefore be used. Continuation schemes are furthermore used
to avoid getting stuck in a local optimum in an early stage of the optimization.
The following continuation schemes are used. The sharpness parameter β starts
from a low value (1) and is doubled every 50 iterations until the value 32 is
obtained. The filter radius R on the contrary starts from a high value (16) and
is halved every 50 iterations until it is equal to 0.5. The MMA algorithm is
stopped after 300 iterations.

The results of the optimization problem are shown for Ne = 200 elements. The
material interpolation is performed on the mass density ρ and the dilatational
wave velocity Cp. Four distinct frequencies are considered, namely 20 Hz, 40 Hz,
60 Hz, and 80 Hz. A design domain which is fully filled with the inserted
material, as shown in figure 4.7, is taken as reference case. This design is
also taken as the initial design. The aim is to find a design that minimizes the
transmittance, as defined in the optimization problem (4.33). The evolution of
the objective function for the optimization at f = 40 Hz is shown in figure 4.8.
Every 50 iterations, a jump occurs when the regularization parameters are
adjusted, resulting in a different optimization problem and therefore a different
optimum. In the last iteration step, the change in objective function is equal
to 4 × 10−8.

Figure 4.7: Fully filled design used as initial design for the one-dimensional
optimization. The boundaries of the design domain are indicated with a gray
dashed line.

The optimized designs and the corresponding transmission coefficient as a
function of the frequency are shown in figure 4.9. The transmission coefficient
for the reference case of a fully filled design is also shown. This figure
clearly demonstrates that the resulting designs perform much better at the
optimization frequency (they have lower transmission coefficients) than the fully
filled design. Note that for stiffness based problems, such as the minimization
of the response for a beam subjected to a static load, the fully filled design
would be the optimized design as it provides the most stiffness and no volume
constraint is present in the optimization problem. However, due to the self-



OPTIMIZATION OF ONE-DIMENSIONAL WAVE BARRIERS 91

Iteration

O
b

je
ct

iv
e

fu
n
ct

io
n

[−
]

0
0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

Figure 4.8: Convergence of the optimization problem for the design optimized
at a frequency of 40 Hz (figure 4.9c).

penalization for the problems considered here, the optimal designs differ from
the fully filled design.

The optimized designs are periodic and result in stopbands and passbands. For
higher frequencies, the alternating layers of background and inserted material
become thinner. As a result, the design domain can accommodate for a larger
number of layers, which leads to lower values of the transmission coefficient
and wider stopbands.

These considerations allow interpreting the optimized designs using the analysis
in chapter 2. With the material properties in table 4.1, the thicknesses Lref

(background material) and Lins (inserted material) in table 4.2 satisfy the
quarter-wave stack condition. At the frequencies 40 Hz, 60 Hz, and 80 Hz, the
optimized designs fulfill the quarter-wave stack conditions, since the thicknesses
of the layers agree with the thicknesses in table 4.2. The designs optimized at
60 Hz and 80 Hz show a white layer at the left and right sides of the design
domain. Shifting the inserted layers to the left or the right does not change the
performance of the barrier (as long as the inserted layers are located entirely
in the design domain). Starting from another initial design therefore can lead
to a slightly different design, where the inserted layers are shifted.

At 20 Hz, however, the thicknesses given by the quarter-wave stack condition
are 2.5 m and 5 m for the inserted and background material, respectively. In
this case, the design domain is not sufficiently large to accommodate two
layers of the inserted material. The thickness of the inserted layers is therefore
smaller than the one obtained with the quarter-wave stack condition, as can
be seen in figure 4.9. If the design domain would have a length of 12.5 m,
the corresponding optimized design at 20 Hz would again fulfill the quarter-
wave stack condition, resulting in a more pronounced dip of the transmission
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Figure 4.9: One-dimensional designs optimized at a frequency of (a) 20 Hz,
(c) 40 Hz, (e) 60 Hz, and (g) 80 Hz. The boundaries of the design domain are
indicated with a gray dashed line. Transmission coefficient as a function of the
frequency for the reference case of a fully filled design (dashed line) and for the
designs optimized at (b) 20 Hz, (d) 40 Hz, (f) 60 Hz, and (h) 80 Hz (solid line).
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coefficient at 20 Hz.

Frequency Lref Lins

[Hz] [m] [m]
20 2.500 5.000
40 1.250 2.500
60 0.833 1.667
80 0.625 1.250

Table 4.2: Thicknesses of the layers fulfilling the quarter-wave stack conditions
for Cp1 = 200 m/s and Cp2 = 400 m/s.

Note that a better transmittance is obtained at higher frequencies. Because
of the smaller thicknesses satisfying the quarter wave stack condition, multiple
sequences of alternating layers are present. This leads to an increased reduction
of the transmission (see section 2.4). Moreover, smaller thicknesses lead to
wider stopbands, as can be derived from equation (2.60).

4.3.3 Broadband sources

For broadband sources, the frequency averaged transmittance is minimized.
The optimization problem therefore is given by:

min
ρ

1

fu − fl

fu
∫

fl

ûHLûdf

s. t. 0 ≤ ρe ≤ 1 e = 1 . . .Ne

(4.36)

The frequency range f ∈ [fl, fu] is discretized using Nf frequencies, which
results in the following optimization problem:

min
ρ

1

Nf

Nf
∑

j=1

ûH
j Lûj

s. t. 0 ≤ ρe ≤ 1 e = 1 . . .Ne

(4.37)

where ûj = û (fj) is the displacement vector corresponding to the jth frequency.
The number of frequencies Nf (which is equal to (fu − fl)/∆f − 1) should
be sufficiently large to ensure that the result is representative for the entire
frequency range, but preferably as small as possible to keep the computation
time limited. As for the direct approach the system of equation needs to be
solved Nf × (Ne +1) (Nf forward computations and Nf ×Ne computations for
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the sensitivities), the adjoint approach is much more efficient, as the system
of equations needs to be solved only 2Nf times (Nf forward and Nf adjoint
computations). The total gradient of the objective function is then equal to
the sum of these sensitivities divided by the number of frequencies Nf :

df

dρ̄e
=

2

Nf

Nf
∑

j=1

Re

{

λT
j

∂K̂j

∂ρ̄e
ûj

}

(4.38)

Note that, depending on the actual loading, more weight can be given to certain
frequencies by introducing a weighting function.

The optimization is performed first for a frequency interval of 20 Hz, more
specifically for the intervals 10 − 30 Hz, 30 − 50 Hz, 50 − 70 Hz, and 70 − 90 Hz.
The frequency range is discretized with Nf = 21 equidistant frequencies. The
resulting designs are shown in figure 4.10. The designs are equal to those
optimized for the harmonic waves at 20 Hz, 40 Hz, 60 Hz, and 80 Hz. The
stopbands resulting from the periodic designs are sufficiently large for the
frequency interval considered here.

For a larger frequency interval of 60 Hz, for example the frequency range
20 − 80 Hz, however, this no longer applies. For a discretization with Nf = 61
frequencies, the optimized design is shown in figure 4.11. The optimized
design consists of alternating layers with different thicknesses. The resulting
transmission coefficient as a function of the frequency does not show the
characteristic periodic sequence of stop- and passbands. Instead, multiple
stopbands overlap each other, resulting in a frequency averaged transmittance
of 0.36 which is much lower than the frequency averaged transmittance of
0.81 for the reference case of the fully filled design. Note that especially the
transmittance at higher frequencies is reduced, as for these frequencies, smaller
thicknesses are needed to fulfill the quarter wave-stack condition.

The calculated frequency averaged transmittance depends on the selected
discretization of the frequency interval, which should be dense enough as the
curve in figure 4.11 is not smooth. To assess the influence of the discretization,
the optimization is done for multiple discretizations of the frequency interval.
Figure 4.12 shows the influence of the number of frequencies Nf in the
discretization. Both the value of the objective function (i.e. the discretized
mean transmittance) and the mean transmittance of the optimized design
calculated with Nf = 2001 (∆f = 0.01 Hz), giving an indication of the actual
performance, are shown.

For the narrower frequency intervals (10 − 30 Hz, 30 − 50 Hz, 50 − 70 Hz, and
70 − 90 Hz), there is a rather fast convergence. For all considered frequency
intervals, discretizing with only Nf = 5 frequencies leads to the optimized
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Figure 4.10: One-dimensional designs optimized at a frequency of (a) 10−30 Hz,
(c) 30 − 50 Hz, (e) 50 − 70 Hz, and (g) 70 − 90 Hz. The boundaries of the design
domain are indicated with a gray dashed line. Transmission coefficient as a
function of the frequency for the reference case of a fully filled design (dashed
line) and for the designs optimized at (b) 10−30 Hz, (d) 30−50 Hz, (f) 50−70 Hz,
and (h) 70 − 90 Hz (solid line).
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Figure 4.11: (a) One-dimensional design optimized for the average
transmittance over the frequency range 20 − 80 Hz with Nf = 61 (local
optimum). The boundaries of the design domain are indicated with a gray
dashed line. (b) Transmission coefficient as a function of the frequency for the
reference case of a fully filled design (dashed line) and for the optimized design
(solid line).
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Figure 4.12: Influence of the number of frequencies Nf considered in the
optimization on the value of the objective function (x-marks) and the mean
transmittance, computed with ∆f = 0.01 Hz (circles). In (a), four frequency
ranges are considered with fu − fl = 20 Hz (from top to bottom): 10 − 30 Hz
(blue), 30 − 50 Hz (red), 50 − 70 Hz (green), and 70 − 90 Hz (magenta). In (b),
the frequency range 20 − 80 Hz (black) is considered.

design obtained with Nf = 21 frequencies, although the mean transmittance is
slightly overrated.

For the wider frequency interval (20−80 Hz), the objective function converges to
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two different solutions. In most cases, forNf ≥ 12 frequencies, the optimization
leads to the design given in figure 4.11 and the optimized mean transmittance
is equal to 0.36. However, for some discretizations, e.g. for Nf = 35 a different
optimized design is obtained, shown in figure 4.13, which corresponds to a mean
transmittance of 0.29. As the mean transmittance for Nf = 61 is higher, this
is only a local optimum, while the design for Nf = 35 is presumably the global
optimum.
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Figure 4.13: (a) Design optimized for the average transmittance over the
frequency range 20 − 80 Hz with Nf = 35 (presumed global optimum). The
boundaries of the design domain are indicated with a gray dashed line. (b)
Transmission coefficient as a function of the frequency for the reference case of
a fully filled design (dashed line) and for the optimized design (solid line).

Despite the continuation schemes for the sharpness parameter β and the
filter radius R, it is therefore not possible to avoid the local optima. The
local optimum corresponds to a symmetric design, while the presumed
global optimum corresponds to an asymmetric design. This suggests that
the initial design directs the optimization to the symmetric local optimum.
Considering an asymmetric initial design could therefore be applied to prevent
the optimization from getting stuck in the symmetric local optimum. The
calculations have therefore been repeated for an initial design where the volume
densities increase linearly from 0 to 1, as shown in figure 4.14. The influence
of the number of frequencies Nf on the performance of the obtained designs is
shown in figure 4.15. The presumed global optimum is found for all frequency
discretizations from Nf = 11 frequencies and the problem of the local optima
seems to be solved.
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Figure 4.14: Alternative initial design for the one-dimensional optimization.
The boundaries of the design domain are indicated with a gray dashed line.
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Figure 4.15: Influence of the number of frequencies Nf considered in the
optimization on the value of the objective function (x-marks) and the mean
transmittance, computed with ∆f = 0.01 Hz (circles). The frequency range
20 − 80 Hz is considered and the initial design of the optimization is taken to
be the one in figure 4.14.

4.3.4 Harmonic sources at a frequency in a given range

The transmission coefficients in figures 4.11 and 4.13 have peaks at particular
frequencies between the stopbands. These peaks are so narrow that they
do not significantly contribute to the overall mean transmittance, but they
could be important in the case of narrowband sources. Moreover, the lowest
frequencies in the frequency range have a transmission coefficient close to 1. To
avoid the occurrence of the peaks and to obtain a better performance for the
lowest frequencies, the optimization problem can be reformulated as a minimax
problem: instead of minimizing the frequency averaged transmittance, the
maximal value of the transmittance in a given frequency range is considered.
This allows obtaining the best solution in the case of sources operating at
unknown frequencies in a frequency range. The optimization problem is
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therefore given by:

min
ρ

max
f

{

ûHLû
}

s. t. 0 ≤ ρe ≤ 1 e = 1 . . .Ne

(4.39)

where the state variables û depend both on the element densities ρ̄e and the
frequency f ∈ [fl, fu].

This problem is, however, not differentiable. To resolve this, the problem is
reformulated using a bound formulation:

min
ρ,s

s

s. t. ûH
j Lûj ≤ s j = 1 . . .Nf

0 ≤ ρe ≤ 1 e = 1 . . .Ne

(4.40)

The frequency interval [fl, fu] is discretized using Nf equidistant frequencies.

The optimization problem in equation (4.40) contains, besides the boundaries
for the element densities ρ̄e, Nf additional constraints, for which the
sensitivities need to be calculated. The sensitivities are again most efficiently
calculated using the adjoint equation for every discretized frequency.

Figure 4.16 shows the optimized design and the corresponding value of the
transmission coefficient for a target frequency range 20-80 Hz, using Nf = 61
frequencies. The maximum transmittance is equal to 0.57 for the optimized
design, while it is equal to 1 for the fully filled design. The optimization still
gives better results for higher frequencies, but local peaks are avoided. The
value of the mean transmittance is however equal to 0.43, which is much higher
than the value 0.29 obtained with the minimization of the mean transmittance.
Clearly, there is a trade-off between the mean and the maximum transmittance
in the frequency range considered. This observation underlines the importance
of selecting the most suitable formulation of the optimization problem, which
will depend on the characteristics of the vibration source (narrowband or
broadband).

The influence of the selected frequency discretization is shown in figure 4.17 for
initial designs consisting of both the fully filled (figure 4.7) and the asymmetric
(figure 4.14) design. For the fully filled initial design, again two local optima are
found for Nf > 20. For the asymmetric initial design, the discretization does
not play a role for Nf > 20. However, the optimized design is the worst of the
two local designs obtained with the fully filled initial design. Continuation
schemes or asymmetric initial designs can therefore not always avoid local
optima.
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Figure 4.16: (a) One-dimensional design optimized for the maximum
transmittance over the frequency range 20 − 80 Hz with Nf = 61. The
boundaries of the design domain are indicated with a gray dashed line. (b)
Transmission coefficient as a function of the frequency for the reference case of
a fully filled design (dashed line) and for the optimized design (solid line).

Number of frequencies Nf

M
ea

n
tr

a
n
sm

it
ta

n
ce

[−
]

0.2

0.4

0.6

0.8

1

0
0 20 40 60 80

(a)

Number of frequencies Nf

M
ea

n
tr

a
n
sm

it
ta

n
ce

[−
]

0.2

0.4

0.6

0.8

1

0
0 20 40 60 80

(b)

Figure 4.17: Influence of the number of frequencies Nf considered in the
optimization on the value of the objective function (x-marks) and the maximum
transmittance, computed with ∆f = 0.01 Hz (circles). The frequency range
20 − 80 Hz is considered. The initial design is in (a) the fully filled design in
figure 4.7 and in (b) the asymmetric design in figure 4.14.

4.4 Conclusion

In this chapter, density based topology optimization is introduced. Regular-
ization techniques allow controlling the complexity of the final design and
preventing numerical issues. The optimization problem is often non-convex. By
using continuation schemes, where the regularization parameters are gradually
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changed, the iterative optimization does not get stuck in a local optimum
in an early stage of the optimization. A gradient based algorithm, namely
the Method of Moving Asymptotes (MMA), is used to solve the topology
optimization problem. In most cases, the adjoint method is the most efficient
in calculating the sensitivities.

Topology optimization is applied to a simple one-dimensional problem. A plane
wave propagating in a full space encounters a one-dimensional design domain,
in which a stiffer material is optimally distributed. Three types of excitation
are considered: harmonic incoming waves at a known frequency, broadband
sources, and harmonic sources at a frequency situated in a given range. 0/1
designs are obtained for linear interpolation schemes.

If the design domain allows this, the optimized design for harmonic sources
consists of a periodic configuration of layers with thicknesses equal to a quarter
of a wavelength as found in chapter 2. For broadband sources and harmonic
sources at an unknown frequency situated in a given range, the designs are
more complex, as multiple frequencies are considered in the optimization.
Continuation schemes and asymmetric initial designs do not always lead to
the global optimum.

The next chapters consider transmission for a halfspace excited at the surface.
Topology optimization is used to search for designs with a better performance
than the double wall barriers considered in chapter 3.





Chapter 5

Topology optimization for

two-dimensional elastic wave

propagation

5.1 Introduction

The aim is to reduce the transmission of vibrations caused by passing trains
on the surface of a semi-infinite halfspace, representing the soil. As a first
approximation, the train loading is approximated by a line load. The problem
addressed in this chapter is shown in figure 5.1. A wave barrier is introduced
to reduce the resulting vibrations in the halfspace close to the surface. The
wave barrier is designed such that the vibration transmission is minimized.

As the loading, the soil and the wave barrier are assumed to be longitudinally
invariant, this problem can be modeled using a two-dimensional model.
Comparative studies between two- and three-dimensional models have been
performed by a number of researchers. Andersen and Jones [8] compared
the ground responses to underground trains using two- and three-dimensional
coupled finite element - boundary element models, showing that for the cases
they consider, the results obtained with the two-dimensional model correspond
well with those from the three-dimensional model at most frequencies. Yang
et al. [178] compared responses of underground tunnels to moving train loads
using two-dimensional and two-and-a-half-dimensional finite - infinite element
approaches. They suggested to use the two-dimensional model as a conservative

103
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?

Figure 5.1: General problem: a semi-infinite halfspace excited at the surface by
a line load. A wave barrier reduces the wave propagation close to the surface
of the halfspace.

model, as the soil response obtained with this model appears to be the upper
limit for the responses obtained with the two-and-a-half-dimensional model for
different train speeds. Previous studies have, however, also pointed out the
importance of accounting for the three-dimensional effects of wave impeding
barriers for railway induced vibrations [53]. This is therefore addressed in the
next chapter.

This chapter is divided in two main parts. In the first part (section 5.2),
topology optimization is applied to optimize the design of the wave barrier. The
three cases considered in the previous chapter are addressed: harmonic sources,
broadband sources and harmonic sources at an unknown frequency. The second
part (section 5.3) deals with robustness against geometric imperfections and
feasibility of the design obtained for broadband sources.

5.2 Topology optimization

5.2.1 Problem description

Figure 5.2 shows the considered optimization problem. A homogeneous elastic
halfspace is excited at the surface by a vertical line load. The aim is to
minimize the response at a receiver point, located at the surface of the halfspace.
Therefore, a design domain is considered between the source and the receiver
where a stiffer material is introduced. The design domain has a cross-sectional
area of 7.5 × 5 m2 and is located at a distance of 5 m from the excitation
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point. The performance is optimized at a receiver point located at another 5 m
from the design domain, and, therefore, 15 m from the excitation point. The
properties of the original material and the inserted material are summarized in
table 5.1.

5m 5m 5m

7.5m

Design
domain

Surrounding
domain

FE

PML

ρ̄e = 0 ρ̄e = 1

x

z

Source Receiver

Figure 5.2: The optimization problem for the two-dimensional halfspace. The
mesh is added as illustration only and is not the actual finite element mesh.

Table 5.1: Material properties of the original homogeneous halfspace and the
inserted material.

Original Inserted
material material

Mass density ρ [kg/m3] 2000 2000
Dilatational wave velocity Cp [m/s] 400 950
Shear wave velocity Cs [m/s] 200 550
Dilatational material damping ratio βp [%] 2.5 2.5
Shear material damping ratio βs [%] 2.5 2.5

Note that there is only one receiver point and that a homogeneous soil is
considered. This simple problem is used to illustrate the methodology and to
more easily interpret the obtained results. However, the response and therefore
the optimized design will change if different receiver points are considered.
Also the material properties and the heterogeneity of the soil can considerably
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influence the optimized design. It is therefore important, when designing a
wave barrier, to not disregard these aspects.

The elastodynamic problem is solved using the finite element method in-
troduced in chapter 3. As a two-dimensional problem is considered, the
longitudinal wavenumber ky is set to zero and only the displacements in the
x- and z-direction are considered. The resulting elements are two-dimensional
eight-node elements in plane strain. For the mesh, an element size of 0.25 m is
used, corresponding to ten elements per shear wavelength λs at a frequency of
80 Hz, which is the upper limit considered in this work.

