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Abstract. We provide a framework for robust exponential smoothing. For a class of expo-

nential smoothing variants, we present a robust alternative. The class includes models with a

damped trend and/or seasonal components. We provide robust forecasting equations, robust

starting values, robust smoothing parameter estimation and a robust information criterion.

The method is implemented in the R package robets, allowing for automatic forecasting.

We compare the standard non-robust version with the robust alternative in a simulation

study. Finally, the methodology is tested on data.
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1 Introduction

In time series analysis exponential smoothing methods are popular because they are easy to

use and the forecasting procedure can be made automatic. Simple exponential smoothing,

or sometimes called single exponential smoothing is the most basic method. It is a suitable

method if the time series has no trend or seasonality, but a slowly varying mean. For a time

series y1, . . . , yt, the forecasts are

ŷt+h|t = `t

`t = αyt + (1− α)`t−1

(1.1)

with ŷt+h|t the h-step ahead forecast. The time series `t gives the ‘level’ of the series. The

degree of smoothing is determined by the smoothing parameter α, which is usually estimated

by minimizing the sum of squared prediction errors.

For trending and seasonal time series there is the Holt-Winters method (Hyndman and

Athanasopoulos, 2013). It is also referred to as double exponential smoothing or exponential

smoothing with additive trend and seasonal component. It has additional parameters β

and γ which determine the smoothing rate of the trend and the seasonal component. Pegels

(1969) suggested a model with multiplicative trend and seasonal component. Gardner (1985)

proposed exponential smoothing with damped trend. Taylor (2003) showed that exponential

smoothing with a damped multiplicative trend is a very competitive forecasting method.

Damping a trend has in particular an advantage for long forecasting horizons h. The forecast

doesn’t go to infinity as with the regular additive or multiplicative trend, but converges to

a finite value. An extra parameter φ determines the rate at which this happens.

A disadvantage of exponential smoothing methods is that they are not outlier robust.

An observation may have an unbounded influence on each subsequent forecast. The selec-

tion of the smoothing parameters is also affected by outliers, since these are estimated by

minimizing a sum of squared forecasting errors. In the past there have been efforts to make

exponential smoothing methods robust. Gelper et al. (2010) proposed a methodology for
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robust exponential smoothing. They also provided a way to estimate the smoothing param-

eters robustly. Cipra and Hanzak (2011) have an alternative robust exponential smoothing

scheme; Croux et al. (2008) supplied a numerically stable algorithm of their earlier proposal.

A multivariate version of the robust simple exponential smoothing recursions is given in

Croux et al. (2010).

In this paper we extend the existing robust methods to a more general class exponen-

tial smoothing variants, including (damped) additive trends and additive or multiplicative

seasonal components. The outline of the paper is as follows. In Section 2 we review the

class of exponential smoothing methods. In Section 3 we propose the robust method. For

each variant we robustify the recursions, smoothing parameter estimation and choice of the

starting values. In Section 4 we present the R package robets, which is an implementation

of the method in Section 3. In Section 5 the robust method is tested in a simulation study.

In the last section we evaluate the forecasting performance of the method on the time series

of the M3-competition of Makridakis and Hibon (2000).

2 Exponential smoothing methods

We use the taxonomy of Hyndman et al. (2005) to describe the class of fifteen exponential

smoothing models. Each model can be described by three letters:

E, underlying error model: A (additive) or M (multiplicative),

T, type of trend: N (none), A (additive) or Ad (damped) and

S, type of seasonal: N (none), A (additive) or M (multiplicative).

For example: MAN is exponential smoothing with additive trend without seasonal com-

ponent and a multiplicative underlying model. All considered combinations are shown in

Table 1. The combinations ANM, AAM and AAdM are omitted since the corresponding

prediction intervals are not derived in Hyndman et al. (2005). In the next subsections we

describe the considered models in more detail.
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Table 1: The fifteen considered exponential smoothing methods.

