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Abstract
The field of Statistical Relational Learning (SRL) is
concerned with learning probabilistic models from
relational data. Learned SRL models are typically
represented using some kind of weighted logical
formulas, which make them considerably more in-
terpretable than those obtained by e.g. neural net-
works. In practice, however, these models are of-
ten still difficult to interpret correctly, as they can
contain many formulas that interact in non-trivial
ways and weights do not always have an intuitive
meaning. To address this, we propose a new SRL
method which uses possibilistic logic to encode re-
lational models. Learned models are then essen-
tially stratified classical theories, which explicitly
encode what can be derived with a given level of
certainty. Compared to Markov Logic Networks
(MLNs), our method is faster and produces consid-
erably more interpretable models.

1 Introduction
The aim of Statistical Relational Learning (SRL) is to learn
models that can make predictions from sets of relational facts.
Many popular SRL frameworks, such as Markov Logic Net-
works (MLNs [Richardson and Domingos, 2006]), proba-
bilistic soft logic [Bach et al., 2015], and various forms of
probabilistic logic programs [De Raedt and Kimmig, 2015],
use weighted logical formulas to encode the statistical regu-
larities that have been observed in training data. Despite the
use of logical formulas, learned models are often surprisingly
hard to interpret. Consider, for instance, the following frag-
ment of an MLN that was learned from the UWCSE dataset1:

−5.11 : student(X)

5.11 : professor(X)

−12.01 : ¬student(X) ∨ faculty-adj(X) ∨ professor(X)

∨ faculty(X) ∨ faculty-aff(X)

The first two formulas intuitively mean that, all things being
equal, a given individual is unlikely to be a student and likely

1https://alchemy.cs.washington.edu/data/
uw-cse/

to be a professor. However, if a given individual is a pro-
fessor, then the third formula becomes satisfied. Due to the
large negative weight of this formula, it turns out that being
a student is actually considered to be more likely than being
a professor. In practice, there can be many formulas that in-
teract in such a way, making it hard to predict the behavior
of the MLN by inspecting the weighted formulas. This lim-
its the usefulness of MLNs for explorative data analysis, and
makes it almost impossible for domain experts to manually
tweak a learned MLN.

Probabilistic logic programming (PLP) languages attach
probabilities to either rules or facts. For programs with nei-
ther negation as failure nor cyclic dependencies, the individ-
ual weights have a clearer meaning than in MLNs, as they
are directly related to probabilities. However, using negation
as failure and cyclic dependencies often leads to PLPs that
can be counter-intuitive (e.g. see Section 8.3 in [Buchman
and Poole, 2017]). Yet, even for propositional PLPs, exclud-
ing negation as failure limits the expressivity of the language
[Buchman and Poole, 2017]. While the interpretability of AI
systems is becoming increasingly important [Baehrens et al.,
2010; Sanchez et al., 2015; Ribeiro et al., 2016], we are not
aware of any existing methods for learning joint relational
models that focus on interpretability.

Possibilistic logic [Lang et al., 1991] also uses weighted
formulas, usually written as (α, λ) with α a classical formula
and λ ∈ [0, 1] a certainty weight. As suggested in [Kuželka
et al., 2016], we can use possibilistic logic to encode prob-
ability distributions. The formula (α, λ) then expresses the
constraint that the probability of any world violating α can be
at most 1 − λ. Because of this constraint based semantics,
formulas can safely be interpreted in isolation from the rest
of the theory, which we believe is crucial for interpretabil-
ity. The method proposed in [Kuželka et al., 2016] derives a
possibilistic logic theory from a density estimation tree [Ram
and Gray, 2011], which is in turn learned from a set of train-
ing examples. Compared to Markov Random Fields (MRFs),
the possibilistic logic theories resulted in a higher accuracy
for Maximum A Posteriori (MAP) queries with small evi-
dence sets, while MRFs were more accurate for larger evi-
dence sets. Essentially, inference from possibilistic logic the-
ories captures the conclusions that we can obtain by applying
a form of commonsense reasoning (see [Kuželka et al., 2015]
for a theoretical justification of this view). In the presence of



large amounts of evidence, however, MRFs can make predic-
tions even when there is no obvious “default knowledge” that
applies, by aggregating large amounts of individually weak
and/or conflicting pieces of evidence.

