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Abstract

We prove an explicit formula for the first non-zero entry in the n-th
row of the graded Betti table of an n-dimensional projective toric variety
associated to a normal polytope with at least one interior lattice point.
This applies to Veronese embeddings of Pn. We also prove an explicit
formula for the entire n-th row when the interior of the polytope is one-
dimensional. All results are valid over an arbitrary field k.
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1 Introduction

Let k be a field. In this article we study syzygies of projectively embedded
toric varieties X/k. More precisely, we give explicit formulas in terms of the
combinatorics of the defining polytope for certain graded Betti numbers, which
appear in the minimal free resolution of the homogeneous coordinate ring of
X as a graded module, obtained by repeatedly taking syzygies. These Betti
numbers are typically gathered in the graded Betti table:

0 1 2 3 4 . . .
0 1 0 0 0 0 . . .
1 0 κ1,1 κ2,1 κ3,1 κ4,1 . . .
2 0 κ1,2 κ2,2 κ3,2 κ4,2 . . .
3 0 κ1,3 κ2,3 κ3,3 κ4,3 . . .
...

...
...

...
...

...

Here κp,q is the number of degree p + q summands of the p-th module in
the resolution. One alternatively defines κp,q as the dimension of the Koszul

1The final publication is available at springer via http://dx.doi.org/10.1007/s10801-017-
0786-y

1



cohomology space Kp,q(X,O(1)). The graded Betti table is expected to contain
a wealth of geometric information and is the subject of several important open
problems and conjectures. But the vast part of it is poorly understood.

For a number of entries an explicit formula in terms of the defining lattice
polytope was known before. Examples of this can be found in [3, 11]. But for
this paper the most relevant result is that of Schenck, who proved [16] that for
projective toric surfaces coming from a lattice polygon with b lattice boundary
points κp,2 = 0 for all p ≤ b − 3. Hering proved in [11, Theorem IV.20] using
a theorem of Gallego-Purnaprajna [9, Theorem 1.3] that the next entry κb−2,2

is not zero. Both results were already known in the case this polygon is equal
to the triangle with vertices (0, d), (d, 0), (0, 0). This polygon gives the d-fold
Veronese embedding of the projective plane, for which Loose [12] proved that
the number of zeroes in the quadratic strand equals 3d−3 (not counting κ0,2 = 0
as a zero). This result was independently rediscovered by Ottaviani and Paoletti
[14], and they generalized this to the following conjecture:

Conjecture 1. For the d-fold Veronese embedding of n-dimensional projective
space κp,q = 0 whenever p ≤ 3d− 3 and q ≥ 2.

This is known as property Np with p = 3d− 3. For d > n this is generalized
by the following conjecture [7, p. 643, Conjecture 7.6] which the authors already
proved for q = n:

Conjecture 2. If we take a minimal free resolution of the line bundle OPn(b)
on the Veronese embedding of Pn of degree d with d ≥ b + n + 1 then κp,q = 0
for all 1 ≤ q ≤ n and

p <

(
d+ q

q

)
−
(
d− b− 1

q

)
− q.

Syzygies of Veronese embeddings are still an active area of research [2, 6, 10,
15, 13]. For a short introduction to syzygies and to toric varieties we refer the
reader to the next section.

We will not prove this conjecture, but we will prove an explicit formula for
κ(d+n

n )−(d−b−1
n )−n,n which is the first non-zero entry on the n-th row. We also

prove a formula for the first non-zero entry in the n-th row of the Betti table
of any projectively normal toric variety of dimension n, if this row is not zero.
Note that the n-th row is the last non-zero row if it is not zero. We will work
over an arbitrary field k. For a convex lattice polytope ∆ we denote by ∆(1)

the convex hull of the lattice points in the topological interior of ∆.

∆(1)

We are now ready to formulate our main result:
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Theorem 3. Let X be a toric variety coming from an n-dimensional normal
polytope ∆ ⊆ Rn. Let ∆(1) be the interior polytope of ∆. Let S = ∆ ∩ Zn,
T = ∆(1) ∩ Zn and N = #S, N (1) = #T .

• If p < N −N (1) − n then κp,n = 0.

• If ∆(1) is not 1-dimensional then κN−N(1)−n,n =
(
t+N(1)−2
N(1)−1

)
where t is the

number of translations of T that are contained in S. (If N (1) = 0 then
κN−N(1)−n,n = 0.)

• If ∆(1) is 1-dimensional then ∀p ≥ 0: κp+N−N(1)−n,n = (p+ 1)
(

N−`
N(1)−p−1

)
where ` is the number of lines parallel to ∆(1) that are not disjoint with
S.

The first statement actually follows from Green’s linear syzygy theorem [8,
Theorem 7.1] combined with Koszul duality. The second statement already ap-
peared for n = 2 as a conjectural formula in [3], where more information on
Koszul cohomology of toric surfaces can be found. Recall that κp,q = 0 when-
ever q > n, and note that if ∆(1) = ∅ then κp,q = 0 whenever q ≥ n as follows
from [11, Proposition IV.5 p. 17-18].

Theorem 4. In the context of conjecture 2 the first non-zero entry on the n-th
row equals

κ(d+n
d )−(d−b−1

n )−n,n =

((b+2n+1
n

)
+
(
d−b−1
n

)
− 2(

d−b−1
n

)
− 1

)
.

These two theorems will be proved at the end of section 2 using results from
section 3.

Corollary 5. For toric surfaces coming from polygons of lattice width two, we
know the entire Betti table explicitly.

κp,2 = max(p−N+N (1)+3, 0)

(
N − 3

p

)
, κp,1 = κp−1,2+p

(
N − 1

p+ 1

)
−2A

(
N − 3

p− 1

)
where A = N/2+N (1)/2−1 is the area of ∆. Of course κ0,0 = 1 and everything
else is zero.

The second formula comes from [3, lemma 1.3], the first follows directly from
our theorem 3.

Using [4, Theorem 1.3] one can deduce the following formula for the graded
Betti table of the canonical model of a tetragonal curve in a toric surface:

κg−p−2,1 = κp,2 = (g − p− 2)

(
g − 3

p− 2

)
+

2∑
i=1

max(p− bi − 1, 0)

(
g − 3

p

)
,

where b1, b2 are the tetragonal invariants introduced by Schreyer in [17, p. 127],
and g is the genus. Actually this formula is true for all tetragonal curves as
follows from the explicit minimal free graded resolution in Schreyer’s article.
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We include this explicit formula because it is not easy to find in the literature.

In section 2 we explain toric varieties, syzygies, Koszul cohomology and we
prove these theorems using results from section 3. We use Koszul duality [1, p.
21] which expresses Betti numbers on the n-th row in terms of Betti numbers
on the first row of the Betti table of the Serre dual line bundle.

The core of the article is section 3 where we construct an explicit basis for
the last non-zero entry on the first row of the graded Betti table of any graded
module of the form

⊕
q≥0H

0(qL+M) for line bunldes L,M with H0(M) = 0,

H0(L) 6= 0, H0(L+M) 6= 0 on any normal projective toric variety. This comes
down to constructing a basis of the kernel of the map

p∧
H0(L)⊗H0(L+M)→

p−1∧
H0(L)⊗H0(2L+M)

with p = dimH0(L+M)−1. Theorems 3 and 4 can then be proved from results
from section 3, namely theorem 9 (which actually also follows from Green’s linear
syzygy theorem [8, Theorem 7.1]), corollary 21 and theorem 22.