To efficiently compute the system of equations K̂û = p̂, the finite element
model can be divided in two parts: one part containing the elements
whose properties do not change during the optimization process, that is the
the surrounding domain Ωs including the PML domain, and another part
containing the design domain Ωd which is altered every iteration. The forward
system of equations can therefore be written as:

[

K̂ss K̂sd

K̂ds K̂dd

]{

ûs

ûd

}

=

{

p̂
s

p̂
d

}

(5.1)

where subscript s refers to the surrounding domain including the PML layers
(with nDOF

s degrees of freedom) and subscript d refers to the design domain
(with nDOF

d degrees of freedom). From this equation, the displacements ûs can
be computed in terms of the load vector p̂

s
and the displacement vector ûd:

ûs = K̂−1
ss p̂

s
− K̂−1

ss K̂sdûd (5.2)

which can be inserted in the second system of equations:

(

K̂dd − K̂dsK̂
−1
ss K̂sd

)

ûd = p̂
d

− K̂dsK̂
−1
ss p̂

s
(5.3)

The inverse of K̂ss stays unchanged during the optimization, and can be
calculated in a preprocessing step. This means that only the system in
equation (5.3) with nDOF

d degrees of freedom needs to be solved every iteration

instead of the forward system K̂û = p̂ with nDOF = nDOF
s + nDOF

d degrees of
freedom. Equation (5.2), used to compute the displacements ûs, then consists
only of some matrix multiplications, which is computationally very cheap. The
computation and storage of the inverse K̂−1

ss can, however, be expensive.

Alternatively, domain d can be extended such that the matrices K̂sd and K̂ds,
which contain the degrees of freedom that couple the two domains, remain
unchanged during the optimization. Then, the terms K̂−1

ss p̂s and K̂−1
ss K̂sd can

be efficiently computed in a preprocessing step using an LU-factorization of
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K̂ss. When nDOF
s > nDOF

d , the computation of K̂−1
ss K̂sd (and K̂−1

ss p̂s) can be

more efficient than the computation of K̂−1
ss .

As the element densities of the optimization problem define the material
properties of the finite elements in the design domain, the finite element mesh
determines the number of element densities. If a distribution of the element
densities over a finer mesh is intended, projection methods can be applied [83].
If a distribution of the element densities over a coarser mesh is intended, the
mesh of the finite element model can be refined. However, solving the system
of equations K̂û = p̂ is computationally the most expensive in the iterative
topology optimization procedure and this computational cost strongly increases
with the number of elements in the model. By only refining the finite element
mesh of the design domain, the computational cost is kept to a minimum for
the desired detail of design. If only rectangular elements are considered, this,
however, results in a mismatch between the two meshes at the boundaries of
the design domain (figure 5.2).

Kristensen [109] suggested to add constraints on the displacements of the non-
connecting nodes such that these nodes are connected to the surrounding
domain. This method is adopted in this work, mainly due to its ease of
implementation as only rectangular elements are used. Two examples are shown
in figure 5.3. The constraints impose that the displacements at intermediate
nodes of the finer mesh coincide with the displacements at the corresponding
position on the coarser mesh. The displacements along the edge of the coarser
mesh can be computed from the three nodes on this edge since the shape
functions are parabolic. The resulting constraint equations can be written in
matrix form:

Qû = 0 (5.4)

where the matrix Q collects the coefficients of the constraint equations.

The constraints in equation (5.4) can be enforced using different methods
e.g. using a transformation matrix, adding penalty functions, using Lagrange
multipliers, etc. [47, chapter 13]. The efficiency of the different methods is
similar. Here, Lagrange multipliers are used,leading to the following system of
equations:

[

K̂ QT

Q 0

]{

û

χ

}

=

{

p̂

0

}

(5.5)

where the vector χ collects the Lagrange multipliers.
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Figure 5.3: Constraints added to the intermediate nodes of the finer mesh in
the design domain for a ratio of the element size of the surrounding domain to
the element size of the design domain equal to (a) 2 and (b) 3.

5.2.2 Optimization problem

Consider again the topology optimization problem shown in figure 5.2. The
aim is to maximize the insertion loss (IL) which is defined as:

ÎL (ω) = 10 log10

(

(ûref)HLûref

ûHLû

)

(5.6)

with (·)H the Hermitian (or conjugate) transpose, ûref the displacement vector
of the original field (the homogeneous halfspace) and û the displacement vector
of the actual field. L is a sparse selection matrix, containing ones at the diagonal
elements corresponding to the degrees of freedom selected for assessing the
effectiveness of the wave barrier. For a single degree of freedom, this expression
is equivalent to equation (3.48). The problem is reformulated as a minimization
problem, with φ = −IL as objective function, and is subjected to a volume
constraint:

min
ρ

10 log10

(

ûHLû

(ûref)HLûref

)

s. t.

Ne
∑

e=1

veρ̄e ≤ V max

0 ≤ ρe ≤ 1 ∀e = 1 . . .Ne

(5.7)
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where Ne is the number of elements in the design domain. The upper limit for
the volume V max is set to 20% of the total volume.

As a gradient-based approach is used, the derivatives of the objective function
are required. The adjoint method is again applied to compute the gradient as
there is a large number of design variables. The sensitivities for an objective
function f (u (ρ̄)) are given by:

df

dρ̄e
= 2 Re

{

λT ∂K̂

∂ρ̄e
u

}

(5.8)

where the adjoint vector λ is obtained from the system of adjoint equa-
tions [167]:

[

K̂ QT

Q 0

]{

λ

µ

}

=







−
(

∂f

∂û

)T

0







(5.9)

with µ the Lagrange multipliers for the adjoint system of equations. For the
objective function of the optimization problem in equation (5.7), the top part
of the vector on the right-hand side is equal to:

−
(

∂f

∂û

)T

=
−10

ln(10)

Lû∗

ûHLû
(5.10)

A continuation scheme is used to avoid getting stuck in a local optimum in an
early stage of the optimization. The initial value for the smoothness parameter
β is 2; this value is doubled every 30 iterations up to a maximum value of 16.
A constant filter radius R is used throughout the optimization, equal to 2.5
elements. The MMA algorithm is stopped after 120 iterations.

As in the previous chapter, different excitations are considered in the
optimization: harmonic sources, broadband sources and harmonic sources at
an unknown frequency in a given range. The different objective functions and
the resulting designs are discussed in the following three subsections.

5.2.3 Harmonic sources

In this subsection, harmonic vibration sources are considered. As initial design,
all element densities are assigned a value ρe = 0.2. Two cases are considered.
First, only the vertical component of the displacement at the output point is
considered in the calculation of the insertion loss (and therefore the objective
function). Second, the norm of the displacement vector is considered.
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When only the vertical displacement in the output point is considered, the
insertion loss becomes:

ÎLz(ω) = 10 log10

(

(ûref)HLûref

ûHLû

)

= 20 log10

(∣

∣

∣

∣

∣

ûref
recz

ûrecz

∣

∣

∣

∣

∣

)

(5.11)

where ûref
recz and ûrecz are the displacements at the receiver point in the z-

direction for the homogeneous halfspace and after the introduction of the
barrier. The insertion losses of the optimized design and a reference rectangular
design with dimensions 7.5 m×1 m are compared in the following. The reference
design is shown in figure 5.4. Note that this design is not optimized and,
depending on the considered excitation, a better performing rectangular design
is possible.

Figure 5.4: The reference design: a rectangular single wall barrier.

The optimization has been performed on Intel® CoreTM 2 Duo (2.54 GHz)
CPUs. The computing time of the optimization is 18 minutes. Figure 5.5 shows
the evolution of the objective function during the optimization for harmonic
excitation at 25 Hz. Every 30 iterations, a jump occurs when the sharpness
parameter β is adjusted. In the last iteration step, the change in objective
function is equal to 6 × 10−5. The design optimized for harmonic excitation at
25 Hz and the corresponding insertion loss ÎLz are shown in figure 5.6.

In the neighborhood of the targeted frequency of 25 Hz, the insertion loss
obtained for the optimized design is significantly larger than for the reference
design. At higher frequencies, from around 35 Hz, the optimized design
performs worse than the reference design and at frequencies above 50 Hz, the
insertion loss of the optimized design is close to zero. In this frequency range,
the penetration depth of the Rayleigh waves is too small, implying that these
waves are not affected by the stiffened material introduced at depth.

The optimized design is symmetric due to the symmetric nature of the problem.
The initial design is symmetric and both the load p̂ and the adjoint load
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Figure 5.5: Convergence of the optimization problem for the design maximizing
ÎLz (equation (5.11)) at 25 Hz (figure 5.6a).
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Figure 5.6: (a) Optimized design maximizing ÎLz at 25 Hz, and (b) resulting
insertion loss ÎLz (Eq. (5.11)) as a function of the frequency for the reference
design in figure 5.4 (dashed line) and the optimized design (solid line).

−10

ln(10)

Lû∗

ûHLû
have only a single entry, at degrees of freedom that are positioned

symmetrically with respect to the design domain. This makes the sensitivities
in equation (5.8) symmetrical, resulting in a symmetric design. Different
asymmetric initial designs have also been tested, resulting in asymmetric
optimized designs, but none performed better than the design obtained in
figure 5.6.

In order to verify the change in the horizontal response in the output point, the
insertion losses ÎLx and ÎL, corresponding to the insertion loss of the horizontal
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response and of the vector sum, are defined as:

ÎLx(ω) = 20 log10

(∣

∣

∣

∣

∣

ûref
recx

ûrecx

∣

∣

∣

∣

∣

)

(5.12)

ÎL(ω) = 20 log10









√

∣

∣

∣ûref
recx

∣

∣

∣

2

+
∣

∣

∣ûref
recz

∣

∣

∣

2

√

|ûrecx|2 + |ûrecz |2









(5.13)

The insertion losses ÎLx and ÎL for the optimized design in figure 5.6a are shown
in figure 5.7. The design optimized for the vertical response at 25 Hz leads to
a much higher horizontal response at 25 Hz than the reference design and the
response is even higher than for the original homogeneous halfspace. As a
consequence, the insertion loss of the vector sum ÎL of the optimized design is
hardly higher than for the reference design.
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ÎL

[d
B

]

(b)

Figure 5.7: The insertion loss (a) ÎLx (equation (5.12)) and (b) ÎL
(equation (5.13)) as a function of the frequency for the reference design in
figure 5.4 (dashed line) and the optimized design in figure 5.6a (solid line).

Maximizing the insertion loss of the vector sum in equation (5.13) for a
harmonic line source at 25 Hz results in the design and insertion loss ÎL in
figure 5.8. By including of the horizontal displacement in the objective function
the optimized design is no longer symmetric. Comparing figures 5.7b and 5.8b
shows that the resulting insertion loss ÎL is considerably higher. At 25 Hz,
the optimized design leads to a reduction of 6.4 dB compared to the original
situation which is 3.4 dB higher than the insertion loss of the reference design
in figure 5.4.

The optimized design in figure 5.8a consists of four main features: (1) the
vertical part at the left hand side of the design domain, (2) the curved part from
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Figure 5.8: (a) Optimized design maximizing ÎL at 25 Hz, and (b) resulting
insertion loss ÎL (equation (5.13)) as a function of the frequency for the reference
design in figure 5.4 (dashed line) and the optimized design (solid line).

the center of the vertical part to the right hand side of the design domain, (3)
the inclined part going upward from the center of the vertical part, and (4) the
small horizontal part at the surface. In order to verify the role of these features,
figure 5.9 shows the real part of the displacement field and the insertion loss
at 25 Hz in the surrounding domain for the homogeneous halfspace, for the
reference design, for part (1) of the optimized design, for parts (1) and (2) of the
optimized design and for the entire design. The vertical part (1) works mainly
as a traditional wall barrier that reflects the incoming waves. Since the design
domain comprising the optimal wave barriers is located at the surface of the
halfspace, the incoming waves are mainly Rayleigh waves. The Rayleigh waves
in a halfspace consisting of solely the original material (with the properties
given in table 5.1) have a wave speed CR equal to 186 m/s, or a wavelength
λR equal to 7.5 m at 25 Hz. The depth of the vertical part extends more or
less from 0.15λR to 0.85λR. Part (2) directs the waves downwards in the
domain, reducing the response at the surface. The two other parts strengthen
the reflection of the incoming waves and assist in guiding them away from the
surface. It should be noted, however, that due to the complex nature of the
wave propagation, the performance of the entire design is not the sum of the
performances of the different features.

The optimized design and its performance change significantly when the
wavelength becomes smaller. Consider for example excitation at 50 Hz. The
optimized design and the resulting insertion loss ÎL are shown in figure 5.10.
The peak in the insertion loss at 50 Hz reaches a very high value of 62.3 dB, and
is much higher than for the reference design in figure 5.4, where the insertion
loss reaches a value of 3.0 dB at 50 Hz.
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Figure 5.9: Real part of the displacement field ûR at 25 Hz (a) for the original
domain and after the introduction of (b) the reference design in figure 5.4,
(c) part (1) of the optimized design, (d) parts (1) and (2) of the optimized
design, and (e) the entire optimized design maximizing IL at 25 Hz (figure 5.8a).
Insertion loss IL at 25 Hz after the introduction of (f) the reference design in
figure 5.4, (g) part (1) of the optimized design, (h) parts (1) and (2) of the
optimized design, and (i) the entire optimized design maximizing IL at 25 Hz
(figure 5.8a).
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Figure 5.10: (a) Optimized design maximizing ÎL at 50 Hz, and (b) resulting
insertion loss ÎL (equation (5.13)) as a function of the frequency for the reference
design in figure 5.4 (dashed line) and the optimized design (solid line).

In the optimized design of figure 5.10a, material is introduced in three main
areas: (1) the top part, partially horizontal and partially inclined, (2) a small
middle part, and (3) the curved bottom part at a depth of 2λR. Figure 5.11
shows the real part of the displacement field and the insertion loss at 50 Hz
in the surrounding domain for the homogeneous halfspace, for the reference
design, for the left half of part (1) of the optimized design, for part (1) of
the optimized design, and for the entire design. The left half of the top
part (1) splits the incoming Rayleigh waves with a wavelength equal to 3.7 m
at 50 Hz in two waves, one propagating through the stiffened material and one
redirected downwards. The depth of this part is equal to 0.2λR. The right half
of part (1) directs the waves downwards, away from the surface, outperforming
the reference design already by 7.6 dB (compare figures 5.11f and 5.11h). The
waves that are redirected downwards by the top part, are guided and reflected
by the middle part (2) and the bottom part (3) and finally interfere with the
waves transmitted by the top part, minimizing the displacement at the surface.
This destructive interference is very sensitive to geometric imperfections, as
will be shown in section 5.3.
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Figure 5.11: Real part of the displacement field ûR at 50 Hz (a) for the original
domain and after the introduction of (b) the reference design in figure 5.4,
(c) the left half of part (1) of the optimized design, (d) part (1) of the
optimized design, and (e) the entire optimized design maximizing ÎL at 50 Hz
(figure 5.10a). Insertion loss ÎL at 50 Hz after the introduction of (f) the
reference design in figure 5.4, (g) the left half of part (1) of the optimized
design, (h) part (1) of the optimized design, and (i) the entire optimized design
maximizing ÎL at 50 Hz (figure 5.10a).
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5.2.4 Broadband sources

In this section, a broadband source operating over a frequency range [fl, fu] is
considered. In this case, the frequency averaged insertion loss IL is maximized:

IL =
1

fu − fl

fu
∫

fl

ÎL(f)df =
10

fu − fl

fu
∫
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log10
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ûref

recz(f)
∣

∣

∣

2
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df

(5.14)
The optimization problem minimizes the objective function f = −IL, where the
integral in equation (5.14) is approximated by a discretization of the frequency
range by Nf equidistant frequencies.

min
ρ
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



s. t.

Ne
∑

e=1

veρ̄e ≤ V max

0 ≤ ρe ≤ 1 ∀e = 1 . . .Ne

(5.15)

Figure 5.12 shows the design optimized over the frequency range from 20−80 Hz,
using Nf = 10 frequencies in equation (5.15), and the resulting insertion loss ÎL.
The frequency averaged insertion loss is equal to 3.0 dB for the reference design
and 12.6 dB for the optimized design. Increasing the number of frequencies
Nf hardly changes the optimal design geometry, indicating that taking only 10
frequencies into account is sufficient.

The optimization leads to designs which mainly reduce transmission at higher
frequencies, as it is easier to obtain high insertion loss values in this frequency
range, as observed in the previous subsection. Figure 5.13 shows the real
part of the displacement field for frequencies of 30 Hz (λR = 6.2m), 50 Hz
(λR = 3.7m), and 70 Hz (λR = 2.7m) in the surrounding domain for the
homogeneous halfspace, the reference design and the design optimized for the
average insertion loss in the frequency range 20 − 80 Hz. For the highest
frequencies of the target range, almost all the energy is reflected by the
structure, resulting in a negative insertion loss value in front of the design
domain and a high insertion loss value behind the design domain. However,
the insertion loss for the lowest frequencies is rather small, and below 40 Hz
(λR = 4.7m), the insertion loss for the optimized design is lower than for the
reference design. If needed, more weight can be given to certain frequencies by
introducing a weighting function in equation (5.14).
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Figure 5.12: (a) Optimized design maximizing IL over the frequency range
20 − 80 Hz (discretized with 10 frequencies), and (b) resulting insertion loss
ÎL (equation (5.13)) as a function of the frequency for the reference design in
figure 5.4 (dashed line) and the optimized design (solid line).

5.2.5 Harmonic sources at a frequency in a given range

In this section, harmonic sources at an unknown frequency in a given frequency
range are considered. In this case, the minimal insertion loss is maximized, and
the optimization problem becomes:

min
ρ

max
fj

j=1...Nf

10 log10


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
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s. t.

N
∑
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veρ̄e ≤ V max

0 ≤ ρe ≤ 1 ∀e = 1 . . .Ne

(5.16)

The frequency range is discretized using Nf = 10 equidistant frequencies.
This problem is not differentiable and is therefore reformulated using a bound
formulation as in section 4.3.4. Figure 5.14 shows the design optimized over
the frequency range 20−80 Hz, corresponding to Rayleigh wavelengths between
2.3 m and 9.3 m, and the resulting insertion loss. The minimal insertion loss
is equal to 1.5 dB for the reference design and 3.2 dB for the optimized design.
The insertion loss is higher than for the reference design in the entire frequency
range considered. This improvement, however, is rather small for most of the
frequency range and is accompanied with a considerable loss in feasibility. The
optimized design contains a part (1) that maximizes the insertion loss in the
lower frequency range (bottom left, compare with figure 5.8a) and a part (2)
for the higher frequency range (top right, compare with figure 5.10a).
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Figure 5.13: Real part of the displacement field ûR in the homogeneous
halfspace for excitation at (a) 30 Hz, (b) 50 Hz, and (c) 70 Hz, with the reference
design for excitation at (d) 30 Hz, (e) 50 Hz, and (f) 70 Hz, and with the design
maximizing the frequency averaged insertion loss IL for excitation at (g) 30 Hz,
(h) 50 Hz, and (i) 70 Hz.

5.3 Robust optimization and practical designs

5.3.1 Geometric imperfections

Topology optimization leads to designs which are optimal for the specific
problem considered. In many cases, the performance is very sensitive to
geometric imperfections. Consider for example the design in figure 5.10a. This
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Figure 5.14: (a) Optimized design maximizing minfn ÎL(fn) over the frequency
range 20 − 80 Hz (discretized with 10 frequencies), and (b) resulting insertion
loss ÎL (equation (5.13)) as a function of the frequency for the reference design
in figure 5.4 (dashed line) and the optimized design (solid line).

design contains small features, making it very sensitive to deviations in the
geometry of these features. As a consequence, the performance of the actual
wave barrier with construction errors present may be far from optimal.

The influence of errors in the (in-plane) dimensions of the stiffened material
can be verified by varying the Heaviside projection threshold η in equa-
tion (4.11) [143]. For low values of the Heaviside projection threshold (e.g.
η = 0.25), lower values of the filtered densities are projected to the stiffened
material as well, and the dimensions of the stiffened material increase, leading
to so-called dilated designs. For high values of the Heaviside projection
threshold (e.g. η = 0.75), only the higher values of the filtered densities are
projected to the stiffened material, and the dimensions of the stiffened material
decrease, leading to so-called eroded designs.