In this paper we introduce a method for learning possibilis-
tic logic theories from relational data. In principle, such theo-
ries could be learned by “lifting” the approach from [Kuželka
et al., 2016] to the relational setting. However, this technique
relies on identifying a set of formulas α1, ..., αn which are
mutually exclusive and jointly exhaustive (corresponding to
the branches of the density estimation tree). In a relational
setting, this essentially requires us to enumerate isomorphism
classes, of which there are typically exponentially many. As
a result, the possibilistic logic theories we obtain quickly be-
come prohibitively large (even though these theories could
subsequently be pruned). Therefore, we follow a different
strategy in this paper. To obtain suitable formulas, we first
learn a set of hard constraints. These hard constraints allow
us to generate non-trivial negative examples, which together
with the positive examples obtained from the training data,
allow us to learn a set of Horn rules that describe how the
different predicates relate to each other. The restriction to
Horn rules increases the interpretability of the learned theo-
ries, and leads to theories that are optimized for predicting
positive literals, which is usually what is needed in applica-
tions. Note that the hard constraints are not restricted to Horn
rules, which means that our theories can still be used to pre-
dict negative literals. In the last step, we use a form of rela-
tional model counting to associate a weight with each of the
learned Horn rules.

To the best of our knowledge, our approach is the first
that represents joint relational models in such a way that
each weighted formula can be interpreted in isolation. The
most closely related work is [Serrurier and Prade, 2007],
where first-order possibilistic logic theories were learned in
an Inductive Logic Programming (ILP) setting. However, the
learned theories from that work are aimed at predicting a sin-
gle target predicate. Moreover, their approach was based on
a non-standard semantics for possibilistic logic, in which for-
mulas cannot be interpreted in isolation. Finally, their ap-
proach is purely qualitative, i.e. formulas are ranked but are
not given weights with a probabilistic interpretation.

We also provide an online appendix to this paper2 with ad-
ditional illustrating examples and experimental results.

2 Preliminaries
Throughout the paper, we consider a function-free first-order
logic languageL, which is built from a set of constants Const,
variables Var and predicates Rel =

⋃
i Reli, where Reli con-

tains the predicates of arity i. For a1, ..., ak ∈ Const ∪ Var
and R ∈ Relk, we call R(a1, ..., ak) an atom. If a1, .., ak ∈
Const, this atom is called ground. A literal is an atom or the
negation of an atom, and a clause is a disjunction of literals.
The formula α0 is called a grounding of α if α0 can be ob-
tained from α by substituting each variable by a particular
constant from Const. A formula is called closed if all vari-
ables are bound by a quantifier. A possible world ω is defined

2http://arxiv.org/abs/1705.07095

as a set of ground atoms. The satisfaction relation |= is de-
fined in the usual way.

A Markov logic network (MLN) [Richardson and Domin-
gos, 2006] is a set of weighted formulas w : F , with w ∈ R
and F a function-free and quantifier-free first-order formula.
The semantics are defined w.r.t. the groundings of the first-
order formulas, relative to some finite set of constants. An
MLN is seen as a template that defines an MRF. Specifically,
an MLNM induces the following probability distribution on
the set of possible worlds ω:

pM(ω) =
1

Z
exp

( ∑
w:F∈M

wnF (ω)

)
(1)

where nF (x) is the number of groundings of F that are satis-
fied in ω, and Z is a normalization constant to ensure that pM
is a probability distribution. A key inference task for MLNs is
computing the Maximum A Posteriori (MAP) consequences,
i.e. determining which ground atoms are true in the most
probable models of a given set of ground atoms. Formally,
(M, E) |= α, for E a set of ground atoms and α a ground
atom, iff ∀ω . (pM(ω) = maxω′ pM(ω′))⇒ (ω |= α).