Acknowledgements

This article is part of my Ph.D thesis which is funded by the Research Foun-
dation Flanders (FWO). It was my colleagues Wouter Castryck and Filip Cools
who noticed patterns in Betti tables of certain toric surfaces, which motivated
me to find an explicit basis. I am also grateful to the referee for carefully reading
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2 Toric varieties and graded Betti tables

Projectively normal toric varieties

We work over an arbitrary field k. By lattice points we mean points of Zn.
Projective toric varieties are built out of polytopes ∆ ⊆ Rn that are the convex
hull of a finite set of lattice points. This works as follows. Suppose ∆ is n-
dimensional and let P1, . . . , PN∆

be a list of all lattice points of ∆, we define an
embedding

φ∆ : (A1\{0})n → PN∆−1 : (λ1, . . . , λn) 7→
( n∏
i=1

λ
P1,i

i : . . . :

n∏
i=1

λ
PN∆,i

i

)
,

where Pj,i is the i-th coordinate of Pj . Let X∆ be the closure of the image of
φ∆. If it happens that a∆ ∩ Zn + b∆ ∩ Zn = (a + b)∆ ∩ Zn for all positive
integers a, b, then the polytope is called normal. In this case the projective toric
variety corresponding to ∆ is just X∆ and it is projectively normal.

Example.
The d-fold Veronese embedding of projective space is given by a polytope of the
following form:

∆ = {(x1, . . . , xn) ∈ (R≥0)n|x1 + . . .+ xn ≤ d}
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This gives the Veronese embedding of Pn into PN−1 where N = #∆ ∩ Zn =(
n+d
d

)
. For instance if n = 2 and d = 2 we get the embedding

A1\{0} × A1\{0} → P5 : (x, y) 7→ (x2 : xy : x : y2 : y : 1).

The monomials x2, xy, x, y2, y, 1 correspond to the lattice points of the triangle
∆ with vertices (2, 0), (0, 2), (0, 0).

1 x2

y2

x

xyy

When taking the Zariski closure of the image this corresponds to the standard
Veronese embedding

P2 → P5 : (x : y : z) 7→ (x2 : xy : xz : y2 : yz : z2).

If ∆ is not normal then one can still take integer multiples q∆, q ≥ 1, which
will be normal for sufficiently large q. One can then associate to ∆ the toric
variety Xq∆ where q is large enough so that q∆ is normal. This variety does not
depend on q (but its embedding does). However for simplicity we will restrict
to the case when ∆ is normal. The homogeneous coordinate ring of X∆ is given
by ⊕

q≥0

Vq∆ =
⊕
q≥0

H0(X, qL),

where by Vq∆ we mean the vector space spanned by the monomials (possibly
with negative exponents) xi11 . . . xinn corresponding to lattice points (i1, . . . , in) ∈
q∆. By L we mean the very ample line bundle coming from the embedding into
projective space.

Graded Betti tables

Given any projective variety X with homogeneous coordinate ring R =
⊕

q≥0

H0(X, qL) we can consider the graded Tor modules

ToriS∗H0(X,L)(R, k).

Note that R is a graded module over the symmetric algebra S∗H0(X,L). These
graded Tor modules can be computed either by taking a graded free resolution
of R (syzygies) or by taking a graded free resolution of k (Koszul cohomology).
We will mainly work with the latter. The graded Betti table is a table of non-
negative integers κp,q, in the p-th column and the q-th row, where p, q ≥ 0. They
are defined as the dimension over k of the degree p+q part of TorpS∗H0(X,L)(R, k).

In general the table has the following shape:

0 1 2 3 4 . . .
0 1 0 0 0 0 . . .
1 0 κ1,1 κ2,1 κ3,1 κ4,1 . . .
2 0 κ1,2 κ2,2 κ3,2 κ4,2 . . .
3 0 κ1,3 κ2,3 κ3,3 κ4,3 . . .
...

...
...

...
...

...
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Example.
When ∆ is the convex hull of (2, 0), (0, 2), (0, 0) we have the minimal graded
free resolution of R:

0 −→ F3
d3−→ F2

d2−→ F1
d1−→ S∗V∆∩Z2

d0−→ R.

Here V∆∩Z2 is the vector space spanned by the monomials x2, xy, x, y2, y, 1 cor-
responding to the lattice points of ∆. The symmetric algebra S∗V∆∩Z2 is the
polynomial ring in 6 variables x(2,0), x(1,1), x(1,0), x(0,2), x(0,1), x(0,0) and is the
homogeneous coordinate ring of P5. The image of d0 corresponds to the ideal
cutting out the Veronese surface. This ideal is generated by six elements:

x(2,0)x(0,2) − x2
(1,1), x(2,0)x(0,0) − x2

(1,0), x(0,2)x(0,0) − x2
(0,1),

x(2,0)x(0,1) − x(1,0)x(1,1), x(1,0)x(0,2) − x(0,1)x(1,1), x(1,1)x(0,0) − x(1,0)x(0,1).

These constitute a minimal set of generators of the ideal. So F1 is a free graded
module of rank six over the polynomial ring S∗V∆∩Z2 where the basis elements
all have degree two and are mapped by d0 to the generators of the ideal. This
makes sure that d0 is a degree-preserving morphism of modules. This means
that κ1,1 = 6.
The image of d1 consists of the relations between these generators, called syzy-
gies. It turns out that there is a minimal generating set of eight syzygies of
degree 3, so that F2 is a rank 8 graded free module where the basis elements
have degree 3. So κ2,1 = 8. It turns out that F3 has rank 3 where the basis
elements have degree 4. This gives the graded Betti table:

0 1 2 3 4 . . .
0 1 0 0 0 0 . . .
1 0 6 8 3 0 . . .
2 0 0 0 0 0 . . .
...

...
...

...
...

...

Note that κ0,0 = 1 because the polynomial ring S∗V∆∩Z2 is a free module of
rank one over itself with the monomial 1 as a generator.

Koszul cohomology

Let L,N be line bundles on a complete variety X. Let S∗V = S∗H0(X,L) be
the symmetric algebra over H0(X,L), then

⊕
q≥0H

0(X, qL + N) is a graded
module over S∗V . We define the Koszul cohomology space Kp,q(X,N,L) as the
homology of the following sequence:

p+1∧
V ⊗H0(X, (q − 1)L+N)

δp+1−→
p∧
V ⊗H0(X, qL+N)

δp−→
p−1∧

V ⊗H0(X, (q + 1)L+N)

where δp(v1 ∧ . . . ∧ vp ⊗ w) =
∑p
i=1(−1)iv1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp ⊗ (viw). The

v̂i indicates that vi is removed from the wedge product. When N = 0 we
write Kp,q(X,L) = Kp,q(X, 0, L). We denote the dimension of Kp,q(X,N,L)
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(resp. Xp,q(X,L)) by κp,q(X,N,L) (resp. κp,q(X,L)). If L is the very ample
line bundle coming from a projective embedding this agrees with our earlier
definition of κp,q using syzygies.

Example.
For our Veronese example with n = d = 2 we will construct an explicit element
of the cohomology space K2,1(X,L):

y2 ∧ xy ⊗ xz − y2 ∧ yz ⊗ x2 + xy ∧ yz ⊗ yx ∈
2∧
V∆ ⊗ V∆,

which is in the kernel of δ2, so it defines an element of K2,1(X,L).