Figures 5.15a-c show the dilated, intermediate, and eroded version of the design
optimized at a frequency of 25 Hz (figure 5.8). The corresponding insertion
loss values are indicated in figure 5.15d, which shows the insertion loss as
a function of the projection threshold. Increasing the Heaviside projection
threshold η results in a reduction of the dimensions of the stiffened material.
This is accompanied by a decrease in the insertion loss. The upper value
η = 1 removes almost all stiffened material from the design (û ≈ ûref), and the
insertion loss (equation (5.6)) becomes close to zero.

Figure 5.16 shows the influence of the Heaviside projection threshold η for the
design optimized for reducing transmission at a frequency of 50 Hz (figure 5.10).
In contrast to the design optimized at a frequency of 25 Hz, a high value occurs
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Figure 5.15: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c)
eroded (η = 0.75) version of the optimized design maximizing the insertion loss
ÎL at a frequency of 25 Hz (figure 5.8a) and (d) the influence of the projection
threshold η on the insertion loss ÎL at 25 Hz.

at η = 0.5 (intermediate design). The performance is therefore very sensitive
to thickness variations as these disturb the previously discussed interference.
For the dilated design (η = 0.25), a high performance is still obtained thanks
to the top part of the design, which is largely affected for the eroded design
(η = 0.75).
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Figure 5.16: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c)
eroded (η = 0.75) version of the optimized design maximizing the insertion loss
ÎL at a frequency of 50 Hz (figure 5.10a) and (d) the influence of the projection
threshold η on the insertion loss ÎL at 50 Hz.

The effect of the projection threshold on the designs maximizing the frequency
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averaged and minimal insertion loss in the frequency range 20 − 80 Hz is shown
in figures 5.17 and 5.18. These results show that the design maximizing
the minimal insertion loss (equation (5.16)) is less sensitive to thickness
variations than the design maximizing the frequency averaged insertion loss
(equation (5.15)). The former is significantly affected only for higher values
of the projection threshold η, leading to modifications in the top part of the
design which result in a lower performance at higher frequencies. The design
maximizing the frequency averaged insertion loss is much more sensitive, and
especially for projection thresholds larger than 0.5 the performance strongly
decreases.
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Figure 5.17: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c)
eroded (η = 0.75) version of the optimized design maximizing the frequency
averaged insertion loss IL over the frequency range 20 − 80 Hz (figure 5.12a)
and (d) the influence of the projection threshold η on the frequency averaged
insertion loss IL in the frequency range 20 − 80 Hz.

5.3.2 Robust topology optimization

In order to obtain designs which are less sensitive to this type of geometric
imperfections, a robust topology optimization approach is adopted. Here,
robust topology optimization is applied to account for deviations from the
design geometry maximizing the frequency averaged insertion loss. The interval
of the projection threshold is set to [0.25, 0.75].

Since the insertion loss in figure 5.17 is rather smooth, a worst case
formulation [147, 172] considering only three cases is expected to give good
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Figure 5.18: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c)
eroded (η = 0.75) version of the optimized design maximizing the minimal
insertion loss minfn ÎL(fn) over the frequency range 20 − 80 Hz (figure 5.14a)
and (d) the influence of the projection threshold η on the minimal insertion
loss minfn ÎL in the frequency range 20 − 80 Hz.

results. The robust optimization problem is formulated as follows:

min
ρ

max
{

f
(

ρ̄d
)

, f
(

ρ̄i
)

, f (ρ̄e)
}

s. t.

Ne
∑

e=1

veρ̄
d
e ≤ V max

d

0 ≤ ρe ≤ 1 ∀e = 1 . . .Ne

(5.17)

where ρ̄d, ρ̄i, and ρ̄e are the dilated (ηd = ηi − ∆η), intermediate (ηi) and
eroded (ηe = ηi + ∆η) volume densities, respectively. Every 20 iterations, the
volume constraint on the dilated design V max

d is updated such that V max
d =

∑Ne

e=1 veρ̄
d
e

∑Ne

e=1 veρ̄i
e

V max where V max is the volume constraint on the intermediate

design, equal to 20 % of the design domain.

As before, the dilated design corresponds to a value of the Heaviside projection
threshold equal to η = 0.25, the intermediate design to a value η = 0.5, and the
eroded design to a value η = 0.75. Figure 5.19 shows the resulting robust design
and insertion loss. The design is rather similar to the deterministic design in
figure 5.12a and also results in a higher values for the insertion loss at the
higher frequencies of the range considered. The thin part of the deterministic
design close to the surface (figure 5.12a) has thickened, however. The material
is redistributed and some of the other parts have lost material. The changes
in geometry lead to a lower (deterministic) performance for the intermediate
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design, resulting in a frequency averaged insertion loss of 6.6 dB instead of
12.6 dB.
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Figure 5.19: (a) Optimized design maximizing IL over the frequency range 20−
80 Hz (discretized with 10 frequencies) using a worst case robust approach, and
(b) resulting insertion loss ÎL (equation (5.13)) as a function of the frequency for
the reference design in figure 5.4 (dashed line) and the optimized (intermediate)
design (solid line).

The robust design is less sensitive to thickness variations, as can be seen in
figure 5.20, where the frequency averaged insertion loss IL is plotted as a
function of the projection threshold η. The averaged insertion loss is practically
insensitive to the projection threshold η in the range considered. The frequency
averaged insertion loss is therefore larger than 5.3 dB over the entire range
η = [0.25, 0.75].

Because of construction constraints, it may be difficult to reproduce the
design in figure 5.19a. Since the design is robust to thickness variations,
a simplification of the geometry is not expected to significantly affect the
performance of the design. Figure 5.21 shows a manually simplified design
and the corresponding insertion loss ÎL which has been obtained by intuitively
positioning two rectangles where the stiffened material is concentrated in the
topology optimized design. Comparing figures 5.19b and 5.21b shows that the
performance of the latter design is similar to the performance of the design
obtained with robust topology optimization. The peak value of the insertion
loss at higher frequencies is lower, and the frequency averaged insertion loss
is equal to 5.5 dB instead of 6.6 dB, but the simplified design still outperforms
the reference design which has a frequency averaged insertion loss of 3.0 dB.
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Figure 5.20: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and
(c) eroded (η = 0.75) version of the robust optimized design maximizing the
frequency averaged insertion loss IL over the frequency range 20−80 Hz (figure
5.19a) and (d) the influence of the projection threshold η on the frequency
averaged insertion loss IL in the frequency range 20 − 80 Hz.
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Figure 5.21: (a) Simplified design after manual post-processing of the optimized
design maximizing IL over the frequency range 20 − 80 Hz (discretized with 10
frequencies) using a worst case robust approach (figure 5.19a), and (b) resulting
insertion loss ÎL (Eq. (5.13)) as a function of the frequency for the reference
design in figure 5.4 (dashed line), the robust optimized design in figure 5.19a
(dashed-dotted line), and the post-processed design (solid line).

5.3.3 Shape optimization

As topology optimization often leads to designs with a complex layout
containing small features, it is not always practical to build the designs. In the



126 TOPOLOGY OPTIMIZATION FOR TWO-DIMENSIONAL ELASTIC WAVE PROPAGATION

previous section, the robust solution is used as a basis for a simplified design
solution. However, this design is not an actual optimum for the considered
optimization problem. The topology optimization procedure is therefore often
followed by a shape and/or size optimization step.

In most shape optimization approaches, the boundaries of the design are
parametrized. This is mostly done by dividing the design boundary in a
number of segments. These segments can for example be straight lines. The
boundaries are then determined by the coordinates of the nodes between the
different segments. The shape optimization consists of optimizing the objective
function with the coordinates of the nodes as design variables.

In this section, an alternative shape optimization is proposed, which allows
reusing the sensitivities derived for the topology optimization problem. Every
object o is described by different (j = 1 . . .No

j ) parameters po
j . The sensitivities

with respect to the parameter po
j in the shape optimization problem are then

calculated as:

df

dpo
j

=

Ne
∑

e=1

df

dρ̄e

∂ρ̄e

∂po
j

(5.18)

where only the derivatives
∂ρ̄e

∂po
j

still need to be derived. This can be done

analytically.

The parameters po
j can be the coordinates of the different nodes, or any other

parameter describing the shapes of the different objects. For general polygons,
the node coordinates are a good choice. However, for specific objects, such
as rectangles, taking the coordinates of all nodes will not necessarily lead to
rectangles, as any quadrilateral is possible. Possible strategies to resolve this
include the formulation of constraints or the consideration of a limited number
of coordinates (for example three x- and two z-coordinates). Alternatively, the
rectangle can be parametrized in a different way, for example by the x- and
z-coordinate (Xo

c , Z
o
c ) of the center point, the width W o, the height Ho and

the angle Θo (figure 5.22).

To construct the element density field from these parameters, a strategy similar
to the projection filter is applied. A pyramid is first constructed after which
a (relaxed) Heaviside projection is applied. Consider the following auxiliary



ROBUST OPTIMIZATION AND PRACTICAL DESIGNS 127

(Xo
c , Z

o
c )

Θo

W o

Ho

Ao
1

Ao
2

Ao
3

Ao
4

x

z

Figure 5.22: Pyramid for the construction of rectangular objects. The function
µo

e describing this pyramid is built from the auxiliary functions Ao
1, Ao

2, Ao
3,

and Ao
4.

functions (figure 5.22):
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c ) sin Θo + (ze − Zo
c ) cos Θo]

Ao
2(xe, ze) = 1 − 2

W o
[(xe −Xo

c ) cos Θo − (ze − Zo
c ) sin Θo]

Ao
3(xe, ze) = 1 − 2

Ho
[(xe −Xo

c ) sin Θo + (ze − Zo
c ) cos Θo]

Ao
4(xe, ze) = 1 +

2

W o
[(xe −Xo

c ) cos Θo − (ze − Zo
c ) sin Θo]

(5.19)

with (xe, ze) the position of element e in the design domain. These auxiliary
functions represent planes defined by a point and a line: they are equal to 1
at (Xo

c , Z
o
c ) and equal to 0 at one edge of the rectangle. Then the pyramid is

constructed as:

µo
e =

{

min {Ao
1(xe, ze), Ao

2(xe, ze), Ao
3(xe, ze), Ao

4(xe, ze)} if (xe, ze) ∈ Ωo

0 if (xe, ze) /∈ Ωo

(5.20)
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where Ωo defines the area of the object. The pyramid is positive for (xe, ze) ∈
Ωo, equal to 1 at (Xo

c , Z
o
c ), and equal to 0 at the four edges of the rectangle.

This can reformulated as:

µo
e = max {0,min {Ao

1(xe, ze), Ao
2(xe, ze), Ao

3(xe, ze), Ao
4(xe, ze)}} (5.21)

The densities ρ̃e are then obtained by summing over the different objects:

ρ̃e =

No
∑

o=1

µo
e (5.22)

which are projected to obtain the element densities ρ̄e. All densities equal to
zero should remain zero while higher densities should be projected to one (and
should be equal to one for ρ̃e = ∞ as it is possible that ρ̃e > 1). The relaxed
Heaviside projection can therefore have the following form:

ρ̄e = tanh (βρ̃e) (5.23)

where β is again a sharpness parameter.

Figure 5.23 shows the different steps followed to obtain the simplified robust
design in figure 5.21a. First the two pyramid density fields µ1 and µ2 are
constructed using the auxiliary functions in equation (5.19). The addition
of both fields leads to the density field ρ̃. By projecting this field using
equation (5.23), the actual element density field is obtained. The projection
can be regularized by changing the sharpness parameter β.

(a) (b) (c) (d)

Figure 5.23: Construction of the element density field for the shape
optimization problem: (a) pyramid densities µ1, (a) pyramid densities µ2, (c)
total densities ρ̃, and (d) element densities ρ̄ for a sharpness parameter β = 8.

The sensitivities of the element densities ρ̄e with respect to the parameters po
j

are then calculated using the chain rule:

∂ρ̄e

∂po
j

=
∂ρ̄e

∂ρ̃e

∂ρ̃e

∂µo
e

∂µo
e

∂po
j

(5.24)
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The second factor is equal to 1 and the first factor is simply computed as:

∂ρ̄e

∂ρ̃e
= βsech2 (βρ̃e) (5.25)

The third factor depends on the position of the element in the design domain:

∂µo
e

∂po
j

=



































































∂Ao
1

∂po
j

(xe, ze) if (xe, ze) ∈ Ωo
1

∂Ao
2

∂po
j

(xe, ze) if (xe, ze) ∈ Ωo
2

∂Ao
3

∂po
j

(xe, ze) if (xe, ze) ∈ Ωo
3

∂Ao
4

∂po
j

(xe, ze) if (xe, ze) ∈ Ωo
4

0 if (xe, ze) /∈ Ωo

(5.26)

where Ωo = Ωo
1 ∪Ωo

2 ∪Ωo
3 ∪Ωo

4 and Ωo
n ⊂ Ωo is the area where Ao

n ≤ Ao
m, ∀m 6=

n. Alternatively, these areas are defined as Ωo
n = {(xe, ze) ⊂ Ωo|µo

e = Ao
n}.

The derivatives of the auxiliary functions Ao
n to the parameters Xo

c , Zo
c , W o,

Ho, and Θo can be derived from equation (5.19). As these derivations are
relatively simple, they are not elaborated here. Note that the function µo

e is not
differentiable at the boundaries of the different domains Ωo

n. The derivative for
one of the adjacent domains is therefore used at the boundaries. This resulted
in a smooth convergence, presumably because these boundaries rarely coincide
exactly with the element centers.

The parameter optimization is applied for minimizing the frequency averaged
insertion loss IL over the frequency range 20 − 80 Hz. A volume constraint is
added allowing a maximum volume equal to 20 % of the design domain. The
following limits are applied for the design variables: 0 ≤ Xo

c ≤ Lxd, 0 ≤ Zo
c ≤

Lzd, 0 ≤ W o ≤
√

L2
xd + L2

zd, 0 ≤ Ho ≤
√

L2
xd + L2

zd, and −π ≤ Θo ≤ π. In
this, Lxd = 5 m and Lzd = 7.5 m are the width and the height of the design
domain. The smoothness parameter β is set equal to 16.

Many local minima exist for this optimization problem, and a continuation
scheme for the smoothness parameter β was not found to help. A good initial
design is therefore important to obtain a good result. Here the simplified robust
design in figure 5.21a is used as initial design. The MMA algorithm is stopped
after 200 iterations, corresponding to a computing time of 30 minutes. The
evolution of the objective function is shown in figure 5.24. As pointed out
before, the convergence proceeds smoothly. At 30 iterations, the change in
objective function is equal to 1.6 × 10−4.
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Figure 5.24: Convergence of the optimization problem for the shape
optimization problem (figure 5.25).

Figure 5.25 shows the resulting design and the corresponding insertion loss ÎL.
The frequency averaged insertion loss increases from 5.5 dB to 6.3 dB due to
the better performance at higher frequencies. In the optimized design, the right
rectangle has become thicker and shorter, the two rectangles are rotated over a
small angle and they are positioned lower in the design domain. As a result of
the latter, there is no material inserted at the surface, similarly to the robust
optimized design in figure 5.19a.
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Figure 5.25: (a) Shape optimized design maximizing IL over the frequency
range 20 − 80 Hz (discretized with 10 frequencies), and (b) resulting insertion
loss ÎL (Eq. (5.13)) as a function of the frequency for the reference design in
figure 5.4 (dashed line), the simplified robust design in figure 5.21a (dashed-
dotted line) and the parameter optimized design (solid line).
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5.3.4 Discrete object layout optimization

In the previous section, the number of objects was kept constant while the
shape was optimized. In this section, the layout of discrete objects in a design
domain is optimized, where (an undefined number of) objects with a fixed
shape are distributed over the design domain. The original idea comes from
Guest [80, 81], who considered circular objects to be distributed over the design
domain. This is extended here to other object shapes.

In the discrete object layout optimization, the design variable field ρi is again
filtered first, after which these are projected to obtain the physical element
densities ρ̄e. For every element e, two neighborhood areas are defined: the local
(ΩL

e ) and enclosure (ΩE
e ) zones. The local neighborhood contains the elements

for which the densities are projected to 1, while the enclosure neighborhood
defines the zone in which no other object should be projected. For circular
objects, the two neighborhoods are defined as:

xi ∈ ΩL
e if 0 ≤ rei ≤ RL

xi ∈ ΩE
e if RL ≤ rei ≤ RL + TE

(5.27)

where rei is the center-to-center distance between elements e and i, and RL

and TE determine the local and enclosure neighborhood.

The design variable field ρi is filtered as follows:

ρ̃L
e =

∑

xi∈ΩL
e

wL
eiρi

∑

xi∈ΩL
e

wL
ei

ρ̃E
e =

∑

xi∈ΩE
e

wE
eiρi

∑

xi∈ΩE
e

wE
ei

(5.28)

where the filter kernels are defined by:

wL
ei =







RL − rei

RL
if xi ∈ ΩL

e

0 if xi /∈ ΩL
e

wE
ei =







RL + TE − rei

TE
if xi ∈ ΩE

e

0 if xi /∈ ΩE
e

(5.29)

The filter kernel for the local neighborhood is equal to 1 for rei = 0 and
decreases linearly to 0 for rei ≥ RL. The one for the enclosure neighborhood
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is equal to 0 for rei < RL, equal to 1 for rei = RL, and then decreases linearly
to 0 for rei ≥ RL + TE.

The projection intensities ρ̃L
e and ρ̃E

e are projected using a relaxed Heaviside

function with a threshold at ρ̃
L/E
e = 0. The following relaxed Heaviside function

is used to obtain the pseudo element densities ρ̄L
e and ρ̄E

e :

ρ̄L
e = 1 − e−βρ̃L

e + ρ̃L
e e−β

ρ̄E
e = 1 − e−βρ̃E

e + ρ̃E
e e−β

(5.30)

The element densities ρ̄e are then composed from these pseudo element densities
as follows:

ρ̄e =
ρ̄L

e (2 − ρ̄E
e )

2
(5.31)

For ρ̄L
e = 0, no material is inserted, and therefore the element densities are

ρ̄e = 0. For ρ̄L
e = 1 and ρ̄E

e = 0, the element material is inserted, and the
element densities are ρ̄e = 1. The case ρ̄L

e = ρ̄E
e = 1 is undesired, as this means

that two objects are mixing. By setting the element densities equal to ρ̄e = 0.5,
they are penalized by the material interpolation.

The sensitivities are calculated as follows:

dφ

dρi
=
∑

e∈Ω

dφ

dρ̄e

∂ρ̄e

∂ρi
(5.32)

The first factor represents the sensitivities with respect to the element density
field, which is explained in chapter 4. The second factor is equal to:

∂ρ̄e

∂ρi
=

1

2

(

(2 − ρ̄E
e )
∂ρ̄L

e

∂ρi
− ρe

L

∂ρ̄E
e

∂ρi

)

(5.33)

In this equation, the sensitivities of the pseudo element densities are equal to:

∂ρ̄L
e

∂ρi
=







(

βe−βρ̃L
e + e−β

) ∂ρ̃L
e

∂ρi
if xi ∈ ΩL

e

0 if xi /∈ ΩL
e

∂ρ̄E
e

∂ρi
=







(

βe−βρ̃E
e + e−β

) ∂ρ̃E
e

∂ρi
if xi ∈ ΩE

e

0 if xi /∈ ΩE
e

(5.34)
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with:
∂ρ̃L

e

∂ρi
=

wL
ei

∑

j∈ΩL
e

wL
ej

∂ρ̃E
e

∂ρi
=

wE
ei

∑

j∈ΩE
e

wE
ej

(5.35)

From the author’s experience, the SIMP interpolation does not work properly
for the problem considered in this work (it leads to a lot of gray, i.e.
intermediate design variables), and instead, the Rational Approximation of
Material Properties (RAMP) is used. A desirable feature of the RAMP
interpolation is that, unlike the SIMP interpolation, it has nonzero sensitivity
at zero density ρ̃e, which resolves numerical difficulties for low densities [59].
The RAMP interpolation is defined as follows:

αj = αj,ori +
ρ̄e (αj,ins − αj,ori)

1 + qj (1 − ρ̄e)
(5.36)

with qj ≥ 0 the penalty term. This interpolation function with qj = 10
is applied for the stiffness properties (the constrained modulus ρC2

p and the
shear modulus ρC2

s ), while for the mass properties (the mass density ρ), a
linear interpolation function is applied (equivalent to the RAMP interpolation
with qj = 0). These values for the penalty term have been determined by
qualitatively comparing the optimized designs. The sensitivities of the stiffness
matrix with respect to the element densities then become:

∂K

∂ρ̄e
=

Nα
∑

j=1

∂K

∂αj

∂αj

∂ρ̄e
=

Nα
∑

j=1

(1 + qj) (αj,ins − αj,ori)

[1 + qj (1 − ρ̄e)]
2

∂K

∂αj
(5.37)

Consider again the problem of maximizing the frequency averaged insertion
loss over the frequency range 20 − 80 Hz while the volume of the design should
be lower than or equal to 20 % of the volume of the design domain. The
initial value for the smoothness parameter β is 10; this value is doubled every
40 iterations up to a maximum value of 160. Figure 5.26 shows the optimized
design and the resulting insertion loss ÎL for RL = 0.5 m and TE = 0.25 m. The
distribution of the circles is similar to the material distribution for the topology
optimized designs in figure 5.12. As only discrete objects can be distributed
in the design domain, the performance is considerably reduced (the averaged
insertion loss IL is equal to 3.4 dB). It is still better, however, than for a single
wall barrier of 7.5 m × 1 m.