Seasonal
Trend N (none) A (additive) M (multiplicative)
N (none) ANN/MNN ANA/MNA MNM
A (additive) AAN/MAN AAA/MAA MAM
Ad (damped) AAdN/MAdN AAdA/MAdA MAdM
forecasting formula (2.1) (2.2) (2.3)

2.1 Trend (T)

The forecasting equations of simple exponential smoothing are given in equation (1.1).

However some time series have trending behavior. For such series a full trend (A) or a

damped trend (Ad) might be useful. Suppose we have a time series yt, which is observed at

t = 1, . . . , T . The forecasts of AAdN and MAdN can be computed with a recursive scheme:

ŷt+h|t = `t +
h∑
j=1

φjbt

`t = αyt + (1− α)(`t−1 + φbt−1)

bt = β(`t − `t−1) + (1− β)φbt−1

(2.1)

with ŷt+h|t the forecast at horizon h made at time t. By setting φ = 0, we have the forecasting

equations of ANN/MNN or simple exponential smoothing without trend. Setting φ = 1

gives the equations of AAN/MAN or exponential smoothing with a full additive trend. The

smoothing parameter α determines the rate at which the level `t is allowed to change. If it is

close to zero the level stays almost constant and if it is one the level follows the observations

perfectly. The parameter β determines the rate at which the trend may change. The extra

parameter φ is related with how fast the local trend is damped. Indeed, the longterm forecast

converges to `t + φ
1−φbt if h→∞. The parameters α, β and φ take values between zero and

one.

While the forecasts corresponding to the additive or multiplicative model are the same,

the underlying data generating process is different, resulting in different confidence intervals

(see Subsection 2.3) and parameter estimates (see Subsection 3.3).
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2.2 Seasonal component (S)

It is also possible to model slowly changing seasonality effects. In the models ANA/MNA,

AAA/MAA and AAdA/MAdA we add a seasonal component:

ŷt+h|t = `t +
h∑
j=1

φjbt + st−m+h+m

`t = α(yt − st−m) + (1− α)(`t−1 + φbt−1)

bt = β(`t − `t−1) + (1− β)φbt−1

st = γ(yt − `t−1 − φbt−1) + (1− γ)st−m,

(2.2)

with h+m = b(h − 1) mod mc + 1. The number of seasons is m. Typically, for monthly

data, m = 12. The seasonal smoothing parameter is γ. If the value is high, the seasonal

components will quickly follow changes in seasonality.

It turns out that for many time series a multiplicative seasonal component is more suit-

able. The forecasting equations for methods MNM, MAM and MAdM are given below:

ŷt+h|t = (`t +
h∑
j=1

φjbt)st−m+h+m

`t = α yt
st−m

+ (1− α)(`t−1 + φbt−1)

bt = β(`t − `t−1) + (1− β)φbt−1

st = γ yt
`t−1+φbt−1

+ (1− γ)st−m.

(2.3)

2.3 Underlying models (E)

Hyndman et al. (2002) present the underlying models for each exponential smoothing variant.

Making a model assumption is necessary to obtain prediction intervals. We will declare an

observation yt+1 as an outlier if it does not belong to the prediction interval constructed

around ŷt+1|t. It is then also possible to set up a likelihood function to estimate smoothing
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parameters. For simple exponential smoothing as in (1.1), the additive error model is

yt = `t−1 + εt

`t = `t−1 + αεt

(2.4)

and the multiplicative error model is

yt = `t−1(1 + εt)

`t = `t−1(1 + αεt).
(2.5)

It is possible to check that both underlying models have the same optimal point forecasts

(Hyndman et al., 2002, Section 3). The single source of error is εt ∼ N (0, σ2). For the

multiplicative model the lower tail is truncated such that 1 + εt remains positive. Because

σ2 is usually small in multiplicative models, this truncation is negligible. The model with

multiplicative errors is used when the observations are strictly positive and when we expect

that the error grows proportionally with the observation value. For a description of the

models of other exponential smoothing methods, we refer to Hyndman et al. (2002).

The underlying models are needed for constructing prediction intervals. For the additive

error models the prediction interval at forecast horizon h = 1 is

[
ŷt+1|t − qσ, ŷt+1|t + qσ

]
with q = z1−α/2 for a 100(1 − α)% interval. Here z1−α/2 is the α/2 upper quantile of the

standard normal; for a 95% prediction interval q ≈ 2. For the multiplicative error models

the interval is [
ŷt+1|t(1− qσ), ŷt+1|t(1 + qσ)

]
.