We now turn to the proof of theorem 1 and corollary 2. To any n-dimensional
convex lattice polytope ∆ ⊆ Rn one can associate the inner normal fan Σ [5,
p. 321] whose rays ρ are in one-to-one correspondence with the facets of ∆ and
the torus-invariant prime divisors Dρ. In general for any torus-invariant divisor
D =

∑
ρ aρDρ the vector space H0(X,D) has a basis that naturally corresponds

to {P ∈ Zn|∀ρ ∈ Σ(1) : 〈P, ρ〉 ≥ −aρ} where Σ(1) is the set of rays of the
fan Σ. Multiplication of these global sections corresponds to coordinatewise
addition of lattice points. The divisor whose global sections correspond to ∆
gives the very ample line bundle of our embedding into projective space. Note
that in this setting nothing changes when extending the field k. In the next
proof we assume k algebraically closed. We also use in the following proof
that taking the pull-back of a line bundle through a birational morphism of
projective normal varieties preserves global sections. We will also use the fact
that adding

∑
ρ∈Σ(1)−Dρ to a divisor

∑
ρ aρDρ amounts to taking the interior

of the corresponding polytope (∗).

Proof of theorem 3 using results from the next section. This will rely on Koszul
duality which requires smoothness, so let X ′ → X be a toric resolution of singu-
larities as in [5, p. 515-519] and let K =

∑
ρ∈Σ′(1)−Dρ be the canonical divisor

of X ′. Let L be the line bundle on X coming from its projective embedding.
The pull-back of L to X ′ (which we also denote by L) is globally generated on
X ′ and hence nef. By Demazure vanishing [5, p. 410] Hi(X ′, qL) = 0, ∀i, q ≥ 1.
By Koszul duality [1, p. 21] we have

κN−1−n−p,n(X,L) = κN−1−n−p,n(X ′, L) = κp,1(X ′,K, L), ∀p ≥ 0.

The first equality follows because H0(X, qL) = H0(X ′, qL), ∀q ≥ 0 as taking
the pull-back of L through X ′ → X preserves global sections. We claim that
κp,1(X ′,K, L) is the dimension of the kernel of the following map:

δ :

p∧
VS ⊗ VT →

p−1∧
VS ⊗ V(2∆)(1)∩Zn

where by VS (resp. VT ) we mean a vector space with S (resp. T ) as a basis.
This is because H0(X ′,K) = 0 and H0(X ′, L+K) corresponds to T = ∆(1)∩Zn
which we know by (∗). Note that the image of δ is contained in

∧p−1
VS⊗VS+T .

Now all the results of the theorem follow from theorem 9, corollary 21 and
theorem 22, except when p = 0 and N (1) = 1, but then δ = 0 and the result is
easy. For the case where ∆(1) is one-dimensional, note that ` (as in theorem 3)
equals N −#X, with X as in theorem 22.
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By the same duality as in the proof of theorem 3 it follows that κp,q = 0
whenever q > n.

Proof of theorem 4. Denote by κp,q(b; d) the dimension of the Kuszul cohomol-
ogy of the graded module ⊕

i≥0

H0(OPn(b+ id)),

Let N =
(
n+d
n

)
be the number of lattice points in dΣ where

Σ = {(x1, . . . , xn) ∈ R≥0|x1 + . . .+ xn ≤ d}

is the standard simplex of dimension n. As in the proof of theorem 3 we have
duality:

κp,n(b; d) = κN−n−p−1,1(−b− n− 1; d).

Strictly speaking, we cannot apply theorem [1, p. 21], but the proof obviously
generalizes and the vanishing condition will be satisfied because H1, . . . ,Hn−1

of any line bundle on Pn will vanish. This κN−n−p−1,1(−b − n − 1; d) is the
dimension of the kernel of

N−n−p−1∧
S ⊗ T →

N−n−p−2∧
S ⊗ S + T,

where T = (d−b−n−1)Σ∩Zn and S = dΣ∩Zn so that X = (b+n+1)Σ∩Zn.
Applying theorem 9 we find that κp,n(b; d) = 0 whenever N −n−p−1 ≥ #T =(
d−b−1
n

)
, or equivalently p <

(
n+d
n

)
−
(
d−b−1
n

)
− n. The formula for κp,n(b; d)

when p =
(
n+d
n

)
−
(
d−b−1
n

)
− n follows from corollary 21.

3 Combinatorial proof

In this section we do not require our polytopes to be normal. From now on in-
stead of working with spaces of monomials VS , VT etcetera, we replace monomi-
als xi11 . . . xinn by the corresponding lattice point (i1, . . . , in). Let S and T ⊆ Zn
with T finite, let p ≥ 0. We abusively write S (resp. T ) for a vector space with
S (resp. T ) as a basis. We are interested in the kernel of the following map:

δ :

p∧
S ⊗ T →

p−1∧
S ⊗ (S + T ) :

P1 ∧ . . . ∧ Pp ⊗Q 7−→
p∑
i=1

(−1)iP1 ∧ . . . ∧ P̂i ∧ . . . ∧ Pp ⊗ (Q+ Pi),

where
∧−1

of a vector space is zero. By Q+Pi we mean coordinate-wise addition
in Zn.

Definition 6. Let S and T be finite subsets of Zn and p ≥ 0 an integer. If
x ∈

∧p
S⊗T then x can be uniquely written (up to order) as a linear combination

(with non-zero coefficients) of expressions of the form P1 ∧ . . . ∧ Pp ⊗ Q with
P1, . . . , Pp ∈ S, Q ∈ T and P1 > . . . > Pp for some total order on S. We define
the support of x, denoted supp(x), as the convex hull of the set of points Pi
occurring in the wedge part of the terms of x.
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Definition 7. A lattice pre-order on Zn is a reflexive transitive relation ≤
on Zn such that ∀P1, P2 ∈ Zn: P1 ≤ P2 or P2 ≤ P1 and ∀P1, P2, P3 ∈ Zn: if
P1 ≤ P2 then P1+P3 ≤ P2+P3. We call ≤ a lattice order if it is anti-symmetric.

One way to obtain a lattice pre-order is to take a linear map L : Rn → R

and set P1 ≤ P2 if L(P1) ≤ L(P2). If the coefficients defining L are linearly
independent over Q then it defines a lattice order. We write P1 < P2 if P1 ≤
P2 and not P2 ≤ P1, and we write P1 ∼ P2 if P1 ≤ P2 and P2 ≤ P1. In
the proof of the following lemma we will use the property that for any points
P, PM , Q,Q

′ ∈ Zn and any pre-order on Zn, if P ≤ PM and Q ≤ Q′ then either
P +Q < PM +Q′ or PM ∼ P and Q′ ∼ Q.

Lemma 8. Let S and T be finite subsets of Zn, p ≥ 1. Let x ∈ ker δ be non-zero
with δ as above. Let ≤ be a lattice pre-order such that supp(x) has a unique
maximum PM . Let S′ = supp(x)\{PM} and T ′ the set of non-maximal points

Q ∈ T . Finally, let δ′ :
∧p−1

S′⊗T ′ →
∧p−2

S′⊗(S′+T ′) be defined analogously
to δ. Then there exists a non-zero y ∈ ker δ′ such that

x = PM ∧ y + terms not containing PM in the ∧ part.

Proof. Write

x =
∑
i

λiPM ∧P2,i ∧ . . .∧Pp,i⊗Qi + terms not containing PM in the ∧ part,

without any redundant terms. Then define

y =
∑
i

λiP2,i ∧ . . . ∧ Pp,i ⊗Qi.