The method can be extended to other objects by changing the filter kernel in
equation (5.29). Consider for example a rectangle with width WL and height
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Figure 5.26: (a) Discrete circle layout optimized design maximizing IL over the
frequency range 20 − 80 Hz (discretized with 10 frequencies), and (b) resulting
insertion loss ÎL (Eq. (5.13)) as a function of the frequency for the reference
design in figure 5.4 (dashed line) and the optimized design (solid line).

HL. Then the filter kernels become:

wL
ei =







min

[

WL − 2 |xi − xe|
WL

,
HL − 2 |zi − ze|

HL

]

if xi ∈ ΩL
e

0 if xi /∈ ΩL
e

wE
ei =







min

[

WL + 2TE − 2 |xi − xe|
2TE

,
HL + 2TE − 2 |zi − ze|

2TE

]

if xi ∈ ΩE
e

0 if xi /∈ ΩE
e

(5.38)

The functions can be adjusted for rotated rectangles, for example by using the
expression in equation (5.20) as filter kernel for the local neighborhood and
an adjusted filter kernel for the enclosed neighborhood. More generally, for a
convex polygon, that is a polygon whose interior is a convex set, the following
filter kernel can be applied:

wL
ei =







min
n

[

d (xe, l
n
Γi)

d (xi, lnΓi)

]

if xi ∈ ΩL
e

0 if xi /∈ ΩL
e

wE
ei =







min
n

[

TE − d (xe, l
n
Γi)

TE

]

if xi ∈ ΩE
e

0 if xi /∈ ΩE
e

(5.39)

where d (x, l) represents the distance between point x and line l and lnΓi

represents the nth line segment of the border Γ of the polygon around xi.
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Consider rectangular objects with a width WL = 1 m, height HL = 4 m,
and distance TE = 0.25 m. Figure 5.27 shows the optimized design and the
corresponding insertion loss. The large dimensions of the objects give little
design freedom and make it difficult to obtain a good 0/1 design. As a result,
the insertion loss is barely better than the rectangular single wall of 7.5 m×1 m.

requency
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Figure 5.27: (a) Discrete rectangle layout optimized design maximizing IL
over the frequency range 20 − 80 Hz (discretized with 10 frequencies), and (b)
resulting insertion loss ÎL (Eq. (5.13)) as a function of the frequency for the
reference design in figure 5.4 (dashed line) and the optimized design (solid line).

The discrete object layout optimization can also be applied disregarding the
enclosure neighborhood. This means that no spacing between the objects is
imposed and overlap is possible. The element densities are then found as ρ̄e =
ρ̄L

e . Figure 5.28 shows the optimized design and the corresponding insertion
loss. The frequency averaged insertion loss is equal to 5.4 dB which is close
to the one found for the simplified robust design. This method is therefore a
viable alternative in finding a simple and practical design.

5.4 Conclusion

In this chapter, topology optimization is applied to a two-dimensional problem
consisting of a semi-infinite homogeneous halfspace excited by a line load.
The vibrations are reduced by inserting a wave barrier which is optimized for
maximizing the insertion loss at a receiver position behind the barrier.

Three cases are considered. First, harmonic sources at a fixed frequency are
considered, resulting in a distribution of the inserted material that optimally
reflects and guides waves away from the surface. At higher frequencies, high
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Figure 5.28: (a) Discrete rectangle layout optimized design considering only
the local neighborhood and maximizing IL over the frequency range 20 − 80 Hz
(discretized with 10 frequencies), and (b) resulting insertion loss ÎL (Eq. (5.13))
as a function of the frequency for the reference design in figure 5.4 (dashed line)
and the optimized design (solid line).

values of the insertion loss are obtained due to interference patterns. Second,
broadband sources are considered, resulting in a design that mainly reduces
the insertion loss at the highest frequencies, where it is easier to achieve a
high insertion loss. Third, harmonic sources at an unknown frequency in a
given range are considered, resulting in a design that uniformly increases the
insertion loss over the frequency range of interest.

The designs obtained by topology optimization often contain small features.
Geometric imperfections can therefore have an important influence on the
design performances. Furthermore, the small features are difficult to build
in practice. Two methods are therefore presented in this chapter to deal with
both issues. As the design optimized for the frequency averaged insertion loss
is found to be more sensitive to deviations in design geometry than the one
optimized for the minimal insertion loss, the discussed methods are applied to
the former case.

To deal with the geometric imperfections, a worst case robust approach is
applied. The use of the robust approach makes it furthermore possible to
manually simplify the topology with little deterioration of performance. This
can be followed by a shape optimization step. An alternative is optimizing
the layout of discrete objects in the design domain. The obtained design is
characterized by the predefined object, however, and less freedom is therefore
given to the shape of the design.
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Although the two-dimensional problem considered in this chapter is compu-
tationally relatively cheap, the stiffness effect introduced in chapter 3 can
influence the behaviour of the barrier at larger longitudinal distances from
the source. In the next chapter, topology optimization is therefore applied to
three-dimensional problems.





Chapter 6

Topology optimization for

three-dimensional elastic

wave propagation

6.1 Introduction

Chapter 5 considered a line load on a halfspace as a first approximation of
a train load. However, as demonstrated in chapter 3, the three-dimensional
nature of the problem needs to be accounted for. Previous studies have
indicated that the stationary part of the response can be well approximated by
applying the axle loads of the train at fixed positions on the track as a series
of incoherent point sources [169].

Before considering a series of point loads, first the response for spatially
harmonic line loads and for point loads is studied. This problem is shown
in figure 6.1. A semi-infinite halfspace is excited by a point load (or a series
of point loads). A nearby wave barrier is introduced to reduce the resulting
vibrations behind the barrier. The design of this wave barrier is optimized such
that the vibration transmission is minimized.

The length of the structure is in reality finite. The finite size of a structure
can be taken into account using a spatial windowing technique. This was
first developed in the field of acoustics to calculate the sound transmission
through and radiation from finite plates [170]. Coulier et al. [52] have extended
this technique to 2.5D FE-BE soil-structure interaction problems. It was

139
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?

Figure 6.1: General problem: a semi-infinite halfspace excited by a point load
at the surface. A wave barrier is introduced to reduce the wave propagation
close to the surface of the halfspace.

demonstrated that the spatial windowing technique can even be applied for
very short structures. It can, however, only be used as long as the modal
behaviour of the structure does not dominate the response [52, 115].

This chapter also discusses a case study. A building is added to the model in
which the vibration levels are reduced. The vibrations result from a passing
train on a railway track located close to the building. The soil model is therefore
coupled to a train-track system. The design of a wave barrier, located between
the railway track and the building, is optimized.

The outline of this chapter is as follows. First, wave barriers of infinite length
are considered. The sensitivities are derived, and the performance is optimized
both for spatially harmonic line loads and point loads. Next, the influence
of the barrier’s finite length is assessed using a spatial windowing approach.
The last part discusses a case study, taking train-track-soil interaction and
soil-structure interaction into account.

6.2 Wave barriers of infinite length

Using a Fourier transformation from the longitudinal coordinate y to the
longitudinal wavenumber ky , the problem is decomposed into a series of
problems of plane wave propagation. This means that the equilibrium equations
of the form (3.31) need to be solved for different wavenumbers. First, the
sensitivities are derived, after which results are shown both for spatially
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harmonic line loads and for point loads.

6.2.1 Sensitivities

The sensitivities are again calculated using the adjoint approach. Consider
the general function φ (ρ̄, û (ρ̄)), where the displacements û in the spatial
domain follow from the displacements ũk in the wavenumber domain. Then
the derivatives to the element densities ρ̄e are computed as:

dφ

dρ̄e
=

∂φ

∂ρ̄e
+

Nk
∑

k=1

[

∂φ

∂ũk

∂ũk

∂ρ̄e
+

∂φ

∂ũ∗
k

∂ũ∗
k

∂ρ̄e

]

(6.1)

where the summation is done over the Nk wavenumbers k considered to
calculate the response (equation 3.32). The derivatives of the displacement
in the wavenumber domain with respect to the element densities are obtained
from the equilibrium equations in equation (3.31):

∂K̃k

∂ρ̄e
ũk + K̃k

∂ũk

∂ρ̄e
= 0 ⇔ ∂ũk

∂ρ̄e
= −K̃−1

k

∂K̃k

∂ρ̄e
ũk (6.2)

Introducing this expression into equation (6.1), the sensitivities become:

dφ

dρ̄e
=

∂φ

∂ρ̄e
−

Nk
∑

k=1

[

∂φ

∂ũk

K̃−1
k

∂K̃k

∂ρ̄e
ũk +

∂φ

∂ũ∗
k

(

K̃−1
k

∂K̃k

∂ρ̄e
ũk

)∗
]

=
∂φ

∂ρ̄e
+ 2

Nk
∑

k=1

Re

{

λT
k

∂K̃

∂ρ̄e
ũk

}

(6.3)

where the vectors λk are obtained from the adjoint equations:

K̃T
k λk = −

(

∂φ

∂ũk

)T

(6.4)

As the objective function and the constraints are usually described in terms of
the displacements û in the spatial domain, the right-hand side of the adjoint
equation is calculated as:

∂φ

∂ũk

=
∂φ

∂û

∂û

∂ũk

(6.5)

where the second factor denotes the sensitivities of the displacement in the
spatial domain with respect to the displacements in the wavenumber domain.
These depend on the relation between the displacements in the two domains.
Two cases are considered: spatially harmonic line loads and point loads.
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6.2.2 Spatially harmonic line loads

In section 5.2, two-dimensional wave propagation was considered by setting
the longitudinal wavenumber ky = 0 in the 2.5D formulation. For three-
dimensional problems, non-zero longitudinal wavenumbers are considered. For
spatially harmonic line loads, characterized by a single wavenumber ky, the
displacements in the spatial domain are simply obtained as:

û (y) = ũ (ky) e−ikyy (6.6)

As a result, the sensitivities of the displacements in the spatial domain to the
displacements in the wavenumber domain are equal to:

∂û (y)

∂ũ (ky)
= e−ikyy (6.7)

These sensitivities are used to compute the adjoint load in equation (6.5). As
in chapter 5, the insertion loss at a receiver is maximized and therefore taken
as objective function. This receiver is located at (x = 15 m, y = 0 m, z = 0 m).
A volume constraint restricting the volume of the design to 20 % of the design
domain is considered. The wave barrier design is optimized for two harmonic
frequencies (25 Hz and 50 Hz) and for three slownesses (py = 0 s/m, py =
1/Cp = 0.0025 s/m, and py = 1/Cs = 0.0050 s/m). These three slownesses
correspond to Rayleigh waves propagating under an angle θ of respectively 0◦,
27.8◦, and 68.7◦ (see also figure 3.11 for the definition of θ).

For the optimized designs presented in this chapter, the number of iterations
is limited to 120. A continuation scheme is applied to the sharpness parameter
β of the projection filter. The initial value β = 2 is doubled every 30 iterations
until a value of β = 16 is reached. The results are shown in figures 6.2 to
6.5. The designs optimized at a frequency of 25 Hz and 50 Hz for a slowness
py = 0 s/m were discussed in the previous chapter. The three-dimensional wave
fields are shown in figures 6.3c and 6.5c.

The design optimized at 25 Hz for a slowness py = 0.0025 s/m and the
corresponding insertion loss as a function of the frequency are shown in
figures 6.2c and d. The insertion loss for the optimized design is equal to 3.9 dB
which is rather small but still higher than 2.4 dB obtained for the reference
design. In contrast to the design which was obtained for a slowness py = 0 s/m,
the design for a slowness py = 0.0025 s/m is characterized by an important
feature close to the surface. This feature is similar to the one previously
obtained for the design optimized at 50 Hz for py = 0 s/m (section 5.2.5) and
has the same function of reflecting the incoming waves and guiding them away
from the surface, as is shown in figure 6.3f. This is, however, only possible when
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the width of the horizontal part is large enough. For this higher value of the
slowness, the projection of the width of the design domain to the propagation
direction of the waves enlarges as the waves propagate at a different angle.
This means that the ratio of the projected width and the Rayleigh wavelength
enlarges, making it large enough to be effective. However, the ratio between
the domain depth and the Rayleigh wavelength is smaller than for the design
optimized at 50 Hz for py = 0 s/m, and the very high insertion loss for the
latter design is not obtained here.

Figures 6.2e and f show the design optimized at 25 Hz for a slowness py =
0.0050 s/m and the corresponding insertion loss as a function of the frequency.
This design can be interpreted as a double or triple wall barrier. The optimal
distance between the walls follows the quarter wave-stack condition, taking
into account that the wave now propagates under an angle θ which is defined
as sin θ = ky/kR = py/pR:

dopt =
λx

4
=

π

2kx
=

CR

4f cos θ
= 5.1 m (6.8)

The distance between the outer walls, ranging from 3.6 m to 4.3 m, is close to
this optimal distance dopt. As the actual distance is lower than the optimal
distance for 25 Hz, this leads to a better performance at higher frequencies.
Also the central feature of the double wall contributes to the good performance
for higher frequencies, as the spacing d is furthermore decreased. The insertion
loss at 25 Hz is already rather high, namely 25.9 dB. The high insertion loss is
also observed from the displacement field (figure 6.3f).

The design optimized at 50 Hz for a slowness py = 0.0025 s/m and the
corresponding insertion loss as a function of the frequency are shown in
figures 6.4c and d. The design contains a lot of small features. The displacement
field in figure 6.5f indicates that the incoming waves are reflected and guided
away from the surface. As the main feature is located at the top part of the
design domain, the insertion loss is smaller for lower frequencies.

Figures 6.4e and f show the design optimized at 50 Hz for a slowness py =
0.0050 s/m and the corresponding insertion loss as a function of the frequency.
This looks again as a double or triple wall barrier and is very similar to the
design optimized at 25 Hz for this slowness. The central feature, however, is
located closer to the surface. This results in a better performance for higher
frequencies.
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Spatially harmonic line load (f = 25 Hz)
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Figure 6.2: Designs optimized at a frequency of 25 Hz for a slowness py equal
to (a) 0 s/m, (c) 0.0025 s/m, and (e) 0.0050 s/m. Resulting insertion loss as
a function of the frequency for the reference design in figure 5.4 (dashed line)
and the optimized design (solid line) at a frequency of 25 Hz for a slowness py

equal to (b) 0 s/m, (d) 0.0025 s/m, and (f) 0.0050 s/m.
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Figure 6.3: Real part of the displacement field ûR for excitation at 25 Hz in
the homogeneous halfspace for a slowness py equal to (a) 0 s/m, (d) 0.0025 s/m,
and (g) 0.0050 s/m, with the reference design for a slowness py equal to (b)
0 s/m, (e) 0.0025 s/m, and (h) 0.0050 s/m, and with the designs optimized for
a slowness py equal to (c) 0 s/m, (f) 0.0025 s/m, and (i) 0.0050 s/m.
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Spatially harmonic line load (f = 50 Hz)
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Figure 6.4: Designs optimized at a frequency of 50 Hz for a slowness py equal
to (a) 0 s/m, (c) 0.0025 s/m, and (e) 0.0050 s/m. Resulting insertion loss as
a function of the frequency for the reference design in figure 5.4 (dashed line)
and the optimized design (solid line) at a frequency of 50 Hz for a slowness py

equal to (b) 0 s/m, (d) 0.0025 s/m, and (f) 0.0050 s/m.
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Figure 6.5: Real part of the displacement field ûR for excitation at 50 Hz in
the homogeneous halfspace for a slowness py equal to (a) 0 s/m, (d) 0.0025 s/m,
and (g) 0.0050 s/m, with the reference design for a slowness py equal to (b)
0 s/m, (e) 0.0025 s/m, and (h) 0.0050 s/m, and with the designs optimized for
a slowness py equal to (c) 0 s/m, (f) 0.0025 s/m, and (i) 0.0050 s/m.
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6.2.3 Point loads

Consider now the case of a point load exciting the halfspace. The problem
considered in this subsection is shown in figure 6.6. A homogeneous halfspace
is excited at the surface by a point load at (x = 0 m, y = 0 m, z = 0 m). The
insertion loss at (x = 15 m, y = 0 m, z = 0 m) is minimized by inserting a wave
barrier in between the source and the receiver in a design domain of 7.5 m×5 m.

x

y
z

Source Receiver

7.5m

5m 5m 5m

FE

PML

Design
domain

Figure 6.6: The optimization problem for the two-and-a-half-dimensional
halfspace excited by a point load. The mesh is added as illustration only and
is not the actual finite element mesh.

The response for a point load is obtained from the response in the wavenumber
domain by means of the discrete Fourier transform in equation (3.32). The
sensitivities of the displacements in the spatial domain with respect to the
displacements in the wavenumber are given by:

∂ûl

∂ũk

=
1

2π
e−i2π(l−1)(k−1)/N ∆ky (6.9)

The response in the wavenumber domain is computed forNk wavenumbers from
ky = 0 m−1 to ky = 3ks with ks the shear wavenumber. Note that it is sufficient
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to only calculate the positive values of ky. Indeed, for a vertical load (i.e. a
load in the z-direction) at y = 0, the displacements in the x- and z-direction
are even functions with respect to the y-coordinate, while the displacements in
the y-direction are odd functions with respect to the y-coordinate. As it can be
straightforwardly proven that the Fourier transform of an even and odd function
is itself an even and odd function, respectively, the displacements in the x- and
z-direction are also even functions with respect to ky , and the displacements
in the y-direction are also odd functions with respect to ky. Therefore, the
displacements related to a negative wavenumber can be simply calculated from
the displacements related to the corresponding positive wavenumber, applying
an opposite sign for the displacements in the y-direction.

The response for a point load is well approximated taking Nk = 151
wavenumbers into account (which means that ∆ky = 0.02ks). A lower number
of wavenumbers results in an undesirable error in the response. The results
shown in this chapter are therefore computed with Nk = 151 wavenumber.
Practically the same sensitivities and designs, however, have been found by
taking only Nk = 49 wavenumbers into account (which means that ∆ky =
0.0625ks).

Three cases are considered: optimization of the insertion loss at 25 Hz, of the
insertion loss at 50 Hz, and of the frequency averaged insertion loss in the range
20 − 80 Hz. The optimized designs and the corresponding insertion losses ÎL
are shown in figure 6.7. The designs and their performance are very similar to
those obtained for a line load. At y = 0, the wave fronts resulting from the
point load propagate in the x-direction, as is visible in figure 6.8, and hence
in the same direction as for the line load. Although the geometric dissipation
in the two-dimensional case is smaller than in the three-dimensional case, the
wave fields at y = 0 for the point load (figure 6.8) therefore strongly resemble
the wave fields for a line load (figures 5.9, 5.11, and 5.13). This apparently also
results in similar barrier designs.

In chapter 3, it was discussed that stiffness plays a role only at larger
longitudinal coordinates y along the barrier. To take the displacements
for larger y-coordinates into account, an averaged insertion loss over the
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Figure 6.7: Designs optimized for a point load (a) at a frequency of 25 Hz, (c)
at a frequency of 50 Hz, and (e) for the frequency range 20 − 80 Hz. Resulting
insertion loss as a function of the frequency for the reference design in figure 5.4
(dashed line) and the optimized design (solid line) (b) at a frequency of 25 Hz,
(d) at a frequency of 50 Hz, and (f) for the frequency range 20 − 80 Hz.
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Figure 6.8: Real part of the displacement field ûR in the homogeneous halfspace
at a frequency f of (a) 25 Hz, (d) 50 Hz, and (g) 70 Hz, with the reference design
at a frequency f of (b) 25 Hz, (e) 50 Hz, and (h) 70 Hz, and with the designs
optimized for a receiver at (x = 15 m, y = 0 m, z = 0 m) at a frequency of (c)
25 Hz, (f) 50 Hz, and (i) 70 Hz (design optimized for 20 − 80 Hz).
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longitudinal direction is considered which is defined as follows:

ÎLLrec
= 10 log10
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(6.10)

where ûref
recj(y) and ûrecj(y) are the displacements at the receiver point at

(x = 15 m, y, z = 0 m) in direction j for the homogeneous halfspace and after
the introduction of the barrier, respectively. The length Lrec is discretized
by dividing it in Ny parts with a length of 0.25 m, equal to the mesh of the
surrounding domain.