Exponential smoothing models are a subclass of ARIMA models. The ANN, AAN,

AAdN, ANA, AAA, and AAdA models can be rewritten as ARIMA models, see Hyndman

and Athanasopoulos (2013). It should be noted, however, that the parameterization of these
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models is different and more cumbersome. The ARIMA counterparts for the seasonal models

require additional parameter restrictions. Exponential smoothing models are less complex

than their equivalent ARIMA. Furthermore, the multiplicative models can not be represented

as ARIMA models. For robust ARMA estimation we refer to Muler et al. (2009).

3 Robust exponential smoothing methods

We make a robust version of the exponential smoothing forecaster of Hyndman and Khan-

dakar (2008). We robustify the forecasting equations, the estimation of the starting values,

the estimation of the smoothing parameters and the information criterion.

3.1 Robust forecasting equations

We follow the procedure of Gelper et al. (2010, p. 288). For all considered exponential

smoothing models we robustify the forecasting equations by replacing each observation yt

with a cleaned version y∗t . If the one-step ahead forecast error yt− ŷ∗t|t−1 exceeds k times the

scale of the errors, we consider the observation to be an outlier. The one-step ahead predic-

tion ŷ∗t|t−1 is based on the cleaned observations y∗1, y∗2, . . ., y∗t−1. Our choice for k is 3: if the

one-step prediction error follows a normal distribution then only 0.03 % of the observations

are falsely indicated as outliers. The cleaned observations are given by the formula:

y∗t = ψ

(
yt − ŷ∗t|t−1

σ̂t

)
σ̂t + ŷ∗t|t−1 (3.1)

with ψ the Huber function

ψ(x) =


x if |x| < k

sign(x)k otherwise

and with σ̂t an estimate of the scale of the one-step ahead prediction error.

We model the scale as slowly varying and estimate it recursively in a robust way as in
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Gelper et al. (2010),

σ̂2
t = λσρ

(
yt − ŷ∗t|t−1
σ̂t−1

)
σ̂2
t−1 + (1− λσ)σ̂2

t−1 (3.2)

with ρ the bounded biweight function

ρbiweight(x) =


ck(1− (1− (x/k)2)3) if |x| < k

ck otherwise

(3.3)

with k = 3, ck = 4.12 and with λσ = 0.1. This function is close to the quadratic function

if the prediction error is small, but bounded for large errors. If we assume an underlying

multiplicative model, the cleaned observations are given by

y∗t = (1 + ψ

(
yt − ŷ∗t|t−1
ŷ∗t|t−1σ̂t

)
σ̂t) ŷ

∗
t|t−1 (3.4)

with σ̂t the scale of the relative errors. This scale is updated as follows:

σ̂2
t = λσρ

(
yt − ŷ∗t|t−1
ŷ∗t|t−1σ̂t−1

)
σ̂2
t−1 + (1− λσ)σ̂2

t−1. (3.5)

3.2 Robust starting values

The forecasting equations given in Section 3.1 are defined recursively and require starting

values `0, b0, s−m+1, . . . , s0. Although effects of the starting values decay exponentially, it

still matters to select them in a robust way. The estimation of the smoothing parameters may

be affected by non-robustly chosen starting values, in particular since exponential smoothing

methods are often used for short time series.

The starting values are found by using a short startup period of observations y1, . . . , yS.

We take S = 5m with m the number of seasons. If there is no seasonal component, then

S = 10. The standard non-robust way to select `0 and b0 is by regressing y for t = 1 . . . S,

resulting in a least squares estimate of the intercept ˆ̀
0 and of the coefficient b̂0. We do a
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robust regression, and use the repeated median. Fried (2004) applied it to discover trends

in short time series. The estimates are then

ˆ̀
0 = medi(yi − b̂0i) and b̂0 = medi medi 6=j

yi − yj
i− j

with i, j = 1 . . . S.