All we have to prove now is that y ∈ ker(δ′). It is clear that supp(y) ∩ Zn ⊆
S′. Let us prove that every Qi in this expression is in T ′. We know that
Qi ∈ T . If it is not in T ′ then it is maximal. But then, applying δ, the term
−P2,i∧ . . .∧Pp,i⊗(PM +Qi) of δ(x) has nothing to cancel against, contradicting
the fact that δ(x) = 0. The reason that it has nothing to cancel against is that
all terms in δ(x) end with ⊗(P + Q) with P ≤ PM and Q ≤ Qi so that
P +Q < PM +Qi unless P ∼ PM , and Q ∼ Qi. As PM is the unique maximum
of supp(x) P ∼ PM implies P = PM . But if Q 6= Qi and P = PM then we
still have P + Q 6= PM + Qi, so that we have only one term of δ(x) ending on
⊗(PM +Qi), which has nothing to cancel against.
So y is in the domain of δ′. We now prove that δ′(y) = 0:

0 = δ(x) = −PM ∧ δ′(y) + terms not containing PM in the ∧ part.

Because terms of PM ∧ δ′(y) cannot cancel against terms without PM in the ∧
part, δ′(y) must be zero.

Example.
Our Veronese example of n = d = 2 becomes S = T = {(2, 0), (1, 1), (1, 0),

(0, 2), (0, 1), (0, 0)} and in the new notation the explicit cochain in
∧2

S ⊗ S
becomes

x = (0, 2) ∧ (1, 1)⊗ (1, 0)− (0, 2) ∧ (0, 1)⊗ (2, 0) + (1, 1) ∧ (0, 1)⊗ (1, 1).
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If we take the pre-order coming from the linear map L(x1, x2) = x2 then PM =
(0, 2) is the unique maximum of supp(x) = {(0, 2), (1, 1), (0, 1)} and the lemma
gives y = (1, 1)⊗(1, 0)−(0, 1)⊗(2, 0). Indeed, x = (0, 2)∧y+(1, 1)∧(0, 1)⊗(1, 1)
and the last term does not have (0, 2) in the wedge part.

PM

supp(x)

x1

x2

1 2

1

2

S

x1

x2

1 2

1

2

T ′

Theorem 9. Notation as above. Suppose #T ≤ p, then δ :
∧p

S ⊗ T →∧p−1
S ⊗ (S + T ) is injective.

Proof. By induction on p. The case p = 0 is trivial as the domain of δ is zero
(because T = ∅).
Let p ≥ 1, and take a non-zero element x of the kernel. Let ≤ be a lattice order.
Now apply the construction of lemma 8 to obtain S′ and T ′ and a non-zero
y ∈ ker δ′. Since #T ′ < #T , we have #T ′ ≤ p − 1. Applying the induction
hypothesis we get a contradiction.

Note that this also follows from Green’s Linear syzygy theorem [8, Theorem 7.1]
applied to the graded module

⊕
q≥0 qS + T over the graded ring

⊕
q≥0 qS. We

give this direct proof because we rely on the same technique later.
We now want to construct elements of the kernel of δ when p = #T − 1. To
this end we do the following construction: let X = {P ∈ Zn|P + T ⊆ S} and
consider the elements of X as variables. To any monomial A =

∏
P∈X P

aP of
degree p with variables in X we will associate an element xA of the kernel of δ.

Let P1, . . . , Pp be a list of points in X such that each point P occurs aP
times in the list. Let Q1, . . . , Qp+1 be a list of all points of T . Now we define

xA =
∏
P

1

aP !

∑
σ∈Sp+1

sgn(σ)(P1 +Qσ(1)) ∧ . . . ∧ (Pp +Qσ(p))⊗Qσ(p+1).

Up to sign, this will be independent of the choice of lists P1, . . . , Pp and
Q1, . . . , Qp+1.

Lemma 10. The xA we just constructed has integer coefficients and is in the
kernel of δ.

Proof. Consider permutations σ, σ′ ∈ Sp+1 as in the previous definition such
that σ({i|Pi = P}) = σ′({i|Pi = P}) for all P ∈ X. We claim that the terms
in xA corresponding to σ and σ′ will be equal. This is because in the wedge
product the only thing that changes is the order, and the change in sign caused
by changing the order is compensated by the change in sgn(σ).
Now the number of bijections σ′ with the property that σ({i|Pi = P}) =
σ′({i|Pi = P}), ∀P is equal to

∏
P aP !, hence the expression will have inte-

ger coefficients.
We now prove that xA is in the kernel of δ. Obviously the sums Pi +Qσ(i) are

10



all in S. We claim that when applying δ everything cancels. Let C be the set
of all ordered pairs (σ, i) where σ ∈ Sp+1 and i ∈ {1, . . . , p}. Then(∏

P

aP !
)
δ(xA)

=
∑

(σ,i)∈C

(−1)isgn(σ)(P1 +Qσ(1)) ∧ . . . ∧ ̂(Pi +Qσ(i)) ∧ . . . ∧ (Pp +Qσ(p)))

⊗ (Qσ(p+1) +Qσ(i) + Pi).

We now partition C into (unordered) pairs: (σ, i) and (σ′, i′) belong to the same
pair if either they are equal or the following conditions are met:

• i = i′

• σ(j) = σ′(j), for all j /∈ {i, p+ 1}

• σ(i) = σ′(p+ 1) and σ′(i) = σ(p+ 1).

These conditions imply that σ′−1 ◦ σ is a transposition, and hence has sign -1.
One now easily sees that pairs in C yield terms that cancel.

Example.
Suppose S = {(2, 0), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)} and T = {(1, 0), (0, 1), (0, 0)}
and p = 2. Then X = {(1, 0), (0, 1), (0, 0)}. Take for example the monomial
A = (1, 0)(0, 1). If we take the lists (1, 0), (0, 1) and (1, 0), (0, 1), (0, 0) we get:

xA =(1, 0) ∧ (1, 1)⊗ (0, 1)− (1, 0) ∧ (0, 2)⊗ (1, 0) + (2, 0) ∧ (0, 2)⊗ (0, 0)

−(2, 0) ∧ (0, 1)⊗ (0, 1) + (1, 1) ∧ (0, 1)⊗ (1, 0)− (1, 1) ∧ (1, 1)⊗ (0, 0).

Of course the last term is zero. Note that each term is of the form P ∧ Q ⊗
((2, 2)− P −Q) where P belongs to the lower right blue triangle and Q to the
upper left one.