Figure 6.9 shows the designs optimizing the averaged insertion loss for three
lengths Lrec: 0 m, which corresponds to the previously discussed case, 10 m,
and 40 m. For Lrec = 10 m, the designs strongly resemble the designs obtained
for Lrec = 0 m. The largest displacements are located close to the source, at
y = 0 m, and decrease for increasing y. Therefore, the performance around
y = 0 determines the averaged insertion loss over the distance considered.

For Lrec = 40 m, the optimized designs show some differences with respect
to the previous designs. Two phenomena seem to play a role. First, if the
wave front in the xy plane arrives at a certain angle θ (figure 3.11) with
respect to the x-axis, the projected angle with respect to the z-axis in the
propagation direction of the wave front is smaller than the angle in the xz-
plane. To compensate this, the inclined features are made steeper such that
the optimal inclination is obtained for wave fronts propagating at larger angles
θ. This is especially seen for the design optimized at f = 25 Hz. Second, for
larger angles θ, the wave transmission is strongly influenced by the stiffness
of the wall. Especially the designs optimized at 50 Hz and for the frequency
range 20 − 80 Hz have a higher bending stiffness. This results in considerably
better performances. For example, the displacement-averaged insertion loss

ÎL40 m, frequency averaged in the range 20 − 80 Hz, is equal to 4.0 dB for the
rectangular reference barrier, 7.0 dB for the barrier optimized for Lrec = 0 m
(figure 6.9g), and 10.3 dB for the one optimized for Lrec = 40 m (figure 6.9i).
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Figure 6.9: Designs optimizing the insertion loss ÎL0 m at a frequency of (a)
25 Hz, (d) 50 Hz, and (g) 20−80 Hz. Designs optimizing the averaged insertion
loss ÎL10 m for a point load at a frequency of (b) 25 Hz, (e) 50 Hz, and (h)
20 − 80 Hz. Designs optimizing the averaged insertion loss ÎL40 m for a point
load at a frequency of (c) 25 Hz, (f) 50 Hz, and (i) 20 − 80 Hz.
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6.3 Wave barriers of finite length

This section discusses the influence of the length of the barrier on the optimized
design. The finite length of the barrier is taken into account by applying a
spatial window to the radiated wave field [52, 170]. For this purpose, the
domain is divided in a subdomain where spatial windowing is applied, i.e.
the design domain, and the surrounding domain by means of a subdomain
formulation [12]. This formulation is first introduced, after which the spatial
windowing technique is explained and applied to the subdomain formulation.
Then, topology optimization is applied: the sensitivities are derived and
optimized results are presented.

6.3.1 Subdomain formulation

Consider a domain Ωs that is divided into two subdomains: an interior domain
Ωi

s and an exterior domain Ωe
s. In this application, the interior subdomain

represents the design domain, while the exterior subdomain represents the
surrounding FE-PML domain. According to the subdomain formulation, the
displacement field ũs in the soil is decomposed as (figure 6.10) [12]:

ũs = ũinc + ũd0 + ũd (6.11)

where ũinc is the incident wave field, which is the displacement field for the
homogeneous halfspace (and therefore equal to the previously defined ũref),
ũd0 is the locally diffracted wave field, and ũd is the diffracted wave field,
i.e. the wave field radiated from the interior subdomain. The locally diffracted
wave field ũd0 is the displacement field that is radiated in the soil in the exterior
domain for an excavated interior domain with ũd0 = −ũinc at the interface Σ
between the exterior and interior subdomain. At this interface, the combined
wave field ũ0 = ũd0 + ũinc is therefore equal to zero.

By imposing continuity of displacements and stress equilibrium at the interface
Σ, the discretized force vector p̃

Σ
due to the incident wave field on the structure

can be calculated [133]:

p̃
Σ

= −
∫

Σ

NTt̃n (ũinc) dΣ −
∫

Σ

NTt̃n (ũd0) dΣ (6.12)

with N the shape functions for the FE-PML discretization, and t̃n (ũinc) and
t̃n (ũd0) the traction fields due to the incoming wave field and locally diffracted
wave field, respectively, on a plane with unit outward normal vector n. The
diffracted wave field is then calculated as:

K̃ũd = p̃
Σ

(6.13)
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Figure 6.10: Decomposition of (a) the soil displacement field ũs into (b) the
wave field ũ0 and (c) the diffracted wave field ũd and decomposition of (d) the
wave field ũ0 into (e) the incident wave field ũinc and (f) the locally diffracted
wavefield ũd0.

6.3.2 Spatial windowing

Spatial windowing allows taking the finite size of a structure into account [52,
170]. The wave field is approximated by putting a window on the radiated
wave field. It should be noted that this technique only allows computing an
approximation of the actual wave field due to its inability to account for the
modal behaviour of the structure [52, 115].

Reconsider the Fourier transform pair relating f̂ (y) and f̃ (ky):

f̃ (ky) =

∞
∫

−∞

e+ikyy f̂ (y) dy (6.14)

f̂ (y) =
1

2π

∞
∫

−∞

e−iky0y f̃ (ky0) dky0 (6.15)

The forward Fourier transform is an integral over the longitudinal coordinate
y. A structure with a finite length, situated between y1 and y2, is only able
to contribute to the radiation of waves into the soil domain from y1 and y2.
The wave field f̃sw (ky) in the wavenumber domain is therefore obtained by



156 TOPOLOGY OPTIMIZATION FOR THREE-DIMENSIONAL ELASTIC WAVE PROPAGATION

integrating from y1 to y2:

f̃ sw (ky) =

y2
∫

y1

e+ikyy f̂ (y) dy (6.16)

Introducing the inverse Fourier transform leads to:
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(6.17)

Elaborating the integrals results in [52]:

f̃ sw (ky) =

∞
∫

−∞

f̃ (ky0)

{

1

2π

e+i(ky−ky0)y2
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]

}

(6.18)

The spatial windowing is now applied to the wave fields ũd0 and ũd in the
subdomain formulation. The locally diffracted wave field ũd0 is calculated by
applying a spatial window on the imposed displacements at the interface Σ:

ũd0|Σ = −ũsw
inc|Σ = −ũinc ∗

{

1

2π

e+ikyy2

iky

[

1 − e−iky(y2−y1)
]

}∣

∣

∣

∣

Σ

(6.19)

The diffracted wave field ũd is calculated from K̃ũd = p̃sw
Σ

, where p̃sw
Σ

is
calculated as:

p̃sw
Σ

= p̃
Σ

∗
{

1

2π

e+ikyy2

iky

[

1 − e−iky(y2−y1)
]

}

(6.20)

A limitation of the spatial windowing technique is its inability to account for
the modal behaviour of the structure [52, 115]. The modal overlap gives an
indication of the transition from the lower frequency range where the dynamic
response is dominated by resonating behaviour of individual modes to the
higher frequency range where the contribution of individual modes can no
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Figure 6.11: (a) Discrete (gray crosses) and fitted (black solid line) mode count
N(f) and (b) modal overlap M(f), for the reference design in figure 5.4 with
a length of Lby = 15 m.

longer be distinguished. It is defined as M(f) = ηfn(f), where η = 2βs is
the loss factor [70] and n(f) is the modal density. Figure 6.11a shows the mode
count N(f) as a function of the frequency for the reference design in figure 5.4
with a rectangular cross-section of 7.5 m × 1 m and a length of Lby = 15 m. A
continuous function is fitted through the discrete curve in figure 6.11a in order
to have an estimation of the modal density n(f) = dN(f)/df . The modal
overlap M(f) = ηfn(f) for the considered case is then shown in figure 6.11b.
Commonly, the value M(f) = 1 is chosen as transition between the two
frequency ranges [70]. In this case, this corresponds to 50 Hz.

For the calculation of the modal overlap, only material damping is taken into
account. As pointed out by Coulier et al. [52], the influence of the resonating
behaviour of individual modes in the lower frequency range stays rather limited
due to strong dynamic soil-structure interaction and the associated radiation
damping in the soil. As Coulier et al. [52] showed that the response at lower
frequencies is mostly well estimated by the spatial windowing technique, it
is assumed that the resonating behaviour of individual modes only has a
limited influence on the response computed for the frequency range 20 − 80 Hz
considered in this section.

6.3.3 Sensitivities

The sensitivities for an objective or constraint function φ are computed using
equation (6.1). The displacement fields are obtained using the subdomain
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approach in equation (6.11), in which only the diffracted displacement field ũdk

depends on the element densities ρ̄e. These displacement fields are obtained
from the set of equilibrium equations K̃kũdk = p̃sw

Σk
, and the sensitivities of

the displacements are equal to:

∂ũk

∂ρ̄e
=
∂ũdk

∂ρ̄e
= −K̃−1

k

∂K̃k

∂ρ̄e
ũdk (6.21)

Introducing this expression into equation (6.1), the sensitivities are obtained
as:

dφ

dρ̄e
=

∂φ

∂ρ̄e
+ 2

Nk
∑

k=1

Re

{

λT
k

∂K̃

∂ρ̄e
ũdk

}

(6.22)

where the vectors λk are obtained from the adjoint equations:

K̃T
k λk = −

(

∂φ

∂ũk

)T

(6.23)

The optimization procedure is as follows. The design domain is taken as
interior domain, while the surrounding domain is considered as the exterior
domain. As a pre-processing step, the wave fields ũinck and ũd0k, and the force
vectors p̃

Σk
on the interface Σ are computed. During the optimization, first the

displacement fields ũdk are computed. These are added to the displacement
fields ũinck and ũd0k to obtain the total displacement fields, which are used
to calculate the objective function and the set of adjoint equations. The
displacement vector ũdk and the adjoint vector λk are then used to calculate
the sensitivities. Note that only equation (6.13) and (6.23) for computing the
diffracted wave field ũdk and the adjoint vector λk need to be computed every
iteration. When the pre-processing is disregarded, the computational cost for
a finite barrier is therefore similar to the one for an infinite barrier.

6.3.4 Results

The problem considered in subsection 6.2.3 is now reconsidered for a barrier of
finite length. A barrier with a length of Lby = 15 m is considered. First, the
insertion loss at (x = 15 m, y = 0 m, z = 0 m) is minimized at 25 Hz, at 50 Hz,
and for the frequency range 20−80 Hz. The resulting designs and corresponding
insertion losses as a function of the frequency are shown in figure 6.12. The
designs resemble the infinite barrier designs optimized for a point load, for the
same reason these designs resemble the ones optimized for a line load: the
response at y = 0 m dominates the overall response.
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The wave fields are plotted in figure 6.13. As pointed out by Coulier et al. [52],
due to the finite length of the barrier, waves propagating at angles θ larger
than θL do not hit the barrier, where θL is given by:

sin θL =
Lby/2

√

(∆sb
x )

2
+ (Lby/2)2

(6.24)

with ∆sb
x the distance in the x-direction between the source and the barrier.

For the rectangular reference design, this distance is equal to 7 m.

As the waves propagating at angles θ > θL are not directly affected by
the barrier, the insertion loss averaged over a large length Lrec decreases.
Figure 6.14 shows the designs optimizing the averaged insertion loss for three
lengths Lrec: 0 m, 10 m, and 40 m. As for the infinite barriers, the designs
for Lrec = 10 m resemble the ones for Lrec = 0 m. For Lrec = 40 m, however,
considerably modified designs are obtained. Although the design optimized at
25 Hz looks different for Lrec = 40 m (figure 6.14c), the performance has hardly
improved: the averaged insertion loss ÎL40 m at 25 Hz is equal to 1.2 dB for the
reference design, 1.9 dB for the design optimized for Lrec = 0 m (figure 6.14a),
and 2.0 dB for the design optimized for Lrec = 40 m (figure 6.14c). The design
optimized at 50 Hz and for the frequency band 20 − 80 Hz show a greater
improvement. The averaged insertion loss ÎL40 m at 50 Hz is equal to 4.1 dB for
the rectangular reference barrier, 8.3 dB for the barrier optimized for Lrec = 0 m
(figure 6.14d), and 10.3 dB for the one optimized for Lrec = 40 m (figure 6.14f).

The averaged insertion loss ÎL40 m, frequency averaged in the range 20 − 80 Hz,
is equal to 3.3 dB for the rectangular reference barrier, 4.4 dB for the barrier
optimized for Lrec = 0 m (figure 6.14g), and 6.4 dB for the one optimized for
Lrec = 40 m (figure 6.14i).

6.4 A case study

In this section, the methods from the previous sections are applied to a
particular problem reducing the vibration levels in a building caused by the
passage of a train on a nearby railway line. First, the problem is introduced
and the performance of a double wall barrier is studied. Subsequently,
two optimization problems are considered. The first optimization problem
minimizes the vibration level while a constraint is put on the volume. The
second minimizes the volume while reducing the vibrations to a certain level.
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Figure 6.12: Designs with a finite length of Lby = 15 m optimized for a point
load (a) at a frequency of 25 Hz, (c) at a frequency of 50 Hz, and (e) for
the frequency range 20 − 80 Hz. Resulting insertion loss as a function of the
frequency for the reference design in figure 5.4 (dashed line) and the optimized
design (solid line) (b) at a frequency of 25 Hz, (d) at a frequency of 50 Hz, and
(f) for the frequency range 20 − 80 Hz.
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Figure 6.13: Real part of the displacement field ûR in the homogeneous
halfspace at a frequency f of (a) 25 Hz, (d) 50 Hz, and (g) 70 Hz, with the finite
reference design at a frequency f of (b) 25 Hz, (e) 50 Hz, and (h) 70 Hz, and with
the finite designs optimized for a receiver at (x = 15 m, y = 0 m, z = 0 m) at a
frequency of (c) 25 Hz, (f) 50 Hz, and (i) 70 Hz (design optimized for 20−80 Hz).
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Figure 6.14: Designs with a finite length of Lby = 15 m optimizing the insertion

loss ÎL0 m at a frequency of (a) 25 Hz, (d) 50 Hz, and (g) 20 − 80 Hz. Designs
optimizing the averaged insertion loss ÎL10 m for a point load at a frequency
of (b) 25 Hz, (e) 50 Hz, and (h) 20 − 80 Hz. Designs optimizing the averaged
insertion loss ÎL40 m for a point load at a frequency of (c) 25 Hz, (f) 50 Hz, and
(i) 20 − 80 Hz.
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6.4.1 Problem description

The problem considered in this case study is shown in figure 6.15. On the
surface of a homogeneous halfspace, representing the soil, a building is located
close to a railway track. In the building, sensitive equipment is placed, whose
operation is disturbed by vibrations resulting from train passages. In order to
reduce the transmission of vibrations from the railway track to the building
stiffer material is inserted in the soil.

2.5m

5m

2.5m
7.5m

Design
domain

Surrounding domain

3m

3m

3m

3m

6m 6m

FE
PML

R1R2
R3

x

yz

ρ1 = 2000 kg/m3

Cp1 = 400m/s
Cs1 = 200m/s

ρ2 = 2000 kg/m3

Cp2 = 950m/s
Cs2 = 550m/s

Reinforced concrete:
- Walls: tbu,w = 0.25m
- Slabs: tbu,s = 0.20m

Figure 6.15: The longitudinally invariant elastodynamic optimization problem.
The mesh is added as illustration only and is not the actual finite element mesh.

The soil is a typical sandy soil having a mass density of 2000 kg/m3, a
dilatational wave velocity of 400 m/s, a shear wave velocity of 200 m/s, and
material damping ratios of βp = βs = 0.025 for the dilatational waves and the
shear waves, respectively. The soil is modeled using two-and-a-half-dimensional
four-node volume elements with an element size of 0.25 m, corresponding to
ten elements per shear wavelength at a frequency of 80 Hz. At the boundaries,
PMLs are added to prevent spurious reflections.

The building is a four-story frame with a raft foundation consisting of four
floors and two spans. It has a total width of 12 m and a total height of
12 m. The thickness of the walls is 0.25 m, while the thickness of the slabs is
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0.20 m. The walls and slabs are made of reinforced concrete with a mass density
of 2500 kg/m3, a Young’s modulus of 30 GPa, and a Poisson’s ratio of 0.25.
The building is discretized using two-and-a-half-dimensional two-node shell
elements with a length of 0.25 m. The mass and stiffness matrices are derived
in appendix B. The degrees of freedom not only consist of the displacements
in three directions, but also of a rotation for out-of-plane bending.

The railway track is situated at a distance of 10 m from the building (x =
−10 m). The track is a classical ballasted track with sleepers supporting the
rails. The model used for the railway track is shown in figure 6.16a. The
rails are modeled as Euler-Bernoulli beams, while the rail pads are modeled as
continuous spring-damper connections. The sleepers are assumed to be rigid
in the plane of the track cross section and are assumed not to contribute to
the longitudinal stiffness of the track, so they can be modeled as a uniformly
distributed structure over the track length. The ballast is assumed to act as a
set of distributed, independent linear springs and dampers. The characteristics
of the railway track are taken from Lombaert et al. [119] and are listed in
table 6.1.

hsl

lsl

dsl

x3

x4

①

②

③

④

x
y

z

(a)

y1 y2

kHz cHz kHz cHz

mw mw

k1 c1 k1 c1

k2 c2

mc

mb,Ib

y
z

① ②

③ ④

⑤

⑥

(b)

Figure 6.16: Model of (a) the railway track and (b) half a wagon [122].

The displacement field resulting from a passing train is calculated in a simplified
way, applying the dynamic axle loads at fixed positions on the track as a series of
incoherent point loads of the same magnitude. Previous studies have indicated
that the stationary part of the response can be well approximated in this way
(see section 3.4.2). A typical two-car EMU train (according to [129]) at a speed
of 160 km/h is considered, with a car length of 26.6 m and a total length of
53.2 m. The bogie center distance is 19 m and the distance between two axles of
a bogie is 2.7 m. The center of the train is located at (x = −10 m, y = 0 m, z =
0 m). By assuming that both rails have the same unevenness, the train can be
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Table 6.1: Characteristics of the railway track [119].

Part Characteristic Value Dimension
Rail Bending stiffness ErIr 6.4 × 106 Nm2

Mass per unit length ρrAr 60 kg/m
Position x3 −10.7175 m
Position x4 −9.2825 m

Rail pad Stiffness krp 255.7 × 106 N/m
Viscous damping crp 22.5 × 103 Ns/m

Sleeper Length lsl 2.5 m
Width bsl 0.235 m
Height hsl 0.205 m
Mass msl 300 kg
Sleeper distance dsl 0.6 m

Ballast Height hb 0.35 m
Mass density ρb 1700 kg/m3

Stiffness Kb 156.7 × 106 N/m3

Viscous damping Cb 28.6 × 103 Ns/m3

modeled with a two-dimensional model (figure 6.16b). The characteristics are
taken from Mirza et al. [129] and are listed in table 6.2.

Table 6.2: Characteristics of the EMU train [129].

Characteristic Value Dimension
Hertzian spring stiffness kHz 1.5 × 109 N/m
Hertzian spring damping cHz 0 Ns/m
Wheelset mass mw 1800 kg
Primary spring stiffness k1 2.4 × 106 N/m
Primary spring damping c1 30 × 103 Ns/m
Bogie mass mb 5000 kg
Bogie moment of inertia mb 6000 kgm2

Secondary spring stiffness k2 0.6 × 106 N/m
Secondary spring damping c2 20 × 103 Ns/m
Train car mass mc 40000 kg

The dynamic axle loads are obtained by solving a dynamic train-track
interaction problem, with rail unevenness as excitation mechanism [119]. The
following PSD function is used for the rail unevenness [5]:

S̃uw/r
(ky) =

A

2π(1 + n/n0)3
(6.25)
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Figure 6.17: PSD function of the dynamic axle loads obtained from the dynamic
train-track interaction problem with the PSD function of the rail unevenness
given by equation (6.25).

where n = ky/2π is the cyclic frequency, n0 = 0.0233 cycles/m, and A is taken
to be equal to 160 × 10−6 m3/cycle [5]. The resulting PSD function of the axle
loads is shown in figure 6.17.

The vibration levels are evaluated at specific points and directions inside the
building, at the locations of sensitive equipment. In this case five receivers are
considered on the first floor in the span closest to the source. Their positions
are shown in figure 6.15 and are listed in table 6.3. The RMS velocity spectra
at the different receivers are shown in figure 6.18 in case of the homogeneous
halfspace, i.e. before introducing a wave barrier.