The starting values for the seasonal components are typically found by taking the average

difference from the regression line for each season. We take instead the median difference:

sq−m = med (yq − ŷq, yq+m − ŷq+m, . . . , yq+S−m − ŷq+S−m)

for q = 1, . . . , m. If the seasonal component is multiplicative, the computation is slightly

different:

sq−m = med

(
yq
ŷq
,
yq+m
ŷq+m

, . . . ,
yq+S−m
ŷq+S−m

)
.

Finally, to start up the recursive equation (3.2) of the local scale estimate σ̂t, a starting

value σ̂0 is needed. Let t̃ = (t mod m)−m. For a model with additive errors and additive

seasonality,

σ̂0 = MAD(yt − ˆ̀
0 − b̂0t− st̃).

with MAD, the Median Absolute Deviation, defined as

MAD
t

(et) = 1.4826 med
t
|et|.

Similarly, for a model with additive errors and multiplicative seasonality we take σ̂0 =

MADt(yt − (ˆ̀
0 − b̂0t)/st̃). For a model with multiplicative errors and additive seasonality, a

good choice is

σ̂0 = MAD
t

(
yt − ˆ̀

0 − b̂0t− st̃
ˆ̀
0 − b̂0t− st̃

)
,
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and for multiplicative seasonality

σ̂0 = MAD
t

(
yt − (ˆ̀

0 − b̂0t)/st̃
(ˆ̀

0 − b̂0t)/st̃

)
.

3.3 Robust parameter estimation

The parameter vector to be optimized is

θ = (α, β, φ, γ).

Depending on the model being estimated, the parameters involving a (damped) trend (φ,

β) or a seasonal component (γ) are not included in θ. We propose a robust way to estimate

the parameters, but first we review the non-robust estimators.

3.3.1 Maximum likelihood

We follow Ord et al. (1997) and Hyndman et al. (2002). If an additive error model is assumed

the maximum likelihood estimate is

(
θ̂, σ̂

)
= argmax

θ,σ
−T

2
log σ2 − 1

2σ2

T∑
t=1

(
yt − ŷt|t−1(θ)

)2
.

with ŷt|t−1(θ) the one-step ahead prediction using the parameter vector θ. The likelihood is

maximal for

σ2 =
1

T

T∑
t=1

(
yt − ŷt|t−1(θ)

)2
,

so the parameters can simply be estimated by

θ̂ = argmax
θ
−T

2
log

(
1

T

T∑
t=1

(
yt − ŷt|t−1(θ)

)2)
, (3.6)

hence minimizing the sum of squared one-step ahead prediction errors.
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With a multiplicative error model, the maximum likelihood estimate is

(
θ̂, σ̂

)
= argmax

θ,σ
−T

2
log σ2 −

T∑
t=1

log
∣∣ŷt|t−1(θ)

∣∣− 1

2σ2

T∑
t=1

(
yt − ŷt|t−1(θ)

ŷt|t−1(θ)

)2

.

By setting the derivate to σ equal to zero, we find

σ2 =
1

T

T∑
t=1

(
yt − ŷt|t−1(θ)

ŷt|t−1(θ)

)2

,

yielding

θ̂ = argmax
θ
−T

2
log

(
1

T

T∑
t=1

(
yt − ŷt|t−1(θ)

ŷt|t−1(θ)

)2
)
−

T∑
t=1

log
∣∣ŷt|t−1(θ)

∣∣ . (3.7)

All of these estimators are not outlier robust.

3.3.2 Robust estimation

We propose to replace the sum of squares by a τ 2 estimator in the likelihood functions. The

τ 2 is a robust estimator of scale introduced by Yohai and Zamar (1988). It is consistent and

has a breakdown point of 50%. For a given set of residuals e1, . . . , eT , it is computed as

τ 2 (e1, . . . , eT ) =
s2T
T

T∑
t=1

ρ

(
et
sT

)
(3.8)

with sT = MADt(et) and with ρ the biweight function from (3.3). This version of the τ 2

scale is easy to compute. The boundedness of ρ makes the τ 2 estimator robust to outlying

observations.