(1,0) (2,0)

(0,1)

(0,2)

(1,1)

(0,0)

S

(0,0) (1,0)

(0,1)

T

Example.
Suppose S = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)} and T =
{(0, 0), (1, 0), (0, 1), (1, 1)} so that X = {(0, 0), (1, 0), (2, 0)}, p = 3 and consider
the monomial A = (0, 0)2(2, 0), then we get

xA =− (0, 0) ∧ (1, 0) ∧ (3, 1)⊗ (0, 1) + (0, 0) ∧ (1, 0) ∧ (2, 1)⊗ (1, 1)

− (0, 0) ∧ (1, 1) ∧ (2, 1)⊗ (1, 0) + (0, 0) ∧ (1, 1) ∧ (3, 0)⊗ (0, 1)

− (0, 0) ∧ (0, 1) ∧ (3, 0)⊗ (1, 1) + (0, 0) ∧ (0, 1) ∧ (3, 1)⊗ (1, 0)

− (1, 0) ∧ (0, 1) ∧ (3, 1)⊗ (0, 0) + (1, 0) ∧ (0, 1) ∧ (2, 0)⊗ (1, 1)

− (1, 0) ∧ (1, 1) ∧ (2, 0)⊗ (0, 1) + (1, 0) ∧ (1, 1) ∧ (2, 1)⊗ (0, 0)

− (0, 1) ∧ (1, 1) ∧ (3, 0)⊗ (0, 0) + (0, 1) ∧ (1, 1) ∧ (2, 0)⊗ (1, 0)

11



In this case the first two wedge factors in each term are from the left blue square
and the third wedge factor is from the right blue square. In the definition there
are 24 terms but each term occurs twice and we divide by two so only twelve
terms are left.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

S

(0,0) (1,0)

(0,1) (1,1)

T

One way to get rid of the factor
∏
P

1
aP ! is to only sum over one element of

each equivalence class, where two permutations σ, σ′ are equivalent if σ′({i|Pi =
P}) = σ′({i|Pi = P}) for all P ∈ X. So the construction works over any field.

Proposition 11. The xA for distinct monomials A are linearly independent
and the support of any linear combination of them is the convex hull of the
union of the supp(xA) occurring with non-zero coefficient.

Proof. By induction on p. In the case p = 0 there is only one monomial namely
the constant monomial 1. The corresponding xA is ∧(∅) ⊗ Q where Q is the
unique point of T . So the statement is obvious. So suppose p ≥ 1. Let x =∑
j λjxAj with the Aj distinct. We have to prove that

supp(x) = conv
(⋃

j

supp(xAj )
)
6= ∅.

To prove this equality, it is enough to prove that every linear map L : Rn → R

attains the same maximum on both sides of the equation. It is enough to show
this when L|Zn is injective (as these L are dense). Given such an L, let ≤ be
the order it induces on Zn. Let QM be the maximum of T for this order and
PM ∈ X the greatest point occurring as a variable in some monomial Aj . We
will prove that PM +QM is the maximum of both sides of the equation, proving
that L attains the same maximum on both, and that both sides are non-empty.
Obviously nothing greater than PM +QM can possibly occur in any supp(xAj ).
We have

x =
∑
j

PM |Aj

λjxAj +
∑
j

PM does not occur in Aj

λjxAj .

For any Aj containing PM we define Bj as the monomial Aj/PM of degree
p − 1. Using T ′ = T\{QM} we can associate to any Bj an element xBj so
that xAj = ±(PM + QM ) ∧ xBj plus terms where everything in the ∧ part is
smaller than PM +QM . By induction xBj 6= 0 so PM +QM is the maximum of
supp(xAj ). Finally

x = (PM +QM ) ∧
∑
j

PM |Aj

± λjxBj + terms without PM +QM in the ∧ part.

By induction the linear combination of the xBj is not zero so PM +QM is the
maximum of supp(x).
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So far, we have studied the kernel of the map

δ :

p∧
S ⊗ T →

p−1∧
S ⊗ (S + T ) :

P1 ∧ . . . ∧ Pp ⊗Q 7−→
p∑
i=1

(−1)iP1 ∧ . . . ∧ P̂i ∧ . . . ∧ Pp ⊗ (Q+ Pi).

We now introduce the following maps

δi : S⊗p ⊗ T → S⊗(p−1) ⊗ (S + T ) :

P1 ⊗ . . .⊗ Pp ⊗Q 7→ P1 ⊗ . . .⊗ P̂i ⊗ . . .⊗ Pp ⊗ (Pi +Q).

This time we look at the intersection of the kernels of the δi. If p = 0 there is
nothing to intersect so we put

⋂0
i=1 ker δi = T .

We introduce this new machinery because it helps us prove our main result.

Example. Let S = T = {(1, 1), (1, 0), (0, 1), (0, 0)} then

x =(1, 0)⊗ (0, 1)⊗ (0, 0)− (1, 0)⊗ (0, 0)⊗ (0, 1)

−(0, 0)⊗ (0, 1)⊗ (1, 0) + (0, 0)⊗ (0, 0)⊗ (1, 1)

is in ker δ1 ∩ ker δ2.

Proposition 12. There is an injective map

ι :

p∧
S⊗T → S⊗p⊗T : P1∧ . . .∧Pp⊗Q 7→

∑
σ∈Sp

sgn(σ)Pσ(1)⊗ . . .⊗Pσ(p)⊗Q

and ι(ker δ) ⊆
⋂p
i=1 ker δi

Proof. Note that the definition of ι does not depend on any choices. It is injective
as cancellation is impossible. Let us prove the last assertion. We define

g :

p−1∧
S ⊗ (S + T )→ S⊗(p−1) ⊗ (S + T )

analogously to ι. If we can prove that δi ◦ ι = (−1)ig ◦ δ for all i then it follows
that ι(ker δ) ⊆

⋂
i ker δi. Let x = P1 ∧ . . . ∧ Pp ⊗Q, we compute

δi(ι(x)) =
∑
σ∈Sp

sgn(σ)Pσ(1) ⊗ . . .⊗ P̂σ(i) ⊗ . . .⊗ Pσ(p) ⊗ (Pσ(i) +Q)

g(δ(x)) =

p∑
j=1

∑
τ∈Sp−1

(−1)jsgn(τ)Pτ ′(1) ⊗ . . .⊗ Pτ ′(p−1) ⊗ (Pj +Q),

where τ ′ = (j j + 1 . . . p) ◦ τ . Here (j j + 1 . . . p) maps every number from j
up to p − 1 to itself plus one and everything smaller than j to itself, and p is
mapped to j. For every τ ∈ Sp−1 we formally put τ(p) = p so that Sp−1 ⊆ Sp.
There is a bijection from Sp to {1, . . . , p} × Sp−1 mapping σ to (j, τ) where

σ ◦ (i i+ 1 . . . p) = (j j + 1 . . . p) ◦ τ.

Note that sgn(σ)(−1)p−i = sgn(τ)(−1)p−j . Using this bijection one sees that
δi(ι(x)) = (−1)ig(δ(x)). This proves that δi ◦ ι = (−1)ig ◦ δ and hence that
ι(ker δ) ⊆ ker δi.
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For any sequence P1, . . . , Pp of points in X = {P |P +T ⊆ S} one defines an
element of

⋂p
i=1 ker δi:

xP1,...,Pp :=
∑

σ∈Sp+1

sgn(σ)(P1 +Qσ(1))⊗ . . .⊗ (Pp +Qσ(p))⊗Qσ(p+1)

where Q1, . . . , Qp+1 is a list of all the points of T . Whenever we use this notation
we assume that #T = p+ 1. Just as the xA are intended to be a basis of ker δ,
the xP1,...,Pp are intended to be a basis of

⋂p
i=1 ker δi.

Lemma 13. Consider the right group action of Sp on the set of sequences
P1, . . . , Pp ∈ X by permutation. So P1, . . . , Pp · σ = Pσ(1), . . . , Pσ(p). For a
given such sequence let A be the monomial P1 . . . Pp, then

ι(xA) =
∑

σ̄∈Stab(P1,...,Pp)\Sp

xPσ(1),...,Pσ(p)
.

(We sum over the right cosets of the stabilizer.)

Proof. It is enough to prove this equality in characteristic zero. We have

ι(xA)
∏
P

aP !