Table 6.3: Receiver positions in the building where the vibration levels are to
be reduced.

Label x y z Direction
[m] [m] [m]

R1x 3 0 3 x

R1y 3 0 3 y

R1z 3 0 3 z

R2z 1.5 0 3 z

R3z 3 1.5 3 z

The vibration levels are evaluated with respect to Gordon’s generic vibration
criteria for sensitive equipment [78]. These criteria are generally denoted
as the Vibration Criteria (VC) and are superimposed in figure 6.18. They
are specified in terms of the maximum allowable RMS velocity in the one-
third octave bands between 4 and 80 Hz. Less stringent vibration limits are
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Figure 6.18: The one-third octave band RMS spectra of the velocity for the
original homogeneous halfspace at receivers (a) R1x, (b) R1y, (c) R1z, (d) R2z,
(e) R3z. Superimposed are Gordon’s generic vibration criteria for sensitive
equipment [78].
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imposed in the frequency range between 4 to 8 Hz, where the limit is that
of constant acceleration instead of constant velocity, as this frequency range
in most instances lies below the lowest resonance frequency of the equipment
components. As a result, relative motions between the components are harder
to excite [78].

The RMS velocity spectra in the first two receivers, which are horizontal
receivers in the x- and y-direction, have rather small values compared with the
vertical receivers. For receivers R1z and R3z, for which only the y-coordinate
differs, the RMS velocity levels are similar. For these receivers, the largest RMS
velocity levels are found in the one-third octave bands with a center frequency
of 16 Hz, 20 Hz, 25 Hz, and 31.5 Hz. For receiver R2z, however, the largest RMS
velocity levels are found in the one-third octave bands with a center frequency
of 50 Hz and 63 Hz.

The difference in RMS velocity spectra for receivers R1z and R3z on the one
hand, and for receiver R2z on the other hand can be explained by their location.
Receivers R1z and R3z are located in the middle of the floor, while receiver R2z

is located at one fourth of the floor span. The bending modes of the floors,
assumed clamped at both sides, are shown in figure 6.19. The first bending
mode has a maximum in the middle of the floor, causing higher vibration levels
at receivers R1z and R3z for frequencies around its natural frequency, which
is 21 Hz. The second bending mode has a node in the middle of the floor and
has a maximum close to one fourth of the floor span, causing higher vibration
levels at receiver R2z for frequencies around its natural frequency, being 56 Hz.
As excitation around the first two natural frequencies results in high vibration
levels in the corresponding one-third octave bands, the mitigation measures
should mainly reduce the vibration levels in these bands. The performance is
evaluated for the maximum RMS velocity spectra over the different receivers,
which is shown in figure 6.20 for the homogeneous halfspace.

(a) (b) (c) (d)

Figure 6.19: Modes of the clamped building floor at (a) 21 Hz, (b) 56 Hz, (c)
110 Hz, and (d) 183 Hz (values for ky = 0 m−1).

In order to reduce the vibration levels at the considered receiver points, a barrier
is introduced between the building and the track. The barrier is assumed to be
infinitely long and is constructed by jet grouting, which results in a stiffer soil.



A CASE STUDY 169

−7R
M

S
v
el

o
ci

ty
[m
/
s]

1/3 octave band center frequency [Hz]
4 8 16 31.5 63

10

10

10

10

-4

-5

-6

VC-A
VC-B
VC-C
VC-D
VC-E

Figure 6.20: The maximum one-third octave band RMS spectra of the velocity
over the different receivers for the homogeneous halfspace. Superimposed are
Gordon’s generic vibration criteria for sensitive equipment [78].

Jet grouting is assumed to be possible in a zone with dimensions 7.5×5m2, the
design domain, located between the railway track and the building (figure 6.15).
The stiffer material has a mass density of 2000 kg/m3, a dilatational wave
velocity of 950 m/s, a shear wave velocity of 550 m/s, and material damping
ratios of βp = βs = 0.025 for the dilatational waves and the shear waves,
respectively.

6.4.2 A double wall barrier

As a reference, a single and double wall barrier are first considered. They both
have a depth of 7.5 m. The thickness of the single wall barrier is 1 m, the walls
of the double wall barrier are 0.5 m, both corresponding to a volume of 20 % of
the design domain shown in figure 6.15. The distance between the two walls
of the double wall barrier is equal to 3.5 m, corresponding to the theoretical
best-performing distance-thickness relation kR1d + kR2t = nπ for frequencies
25, 50, 75, . . . Hz.

The single wall, the double wall, and the resulting maximum RMS velocity
spectra in the different receivers are shown in figure 6.21. For the original
homogeneous halfspace, the maximum RMS velocity is situated in the one-
third octave band with a center frequency at 25 Hz and is equal to 24.42µm/s,
which is close to the VC-B criterion (25µm/s). By introducing the single wall
barrier, the RMS velocity in this one-third octave band is reduced to 15.62µm/s.
However, the maximum RMS velocity is now situated in the one-third octave
band with a center frequency at 50 Hz and is equal to 19.65µm/s. The double
wall barrier results in a lower maximum RMS velocity in the 50 Hz one-third
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octave band, namely 17.15µm/s, but also in a slightly higher maximum RMS
velocity in the 25 Hz one-third octave band, namely 17.81µm/s. The overall
performance, determined by the maximum of the RMS velocity in all one-third
octave bands, is slightly better for the double wall barrier, but the difference
is hardly significant (17.81µm/s instead of 19.65µm/s).
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Figure 6.21: (a) The single wall barrier, (b) the double wall barrier and (c) the
maximum one-third octave band RMS spectra of the velocity at the different
receivers for the original homogeneous halfspace (black), for the single wall
barrier (blue), and for the double wall barrier (blue).

6.4.3 Minimizing the vibration levels

The aim of the first optimization problem is to optimally distribute a given
volume of stiffer material in the design domain (indicated in figure 6.15)
such that the vibration levels are minimized. The objective function is the
maximum RMS velocity in the several frequency bands m = 1 . . .Nband and
at the different receiver points j = 1 . . .NL. As the vibration criteria for
sensitive equipment are not flat over the frequency range considered, weights
wm are introduced (figure 6.22). The optimization problem can therefore
mathematically be formulated as:

min
ρe

max
m=1...Nband

{

max
j=1...NL

[

v̂RMS
mj (ρ̄e)

wm

]}

s. t.

Ne
∑

e=1

veρ̄e ≤ V max

0 ≤ ρe ≤ 1, e = 1 . . .Ne

(6.26)
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where v̂RMS
mj is the RMS velocity in the m-th one-third octave band at receiver

position j, ve is the volume of element e, and V max is the upper limit for the
volume of distributed material, here equal to 20 % of the design domain. As
this problem is not differentiable, it is reformulated using a bound formulation.
The gradient of the RMS velocity v̂RMS

mj is computed with equation (6.3), where
the adjoint variables λk are computed from equation (6.4). The computation
time of the optimization is 59 hours.
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Figure 6.22: The weighting function wm.

Figure 6.23a shows the topology optimized design, obtained from solving the
optimization problem in equation (6.26). The performance of this design is
compared with the one of the single wall barrier with a width of 1 m and a
depth of 7.5 m, as considered in the previous section. The single wall barrier has
therefore the same volume as the optimized design and extends to the bottom
of the design domain. For the topology optimized design, the RMS velocity
remains under 9.94µm/s for all one-third octave bands. The maximum RMS
velocity level is therefore reduced by 59 % compared to the original halfspace,
by 49 % compared to the single wall barrier, and 44 % compared to the double
wall barrier, while the single wall barrier, the double wall barrier, and the
optimized barrier all have the same volume of material (20 % of the design
domain). In contrast to the single and double wall barriers, the VC-C criterion
is now satisfied.

The design has two main features: the inclined part, guiding the waves into the
soil, away from the surface and the building, and a vertical part. Figure 6.24
shows the influence of the inclined part. When only the inclined part is
considered, the RMS velocity is mainly reduced for the one-third octave bands
with a center frequency of 16 Hz, 20 Hz, 25 Hz, and 31.5 Hz. The RMS velocity
for one-third octave bands with a higher center frequency is almost unaffected
as compared to the RMS velocity for the homogeneous halfspace. The inclined
part therefore reduces the vibration levels around the lowest natural frequency
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Figure 6.23: (a) The topology optimized design and (b) the maximum one-
third octave band RMS spectra of the velocity at the different receivers for the
original homogeneous halfspace (black), for the rectangular reference design in
figure 6.21a (blue), and for the optimized design (red).

of the building floors, while the vertical and horizontal part at the surface
reduce the RMS velocity at higher frequencies.

(a)

R
M

S
v
el

o
ci

ty
[m
/
s]

1/3 octave band center frequency [Hz]
4 8 16 31.5 63

10

10

10

10

-4

-5

-6

-7

VC-A
VC-B
VC-C
VC-D
VC-E

(b)

Figure 6.24: (a) The inclined part of the topology optimized design and (b) the
maximum one-third octave band RMS spectra of the velocity at the different
receivers for the original homogeneous halfspace (black), for the optimized
design (red), and for the inclined part of this design (cyan).

The sensitivity with respect to geometric imperfections is evaluated by changing
the projection function threshold η in equation (4.11). A dilated (η = 0.25),
intermediate (η = 0.5), and eroded (η = 0.75) version of the optimized design
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are shown in figure 6.25. This figure also shows the influence of the projection
threshold on the maximum RMS velocity spectra at the different receivers for
the different one-third octave bands. For projection thresholds in the interval
[0.25, 0.75], the VC-C criterion is satisfied. The design is therefore simplified
manually without first applying a robust optimization. The result of the post-
processing is shown in figure 6.26. The maximum RMS velocity level is equal
to 11.07µm/s, which is only slightly higher than for the optimized design
(9.94µm/s).
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Figure 6.25: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c)
eroded (η = 0.75) version of the optimized design and (d) the influence of the
projection threshold η on the maximum one-third octave band RMS spectra of
the velocity at the different receivers.

6.4.4 Minimizing the volume

In many practical cases, the aim is to minimize the costs while reducing the
vibration levels in the building such that a certain vibration criterion is satisfied.
Both the volume and the feasibility of the barrier influence the cost. In this
subsection, only the volume of the barrier is minimized as the feasibility is
case-specific and should therefore be evaluated with the contractor. It must be
noted, however, that the feasibility has a serious impact on the total cost.

The aim of this optimization problem is thus to minimize the volume of stiffer
material in the design domain while satisfying a given vibration criterion in the
different frequency bands m = 1 . . .Nband at the receiver points j = 1 . . .NL.
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Figure 6.26: (a) Simplified design after a manual post-processing of the
topology optimized design and (b) the maximum one-third octave band RMS
spectra of the velocity at the different receivers for the original homogeneous
halfspace (black), for the optimized design (red), and for the simplified design
(magenta).

This problem is formulated as:

min
Ne
∑

e=1
veρ̄e

s. t. v̂RMS
mj (ρ̄e) ≤ cm, m = 1 . . .Nband

j = 1 . . .NL

0 ≤ ρe ≤ 1, e = 1 . . .Ne

(6.27)

where cm is the vibration criterion in the mth one-third octave band.

The first optimization problem in the previous section showed that, for an
optimized barrier with a volume of only 20% of the design domain, it is
possible to reduce the vibration levels such that they satisfy the VC-C criterion.
The optimization problem in equation (6.27) is therefore solved for the VC-C
criterion. The topology optimized design and the corresponding RMS velocity
spectra are shown in figure 6.27. In this case, only 13.3 % of the design domain
volume is needed to satisfy the VC-C criterion in all one-third octave bands at
all receivers. This is a considerable improvement with respect to the single and
double wall barrier, which despite their higher volume of stiffer material (20 %
of the design domain) do not reduce the vibration levels to the VC-C criterion.

Figure 6.28 shows the optimized design and the corresponding RMS velocity
spectra with the constraint that the vibration levels at the receivers need to
satisfy the VC-D criterion. The volume of the optimized design is equal to
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Figure 6.27: (a) The topology optimized design satisfying the VC-C for a
minimum volume and (b) the maximum one-third octave band RMS spectra
of the velocity at the different receivers for the original homogeneous halfspace
(black), for the rectangular reference design in figure 6.21a (blue), and for the
optimized design (red).
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Figure 6.28: (a) The topology optimized design satisfying the VC-D for a
minimum volume and (b) the maximum one-third octave band RMS spectra
of the velocity at the different receivers for the original homogeneous halfspace
(black), for the rectangular reference design in figure 6.21a (blue), and for the
optimized design (red).

38.5 % of the design domain volume, and therefore almost twice the volume
of the design in figure 6.23. Although the design has the same main features,
namely the inclined part going from the left upper corner to the right bottom
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corner of the design domain and the vertical part in the center of the design
domain, these features have become larger and multiple small features have
been added to the design, which makes it more complex. This complexity
results in an excellent performance, satisfying the VC-D criterion and therefore
reducing the vibration levels by 74 % compared to the ones obtained for the
original halfspace, but also reduces the feasibility of the design and increases
its sensitivity to geometric imperfections.

6.5 Conclusion

In this chapter, topology optimization is applied to design wave barriers which
reduce vibration transmission caused by point loads on a surface. A 2.5D
FE-PML model is used to obtain the three-dimensional displacement field for
problems with invariant cross sections. The sensitivities for the 2.5D model
have been derived and are used to solve a number of problems.

First, wave barriers of infinite length have been considered. Two cases were
considered: spatially harmonic line loads and point loads. As the design domain
projected to the wave front propagation direction becomes larger for higher
wavenumbers than the design domain in the xz-plane, the designs are different
by exploiting this larger apparent width of the design domain. For the highest
wavenumbers, the optimized designs were double (or triple) walls, which are
optimal for the quarter wave-stack condition.

Subsequently, point loads were considered, where the equilibrium equations are
computed for multiple wavenumbers after which an inverse Fourier transform
is applied to obtain the displacements in the spatial domain. The designs were
optimized for two harmonic loads (at 25 Hz and 50 Hz) and a broadband source
(for frequencies in the interval 20−80 Hz). Next to a receiver point, also receiver
lines were considered. The receiver point and the small receiver lengths result
in designs similar to the ones optimized for a line load. For larger receiver
lengths, the stiffness of the barrier becomes important. This results in slightly
different designs.

To take into account the effect of a finite length of the wave barrier, the spatial
windowing technique is applied. This technique in fact puts a window on the
radiated wave field. This radiated wave field is computed using the subdomain
formulation. By applying spatial windowing, the 2.5D FE-PML method can
by applied to compute the displacement fields, and therefore its computational
efficiency is maintained.

Finally, a realistic case study is considered, where a building is added to the
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model. A passing train is modeled as a series of incoherent point sources, whose
excitation is caused by railway unevenness. A single wall barrier, a double wall
barrier and some optimized wave barriers are compared. It is shown that
the optimized wave barriers outperform the former two and that simplifying
the design hardly leads to a deterioration of the performance. In practical
applications, one might want to minimize the volume, which influences the cost,
while satisfying some vibration criteria. Low vibration levels can be obtained
with a significant reduction in material use.





Chapter 7

Conclusions and

recommendations for further

research

In order to reduce environmental ground vibration due to railway traffic,
mitigation measures on the transmission path can be applied to impede
propagation of ground vibration from source to receiver. Currently, only a
limited number of simple design geometries have been investigated. These have
mainly been determined by trial and error because of the high cost of numerical
simulations. As a result, the performance of current designs is suboptimal
which leaves much room for improvement.

The aim of this work is therefore to study novel design geometries which have
the potential to improve the current performance and to develop a methodology
to optimize the design of mitigation measures. For this purpose, topology
optimization is used as it simultaneously optimizes size, shape, and topology of
material distribution problems and is therefore particularly suitable for finding
novel designs.

This chapter starts by summarizing the main conclusions of this thesis.
Additionally, some recommendations for further research are presented.
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7.1 Conclusions

Double wall barrier

A double wall barrier is analyzed as mitigation measure for ground vibration
transmission. In acoustics, the use of double walls is a well established measure
for reducing the sound transmission as it leads to higher sound reduction
between the mass-spring-mass resonance and the cavity resonances. For the
reduction of ground vibration transmission, however, it is found that the
performance of double wall barriers is hardly better than for single wall barriers.
Both the bending stiffness of the barrier and the contrast in impedance between
the soil and the barrier play a role in the performance of single and double wall
barriers. The bending stiffness is the same for a single wall barrier and a double
wall barrier with wall thicknesses equal to the half of the single wall barrier
thickness. Reflection of incoming waves, however, determined by the contrast
in impedance, is different for single and double wall barriers. Equivalent one-
dimensional models showed that a maximum reflection and therefore minimum
transmission of the surface waves is obtained when the thickness of the walls and
the distance between the walls is equal to a quarter of the Rayleigh wavelength.
This, however, is mostly not practical as for the frequency interval of interest,
it would require large wall thicknesses and a large distance between the walls.
For smaller thicknesses and distances, the performance of a double wall barrier
is therefore mostly similar to the one of a single wall barrier. For double walls,
standing waves moreover occur, further reducing the performance and therefore
compensating for the improved reflection capacities.

Topology optimization of wave barriers

Topology optimization is then applied to find novel designs performing better
than the previously studied simple designs, such as the single and double wall
barrier. The density based approach is applied with the SIMP interpolation for
the material properties. Regularization techniques are employed to control the
complexity of the final design and to prevent numerical issues. Continuation
schemes are used to avoid getting stuck in local minima in an early stage
of the optimization. The topology optimization problems are solved using
the gradient based algorithm MMA. Topology optimization problems are
characterized by a large number of design variables. An efficient computation of
the sensitivities is therefore indispensable, and the adjoint method is applied as
it only requires one additional computation of an equation, the adjoint equation,
which is similar to the forward state equation. The sensitivities are obtained
for one-dimensional problems modeled with the direct stiffness method and for
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two- and two-and-a-half-dimensional problems modeled with finite elements
and perfectly matched layers at the boundaries to prevent spurious reflections.

The methodology is first applied to one-dimensional problems, consisting of two
halfspaces and an intermediate domain. In this intermediate domain, layers of
a different material are optimally distributed to reduce the transmittance of
plane waves. For harmonic waves, the optimization leads to periodic layer
sequences whose performance is characterized by stopbands, frequency bands
where the transmission is attenuated. These result in the lowest transmittance
if the thickness of the layers is equal to a quarter of the wavelength. The
more periodic cells fit in the intermediate domain, the more pronounced are
the stopbands. To reduce the transmittance for larger frequency bands, the
optimized design loses its periodicity to create multiple stopbands close to
each other.

Topology optimization is then applied to design wave barriers with an
invariant cross section in a homogeneous halfspace to optimally reduce the
transmission of railway induced ground vibrations. The loading of a train is first
approximated by a line load. This allows using a two-dimensional model which
is computationally relatively cheap. The obtained optimized barriers reduce
the vibration levels at the surface behind the barrier by reflecting the incoming
waves or directing them away from the surface. Accounting for the three-
dimensional behavior of the wave barrier is, however, crucial, as the stiffness of
the barrier prevents the propagation of waves when the trace wavelength of the
incoming wave is smaller than the bending wavelength of the barrier. Topology
optimization is therefore performed for a point load exciting the surface, as
this allows taking this three-dimensional effect into account. The optimized
designs for a point load are more or less the same as for a line load when
only the responses at small longitudinal distances from the source is taken
into account for assessing the performance. Different barriers are obtained
when also the response at larger longitudinal distances are taken into account,
as the bending stiffness of the barrier will hinder wave transmission for trace
wavelengths smaller than the bending wavelength. The finite length of the
barrier is modeled by applying spatial windowing to the radiated wave fields.
Except for the larger preprocessing step, the optimization is computationally
not more expensive than for the infinite barrier.

Robustness and feasibility

The designs obtained with topology optimization may contain small features
which makes them difficult to manufacture and which are sensitive to geometric
imperfections. By applying a robust design, the sensitivity to geometric
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imperfections is reduced and the small features are mostly removed. This
makes it possible to manually simplify the design with little deterioration of
performance. This can be followed by a shape optimization step. Alternatively,
the layout of discrete objects can be distributed over the design domain.

An important note should be made regarding the feasibility of the designs
presented in this work. Although for example inclined jet-grout injections are
possible with current construction techniques [106], the complexity of the design
will increase the construction cost of the mitigation measure. It is therefore
advised to discuss with the contractor and other stakeholders which designs
can be constructed and how the trade-off between the construction cost of the
barrier design and its performance should be taken into account.