For the additive model, the robust version of (3.6) is

θ̂ = argmax
θ

roblikA(θ) (3.9)
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with

roblikA(θ) = −T
2

log τ 2
(
y1 − ŷ∗1|0(θ), . . . , yT − ŷ∗T |T−1(θ)

)
(3.10)

Notice that this estimator is similar to the robust estimator for ARMA models of Maronna

et al. (2006, section 8.8.3).

For the multiplicative model, denote the relative errors as et(θ) = (yt − ŷ∗t|t−1(θ))/ŷ∗t|t−1(θ),

for t = 1, . . . , T . The robust version of the likelihood is

roblikM(θ) = −T
2

log τ 2 (e1(θ), . . . , eT (θ)) −
T∑
t=1

log
∣∣ŷ∗t|t−1(θ)

∣∣ . (3.11)

For computing the estimator, we do not take the second term in (3.11) along, since for a

parameter θ such that one prediction ŷ∗t|t−1(θ) is close to zero, the robust likelihood can

become unbounded due to the robustness of the ρ-function. Such a degenerate solution

should be avoided. Therefore we minimize a robust version of the mean squared relative

error

θ̂ = argmin
θ

τ 2 (e1(θ), . . . , eT (θ)) . (3.12)

The numerical optimization problems of (3.9) and (3.12) are solved with the Nelder-Mead

solver of the function optim in the statistical software package R (R Core Team, 2017). This

solver requires an initial guess for θ. In Hyndman and Khandakar (2008) the initial values

of the smoothing parameters (α, β, φ, γ) are chosen in a data independent way. Therefore

there is no robustness issue here, and we choose the initial values in exactly the same way.

3.4 Robust information criterion

We use a robust information criterion to compare different models, similar as in Hyndman

and Khandakar (2008), but with the robustified likelihood. The definition of the robust

Akaike information criterion is

robAIC = −2 roblik + 2p, (3.13)
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with p the number of parameters of the model. The formulas for the robust Bayesian

information and the robust corrected Akaike information criterion are

robBIC = −2 roblik + log(T )p (3.14)

and

robAICc = −2 roblik + 2
pT

T − p− 1
. (3.15)

The expressions for the robustified likelihood are given in (3.10) for the additive model, and

in (3.11) for the multiplicative model. In the remainder of the text, we follow the suggestion

of Hyndman and Khandakar (2008) and use the (robust) AICc to compare several exponential

smoothing variants. For a given time series, all models from Table 1 are estimated and the

one with the lowest robust AICc will be selected and used for forecasting.

4 Implementation

In this section we discuss the implementation of the robust exponential smoothing method

in the R language. We converted the function ets in the forecast package of Hyndman

and Khandakar (2008) to a robust version called robets. This function has the same func-

tionalities as ets, and can be found in the R package robets we developed. Given a time

series object y, predictions can be made as follows:

model <- robets(y)

plot(forecast(model, h = 8))

The above R commands perform automatic forecasting of the time series, with a forecast

horizon of h = 8. It is also possible to add an additional argument specifying a single model,

supplying the acronym of the model by a three-letter string as in Table 1.

The function robets works as ets, except that the robust methodology is applied instead.

This means that the forecasting equations use cleaned values, as in (3.1), where the tuning

constant of the Huber ψ-function is set to its default value k = 3, but any other value can
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be provided as an additional argument. Furthermore, the parameters are estimated solving

criterion (3.9) if the underlying model is additive, and solving (3.12) if multiplicative. This

is our proposal in Section 3.3. The user can also choose among different robust information

criterions: robAICc (3.15), robAIC (3.13) or robBIC (3.14), with the former as default.

The robets function provides additional output useful for detecting outliers. As such,

the following outlyingness measure is computed for every time point:

yt − ŷ∗t|t−1
σ̂t

.

If the absolute value of the outlyingness of an observation is larger than k, then it is considered

to be an outlier. Outliers may be highlighted on the plot of the time series.

As an example, consider a quarterly time series of length 39, that can be found on

http://stats.stackexchange.com/questions/146098. Figure 1 (left) shows the result.