A possibilistic logic theory [Lang et al., 1991] is a set of
weighted formulas (α, λ) with α a propositional formula and
λ ∈ [0, 1]. A possibilistic logic theory Θ induces a mapping
π : Ω→ [0, 1], with Ω the set of propositional interpretations,
which is defined for ω ∈ Ω as:

πΘ(ω) = min{1− λ | (α, λ) ∈ Ω, ω 6|= α} (2)

The distribution πΘ is called a possibility distribution. The
possibilistic logic theories we consider will be constructed
such that

∑
ω πΘ(ω) = 1, in which case πΘ can be in-

terpreted as a probability distribution. There is a com-
mon inconsistency-tolerant inference relation in possibilis-
tic logic, which is actually the direct counterpart of MAP
inference. Specifically, for E a set of propositional formu-
las and α a propositional formula, we write (Θ, E) |= α if
∀ω . (πΘ(ω) = maxω′ πΘ(ω′)) ⇒ (ω |= α). Interestingly,
the formulas α which are entailed in this sense can easily
be determined syntactically. In particular, for µ ∈ [0, 1] let
Θµ = {α | (α, λ) ∈ Θ, λ ≥ µ}. Let µ0 be the smallest
threshold for which Θµ0 ∪E is consistent. Then (Θ, E) |= α
iff Θµ0 ∪ E |= α. Hence inference in possibilistic logic can
straightforwardly be implemented using a SAT solver.

In this paper we will learn possibilistic logic theories
with first-order formulas instead of propositional formu-
las. Like MLNs, these first-order possibilistic logic theo-
ries should simply be seen as templates for normal (proposi-
tional) possibilistic logic theories that are obtained by replac-
ing each weighted first-order formula (α, λ) by the formulas
(α1, λ), ..., (αk, λ), with α1, ..., αk the groundings of α. It is
easy to see that when pM = πΘ for an MLN M and first-
order possibilistic logic theory Θ, it holds that (M, E) |= α
iff (Θ, E) |= α. [Kuželka et al., 2015] demonstrated how
to construct a possibilistic logic theory Θ from a given MLN
M, such that pM = πΘ. However, the resulting possibilis-
tic logic theory is exponential in size. In practice, the pos-
sibilistic logic theories we learn from data can thus only ap-
proximate what could be encoded in an MLN. This makes



MLNs potentially better equipped to make predictions from
large amounts of evidence, while making possibilistic logic
less prone to making spurious predictions in situations where
the amount of evidence is more limited.

3 Relational Marginals
In the context of SRL, we are typically given a large set of
ground atoms A as training data. This set essentially cor-
responds to a single example of a relational structure. Intu-
itively, we want to learn a probability distribution over such
relational structures, but we clearly cannot estimate such a
distribution from one example. The solution we propose is
to construct a large number of training examples by sampling
small fragments of this global relational structure, and then
estimating a probability distribution over these fragments3.
We will refer to Υ = (A, C), with C the set of constants
appearing in A, as an example. We now explain how we
can obtain a collection of “local” training examples, which
will correspond to (isomorphism classes of) fragments of this
“global” example.
Definition 1. A (global) example is a pair (A, C), with C a
set of constants and A a set of ground atoms which only use
constants from C. Let Υ = (A, C) be an example and S ⊆ C.
The fragment Υ〈S〉 = (B,S) is defined as the restriction of
Υ to the constants in S, i.e. B is the set of all atoms from A
which only contain constants from S.
Intuitively, we can repeatedly sample subsets S and then con-
sider each Υ〈S〉 as a training example. However, the con-
stants appearing in each of these fragments will be different,
hence to enable generalization we need to consider their iso-
morphism classes.
Definition 2 (Isomorphism). Two examples Υ1 = (A1, C1)
and Υ2 = (A2, C2) are isomorphic, denoted as Υ1≈Υ2, if
there exists a bijection σ : C1 → C2 such that σ(A1) = A2,
where σ is extended to ground atoms in the usual way.
Definition 3 (Local example). Let k ∈ N and let Lk be the
language which contains the same predicates and variables
as L but only constants from the set {1, 2, ..., k}. A local
example of width k is a pair ω = (A, {1, ..., k}), where A is
a set of ground atoms from the language Lk. For an example
Υ = (A, C) and S ⊆ C, we write Υ[S] for the set of all local
examples of width |S| which are isomorphic to Υ〈S〉.
To distinguish local examples from global examples, we will
denote them using lower case Greek letters such as ω instead
of upper case letters such as Υ.
Example 1. For Υ = ({fr(alice, bob), fr(bob, alice), fr(bob,
eve), fr(eve, bob), sm(alice)}, {alice, bob, eve}) we have:

Υ〈{alice, bob}〉=({fr(alice, bob), fr(bob, alice), sm(alice)},
{alice, bob})

Υ[{alice, bob}]={({fr(1, 2), fr(2, 1), sm(1)}, {1, 2})
({fr(2, 1), fr(1, 2), sm(2)}, {1, 2})}

We can now naturally define a probability distribution over
local examples of width k.

3Additional examples illustrating the concepts introduced in this
section are described in the online appendix.

Definition 4 (Relational marginal distribution). Let Υ =
(A, C) be an example and k ∈ N. The relational marginal
distribution of Υ of width k is a distribution PΥ,k over local
examples, where PΥ,k(ω) is defined as the probability that ω
is sampled by the following process:

1. Uniformly sample a subset S of k constants from C.
2. Uniformly sample a local example ω from the set Υ[S].

For a closed formula α, we also define:

PΥ,k(α) =
∑

ω:ω|=α

PΥ,k(ω)

In the following, constant-free existentially-quantified con-
junctions of atoms will play an important role, as they are
the syntactic counterpart of the isomorphism classes Υ[S].
For such a conjunction α, it holds that PΥ,k(α) is equal to
the probability that a randomly sampled set S of k constants
satisfies Υ〈S〉 |= α. In this sense, relational marginal dis-
tributions faithfully model the probabilities of isomorphism
classes of local examples. Naturally, other probability dis-
tributions on local examples might also faithfully model the
probabilities of these isomorphism classes, but it is easy to see
that relational marginal distributions have the highest entropy
among such models.

The idea of relational marginals is similar to the random
selection semantics used in [Schulte et al., 2014], but the dif-
ference is that for relational marginals, we restrict the sample
sets to have fixed cardinality and then standardize them as
local examples. This allows us to construct a standard proba-
bility distribution over local examples.

4 Possibilistic Logic Encoding of Relational
Marginals

In this section we describe how relational marginals can be
encoded in possibilistic logic. As we show first, in prin-
ciple we can use a direct generalization of the approach
from [Kuželka et al., 2016], by taking advantage of the fact
that each isomorphism class Υ[S] of local examples corre-
sponds to a constant-free existentially-quantified conjunction
of atoms. For an example Υ, let gk(Υ) = {α1, ..., αn} be a
set that contains one such formula for each isomorphism class
of local examples of width k.
Definition 5 (Possibilistic encoding of relational marginals).
Let Υ be an example and let k ∈ N. The possibilistic logic
theory corresponding to PΥ,k is defined as

ΘΥ,k =

{(
¬α, 1− 1

c(α)
PΥ,k(α)

)∣∣∣∣α ∈ gk(Υ)

}
where c(α) is the cardinality of the isomorphism class repre-
sented by α.
Proposition 1. Let Υ be an example, k ∈ N, and ω a local
example of width k. It holds that PΥ,k(ω) = π(ω) where π(.)
is the possibility distribution associated with ΘΥ,k.