Case study

The dissertation concludes with a case study applying topology optimization
to a more realistic problem setting. A railway track is situated close to a
building where sensitive equipment is installed. The axle loads of the passing
train are obtained solving a dynamic train-track interaction problem, with
rail unevenness as excitation mechanism. The vibration levels in the building
are assessed with generic vibration criteria for sensitive equipment. The
performance for a single wall barrier, a double wall barrier, and optimized
designs are compared with each other. The case study demonstrates the
high potential of optimized designs in terms of performance improvement and
volume reduction.

7.2 Recommendations for further research

Based on the research presented in this thesis, a number of recommendations
for further research are made, which are listed below.

The soil was modeled as a homogeneous halfspace. The soil layering can,
however, have an important effect as multiple reflections and refractions occur
at the layer interfaces. It is straightforward to adapt the presented models
for layered inhomogeneous soils, but a physical interpretation of the response
becomes even more challenging.

The two-and-a-half-dimensional approach can be used for invariant cross
sections. However, it might be beneficial to have a barrier whose cross section
varies along its length:
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• Many mitigation measures on the transmission path display a periodicity
in the plan geometry. Examples include soft or stiff wave barriers
created by rows of piles and heavy masses placed next to the track. For
these mitigation measures, a Floquet transform can be used to obtain
the solution of the original three-dimensional problem based on the
discretization of a single periodic cell. The methodology developed in
this text can be extended to these problems. Mitigation measures with a
periodicity in plan view lend themselves very well to layout optimization
of discrete objects. These discrete objects could be the piles which are
optimally distributed in the soil or masses optimally placed on the surface.

• Also three-dimensional models can be used. This, however, results in
excessive computational costs, and reducing this cost becomes even more
crucial.

Solving the equilibrium equations is computationally the most expensive part
of the optimization methodology as presented in this work. First steps were
taken to keep the computation cost reasonable, by using the efficient 2.5D
methodology, by computing the sensitivities with the adjoint approach, and
by splitting the stiffness matrix blocks of the design and surrounding domain.
Further research can be conducted for additional cost reduction. This is
especially the case when larger problems or three-dimensional models are
considered. The following measures are proposed:

• For large-scale problems, iterative procedures can be used for solving the
equilibrium and adjoint equations. Preconditioners and multigrid meth-
ods can accelerate the convergence of iterative methods. Approaches such
as reanalysis techniques [6] can furthermore reduce the computational
cost by re-using the factorization of a stiffness matrix to approximate the
solution of another linear system involving a similar stiffness matrix.

• Optimizing a design for broadband excitation requires the analysis to be
repeated for excitation at multiple frequencies. As the numerical analysis
of the problem often has the largest contribution to the computation time
in an iteration of the optimization process, solving this problem is rather
computationally expensive. Alternatively, the analysis can be performed
in the time domain, which makes it possible to perform a single analysis in
the time domain by selecting a proper input signal. This has for example
been done by Dahl et al. [57] for problems in one dimension, using an
implicit Newmark scheme for the time integration of the finite element
equations. Also topology optimization of two-dimensional transient wave
propagation problems has been considered in a previous study [126]. This
methodology can be applied to the problems considered in this work.
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An advantage of topology optimization is the large design freedom, allowing
for the exploration of a wide variety of designs. This, however, often leads to
designs which contain small features and which consist of disconnected features.
This undermines the manufacturability of the design. Although some methods
were presented to improve the manufacturability, further improvement in this
area can be obtained by investigating the following topics:

• More and more research is done on constraints for manufacturability,
mostly in the context of novel production techniques such as additive
manufacturing. They are mostly based on projection techniques to avoid
adding a large number of local constraints. Techniques used in these
research areas can help in preventing the complex designs containing
small features.

• Instead of considering the volume as a measure for the cost, a better
approximation of the actual cost can be made that considers the
complexity and the depth of the barrier. A first step can be to add a
term to the objective function which is proportional to the depth of the
design variables, thereby penalizing the distribution of material at larger
depths.

In this thesis, only geometric imperfections were considered as source of
uncertainty. Other sources of uncertainties can be considered, as outlined in
the introduction. For the problem treated in this text, especially the following
uncertainties are expected to influence the results:

• Preliminary studies showed that uncertainty in material parameters
influences the performance of the optimized barrier. This includes both
the material of the barrier and the surrounding soil. Not only the material
parameters are a source of uncertainty, but also the heterogeneity of the
material. Random field theory can be applied to deal with this [111].

• Another source of uncertainty to be considered is misplacement of
material. This refers to a mismatch between the actual location of
the barrier features and the location of the ideal topology optimized
design. Misplacement of material can be taken into account by adding a
perturbation to the center of the density filter kernel [94].



Appendix A

Properties of the transfer

matrix H for a periodic

stacking of layers

Recall that the transfer matrix H of a unit cell is given by equation (2.44):

H =

[
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With:
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(A.2)

This matrix has some special properties. In this appendix, the determinant
and the trace are calculated and the Chebyshev identity is proven.
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A.1 Properties of the transfer matrix

The determinant of the 2 × 2 transfer matrix is equal to 1:
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The trace of the transfer matrix is equal to:
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A.2 Derivation of the Chebyshev Identity

The derivation is largely based on appendix B from Yeh et al. [180]. The
eigenvalues of the transfer matrix are equal to:

e±ikL =
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(A.5)

The corresponding eigenvectors are given by:
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The proof follows from the theorem that the Nth power of a transformed matrix
is equal to the transform of the Nth power of the original matrix, or:

[

THT−1
]N

= THN T−1 (A.7)

If a matrix T can be found such that:
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then the Nth power of the matrix H is given by:
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The following matrices T and T−1 obey equation (A.8):
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The two columns in equation (A.11) are the eigenvectors of the matrix H.
Introducing equations (A.10) and (A.11) in equation (A.9) gives:
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Appendix B

2.5D methodology for shell

elements

In this chapter, the finite element equations are derived for two-and-a-half
dimensional shell elements. For every shell element, a local system of
coordinates is used with the local x-axis along the element, the local y-axis
in the longitudinal direction and the local z-axis perpendicular to the x-axis
and y-axis. The fundamental variables u(x, y, z, t) are discretized on element
level to obtain the element stiffness matrix. In the following subsections, the
finite element equations for in-plane shell deformation and bending are derived.

For the bending of shell elements, use is made of the classical Kirchhoff bending
theory for thin shells. This theory is based on three base hypotheses. A first
hypothesis is that the mid-surface of the shell remains undeformed. Secondly,
the stresses perpendicular to the shell (σ̂z = 0) are neglected, resulting in
plane stress conditions. Third, the sections remains straight after deformation.
This Bernoulli’s hypothesis corresponds to the fact that the shear deformation
(γ̂yz = γ̂zx = 0) is neglected.
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B.1 In-plane shell deformation

As plane stress applies (σzz = σyz = σzx = 0), the equilibrium equations
become:
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As this can be written as
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the same procedure as in chapter 3 can be applied, where the stresses are
calculated from the constitutive equation:
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and the strains are calculated from:
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The elements are discretized as:

û(x, y, z = 0, ω) ≈ N(x)û(y, ω) (B.6)

As a result, the discretized strains and stresses become:
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∂y
= B1û + B2

∂û

∂y
(B.7)

σ̂ = Cǫ̂ = CB1û + CB2
∂û

∂y
(B.8)

The elaboration proceeds analogously as for volume elements (chapter 3), and
the resulting finite element equation reads as:

(

−ω2M + K0 − ikyK1 − k2
yK2

)

ũ (ky, ω) = f̃ (ky , ω) (B.9)
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with:

M =

∫

F

NTρNbdF (B.10)

K0 =

∫

F

BT
1 CB1bdF (B.11)

K1 =

∫

F

BT
1 CB2bdF −

∫

F

BT
2 CB1bdF (B.12)

K2 = −
∫

F

BT
2 CB2bdF (B.13)

where F is the cross section of the shell elements and b is the shell width.

B.2 Bending of shell elements

The equilibrium for a Kirchhoff plate can be written as:

∂2m̂xx

∂x2
+ 2

∂2m̂xy

∂x∂y
+
∂2m̂yy

∂y2
= −ω2ρbûz (B.14)

where the moments per unit length are given by:










































m̂xx =
b/2
∫

−b/2

σ̂xxzdz

m̂yy =
b/2
∫

−b/2

σ̂yyzdz

m̂xy =
b/2
∫

−b/2

σ̂xyzdz

(B.15)

The equilibrium equation can be written as:

([

∂2

∂x2
0 0

]

+

[

0 0 2
∂

∂x

]

∂

∂y
+
[

0 1 0
] ∂2

∂y2

)







m̂xx

m̂yy

m̂xy







= −ω2ρbûz

(B.16)
Or:

(

LT
1 + LT

2

∂

∂y
+ LT

3

∂2

∂y2

)

m̂ = −ω2ρbûz (B.17)

Neumann boundary conditions m̂ · n = m̂n = m̄n are applied with n the unit
outward normal vector of the boundary Ξt. The equilibrium equations and the
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Neumann boundary conditions are formulated in a weak form by considering
a virtual displacement field v̂ on the domain Γ:

∫

Γ

v̂

[(

LT
1 + LT

2

∂

∂y
+ LT

3

∂2

∂y2

)

m̂

]

dΓ + ω2

∫

Γ

v̂ρbûzdΓ

−
∫

Ξt

v̂ (m̂n − m̄n) dΞ = 0

(B.18)

Integration by parts and application of the divergence theorem leads to:

∫

Ξ

v̂m̂ndΞ −
∫

Γ

[(

L1 + L2
∂

∂y
+ L3

∂2

∂y2

)

v̂

]T

m̂dΓ + ω2

∫

Γ

v̂ρbûzdΓ

−
∫

Ξt

v̂ (m̂n − m̄n) dΞ = 0

(B.19)

Since Ξ = Ξt + Ξu with Ξu the part of Ξ on which homogeneous Dirichlet
conditions are applied, and as the virtual displacement field v̂ is chosen to
satisfy the Dirichlet conditions on the boundary Ξu, this equation becomes:

− ω2

∫

Γ

v̂ρbûzdΓ +

∫

Γ

[(

L1 + L2
∂

∂y
+ L3

∂2

∂y2

)

v̂

]T

m̂dΓ =

∫

Ξt

v̂m̄ndΞ

(B.20)

The moments per unit length m̂ can be calculated from the curvatures κ̂:

m̂ =







m̂xx

m̂yy

m̂xy







=
Eb3

12(1 − ν2)





1 ν 0
ν 1 0
0 0 1−ν

2











κxx

κyy

κxy







= Cbκ̂ (B.21)

The strains are related to the displacement in the z-direction and to the
curvatures κ̂:






























ǫxx =
∂ûx

∂x
=

∂

∂x

(

−z ∂ûz

∂x

)

= −z ∂
2ûz

∂x2
= zκxx

ǫyy =
∂ûy

∂y
=

∂

∂y

(

−z ∂ûz

∂y

)

= −z ∂
2ûz

∂y2
= zκyy

γxy =
∂ûx

∂y
+
∂ûy

∂x
=

∂

∂y

(

−z ∂ûz

∂x

)

+
∂

∂x

(

−z ∂ûz

∂y

)

= −2z
∂2ûz

∂x∂y
= zκxy

(B.22)
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These curvatures are therefore related to the displacements:

κ̂ =







κx

κy

κxy







= −









∂2

∂x2

0
0



+





0
0

2 ∂
∂x





∂

∂y
+





0
1
0





∂2

∂y2



 ûz

= −
(

L1 + L2
∂

∂y
+ L3

∂2

∂y2

)

ûz

(B.23)

The domain is discretized using finite elements. As the domain is longitudinally
invariant, the displacement vector ûz is discretized as:

ûz(x, y, z = 0, ω) ≈ N(x)û(y, ω) (B.24)

where N(x) are the shape functions defined over the cross section and û(y, ω)
is the discretized displacement vector which is a function of the longitudinal
coordinate y and the frequency ω. The vector contains the degrees of freedom
at all nodes of the 2D cross section mesh. As a result, the discretized curvatures
and moments per unit length become:

κ̂ = −L1Nû − L2N
∂û

∂y
− L3N

∂2û

∂y2
= B1û + B2

∂û

∂y
+ B3

∂2û

∂y2
(B.25)

m̂ = Cbκ̂ = CbB1û + CbB2
∂û

∂y
+ CbB3

∂2û

∂y2
(B.26)

with B1 = −L1N, B2 = −L2N, and B3 = −L3N.

A standard Galerkin procedure is followed, where the same approximation is
used for the virtual displacement vector v̂ as for the displacement vector ûz:

v̂(x, y, z = 0, ω) ≈ N(x)v̂(y, ω) (B.27)

The virtual work formulation therefore becomes:

− ω2

∫

Γ

v̂TNTρbNûdΓ +

∫

Γ

[(

v̂TBT
1 +

(

∂v̂

∂y

)T

BT
2 +

(

∂2v̂

∂y2

)T

BT
3

)

Cb

(

B1û + B2
∂û

∂y
+ B3

∂2û

∂y2

)]

dΓ =

∫

Ξt

v̂TNTm̄ndΞ

(B.28)
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This equation is further elaborated, rewriting the surface integrals as an integral
over the longitudinal coordinate y and the cross section F :

− ω2

∫

y

v̂T

(∫

F

NTρNbdF

)

ûdy

+

∫

y

v̂T

(∫

F

BT
1 CbB1dF

)

ûdy

+

∫

y

v̂T

(∫

F

BT
1 CbB2dF

)

∂û

∂y
dy

+

∫

y

v̂T

(∫

F

BT
1 CbB3dF

)

∂2û

∂y2
dy

+

∫

y

(

∂v̂

∂y

)T(∫

F

BT
2 CbB1dF

)

ûdy

+

∫

y

(

∂v̂

∂y

)T(∫

F

BT
2 CbB2dF

)

∂û

∂y
dy

+

∫

y

(

∂v̂

∂y

)T(∫

F

BT
2 CbB3dF

)

∂2û

∂y2
dy

+

∫

y

(

∂2v̂

∂y2

)T (∫

F

BT
3 CbB1dF

)

ûdy

+

∫

y

(

∂2v̂

∂y2

)T (∫

F

BT
3 CbB2dF

)

∂û

∂y
dy

+

∫

y

(

∂2v̂

∂y2

)T (∫

F

BT
3 CbB3dF

)

∂2û

∂y2
dy

=

∫

y

v̂T

(∫

Xt

NTm̄nds

)

dy

(B.29)

where Xt is the intersection of the surface Ξt with the plane y = 0.
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Integration by parts on the terms containing derivatives to y leads to:

− ω2

∫

y

v̂T

(∫

F

NTρNbdF

)

ûdy +

∫

y

v̂T

(∫

F

BT
1 CbB1dF

)

ûdy

+

∫

y

v̂T

(∫

F

BT
1 CbB2dF

)

∂û

∂y
dy +

∫

y

v̂T

(∫

F

BT
1 CbB3dF

)

∂2û

∂y2
dy

−
∫

y

v̂T

(∫

F

BT
2 CbB1dF

)

∂û

∂y
dy −

∫

y

v̂T

(∫

F

BT
2 CbB2dF

)

∂2û

∂y2
dy

−
∫

y

v̂T

(∫

F

BT
2 CbB3dF

)

∂3û

∂y3
dy +

∫

y

v̂T

(∫

F

BT
3 CbB1dF

)

∂2û

∂y2
dy

+

∫

y

v̂T

(∫

F

BT
3 CbB2dF

)

∂3û

∂y3
dy +

∫

y

v̂T

(∫

F

BT
3 CbB3dF

)

∂4û

∂y4
dy

=

∫

y

v̂T

(∫

Xt

NTm̄nds

)

dy

(B.30)

Since this equation holds for any virtual displacement v̂, it is equivalent to:

− ω2Mû(y, ω) + K0û(y, ω) + K1 ∂û(y, ω)

∂y
+ K2 ∂

2û(y, ω)

∂y2

+ K3 ∂
3û(y, ω)

∂y3
+ K4 ∂

4û(y, ω)

∂y4
= f̂ (y, ω)

(B.31)

with:

M =

∫

F

NTρNbdF (B.32)

K0 =

∫

F

BT
1 CbB1dF (B.33)

K1 =

∫

F

BT
1 CbB2dF −

∫

F

BT
2 CbB1dF (B.34)

K2 =

∫

F

BT
1 CbB3dF −

∫

F

BT
2 CbB2dF +

∫

F

BT
3 CbB1dF (B.35)

K3 = −
∫

F

BT
2 CbB3dF +

∫

F

BT
3 CbB2dF (B.36)

K4 =

∫

F

BT
3 CbB3dF (B.37)
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In the frequency-wavenumber domain, this equation is written as:
(

−ω2M + K0 − ikyK1 − k2
yK2 + ik3

yK3 + k4
yK4

)

ũ (ky, ω) = f̃ (ky, ω) (B.38)

The combination of equations (B.9) and (B.31) describes the general 2.5D finite
element formulation for shell elements.

B.3 Shape functions for two-node shell elements

For the in-plane degrees of freedom, the displacement vector is discretized as:

û(x, y, z = 0, ω) ≈ N(x)û(y, ω)

=

[

N1 0 | N2 0
0 N1 | 0 N2

]























û1x

û1y

− − −
û2x

û2y























(B.39)

with






N1(x) = 1 − x

l
N2(x) =

x

l

(B.40)

where l is the length of the element considered.

For the out-plane degree of freedom, the displacement vector is discretized as:

ûz(x, y, z = 0, ω) ≈ N(x)û(y, ω)

=
[

N1 N2 | N3 N4

]























û1z

φ̂
1x

− − −
û2z

φ̂
2x























(B.41)

with






































N1(x) =
2x3

l3
− 3x2

l2
+ 1

N2(x) = −x3

l2
+

2x2

l
− x

N3(x) =
2x3

l3
+

3x2

l2
+ 1

N4(x) = −x3

l2
+
x2

l

(B.42)



Appendix C

Dispersion relations for a

beam

To obtain the dispersion relations for the longitudinal mode, the bending-shear
mode, and the torsion mode analytically, multiple methods can be used. In
this report, Hamilton’s principle is applied.

Hamilton’s principle states that, in the absence of external loads, the dynamics
of the system are determined by the following expression [135]:

δ

∫

t

(Π − T ) dt = 0 (C.1)

where T the kinetic energy, Π is the potential energy, and the integration is done
over time t. The kinetic energy and the potential are given by the following
expressions:

T =
1

2

∫

Ω

ρ

[

(

∂ux

∂t

)2

+

(

∂uy

∂t

)2

+

(

∂uz

∂t

)2
]

dΩ (C.2)

Π =
1

2

∫

Ω

(σxxǫxx + σyyǫyy + σzzǫzz + σxyγxy + σyzγyz + σzxγzx) dΩ (C.3)

where Ω is the volume and ρ is the mass density of the beam.
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C.1 Longitudinal mode

Displacements, strains, and stresses Consider first the longitudinal motion
of a beam (figure C.1). The displacement is only different from zero in the
direction parallel to the beam axis. Therefore, the displacements are given by:







ux = 0
uy = uy(y, t)
uz = 0

(C.4)

where ux, uy, and uz are the displacements of the beam in the x, y, and z
direction.

y

z

uy

Figure C.1: Element with longitudinal deformation.

The strains can be derived by differentiating these displacements:







































































ǫxx =
∂ux

∂x
= 0

ǫyy =
∂uy

∂y

ǫzz =
∂uz

∂z
= 0

γxy =
∂ux

∂y
+
∂uy

∂x
= 0

γyz =
∂uy

∂z
+
∂uz

∂y
= 0

γzx =
∂uz

∂x
+
∂ux

∂z
= 0

(C.5)
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The stresses follow then from the constitutive relations:










































































































































σxx =
E

(1 + ν)(1 − 2ν)
((1 − ν)ǫxx + νǫyy + νǫzz)

=
Eν

(1 + ν)(1 − 2ν)

∂uy

∂y
≈ 0

σyy =
E

(1 + ν)(1 − 2ν)
(νǫxx + (1 − ν)ǫyy + νǫzz)

=
E(1 − ν)

(1 + ν)(1 − 2ν)

∂uy

∂y
≈ E

∂uy

∂y

σzz =
E

(1 + ν)(1 − 2ν)
(νǫxx + νǫyy + (1 − ν)ǫzz)

=
Eνφ

(1 + ν)(1 − 2ν)

∂uy

∂y
≈ 0

τxy = Gγxy = 0

τyz = Gγyz = 0

τzx = Gγzx = 0

(C.6)

where E and ν are the Young’s modulus and the Poisson coefficient.