=ι
( ∑
σ∈Sp+1

sgn(σ)(P1 +Qσ(1)) ∧ . . . ∧ (Pp +Qσ(p))⊗Qσ(p+1)

)
=
∑
τ∈Sp

∑
σ∈Sp+1

sgn(σ ◦ τ)(Pτ(1) +Qσ(τ(1)))⊗ . . .⊗ (Pτ(p) +Qσ(τ(p)))⊗Qσ(p+1)

=
∑
τ∈Sp

∑
σ′∈Sp+1

sgn(σ′)(Pτ(1) +Qσ′(1))⊗ . . .⊗ (Pτ(p) +Qσ′(p))⊗Qσ′(p+1)

=
∑
τ∈Sp

xPτ(1),...,Pτ(p)

=
∏
P

aP !
∑

τ̄∈Stab(P1,...,Pp)\Sp

xPτ(1),...,Pτ(p)

The last equality follows because the order of the stabilizer is
∏
P aP !. The

result follows by removing the factor
∏
P aP !.

Lemma 14. The span of the xP1,...,Pp intersected with ι(ker δ) is generated by
the ι(xA). In particular if the xP1,...,Pp are a basis of

⋂p
i=1 ker δi then the xA

are a basis of ker δ.

Proof. We have a right group action of Sp on S⊗p ⊗ T , restricting to one on⋂p
i=1 ker δi: any σ ∈ Sp maps P1⊗ . . .⊗Pp⊗Q to sgn(σ)Pσ(1)⊗ . . .⊗Pσ(p)⊗Q.

Clearly any element of ι(ker δ) is fixed by this action. The action of Sp on the
set of sequences P1, . . . , Pp in X from the previous lemma is compatible with
the action on S⊗p⊗ T in the sense that xP1,...,Pp · σ = xPσ(1),...,Pσ(p)

. Choose an
element Rj = P1,j , . . . , Pp,j out of each orbit of the action on sequences.
Consider an element x of ι(ker δ) that is a linear combination of the xP1,...,Pp .
We prove that it is generated by the ι(xA). Write it as a linear combination of
the xP1,...,Pp :

x =
∑
j

∑
σ̄∈Stab(Rj)\Sp

λj,σ̄xPσ(1),j ,...,Pσ(p),j
.
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Applying the action on S⊗p ⊗ T to this expression permutes the λj,σ̄, for each
j. Since x is fixed by the action of Sp and the xP1,...,Pp are linearly independent
(by lemma 18 below), λj,σ̄ doesn’t depend on σ. So x is a linear combination of
the ∑

σ̄∈Stab(Rj)\Sp

xPσ(1),j ,...,Pσ(p),j
= ι(xA),

where A = P1,j . . . Pp,j . Note that we used the previous lemma in the last
equality. This proves the first assertion. The second assertion follows from the
first, the injectivity of ι and proposition 11.

Having established a connection between the
∧p

S⊗T context and the S⊗p⊗
T context, we now focus on the latter.

Definition 15. For any x ∈
⋂p
i=1 ker δi and i ∈ {1, . . . , p} we define suppi(x)

to be the convex hull of the set of lattice points occurring in the i-th factor of
some term of x.

The following lemma is analogous to lemma 8.

Lemma 16. Let x ∈
⋂p
i=1 ker δi and let ≤ be a lattice pre-order on Zn. Fix an

i and suppose P ∈ suppi(x) is strictly greater than any other point of suppi(x).
Let T ′ be the set of non-maximal points in T . Let δ′1, . . . , δ

′
p−1 : S⊗(p−1)⊗T ′ →

S⊗(p−2) ⊗ (S + T ′) be defined analogously to δ1, . . . , δp. Write

x =
∑
j

λjP1,j⊗. . .⊗P (place i)⊗. . .⊗Pp,j⊗Qj+terms not having P at place i

y =
∑
j

λjP1,j ⊗ . . .⊗ Pp,j ⊗Qj (with P removed from place i).

Then y ∈
⋂p−1
j=1 ker δ′j.

We omit the proof since it is analogous to that of lemma 8.

Example. Let S = T = {(1, 1), (1, 0), (0, 1), (0, 0)} then

x =(1, 0)⊗ (0, 1)⊗ (0, 0)− (1, 0)⊗ (0, 0)⊗ (0, 1)

−(0, 0)⊗ (0, 1)⊗ (1, 0) + (0, 0)⊗ (0, 0)⊗ (1, 1)

is in ker δ1∩ker δ2. If we take the order coming from the linear map L(x1, x2) =
x2 then PM = (0, 1) is the unique maximum of supp2(x) = {(0, 1), (0, 0)}.
Applying the lemma with i = 2 we get y = (1, 0)⊗ (0, 0)− (0, 0)⊗ (1, 0).

supp1(x)
x1

x2

S supp2(x)

x1

x2

S

PM

Lemma 17. If p ≥ #T then
⋂p
i=1 ker δi = 0.

Again the proof is analogous to that of theorem 9.
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Lemma 18. Let δi : S⊗p⊗T → S⊗(p−1)⊗(S+T ) be the usual maps, p = #T−1.
Let x =

∑
j λjxP1,j ,...,Pp,j be a linear combination with non-zero coefficients then

suppi(x) is the convex hull of
⋃
j suppi(xP1,j ,...,Pp,j ). In particular the xP1,...,Pp

are linearly independent.

One can prove this with the same technique as proposition 11.

Lemma 19. Let ∆ be a lattice polytope of dimension at least two with p + 1
lattice points and let δi : (Zn)⊗p ⊗ (∆ ∩ Zn) → (Zn)⊗(p−1) ⊗ Zn be the usual
maps. Then for all x ∈

⋂p
i=1 ker δi\{0} and i ∈ {1, . . . , p} we have

∆−∆ ⊆ suppi(x)− suppi(x).

Note that the lemma can fail if ∆ is one-dimensional. If n = 1, ∆ = [0, 2]
and x = v0⊗v0⊗v2−v0⊗v1⊗v1−v1⊗v0⊗v1+v1⊗v1⊗v0 then supp1(x) = [0, 1]
and the conclusion of the lemma fails.

Proof. We prove this by induction on p. We can suppose i = 1 without loss of
generality. Let x ∈

⋂p
i=1 ker δi\{0} and take v ∈ (∆−∆)\(supp1(x)−supp1(x))

with integer coordinates. Let P1, P2 ∈ ∆∩Zn with P2−P1 = v. Using a unimod-
ular transformation we can suppose P1 = (0, 0, . . . , 0) and P2 = v = (d, 0, . . . , 0)
for some d > 0.
Case 1: ∆\[P1, P2] contains more than one lattice point.
Take a linear map L : Rn → R that does not attain a maximum at P1 or
P2 on ∆. We take L to attain its maximum on supp2(x) at only one point.
This induces a lattice pre-order ≤. We apply lemma 16 for place 2 to ob-
tain S′, T ′ and a non-zero y ∈

