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Abstract Even though stereo-DIC is widely used in the field of experimental

mechanics, uncertainty quantification techniques lag behind. Camera motion for

example is often neglected, even though it is present and it can introduce bias.

We propose to estimate the error caused by camera motion, based on the epipolar

distance, by using a 3-camera system. This solves the problem of the lack of sen-

sitivity along the epipolar line by placing a 3rd camera perpendicular, providing

sensitivity in both directions. The 3rd camera provides modest improvement on

the results with an optimized triangulation.

Keywords Digital image correlation · Uncertainty quantification · Error

assessment · Optical techniques

1 Introduction

Uncertainty quantification of any measurement technique is a necessity when the

technique is used in practical applications. A measurement is only useful if the
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uncertainty of that measurement is known. However, it is not always easy to

determine errors bars since not all measurement techniques are straightforward.

Digital image correlation (DIC) is a perfect example of this; the complex optical-

numerical measurement chain makes it extremely hard to determine error bounds

of a measurement. Much work has been done on quantifying the error for 2D DIC

([1],[2],[3]), however less publications on stereo-DIC uncertainty quantification are

available ([4],[5]), due to the extra complications introduced by the calibration,

cross-correlation and triangulation. We present a novel method for estimating the

error bounds of a stereo-DIC measurement with camera motion, based on the

epipolar constraint and a three camera optimized triangulation. This technique

can be added to the already existing techniques for estimating the errors during

the cross-correlation stage, 2D matching and triangulation as a part of a larger

error estimation scheme in order to estimate the total error of a measurement. The

validity of the proposed technique is checked with simulated images, generated with

an FE-based stereo-DIC image simulator, presented in [6] and used for stereo-DIC

uncertainty quantification in [7].

2 The epipolar constraint and uncertainty quantification of stereo-DIC

2.1 Epipolar geometry

We present a novel method for determining the uncertainty zone of a stereo-DIC

measurement based on the epipolar constraint. This constraint is illustrated in

figure 1. A point in the world space, point X, will be projected onto the camera

sensor plane by a perspective projection as X1 for the left camera (with optical

centre O1), X2 for the right camera (with its optical center O2) and X3 for the

top camera (with its respective optical center O3). The projection of camera 1

(indicated as line X-O1) is seen by camera 2 as the line e2-X2. This line is called

the epipolar line and is indicated as a green line on figure 1 in camera 2. The

epipolar line limits the possible location of a 3D point to a single line in camera
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frame 2 if the projection of that point is known in camera 1 and if the relative

camera orientation is known. The same applies to camera system 1-3, resulting

in the vertical oriented epipolar lines (indicated in blue). The epipolar constraint

is already used in computer vision for determining camera orientation based on

corresponding points ([8],[9]) or for limiting the search for point correspondance

since they must lie on the epipolar line ([10],[11]). That is, only a search along the

epipolar line must be performed for finding the corresponding point in camera 2

if the location of X1 in camera 1 is known.

Fig. 1: Epipolar geometry for a 3 camera system.

This constraint can also be used for checking the quality of calibration by re-

porting the distance of a matched point to the epipolar line, as implemented in

the commercial MatchID DIC package [12]. A large epipolar distance indicates

a potential error in the camera calibration. However, we can further exploit this

constraint since the epipolar distance will change during an experiment due to

camera motion. We explore if error bars of a DIC measurement can be determined

by eploiting this change in epipolar distance. This approach is particularly useful
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when there are no stationary objects in the FOV to measure the camera motion.

Other methods of correcting for camera motion may be more appropriate if sta-

tionary objects are available [13], however there are many experiments where this

is not possible.

2.2 Uncertainty quantification based on the epipolar distance

Let point X1 in camera 1 have the integer pixel location (x,y) in the reference

image. After tracking this point over different frames it will have a displacement

of (u,v), placing this point at (x + u, y + v) in the image of the deformed state

in camera 1. Its corresponding point in camera 2 is denoted as (x + q, y + r) in

the reference frame (with q and r being the displacement obtained from a 2D-

DIC cross-correlation between cameras) and (x + u + q, y + v + r) in the image

of the deformed state (in which q and r are updated). In a normal stereo-DIC

analysis the corresponding points in both camera frames will be combined with

the calibration data to perform a triangulation. We now assume that the reported

epipolar error (Ee) obtained after triangulation is a measure of the camera motion,

and therefore the calibration error, which will result in a bias in the results. We will

use the measured maximum epipolar error (Ee) during an experiment as a worst

case estimation of the calibration error. Using this error with the assumed perfect

cross-correlation, we can estimate the influence of this error on the triangulated

point by using equation 1.