Proof. Let ω be a local example of width k. By definition,
gk(Υ) contains a unique formula α∗ such that ω |= α∗, since
the formulas in gk(Υ) define a partition of local examples



into isomorphism classes. Accordingly, ¬α∗ is the unique
formula appearing in ΘΥ,k which is not satisfied by ω. By
(2), we therefore have π(ω) = 1 − (1 − PΥ,k(α∗)/c(α∗) =
PΥ,k(α∗)/c(α∗) = PΥ,k(ω), where the last equality hold be-
cause all local examples from the same partition class have
the same probability in a relational marginal distribution.

The number of isomorphism classes typically grows very
quickly with increasing k, so the exact transformation from
Definition 5 can only be used for very simple problem do-
mains. In practice, representing the relational marginal distri-
bution exactly is typically not feasible. An exact representa-
tion would moreover not necessarily generalize well to previ-
ously unseen data. Therefore, for the remainder of this paper,
we will focus on learning approximate possibilistic logic rep-
resentations of relational marginal distributions.

Specifically, our aim is to construct a possibilistic logic
theory Θ = {(α1, λ1), ..., (αn, λn)} such that for the asso-
ciated possibility distribution π it holds that π(ω) is approx-
imately equal to PΥ,k(ω). This problem can be decomposed
in two steps. The first step is structure learning, i.e. choos-
ing suitable formulas α1, ..., αn. In this paper, we will only
consider constant-free and quantifier-free formulas. How-
ever, recall that first-order possibilistic logic theories are seen
as templates for propositional theories, which means that all
variables in the formulas α1, ..., αn are implicitly universally
quantified. The second step is weight learning. In this step,
we aim to find the weights λ1, ..., λn for which π, seen as a
probability distribution, maximizes the likelihood of a set of
training examples. Note that if λ1 ≤ ... ≤ λn we can assume
w.l.o.g. that α1 = ⊥. We need to include such a formula α1

to encode the probability of the most probable worlds (which
is then given by 1− λ1).

As the transformation from Definition 5 illustrates, weight
learning becomes very simple when using mutually exclu-
sive formulas. However, using mutually exclusive formulas is
not desirable, as such formulas quickly become very large4,
which also makes the resulting theories difficult to interpret.
Therefore, in practice, we will rely on greedy methods for
weight learning. These will be discussed in Section 6.

5 Structure Learning
In this section, we propose a method to learn Horn rules that
can be used to predict all predicates from Υ. Using Horn rules
makes the resulting possibilistic logic theories more inter-
pretable, and allows us to optimize them for predicting atoms,
which is what is usually required. Learning Horn rules using
methods based on inductive logic programming [Muggleton
and De Raedt, 1994] typically requires both positive and neg-
ative training examples. In Subsection 5.1 we explain how to
construct examples and then discuss our method for learning
Horn rules in Subsection 5.2.

5.1 Constructing Training Examples
Constructing positive examples for a given predicate P is
straightforward: we can simply take all, or a subsample, of

4One exception is when k = 1, which corresponds to the propo-
sitional case, where density estimation trees can be used, as was
proposed in [Kuželka et al., 2016].

the true P -atoms from Υ, Typically, there are significantly
more negative examples than positive ones; e.g. in a typical
social network there are many more examples of non-friends
than of friends. Simply subsampling the negative examples is
unlikely to be effective, as most of the resulting negative ex-
amples might be uninteresting, in the sense that they can be
explained by some simple hard rules that hold for the domain.
Hence, we first learn a set of such hard rules, and then only
consider negative examples that are consistent with them.