⋂p−1
j=1 ker(δ′j) with supp1(y) ⊆ supp1(x), so

[P1, P2] − [P1, P2] * supp1(y) − supp1(y). If #T ′ = p we get a contradiction
with the induction hypothesis and if #T ′ < p we get a contradiction with lemma
17. We needed the fact that ∆\[P1, P2] contains more than one lattice point
to ensure that T ′ is of dimension at least two, so we can apply the induction
hypothesis.
Case 2: ∆\[P1, P2] contains only one lattice point.
We can suppose this lattice point is (0,−1, 0, . . . , 0). Note that p = #T −
1 = d + 1. Define L1, L2 : Zn → Z as follows: L1((x1, x2, . . .)) = −x1,
L2((x1, x2, . . .)) = x1−dx2. We claim that L1 (resp. L2) attains its maximum on
supp1(x) at more than one lattice point of supp1(x). Indeed, applying lemma 16
with L1 (resp. L2) and place 1 we get T ′ = {(1, 0, 0, . . . , 0), . . . , (d, 0, 0, . . . , 0)}
(resp. {(0, 0, . . . , 0), . . . , (d− 1, 0, 0, . . . , 0)}). In each case the y we obtain leads
to a contradiction with lemma 17, unless L1 (resp. L2) does not attain its maxi-
mum on supp1(x) at a unique point of supp1(x) (in which case we cannot apply
lemma 16). Therefore L1 (resp. L2) attains its maximum at more than one
lattice point of supp1(x).
Case 2a: n = 2.
Let (x1, y1) and (x1, y1 + 1) be points of supp1(x) on which L1 reaches its max-
imum and let (x2, y2) and (x2 + d, y2 + 1) be points of supp1(x) on which L2

reaches its maximum. We know by maximality that x2 ≥ x1 and L2((x1, y1)) ≤
L2((x2, y2)). If y2 ≤ y1 then [(x2, y2 + 1), (x2 + d, y2 + 1)] ⊆ supp1(x) and
similarly if y2 ≥ y1 then [(x1, y1 + 1), (x1 + d, y1 + 1)] ⊆ supp1(x). In any case
we get a contradiction with the fact that v = (d, 0) /∈ supp1(x)− supp1(x).

16



∇L1

∇L2

(x1, y1)

(x1, y1 + 1)

(x2, y2)

(x2 + d, y2 + 1)

Case 2b: n ≥ 3.
Let π : Zn → Zn−2 be the projection that deletes the first two coordinates. So
π(∆) = 0. Now δ1 =

∑
P∈Zn−2 δP where δP maps Q1 ⊗ . . .⊗Qp ⊗Q to

Q2 ⊗ . . .⊗Qp ⊗ (Q+Q1) if π(Q1) = P and to zero otherwise.

As π(Q + Q1) = π(Q) + π(Q1) = P , there can’t be any cancellation between
δP (x) for different P . Therefore δP (x) = 0 for all P ∈ Zn−2.
For any P ∈ Zn−2 and Q0 ∈ π−1(0) we define a linear automorphism

αP,Q0
: (Zn)⊗p ⊗ T −→ (Zn)⊗p ⊗ T

: Q1 ⊗ . . .⊗Qp ⊗Q 7→

{
(Q1 +Q0)⊗ . . .⊗Qp ⊗Q if π(Q1) = P

Q1 ⊗ . . .⊗Qp ⊗Q else.

(Recall that by Zn (resp. T ) we mean the vector space with Zn (resp. T ) as a
basis. So we define the linear map on basis elements and linearly extend them
over the base field.) For any P, P ′ ∈ Zn−2 and Q0 we define

α′P,P ′,Q0
: (Zn)⊗(p−1) ⊗ T −→ (Zn)⊗(p−1) ⊗ T

: Q1 ⊗ . . .⊗Qp−1 ⊗Q 7→

{
Q1 ⊗ . . .⊗Qp−1 ⊗ (Q+Q0) if P = P ′

Q1 ⊗ . . .⊗Qp−1 ⊗Q else.

Then α′P,P ′,Q0
◦ δP ′ = δP ′ ◦ αP,Q0

, from which it follows that αP,Q0
(x) is in

ker(δP ′) for all P ′ ∈ Zn−2 and Q0 ∈ π−1(0). So αP,Q0
(x) ∈ ker δ1 and if we

define

α′′P,Q0
: (Zn)⊗p−1 ⊗ T −→ (Zn)⊗p−1 ⊗ T

: Q1 ⊗ . . .⊗Qp−1 ⊗Q 7→

{
(Q1 +Q0)⊗ . . .⊗Qp−1 ⊗Q if π(Q1) = P

Q1 ⊗ . . .⊗Qp−1 ⊗Q else,

then α′′P,Q0
◦δi = δi◦αP,Q0 for all i = 2, . . . , p. Therefore αP,Q0(x) ∈

⋂p
i=1 ker δi.

supp1(x)

suppP (x)

supp1(αP,Q0(x))

suppP (αP,Q0
(x))

For any P ∈ Zn−2 we define suppP (x) as the convex hull of all points
in π−1(P ) that occur in the first factor of some term of x. Of course this
is at most two-dimensional. If we can prove that whenever this support is
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non-empty it contains more than 1 point where L1 (resp. L2) attains its max-
imum, then we can perform the same reasoning as in case 2a on suppP (x)
to obtain a contradiction. If we choose a Q0 with L1(Q0) (resp. L2(Q0))
high enough, then L1 (resp. L2) will attain its maximum on supp1(αP,Q0(x))
only at points of suppP (αP,Q0(x)). This means that there are at least two
points of suppP (αP,Q0

(x)) where L1 (resp. L2) attains its maximum. Since
suppP (αP,Q0

(x)) = Q0 + suppP (x) the same is true for suppP (x), so we are
done.

Theorem 20. If S = ∆′ ∩ Zn, T = ∆ ∩ Zn and p = #T − 1 with ∆,∆′

convex and ∆ a bounded lattice polytope of dimension greater than one, then the
expressions xP1,...,Pp with Pi ∈ X := {P |P + T ⊆ S} are a basis of

⋂p
i=1 ker δi

and hence the xA for monomials A of degree p with variables in X are a basis
of ker δ.

Proof. Let H be the set of all bounded convex lattice polytopes in Zn that are
either of dimension greater than one or have just two lattice points. By lemma
14 we only have to prove the first statement. In fact we only have to prove that
the xP1,...,Pp generate

⋂p
i=1 ker δi by lemma 18. We prove it for all ∆ ∈ H by

induction on p = #∆ ∩ Zn − 1.
Suppose first p = 1, then T has just two points and we have to show that
the kernel of δ1 : S ⊗ T → S + T is generated by expressions of the form
(P + Q1) ⊗ Q2 − (P + Q2) ⊗ Q1 where T = {Q1, Q2} and P ∈ X. Consider
the map f : S × T → S + T of sets given by addition of lattice points, then
every point P ′ of S + T is reached by at most two elements of S × T namely
(P +Q1, Q2) and (P +Q2, Q1) with P = P ′−Q1−Q2. We can write S ⊗ T as
the direct sum of the linear span of each f−1(P ) with P ∈ S+T . The kernel of
δ1 is the direct sum of the kernels of δ1 restricted to each span of f−1(P ). The
result easily follows.
Now for the induction step suppose p ≥ 2. Let QM be any extreme point of ∆
such that conv(∆ ∩ Zn\{QM}) ∈ H. Using some unimodular transformations
one can squeeze ∆ into (R≥0)n in such a way that QM = (xM , 0, . . . , 0) and all
other points of ∆ have first coordinate smaller than xM . We can also make sure
that the smallest first coordinate in ∆ is zero.
(One can do all this as follows: first one chooses a linear form L : Zn → Z

that attains its maximum on ∆ only at QM . One can choose L with inte-
ger coefficients with no prime factors that they all share. One then chooses

a unimodular transformation U1 : Zn
∼=→ Zn whose first component is L.