(x+ u+ q ± Ee, y + v + r ± Ee) (1)

An error region can then be determined in which all the data points must lie by

using the updated locations and equation 1 for triangulation. Please note that this

assumes that images are taken with a stationary setup for determining the error

region, which is not the case in a real experiment. Also note that this method will

only be valid if there is motion away from the epipolar line; if the corresponding



Title Suppressed Due to Excessive Length 5

point in the right camera frame moves along the epipolar line no epipolar error

will be indicated. We first illustrate the epipolar problem with only a 2-camera

system. Simulated images are created of camera 1 and 2 in the setup depicted

in figure 1 that is undergoing camera rotation. Four cases will be discussed; both

cameras rotate up with the same angle, only one camera moves up while the other

remains static, both cameras rotate with the same angle (however in an opposite

direction) and both cameras rotate away from each other along the epipolar line.

The imposed angles are values that were obtained experimentally for a previous

paper concerning the influence of camera motion on stereo-DIC [14].

1. Both cameras rotate up with the same angle. No epipolar error is de-

tected in this case since the stereo-rig undergoes rigid body rotation. The

resulting biased displacement field is caused by the rotation of the reference

frame, and can be corrected for by removing rigid body motion. Therefore,

no bias is predicted (after rigid body motion removal) in table 1, setting the

displacement field within its normal bounds that are predicted by a noise eval-

uation.

2. Static left camera and the right camera rotates up. An epipolar distance

change is measured between the unmoved reference and the moved system as

can be seen in table 1. By applying the proposed method an error bound can

be predicted that encompasses this error.

3. Left camera rotates down and right camera rotates up with the same

angle. In this the cameras rotate the same angle, however in opposite direc-

tions. The epipolar distance change and the corresponding estimated error

bound will be doubled compared to case 2, as could be expected..item Cam-

eras rotate away from each other along the epipolar line. Here we focus

on what happens if both cameras rotate along the epipolar line, not generating

an epipolar distance change. A bias in U (the in-plane horizontal direction) of

0.037mm (=0.5pixels) was obtained and bias in the out-of-plane direction of

0.207mm was obtained. This while no bias is predicted by the proposed method
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since the movement is along the epipolar line, thus not generating an epipolar

error and therefore undetectable.

Good correspondence is obtained for test cases 1-3, verifying the validity of

the technique for movement away from the epipolar line. Case 4 however does not

predict a bias, even though one is present. This is due to the insensitivity of the

epipolar distance when moving along the epipolar line. This illustrates that a 3rd

camera will be required to correctly estimate Ee in all possible cases. The principle

of a 3 camera system and an optimized triangulation routine is introduced in the

next section.

Table 1: Example cases and error estimation

case rotation an-
gle camera
1

rotation an-
gle camera
2

Ee [pixels] resulting
bias [mm]

predicted
bias [mm]

1 0.002◦ up 0.002◦ up 0.0057 ≈ 0 ≈ 0
2 0.0◦ 0.002◦ up 0.44 0.018 in V

(= 0.25 px)
±0.018 in V

3 0.002◦

down
0.002◦ up 0.88 0.036 in V

(= 0.50 px)
±0.037 in V

4 0.002◦ left 0.002◦ right ≈ 0 0.207 in W ≈ 0

3 Three camera optimized stereo-DIC uncertainty quantification

3.1 Optimized three camera triangulation

Case 4 in the previous section indicated a large bias in both U and W, without an

indication of a bias by the proposed method. This is due to the lack of an epipolar

distance change since the epipolar constraint is insensitive to motion along the

epipolar line. In order to solve this problem a third camera is introduced, placed

vertically above the first camera (as can be seen in figure 1 and 2). This yields

a second, orthogonal epipolar line. This third camera will detect the motion of

the horizontal camera pair along their respective epipolar lines. The insensitiv-

ity of motion along the epipolar line of the horizontal camera pair is solved by
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constructing the vertical uncertainty bar based on the epipolar change from the

horizontal camera pair and the vertical camera pair will be used for constructing

the horizontal uncertainty bar. A conservative approach is followed for determin-

ing the out-of-plane uncertainty by using the largest out-of-plane error bar from

both camera systems.

Having a third camera will also introduce the possibility of implementing an

optimized triangulation routine by using the data of all cameras simultaneously.

Normally only two corresponding points are available for triangulation, however,

having a third camera will yield a third corresponding point that can be used

for further improving the triangulation. This proposed optimized triangulation

minimizes the total back-projection error, defined as the sum of the difference

between the projection of the proposed 3D point in space on a image-plane and

the corresponding image-plane point as given by the DIC-routine [15].