We are interested in hard rules that are universally quan-
tified, constant-free clauses with no counterexamples in Υ.
We find such clauses by exhaustively constructing all clauses
(modulo isomorphism) containing at most t literals and at
most k variables, where k is the width of the relational
marginal distribution and t is a parameter of the method. For
each clause, we check whether Υ 6|= ¬α holds with a CSP
solver. We store each such clause in a list if the list does
not contain another clause that subsumes it. Because learning
hard rules that only contain unary literals is typically easier
than learning more general rules, we use a higher size limit
t′ > t for these rules.

Let ∆ be the set of discovered hard rules, and Υ = (A, C)
be the global example. To select negative training examples,
we reject all samples a for which

∧
A∧ a∧∆ does not have

a model when grounded5 over the set of constants C. The
result is a subsample of non-trivial negative examples. In ad-
dition, this process allows us to estimate the total number of
non-trivial negative examples, which we use to compute the
weight of the negative examples when estimating the accura-
cies of the Horn rules.

5.2 Learning Horn Rules
To find Horn rules, we employ a beam search method, which
relies on two parameters: the size of the beam b and the max-
imum number of literals in the body of a rule l. As before,
k is the width of the local examples. For a given target pred-
icate P of arity m, we initialize the list of candidate rules
with the rule P (X1, ..., Xm) ← >. In each iteration of the
search, we construct all possible single-literal extensions of
each rule in the beam such that the constraints on the number
literals and variables are not violated. From these candidate
rules, we select a set of non-isomorphic rules and evaluate
their accuracy on the (weighted) sets of positive and nega-
tive examples. The algorithm then selects the b most accu-
rate rules to serve as the candidate rules for the next iteration.
The algorithm terminates when no new candidate rules can
be generated without violating the constraints on the number
of literals and variables and returns the best found rule. This
beam search method is repeated several times for each predi-
cate P . Most rules found during one run of the beam search
typically entail similar sets of examples. To promote diver-
sity within each run of beam search, we discard rules that are
subsumed by previously found rules.

We employ several well-known techniques to speed up the
search. First, instead of checking isomorphism for every pair
of candidate rules, we efficiently select non-isomorphic rules
by hashing each one using a straightforward generalization

5We use incremental grounding for efficiency.



of the Weisfeiler-Lehman labeling procedure [Weisfeiler and
Lehman, 1968]. Then, we only check if two rules are isomor-
phic if they have the same hash value, and if so one of them is
removed. Second, the algorithm maintains a set Forbidden
of minimal rules which entailed zero positive examples in
the previous iterations of the beam search. Before evaluating
new candidate rules, the algorithm discards candidate rules
which are subsumed by a rule from the set Forbidden. Third,
to reduce the negative plateau effect, known from relational
learning [Alphonse and Osmani, 2008], we add to every con-
structed rule a literal AllDiff(V1, . . . , Vk), which is true iff all
variables in its argument are mapped to different terms. This
also improves the interpretability of the rules.

6 Weight Learning
Let us first assume that an ordering of the formulas (α1 =
⊥, α2 . . . , αn) is given, and we want to learn weights λ1 ≤
... ≤ λn which maximize the likelihood of a set of local ex-
amples E that have been sampled from PΥ,k. These weights
can be found by solving the following optimization problem:
• Variables: λ′1, λ

′
2, . . . , λ

′
n.

• Maximize:
∏
ω∈E P (ω) =

∏n
i=1(1 − λ′i)

|Ei+1|−|Ei|

where Ei = {ω ∈ E|ω |= αi ∧ · · · ∧ αn}.
• Subject to:

λ′1 ≤ λ′2 ≤ · · · ≤ λ′n (3)
k∑
i=1

(1− λ′i) · (|Mi+1| − |Mi|) = 1 (4)

where Mi = {ω|ω |= αi ∧ · · · ∧ αn} and (4) forces
probabilities of all possible worlds to sum to 1.

This optimization problem can be converted to a geomet-
ric programming problem, similar to the geometric program-
ming encoding proposed in [Kuželka et al., 2016]. Note that
geometric programming problems can be converted to con-
vex programming problems by a change of variables, and can
thus be solved using standard convex programming methods
[Boyd et al., 2007].