The title of the plot indicates the selected model (based on the AICc), which is here a

multiplicative model with no trend and multiplicative seasonality. The prediction intervals

are constructed as in Subsection 2.3. In this time series the last observation is outlying,

indicated by a red dot. This last observation is an outlier since, for the given season, its

value is much higher than in previous years. In Figure 1 (right) the results for the non-robust

method are given. Note that a different model has been selected. The forecasted values are

much higher due to the outlier. The robust method gives less importance to the outlier,

resulting in forecasts closer to the original level of the time series.

The package is practical, but also fast. The computation time mainly depends on the

length of the time series. We compare the execution time1 of robets with ets for different

lengths T in Table 2, averaged over 100 generated time series. We see from Table 2 that the

robust method takes about twice as much time as ets.

1We use the microbenchmark package in R to compute the timings (Mersmann, 2015).
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Figure 1: A quarterly time series of length 39, together with 8 forecasted values. The left

plot uses the robust method, the right plot the non-robust. Detected outliers are indicated

by a red dot (left plot). The dark and light gray zone are the 80 and 95% prediction intervals

respectively.

Table 2: Average computation time in milliseconds for time series of length T .

T 25 50 75 100 200
ets 5 8 9 9 18

robets 9 12 20 20 51
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5 Simulation study

In this section we study the effect of outliers on the robust and non-robust method. We

generate time series with the underlying models of the fifteen variants of Table 1. The time

series length is T = 40 and the number of seasons per period is m = 4. We choose σ = 0.05

for all models, additive or multiplicative. The other choices are α = 0.36, β = 0.21, φ = 0.9

and γ = 0.2 and starting values l0 = 1 and b0 = 0.05. The starting seasonal component is

s−3:0 = (s−3, s−2, s−1, s0) = (−0.01, 0.01, 0.03,−0.03) for models with additive seasonality,

and s−3:0 = (0.99, 1.01, 1.03, 0.97) for models with multiplicative seasonality.

To generate time series with outliers, we adapt the underlying model. To generate time

series with outliers, we replace the single source of error εt by εt + ut in the observation

equation. The distribution of the contamination ut is ut = 0 with probability 1-ε and

ut
iid∼ N (0, K2σ2) with probability ε. Hence ε is the fraction of outliers. Unless mentioned

otherwise we set (ε,K) = (0.05, 20). For instance, for simple exponential smoothing with

the additive error model, the contaminated version of model (2.4) is

yt = `t−1 + εt + ut

`t = `t−1 + αεt.
(5.1)

For the multiplicative error model, we have

yt = `t−1f(εt + ut)

`t = `t−1(1 + αεt),
(5.2)

with f(x) = 1 + x for x > 0 and f(x) = ex for x ≤ 0. The function f is introduced to avoid

outliers with negative values. For other exponential smoothing variants the contaminated

models are analogous.

We simulate time series and estimate the model parameters and starting values. We

2Starting values are not estimated with the maximum likelihood estimator, but with the non-robust
heuristic described in Section 3.2 and used by Hyndman and Khandakar (2008) as initial values of the
numerical optimizer for finding the starting values.
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Table 3: The simulated RMSE (×100) for each model for h = 1. The model is known, but

the parameters are estimated. Standard errors are in parenthesis.