Hamilton’s principle The kinetic energy T can be expressed as:

T =
1

2

∫

Ω

ρ

[

(

∂ux

∂t

)2

+

(

∂uy

∂t

)2

+

(

∂uz

∂t

)2
]

dΩ

=
1

2

∫

y

∫

A

ρ

(

∂uy

∂t

)2

dAdy

(C.7)

Therefore, the variation of the kinetic energy T is given by:

δT =

∫

y

∫

A

ρ
∂uy

∂t

∂δuy

∂t
dAdy =

∫

y

ρA
∂uy

∂t

∂δuy

∂t
dy

PI
= −

∫

y

ρA
∂2uy

∂t2
δuydy

(C.8)

where partial integration (PI) or integration by parts was used.
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The strain energy Π can be expressed as:

Π =
1

2

∫

Ω

(σxxǫxx + σyyǫyy + σzzǫzz + τxyγxy + τyzγyz + τzxγzx) dΩ

=
1

2

∫

y

∫

A

E

(

∂uy

∂y

)2

dAdy

(C.9)

Therefore, the variation of the strain energy Π is given by:

δΠ =

∫

y

∫

A

E
∂uy

∂y

∂δuy

∂y
dAdy =

∫

y

EA
∂uy

∂y

∂δuy

∂y
dy

PI
= EA

∂uy

∂y
δuy

∣

∣

∣

∣

l

0

−
∫

y

EA
∂2uy

∂y2
δuydy

(C.10)

By applying Hamilton’s principle in Eq. (C.1), the following differential
equation is obtained:

EA
∂2uy

∂y2
= ρA

∂2uy

∂t2
(C.11)

Dispersion curve In the frequency-wavenumber domain, equation (C.11)
becomes:

[

Ek2
y − ρω2

]

ũy = 0 (C.12)

This leads to the following dispersion relation:

Ek2
y − ρω2 = 0 (C.13)

The (positive) solution of this equation for ky is:

ky =

√

ρ

E
ω (C.14)

This corresponds to a constant slowness:

py =
ky

ω
=

√

ρ

E
(C.15)
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C.2 Bending-shear modes

Displacements, strains, and stresses In the Timoshenko beam theory [162,
163], shear deformation is taken into account (figure C.2), and the displace-
ments are given by:







ux = 0
uy = −zχ(y, t)
uz = uz(y, t)

(C.16)

where χ =
∂uz

∂y
− β in which β is the shear angle.

y

z

uz

(a)

y

z

β

(b)

y

z

uz

χ

(c)

Figure C.2: Element with (a) only bending deformation, (b) only shear
deformation, and (c) total bending-shear deformation (Timoshenko’s Theory).

This leads to the following strains:







































































ǫxx =
∂ux

∂x
= 0

ǫyy =
∂uy

∂y
= −z ∂χ

∂y

ǫzz =
∂uz

∂z
= 0

γxy =
∂ux

∂y
+
∂uy

∂x
= 0

γyz =
∂uy

∂z
+
∂uz

∂y
= −χ+

∂uz

∂y

γzx =
∂uz

∂x
+
∂ux

∂z
= 0

(C.17)
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and stresses:

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





































σxx =
E

(1 + ν)(1 − 2ν)
((1 − ν)ǫxx + νǫyy + νǫzz)

=
−zEν

(1 + ν)(1 − 2ν)

∂χ

∂y
≈ 0

σyy =
E

(1 + ν)(1 − 2ν)
(νǫxx + (1 − ν)ǫyy + νǫzz)

=
−zE(1 − ν)

(1 + ν)(1 − 2ν)

∂χ

∂y
≈ −zE∂χ

∂y

σzz =
E

(1 + ν)(1 − 2ν)
(νǫxx + νǫyy + (1 − ν)ǫzz)

=
−zEνφ

(1 + ν)(1 − 2ν)

∂χ

∂y
≈ 0

τxy = Gγxy = 0

τyz = Gγyz = G

(

∂uz

∂y
− χ

)

τzx = Gγzx = 0

(C.18)

Hamilton’s principle The kinetic energy T can be expressed as:

T =
1

2

∫

y

∫

A

ρ

[

(

∂ux

∂t

)2

+

(

∂uy

∂t

)2

+

(

∂uz

∂t

)2
]

dAdy

=
1

2

∫

y

∫

A

ρz2

(

∂χ

∂t

)2

dAdy +
1

2

∫

y

∫

A

ρ

(

∂uz

∂t

)2

dAdy

(C.19)

Therefore, the variation of the kinetic energy T is given by:

δT =

∫

y

∫

A

ρz2 ∂χ

∂t

∂δχ

∂t
dAdy +

∫

y

∫

A

ρ
∂uz

∂t

∂δuz

∂t
dAdy

=

∫

y

ρIz
∂χ

∂t

∂δχ

∂t
dy +

∫

y

ρA
∂uz

∂t

∂δuz

∂t
dy

PI
= −

∫

y

ρIz
∂2χ

∂t2
δχdy −

∫

y

ρA
∂2uz

∂t2
δuzdy

(C.20)

with

Iz =

∫

A

z2dA (C.21)
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The strain energy Π can be expressed as:

Π =
1

2

∫

y

∫

A

(σxxǫxx + σyyǫyy + σzzǫzz + τxyγxy + τyzγyz + τzxγzx) dAdy

=
1

2

∫

y

∫

A

Ez2

(

∂χ

∂y

)2

dAdy +
1

2

∫

y

∫

A

G

(

∂uz

∂y
− χ

)2

dAdy

(C.22)

Therefore, the variation of the strain energy Π is given by:

δΠ =

∫

y

∫

A

Ez2 ∂χ

∂y

∂δχ

∂y
dAdy +

∫

y

∫

A

G

(

∂uz

∂y
− χ

)(

∂δuz

∂y
− δχ

)

dAdy

=

∫

y

EIz
∂χ

∂y

∂δχ

∂y
dy +

∫

y

GA

(

∂uz

∂y
− χ

)(

∂δuz

∂y
− δχ

)

dy

PI
= EIz

∂χ

∂y
δχ

∣

∣

∣

∣

l

0

−
∫

y

EIz
∂2χ

∂y2
δχdy + GA

(

∂uz

∂y
− χ

)

δuz

∣

∣

∣

∣

l

0

−
∫

y

GA

(

∂2uz

∂y2
− ∂χ

∂y

)

δuzdy −
∫

y

GA

(

∂uz

∂y
− χ

)

δχdy

(C.23)

By applying Hamilton’s principle in equation (C.1), the following differential
equations are obtained:

GA

(

∂2uz

∂y2
− ∂χ

∂y

)

= ρA
∂2uz

∂t2
(C.24)

EIz
∂2χ

∂y2
+GA

(

∂uz

∂y
− χ

)

= ρIz
∂2χ

∂t2
(C.25)

The next step is to combine equations (C.24) and (C.25) by eliminating the
variable uz or χ and therefore to get a differential equation that only depends
on χ or uz. The variable χ can be eliminated from equation (C.25) since from
equation (C.24) we get:

∂χ

∂y
=
∂2uz

∂y2
− ρ

G

∂2uz

∂t2
(C.26)



204 DISPERSION RELATIONS FOR A BEAM

which can be inserted in equation (C.25) after differentiating to y:

EIz
∂4uz

∂y4
− ρEIz

G

∂4uz

∂y2∂t2
+GA

∂2uz

∂y2
−GA

∂2uz

∂y2
+ ρA

∂2uz

∂t2

= ρIz
∂4uz

∂y2∂t2
− ρ2Iz

G

∂4uz

∂t4

(C.27)

Rearranging this equation results in:

ρA
∂2uz

∂t2
+ EIz

∂4uz

∂y4
− ρIz

(

1 +
E

G

)

∂4uz

∂y2∂t2
+
ρ2Iz

G

∂4uz

∂t4
= 0 (C.28)

The shear coefficient To control the asymptotes for bending waves with
decreasing wavelength, a non-dimensional parameter κ is added:

ρA
∂2uz

∂t2
+ EIz

∂4uz

∂y4
− ρIz

(

1 +
E

κG

)

∂4uz

∂y2∂t2
+
ρ2Iz

κG

∂4uz

∂t4
= 0 (C.29)

The parameter κ is called the shear coefficient. For solid rectangular beams,
the shear coefficient κ is equal to 5/6 according to Timoshenko [163]. Several
authors have tried to improve this expression for κ, since its dependence on ν.
According to Cowper [54], the shear coefficient can be written as:

κ =
10(1 + ν)

12 + 11ν
(C.30)

Dispersion curves In the frequency-wavenumber domain, equation (C.29)
becomes:

[

−ρAω2 + EIzk
4
y − ρIz

(

1 +
E

κG

)

ω2k2
y +

ρ2Iz

κG
ω4

]

ũz = 0 (C.31)

This leads to the following dispersion relation:

EIzk
4
y − ρIz

(

1 +
E

κG

)

ω2k2
y +

[

−ρAω2 +
ρ2Iz

κG
ω4

]

= 0 (C.32)

with (positive) solutions:

ky =
1√
2

√

√

√

√

(

1

κG
+

1

E

)

ρω2 ±

√

(

1

κG
− 1

E

)2

ρ2ω4 + 4
ρA

EIz
ω2 (C.33)
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or:

py =
1√
2

√

√

√

√

(

1

κG
+

1

E

)

ρ±

√

(

1

κG
− 1

E

)2

ρ2 + 4
ρA

EIzω2
(C.34)

The asymptotes for ω → ∞ are equal to:

py1 =

√

ρ

κG
(C.35)

py2 =

√

ρ

E
(C.36)
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C.3 Torsion mode

Displacements, strains, and stresses In the classical theory, Saint-Venant’s
theory [58], the torsion angle per unit length is assumed to be constant. In a
more general theory, Barr’s theory [15, 154], the torsion angle per unit length
ψ is dependent on the position y and the time t and not equal to the derivative
of the in-plane angle θ. The displacements are therefore given by:







ux = zθ(y, t)
uy = φ(x, z)ψ(y, t)
uz = −xθ(y, t)

(C.37)

x

zuz
ux

θ

Figure C.3: Element with torsion deformation.

This leads to the following strains:


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








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

































ǫxx =
∂ux

∂x
= 0

ǫyy =
∂uy

∂y
= φ

∂ψ

∂y

ǫzz =
∂uz

∂z
= 0

γxy =
∂ux

∂y
+
∂uy

∂x
= z

∂θ

∂y
+
∂φ

∂x
ψ

γyz =
∂uy

∂z
+
∂uz

∂y
=
∂φ

∂z
ψ − x

∂θ

∂y

γzx =
∂uz

∂x
+
∂ux

∂z
= 0

(C.38)
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and stresses:

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







σxx =
E

(1 + ν)(1 − 2ν)
((1 − ν)ǫxx + νǫyy + νǫzz)

=
Eνφ

(1 + ν)(1 − 2ν)

∂ψ

∂y
≈ 0

σyy =
E

(1 + ν)(1 − 2ν)
(νǫxx + (1 − ν)ǫyy + νǫzz)

=
E(1 − ν)φ

(1 + ν)(1 − 2ν)

∂ψ

∂y
≈ Eφ

∂ψ

∂y

σzz =
E

(1 + ν)(1 − 2ν)
(νǫxx + νǫyy + (1 − ν)ǫzz)

=
Eνφ

(1 + ν)(1 − 2ν)

∂ψ

∂y
≈ 0

τxy = Gγxy = Gz
∂θ

∂y
+G

∂φ

∂x
ψ

τyz = Gγyz = G
∂φ

∂z
ψ −Gx

∂θ

∂y
τzx = Gγzx = 0

(C.39)

Hamilton’s principle The kinetic energy T can be expressed as:

T =
1

2

∫

Ω

ρ

[

(

∂ux

∂t

)2

+

(

∂uy

∂t

)2

+

(

∂uz

∂t

)2
]

dΩ

=
1

2

∫

y

∫

A

ρ

[

φ2

(

∂ψ

∂t

)2
]

dAdy +
1

2

∫

y

∫

A

ρ

[

z2

(

∂θ

∂t

)2

+ x2

(

∂θ

∂t

)2
]

dAdy

= T1 + T2

(C.40)

The variation of integral T1 is equal to:

δT1 =

∫

y

∫

A

ρ

[

φδφ

(

∂ψ

∂t

)2

+ φ2

(

∂ψ

∂t

)(

∂δψ

∂t

)

]

dAdy

PI
=

∫

y

∫

A

ρ

(

∂ψ

∂t

)2

φδφdAdy −
∫

y

ρIφ
∂2ψ

∂t2
δψdy

(C.41)
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with

Iφ =

∫

A

φ2dA (C.42)

The variation of integral T2 is equal to:

δT2 =

∫

y

∫

A

ρ
(

x2 + z2
) ∂θ

∂t

∂δθ

∂t
dAdy =

∫

y

ρIp
∂θ

∂t

∂δθ

∂t
dy

PI
= −

∫

y

ρIp
∂2θ

∂t2
δθdy

(C.43)

with

Ip =

∫

A

(

x2 + z2
)

dA (C.44)

Therefore, the variation of kinetic energy T is given by:

δT = −
∫

y

ρIφ
∂2ψ

∂t2
δψdy −

∫

y

ρIp
∂2θ

∂t2
δθdy +

∫

y

∫

A

ρ

(

∂ψ

∂t

)2

φδφdAdy (C.45)

The strain energy Π can be expressed as:

Π =
1

2

∫

Ω

(σxxǫxx + σyyǫyy + σzzǫzz + τxyγxy + τyzγyz + τzxγzx) dΩ

=
1

2

∫

y

∫

A

[

E

(

φ
∂ψ

∂y

)2
]

dAdy +
1

2

∫

y

∫

A

[

G

(

z
∂θ

∂y
+
∂φ

∂x
ψ

)2
]

dAdy

+
1

2

∫

y

∫

A

[

G

(

∂φ

∂z
ψ − x

∂θ

∂y

)2
]

dAdy

= Π1 + Π2 + Π3

(C.46)

The variation of integral Π1 is equal to:

δΠ1 =

∫

y

∫

A

[

Eφδφ

(

∂ψ

∂y

)2
]

dAdy +

∫

y

∫

A

[

Eφ2 ∂ψ

∂y

∂δψ

∂y

]

dAdy

=

∫

y

∫

A

[

E

(

∂ψ

∂y

)2

φδφ

]

dAdy +

∫

y

[

EIφ
∂ψ

∂y

∂δψ

∂y

]

dy

PI
=

∫

y

∫

A

[

E

(

∂ψ

∂y

)2

φδφ

]

dAdy + EIφ
∂ψ

∂y
δψ

∣

∣

∣

∣

l

0

−
∫

y

[

EIφ
∂2ψ

∂y2
δψ

]

dy

(C.47)
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The variation of integral Π2 is equal to:

δΠ2 =

∫

y

∫

A

[

G

(

∂φ

∂x
ψ + z

∂θ

∂y

)(

∂φ

∂x
δψ +

∂δφ

∂x
ψ + z

∂δθ

∂y

)]

dAdy

PI
= G

{∫

y

∫

A

(

∂φ

∂x
ψ + z

∂θ

∂y

)

∂φ

∂x
δψdAdy

+

∫

y

∫

z

(

∂φ

∂x
ψ + z

∂θ

∂y

)

ψδφ

∣

∣

∣

∣

b/2

−b/2

dzdy

−
∫

y

∫

A

∂2φ

∂x2
ψ2δφdAdy +

∫

A

(

∂φ

∂x
ψ + z

∂θ

∂y

)

zδθ

∣

∣

∣

∣

l

0

dA

−
∫

y

∫

A

(

z
∂φ

∂x

∂ψ

∂y
+ z2 ∂

2θ

∂y2

)

δθdAdy

}

(C.48)

The variation of integral Π3 is equal to:

δΠ3 =

∫

y

∫

A

[

G

(

∂φ

∂z
ψ − x

∂θ

∂y

)(

∂φ

∂z
δψ +

∂δφ

∂z
ψ − x

∂δθ

∂y

)]

dAdy

PI
= G

{∫

y

∫

A

(

∂φ

∂z
ψ − x

∂θ

∂y

)

∂φ

∂z
δψdAdy

+

∫

y

∫

x

(

∂φ

∂z
ψ − x

∂θ

∂y

)

ψδφ

∣

∣

∣

∣

h/2

−h/2

dxdy

−
∫

y

∫

A

∂2φ

∂z2
ψ2δφdAdy +

∫

A

(

∂φ

∂z
ψ − x

∂θ

∂y

)

xδθ

∣

∣

∣

∣

l

0

dA

+

∫

y

∫

A

(

x
∂φ

∂z

∂ψ

∂y
− x2 ∂

2θ

∂y2

)

δθdAdy

}

(C.49)
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Therefore, the variation of the strain energy Π is given by:

δΠ =

∫

y

[

−EIφ
∂2ψ

∂y2
+G

∫

A

(

(

∂φ

∂x

)2

ψ + z
∂φ

∂x

∂θ

∂y
+

(

∂φ

∂z

)2

ψ − x
∂φ

∂z

∂θ

∂y

)

dA

]

δψdy

+

∫

y

[

G

∫

A

(

−z ∂φ
∂x

∂ψ

∂y
− z2 ∂

2θ

∂y2
+ x

∂φ

∂z

∂ψ

∂y
− x2 ∂

2θ

∂y2

)

dA

]

δθdy

+

∫

A

[

∫

y

(

E

(

∂ψ

∂y

)2

φ−G
∂2φ

∂x2
ψ2 −G

∂2φ

∂z2
ψ2

)

dy

]

δφdA

=

∫

y

[

−EIφ
∂2ψ

∂y2
+GDψ +GL

∂θ

∂y

]

δψdy +

∫

y

[

−GL∂ψ
∂y

−GIp
∂2θ

∂y2

]

δθdy

+

∫

A

[

Eφ

∫

y

(

∂ψ

∂y

)2

dy − G∇2φ

∫

y

ψ2dy

]

δφdA

(C.50)

with

D =

∫

A

[

(

∂φ

∂x

)2

+

(

∂φ

∂z

)2
]

dA (C.51)

L =

∫

A

[

z
∂φ

∂x
− x

∂φ

∂z

]

dA (C.52)

∇2φ =
∂2φ

∂x2
+
∂2φ

∂z2
(C.53)

By applying Hamilton’s principle in Eq. (C.1), the following differential
equations are obtained:

EIφ
∂2ψ

∂y2
−GDψ −GL

∂θ

∂y
= ρIφ

∂2ψ

∂t2
(C.54)

GL
∂ψ

∂y
+GIp

∂2θ

∂y2
= ρIp

∂2θ

∂t2
(C.55)

Eφ

∫

y

(

∂ψ

∂y

)2

dy −G∇2φ

∫

y

ψ2dy = ρφ

∫

y

(

∂ψ

∂t

)2

dy (C.56)

Often the last equation is simplified to:

∇2φ = 0 (C.57)
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The next step is to combine equations (C.54) and (C.55) to eliminate the
variable ψ or θ and therefore to get a differential equation that only depends
on θ or ψ. The variable ψ can be eliminated from equation (C.54) since from
equation (C.55) we get:

∂ψ

∂y
= −Ip

L

∂2θ

∂y2
+
ρIp

GL

∂2θ

∂t2
(C.58)

which can be inserted in equation (C.54) after differentiating to y:

− EIφIp

L

∂4θ

∂y4
+
ρEIφIp

GL

∂4θ

∂y2∂t2
+
GDIp

L

∂2θ

∂y2
− ρDIp

L

∂2θ

∂t2
−GL

∂2θ

∂y2

= −ρIφIp

L

∂4θ

∂y2∂t2
+
ρ2IφIp

GL

∂4θ

∂t4

(C.59)

Rearranging this equation results in:
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(C.60)

This can be simplified by using the relation D = −L = Ip −It. Equation (C.60)
becomes:
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(C.61)

This corresponds to the expression found by Barr [15]. To control the
asymptotes for torsional waves with decreasing wavelength, a non-dimensional
parameter κ′ is added, analogous to the added parameter κ in the dispersion
relation for shear-bending waves:
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Dispersion curve In the frequency-wavenumber domain, equation (C.62)
becomes:
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This leads to the following dispersion relation:
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or
Ak4

y +Bk2
y + C = 0 (C.65)

with (positive) solutions:
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or:
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The asymptotes for ω → ∞ are:
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with solutions:

py1 =

√

ρ
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(C.69)
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(C.70)

For ω → ∞, py1 should go to pR [154]. Therefore:
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