We can think of E as an IID sample from the set of local
examples in the multi-set {ω|ω ∈ Υ[S],S ⊆ C, |S| = k},
where Υ = (A, C) is the given global example. However,
assuming all αi are constant-free, it is easy to check that we
will get the same values (in expectation) of the parameters
|Ei| if we instead use the set {ω|ω = Υ〈S〉,S ⊆ C, |S| = k}.
A detailed description of how we can efficiently estimate the
parameters |Ei| and |Mi| is provided in the online appendix2.

Computing the parameters |Ei| and |Mi| needed for weight
learning is difficult (#P-hard), so the algorithm uses a greedy
approach to search for the best ordering of the formulas. It
starts with a possibilistic logic theory containing only the
learned hard rules. It iteratively tries to add, at each possi-
ble positions, one rule α from the set of candidate rules found
by the structure learning algorithm. If adding the rule α in-
creases the likelihood score, we keep α in the theory, at the
position that yielded the best improvement. This approach
permits caching and reusing many of the parameter compu-
tations (i.e. the computed parameters for many cuts of the

stratified theory will be the same for many iterations of the al-
gorithm). During the learning process, the algorithm simpli-
fies the constructed theories (using a relational SAT solver).
It removes rules which are implied by other rules in the the-
ory that have higher weights, and it also removes redundant
literals from the individual rules.

7 Experiments
We compare our approach’s learned models to learned MLNs
for various MAP inference tasks. We learned MLNs using
the default structure learner in the Alchemy package [Kok and
Domingos, 2005].6 For the MLNs, we used RockIt [Noessner
et al., 2013] to perform MAP inference.

7.1 Methodology
Our learning algorithm is implemented in Java and uses
the SAT4j library [Berre and Parrain, 2010]. Cryptominisat
[Soos, 2010] is used for our implementation of relational ver-
sion of the model counter [Chakraborty et al., 2016]. It uses
the JOptimizer package to solve the geometric programming
problems7 needed for the maximum likelihood estimation.

We use two standard SRL datasets: UWCSE and Yeast-
Proteins.The UWCSE dataset described relations among stu-
dents, professors, papers, subjects, terms and projects in
the CS department of the University of Washington. This
dataset contains among other the following relations (predi-
cates) AdvisedBy/2, TempAdvisedBy/2, Publication/2, Taugh-
tBy/3, TA/3, Student/1, Professor/1, PostQuals/1. This dataset
is split into five groups: AI, language, theory, graphics, and
systems. We use AI, language and theory as a training set
and graphics and systems as a test set. The Yeast-Proteins
dataset contains proteins and the relations among them. We
use a version in which the interaction relation is symmetric.
This dataset contains the following relations: Interacts/2, En-
zyme/2, Complex/2, ProteinClass/2, Function/2, Phenotype
and Location/2. We randomly divide the constants (entities)
in this dataset into two disjoint sets of equal size. The training
set consists of atoms containing only the constants from the
first set and the test set contains only the constants from the
second set. This ensures that no information leaks from the
training set into the test set.

We evaluate the performance of the learned models as fol-
lows. For each k = 1, . . . , kmax, we sample a set of evidence
literals from the test set. We then predict the MAP state by
each of the learned models and compute the Hamming error,
which measures the size of the symmetric difference of the
predicted MAP world and the set of the literals in the test set.
We then report the cumulative differences between the errors
of the models, as this clearly highlights the overall trends.

7.2 Results

The possibilistic logic theory learned for the Yeast-Proteins
dataset is shown in Table 1. The rules seem to encode mean-
ingful relations that hold in the dataset. For instance, if a pro-
tein A is contained in a complex C, another protein D is in C

6http://alchemy.cs.washington.edu/
7http://www.joptimizer.com



Table 1: The possibilistic logic theory learned in the Yeast-Proteins dataset, not showing the hard rules and actual weights (but note that
λ⊥ < λ1 < ... < λ5). All rules are implicitly constrained by AllDiff constraints.