generating no outliers outliers
model non-robust robust non-robust robust
ANN 5.00 (0.15) 4.98 (0.15) 8.50 (0.88) 5.22 (0.16)
ANA 5.39 (0.17) 5.42 (0.18) 12.44 (1.39) 5.58 (0.18)
AAN 4.94 (0.16) 4.98 (0.16) 12.60 (0.86) 5.65 (0.22)
AAA 5.46 (0.18) 5.74 (0.20) 17.90 (3.31) 5.98 (0.20)
AAdN 5.38 (0.17) 5.48 (0.18) 12.56 (1.77) 5.41 (0.17)
AAdA 5.19 (0.16) 5.27 (0.16) 15.93 (1.57) 5.94 (0.21)
MNN 5.29 (0.19) 5.27 (0.19) 14.43 (3.36) 5.37 (0.20)
MNA 5.02 (0.15) 5.31 (0.16) 9.44 (0.49) 5.78 (0.18)
MAN 17.15 (0.84) 16.99 (0.86) 55.82 (10.30) 17.50 (0.75)
MAA 17.27 (0.67) 17.73 (0.70) 46.12 (8.20) 18.89 (0.97)
MAdN 7.78 (0.28) 7.71 (0.28) 22.59 (3.65) 8.67 (0.32)
MAdA 8.09 (0.30) 8.28 (0.32) 22.11 (2.72) 9.18 (0.36)
MNM 5.03 (0.17) 5.10 (0.18) 12.54 (2.43) 5.78 (0.20)
MAM 16.05 (0.69) 17.13 (0.77) 44.06 (4.32) 18.79 (0.79)
MAdM 7.56 (0.30) 7.55 (0.30) 18.74 (2.69) 7.82 (0.28)

generate hmax = 8 additional observations to be predicted. Since it is impossible to predict

outliers, we don’t allow outliers in the out-of-sample period. We compare the robust method

with the non-robust exponential smoothing method2 of Hyndman and Khandakar (2008).

For each model in Table 1 we compute the out-of-sample squared error at each horizon,

and take the root of the average over N = 500 simulations:

RMSEh =

√√√√ 1

N

N∑
i=1

(yT+h − ŷT+h|T )2. (5.3)

In Table 3 we report the RMSE for horizon h = 1. For the clean simulations the RMSE is

slightly larger with the robust method than with the non-robust method. In the contam-

inated setting we see a large increase in RMSE with the non-robust method. This is not

happening for the robust method.

We repeat the previous simulation study, but now the model is unknown. For every

generated time series all fifteen models are estimated and the one with the lowest information
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Table 4: The simulated RMSE (×100) for each model for h = 1. The model is unknown and

is selected automatically. Standard errors are in parenthesis.

generating no outliers outliers
model non-robust robust non-robust robust
ANN 5.18 (0.16) 5.37 (0.16) 12.55 (1.60) 5.44 (0.18)
ANA 5.51 (0.17) 5.83 (0.20) 14.12 (1.78) 5.57 (0.19)
AAN 5.10 (0.17) 5.40 (0.19) 14.77 (0.86) 6.08 (0.26)
AAA 5.56 (0.18) 6.00 (0.21) 19.53 (3.84) 6.17 (0.21)
AAdN 5.72 (0.17) 5.70 (0.19) 18.36 (3.16) 6.10 (0.26)
AAdA 5.29 (0.17) 5.43 (0.16) 15.52 (1.17) 6.28 (0.25)
MNN 5.46 (0.19) 5.73 (0.21) 19.39 (3.91) 5.64 (0.18)
MNA 5.18 (0.16) 5.35 (0.17) 10.67 (0.95) 5.80 (0.20)
MAN 17.42 (0.86) 17.70 (0.84) 54.06 (11.30) 17.65 (0.75)
MAA 17.46 (0.68) 17.93 (0.78) 46.58 (9.54) 18.44 (0.73)
MAdN 7.95 (0.29) 8.07 (0.29) 23.61 (2.71) 8.84 (0.35)
MAdA 8.29 (0.31) 8.68 (0.37) 19.61 (1.77) 9.36 (0.34)
MNM 5.03 (0.17) 5.35 (0.18) 10.20 (0.90) 5.65 (0.19)
MAM 16.08 (0.72) 16.81 (0.75) 42.30 (3.98) 17.54 (0.73)
MAdM 7.65 (0.31) 8.00 (0.30) 20.45 (2.84) 7.67 (0.27)

criterion gets selected. The non-robust and robust methods are compared. In Table 4 the

RMSE over 500 simulations at horizon h = 1 is computed. As expected, the numbers are

the slightly larger than in Table 3, but the conclusions are similar. The robust method is

slightly worse than the non-robust method for time series without outliers, but clearly better

for time series with outliers, for all models.