Then U1(QM ) has its first coordinate greater than that of any other point
of U1(∆). Next one chooses a unimodular transformation U2 of the form
(x1, . . . , xn) 7→ (x1, x2 − a2x1, . . . , xn − anx1) with a2, . . . , an large enough so
that all the other coordinates of U2(U1(QM )) are smaller than those of the
other points of U2(U1(∆)). Finally one uses a translation to map U2(U1(QM ))
to (xM , 0, . . . , 0) where xM is the greatest first coordinate on U2(U1(∆)) minus
the smallest.)
Claim: It is enough to prove the statement in the case where ∆′ = Rn.
Proof. Suppose it is true for ∆′ = Rn, we prove it for arbitrary ∆′. If x ∈⋂p
i=1 ker δi then it is a linear combination of some xP1,...,Pp . By lemma 18 their

supports are contained in the supports of x, hence in ∆′.
Henceforth we assume ∆′ = Rn. We put the lexicographical ordering on (Z≥0)n,
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meaning (x1, . . . , xn) < (x′1, . . . , x
′
n) if for the smallest i with xi 6= x′i we have

xi < x′i.
So suppose there exists an x ∈

⋂p
i=1 ker δi that is not a linear combination of

the xP1,...,Pp . We can translate the first factor so that supp1(x) ⊆ (R≥0)n. We
take x so that the lexicographic maximum of supp1(x) is minimal. (We can do
this because there are no lexicographic infinite descents in (Z≥0)n.) We will
find a contradiction. Let P ′M be the maximum of supp1(x) and e its first coor-
dinate. Let Qm ∈ ∆ ∩ Zn be some point with first coordinate zero. By lemma
19 QM − Qm ∈ ∆ − ∆ ⊆ supp1(x) − supp1(x). It follows that e ≥ xM . So
PM := P ′M − QM ∈ (R≥0)n because its first coordinate e − xM is ≥ 0 and all
the other coordinates are equal to those of P ′M .

x1

x2

supp1(x) P ′M

e
x1

x2

∆

QM
Qm

xM

We now apply lemma 16 to x to obtain y ∈
⋂p−1
i=1 ker δ′i where δ′i : (Zn)⊗(p−1) ⊗

T ′ → (Zn)⊗(p−2) ⊗ Zn are the usual maps and where T ′ = T\{QM}. This y
satisfies

x = P ′M ⊗ y plus terms whose first factor is < P ′M .

By induction

y =
∑
j

λjyP1,j ,...,Pp−1,j
, for some Pi,j ∈ Zn.

Using the fact that xPM ,P1,j ,...,Pp−1,j
= (PM + QM ) ⊗ yP1,j ,...,Pp−1,j

plus terms
whose first factor is smaller than PM + QM = P ′M we see that P ′M is the
maximum of supp1(x′) where

x′ =
∑
j

λjxPM ,P1,j ,...,Pp−1,j .

In x− x′ the terms with P ′M cancel so the maximum of supp1(x− x′) is smaller
than P ′M , contradicting the minimal choice of x. (The fact that PM ∈ (R≥0)n

is important because it ensures that supp1(x− x′) ⊆ (R≥0)n.)
The last assertion of the theorem follows from lemma 14.

Corollary 21. Let ∆ and ∆′ be convex lattice polytopes with ∆ of dimension
greater than 1 and T = ∆ ∩ Zn, S = ∆′ ∩ Zn and p = #T − 1. If

δ :

p∧
S ⊗ T →

p−1∧
S ⊗ (S + T )

is the usual map then the dimension of ker δ is
(
p+#X−1

p

)
where X = {P |P+T ⊆

S}.

This follows because the number of degree p monomials with variables in X
is
(
p+#X−1

p

)
. We end with the case when ∆ is 1-dimensional. This time the

formula works for all p.
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Theorem 22. Let ∆ = conv((0, 0, . . . , 0), (d, 0, . . . , 0)) with d ≥ 0 and let
∆′ ⊆ Zn a bounded convex lattice polygon, then for all p ≤ d + 1 the di-
mension of the kernel of the usual map δ is (d − p + 1)

(
#X
p

)
where X =

{P |P + {(0, . . . , 0), (1, 0, . . . , 0)} ⊆ S}, S = ∆′ ∩ Zn.

Proof. Let T = ∆ ∩ Zn. Put a lattice order ≤ on Zn such that (1, 0, . . . , 0) >
(0, . . . , 0). Let I = {(0, 0, . . . , 0), (1, 0, . . . , 0)}. For any P1 < . . . < Pp in X and
Q ∈ T with first coordinate in {p, . . . , d} we define∑

i1,...,ip∈I
(−1)i1+...+ip(P1 + i1) ∧ . . . ∧ (Pp + ip)⊗ (Q− i1 − . . .− ip), (1)

where we abusively write (−1)i1+...+ip for the power of −1 whose exponent is
the first coordinate of i1 + . . .+ ip. These expressions are in the kernel of δ. We
will prove that they are a basis of the kernel which proves the theorem because
there are exactly (d− p+ 1)

(
#X
p

)
of these. We will do so by induction on #S.

The case where p = 0 is easy as the domain and kernel of δ are both just T
and have the points in T as a basis. So suppose p ≥ 1 and let x ∈ ker δ, we
will show that it is a linear combination of expressions like (1). Let PM be
the maximum of S. If PM /∈ supp(x) we apply the induction hypothesis to
S′ = S\{PM} and we are done. So assume PM ∈ supp(x), then by lemma 8
we can write x = PM ∧ y plus terms not containing PM in the ∧ part. Here
y ∈

∧p
S′ ⊗ T ′ where T ′ = {(0, 0, . . . , 0), . . . , (d − 1, 0, . . . , 0)}. Note also that

PM − (1, 0, . . . , 0) ∈ S as otherwise the terms in δ(x) where PM is removed from
the ∧ would have nothing to cancel against. This is because these would be the
only terms of δ(x) where the point after the ⊗ agrees with PM in all but the
first coordinate. Applying the induction hypothesis to y we get

y =
∑
j

λj
∑

i1,...,ip−1∈I
(−1)i1+...+ip−1

(P1,j + i1) ∧ . . . ∧ (Pp−1,j + ip−1)⊗ (Qj − i1 − . . .− ip−1).

Therefore x can be written as (−1)px′ plus terms not containing PM in the ∧
part where

x′ =
∑
j

λj
∑

i1,...,ip∈I
(−1)i1+...+ip

(P1,j + i1) ∧ . . . ∧ (Pp−1,j + ip−1) ∧ (PM − (1, 0, . . . , 0) + ip)

⊗ (Qj + (1, 0, . . . , 0)− i1 − . . .− ip).

So we can apply the induction hypothesis to x− (−1)px′ to conclude that x is
a linear combination of expressions like (1).
Finally, we show linear independence of the expressions, again by induction
on #S. the case p = 0 is again trivial, let p ≥ 1. Let

∑
i λixi be a linear

combination of our expressions that yields zero. Each xi containing PM in its
support can be written as PM∧yi plus terms not containing PM . Then up to sign
yi is an expression like (1) but with p− 1 instead of p and with the set S\{PM}
in stead of S. By the induction hypothesis the yi are linearly independent.
But then it follows that PM cannot occur at all in the wedge part of any xi,
otherwise the linear combination could not yield zero. And then one again
applies the induction hypothesis with S\{PM} to obtain a contradiction.
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