Fig. 2: Camera setup and target in front.
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Let X be a 3D point in space, and let x1, x2, . . . , xn be the projections of point

X in the camera frame of camera n by: xn = PnX. Each projection (defined by

projection matrix Pn) yields an xn, which has the pixel locations of (in, jn), while

the true projection of the point (as given by the matched points by using DIC) has

a pixel location of (i
′

n, j
′

n). Let us now define the total reprojection error function

Etotal as:

Etotal =
n∑
i

(
(i

′

n − in)2 + (j
′

n − jn)2
)

(2)

By minimizing equation 2 with n = 3 in this case, the optimal 3D point

can be identified, given the corresponding points (obtained with DIC). Since a

third camera introduces extra restrictions a better overall 3D location is obtained,

especially when camera motion is present. The improvement with a third camera

for a setup with little camera motion is however modest, making it superfluous

to have a third camera when one does not want to determine error bounds and

the third camera is only used for increasing the precision and accuracy of the

measurements by improving the triangulation stage.

3.2 Results

The three camera optimized triangulation is combined with the earlier presented

error estimation theory and verified by simulating an experiment in which there is

camera rotation present around all axes. The considered setup can be seen in figure

2 and the details are outlined in table 2. The uncertainty region is first calculated,

based on the worst possible rotation combinations and their corresponding epipolar

distance changes (Ee). Consider this as the highest epipolar distance change you

would measure in a real experiment. This is followed by letting the cameras rotate

randomly around all axes simultaneously, within the predefined bounds, which are

set in this case at ±0.0015 (realistic rotation angles as measured by the authors

[14]).
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Table 2: Three camera optimized triangulation and error estimation
validation setup

Parameter Value

Stereo angle camera 1-2 [◦] 20
Stereo angle camera 1-3 [◦] 20

Maximum camera rotation [◦] 0.0015
Focal length lenses [mm] 16, 50

Field of view [mm] 131.6x100
Camera resolution [pixels] 1624x1234

Pixel to mm conversion [µm/pixel] 80
Camera noise level [%] 0.5

Table 3: DIC settings for identifying corresponding points in all
cameras

Parameter Value

Subset size [pixels] 21
Step size [pixels] 10

Interpolation B-spline
Shape function affine

50 Image-triplets are generated and the corresponding points in all cameras

are identified by performing a DIC analysis (the DIC settings can be found in

table 3) and based on these corresponding points, and the perfect calibration

data (as exported by the simulator), the points are triangulated in 3D space with

the proposed optimized three camera triangulation. The measured displacements

(which should be equal to zero, but are biased due to camera rotation) are averaged

over the FOV and these must lie within the earlier defined uncertainty region since

all cameras rotate within the predefined bounds and since the worst combination

of these bounds was used to calculate the uncertainty region. Figures 3 and 4

project the uncertainty region, as calculated with the proposed method, to the

X-Y plane (figure 3) and the Y-Z plane (figure 4), together with the average bias

of each of the 50 datasets. The proposed method successfully captures all 50 cases

for both the setup with 50mm lenses (indicated in red) and 16mm lenses (indicated

in blue) if the true, unbiased position is known (indicated as a black cross). It is

clear that the error region will be bigger with higher focal length lenses. This is

caused by the higher magnification of the lens; a higher stand-off will represent a
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higher motion at the target side with the same camera motion. This was earlier

indicated in [14]. The unbiased position however will never be known since camera

motion will be present and thus any biased instance, e.g. the data point indicated

in green, can have its own uncertainty region (as indicated as the green region)

that will encompass the true value. This conservative approach results in accurate

uncertainty region determination.
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Fig. 3: Projection of the predicted uncertainty region to the X-Y plane.

4 Conclusion

An error region estimation method exploiting the change in epipolar distance is

combined with a three camera optimized triangulation for improving DIC mea-

surements. Simple cases in section 2 indicate the working principle and give an

indication of the performance in an ideal case. Since the epipolar constraint only
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Fig. 4: Projection of the predicted uncertainty region to the Y-Z plane.

gives information regarding changes away from the epipolar line a three camera

setup is introduced, yielding extra information due to the orthogonal placement of

the epipolar lines. By adding the third camera information on the epipolar distance

change in orthogonal directions is available, as well as the possibility to perform

an optimized triangulation. Conservative error bounds can be constructed and the

validity of the method is proven in section 33.2 with a numerical example. This

method therefore provides a technique of estimating bias errors due to camera

motion by using the epipolar distance. It also confirms previous statements that

the error bounds due to camera rotation increase with higher focal length lenses

[14].
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