We replicated the simulation for different lengths of the time series and changing the

order of seasonality. Even if the time series length is small and the number of seasons is

large (m = 12), the RMSE is much lower for the robust method than for the non-robust

in a contaminated setting. We also computed the RMSE for other prediction horizons

(unreported), yielding comparable results.
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6 Data

We apply the robust method to the 3003 time series of the M3 competition of (Makridakis

and Hibon, 2000). These data can be found in the R package Mcomp. The median length of

the time series is 69, the smallest is of length 20 and the longest 144. The data are yearly,

quarterly or monthly. The first part of the time series is used for estimation and the last h

data points are used as an out-of-sample period. For yearly time series, h = 6, for quarterly

h = 8 and for monthly, h = 18. Denote Nh the number of time series for which a prediction

at horizon h is made (for h = 1, N1 = 3003).

We compute the out-of-sample symmetric mean absolute percentage error (sMAPE) as

in Makridakis and Hibon (2000):

sMAPEh =
1

Nh

Nh∑
i=1

∣∣∣∣ yTi+h,i − ŷTi+h|Ti,i
(yTi+h,i + ŷTi+h|Ti,i)/2

∣∣∣∣× 100. (6.1)

with Ti the time stamp of the last point of the estimation period for the i-th series. This

metric is scale independent, which is useful since every time series has a different scale. We

also compute the symmetric median absolute percentage error:

sMedAPEh = median
i

∣∣∣∣ yTi+h,i − ŷTi+h|Ti,i
(yTi+h,i + ŷTi+h|Ti,i)/2

∣∣∣∣× 100. (6.2)

In Table 5 these forecasting accuracy measures are reported for several forecast horizons.

The results of the sMAPEh can directly be compared with Table 6 of Makridakis and Hibon

(2000), where 24 different forecasting methods are compared. It turns out that the ets

Table 5: Forecasting accuracy for the time series of the M3-competion.

Forecasting horizon h
Method 1 2 3 4 5 6 8 12 15 18

sMAPEh
non-robust (ets) 8.5 9.5 11.4 13.2 15.4 14.7 12.6 13.5 17.0 19.1
robust (robets) 9.5 10.7 12.2 15.0 15.1 15.3 14.1 15.1 21.5 20.1

sMedAPEh
non-robust (ets) 3.0 3.8 4.7 5.9 6.3 6.7 6.2 7.0 9.0 10.1
robust (robets) 3.2 4.0 4.6 6.0 6.4 6.7 6.3 7.0 9.3 10.1
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Figure 2: Time series 819 from the M3-competition. The last 8 observations are used as

out-of-sample period (dashed line). Forecasts using the robust (left plot) and non-robust

(right plot) are given in blue.

method is among the best methods at every horizon h, while robets is only slightly behind

ets. In Table 5 we also reported the sMedAPEh. With this measure there is almost no

difference between robets and ets, which means that for the majority of the time series,

the robust and non-robust method perform about the same.

We give an example where the robust method has a much better forecasting performance.

Take the quarterly time series number 819 from the M3-competition. In Figure 2 we plot

the forecasts with the robust and non-robust method. The last 8 points are not used in the

estimation of the model, but are forecasted. The robust method gives less weight to the last

observation of the estimation period, which appears to be an outlier, resulting in a much

better forecasting performance.

7 Conclusion

We propose a robust version of the exponential smoothing framework of Hyndman and

Khandakar (2008). The method is outlier robust: it has robust forecasting equations, robust
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smoothing parameter estimation and performs robust model selection. It is implemented in

the R package robets.

The proposed robust method can also be used for outlier detection. If a time series

contains outliers, they can be labeled as possible anomalies and investigated further. The

robets package is easy to use and fast, making it possible to forecast large numbers of

univariate time series in an automatic way. Furthermore, it can be used as a tool to find

outliers in large data sets with many time series.

We cannot expect that the robust forecasting procedure consistently outperforms the

non-robust counterpart. Indeed, in Section 6 we saw that the non-robust procedure has on

average, over a large number of short time series, a better forecast performance. However,

for an important number of time series, as the one in Figure 2, the robust method is best.

We advise to check for the presence of outliers in each series: if outliers are present, then

use the robust method; otherwise the standard method is recommended.
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