. . . (112 hard constraints not shown here)
(Complex(A,B)← ProteinClass(A,C) ∧ Interaction(D,A) ∧ Complex(D,B) ∧ ProteinClass(D,C), λ5)

(Phenotype(A,B)← Interaction(C,A) ∧ ProteinClass(A,D) ∧ Phenotype(C,B) ∧ ProteinClass(C,D), λ4)
(ProteinClass(A,B)← ProteinClass(D,B) ∧ Complex(A,C) ∧ Complex(D,C), λ3)

(Enzyme(A,B)← ProteinClass(A,C) ∧ Interaction(A,D) ∧ Enzyme(D,B) ∧ ProteinClass(D,C), λ2)
(Location(A,B)← Location(D,B) ∧ Complex(A,C) ∧ Complex(D,C), λ1)
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Figure 1: Cumulative Hamming error differencs (CHED) of the “all false” baseline, the learned MLNs, and the learned possibilistic logic
theories (PL). Positive numbers indicate that our approach outperforms the indicated reference model.

as well and D is at location B then A is also at that location.
The learned MLN, on the other hand, only contained rules
that model the prior probabilities of the individual predicates
and one additional rule that expresses the symmetry of the
Interaction relation. Hence, the only type of prediction made
by this MLN consists in computing the symmetric closure
of the interaction literals, which is why we do not show any
separate baseline prediction for this dataset. The possibilistic
logic theory has lower Hamming errors for evidence sets up
to around 1500 literals (see Figure 1, left panel), which can
be seen from the fact that the cumulative difference is increas-
ing over this range. For larger evidence sets, the possibilistic
theory intuitively predicts “too much”, resulting in a higher
Hamming error than the MLN predictions.

The theory which was learned for the UWCSE dataset is
larger, and is therefore shown in the appendix, where we
also show the corresponding learned MLN. The possibilistic
logic theory again contains rules which are intuitive, captur-
ing meaningful relations for this domain. The formulas in the
MLN are much harder to interpret. As shown in Figure 1,
the possibilistic logic theory again reaches smaller Hamming
errors than the learned MLN for small evidence sets, in this
case for evidence sets of up to about 250 literals (right panel).
It is always better than the baseline which predicts everything
not in the evidence as false (middle panel).

Inference in the possibilistic logic theories is, on average,
substantially faster than MAP inference in the MLNs (using
RockIt). For UWCSE, the speed-up was between one and two
orders of magnitude. The possibilistic logic prediction only
requires us to solve a logarithmic number of SAT queries,
whereas computing MLN MAP predictions requires solving
a weighted MAX-SAT problem.

8 Conclusions
We have proposed a method for learning relational possibilis-
tic logic theories. These theories are seen as templates for
constructing “ground” (i.e. standard propositional) possibilis-
tic logic theories, similar to how Markov logic networks can
be seen as templates for constructing Markov random fields.
In particular, as in standard possibilistic logic, each weighted
formula has an intuitive interpretation as a constraint on the
probability distribution that is being modelled. To formally
describe what this probability distribution represents, we have
introduced the notion of a relational marginal distribution,
which we can intuitively think of as a probability distribution
over fixed-sized fragments of a given relational structure. We
learn the clauses in the theories using a standard ILP strategy
and weights of the clauses using geometric programming.

The main design consideration of our method was to learn
interpretable theories. However, as our experimental results
have revealed, our method also leads to more accurate MAP
predictions than Markov Logic Networks (MLNs) for small
to moderately sized evidence sets. For larger evidence sets,
MLNs lead to more accurate predictions, which is intuitively
due to the fact that they are better equipped to aggregate large
amounts of individually weak pieces of evidence. Inference
in possibilistic logic is also considerably faster than methods
for computing MAP queries from MLNs.
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