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Abstract. The model parameters of linear state space models are typically estimated

with maximum likelihood estimation, where the likelihood is computed analytically with

the Kalman filter. Outliers can deteriorate the estimation. Therefore we propose an alterna-

tive estimation method. The Kalman filter is replaced by a robust version and the maximum

likelihood estimator is robustified as well. The performance of the robust estimator is in-

vestigated in a simulation study. Robust estimation of time varying parameter regression

models is considered as a special case. Finally, the methodology is applied to real data.
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1 Introduction

Linear state space models are used for a wide range of applications. The most convenient way

to estimate the parameters of such a model is by computing the likelihood with the Kalman

filter and then maximize this likelihood, assuming normality of the noise. The maximum

likelihood estimator is very common for the estimation of such models (Brockwell and Davis,

2002; Durbin and Koopman, 2012). There also exist Bayesian methods to estimate state

space models, but these are not considered here.

This paper proposes a way to estimate the model parameters (also called hyperparameters

or static parameters) of state space models robustly. The Kalman filter needed to compute

the likelihood cannot cope with outliers, and therefore needs to be replaced by a robust

filter. Several proposals for robust filters have been made in the literature, and we choose

the robust filter of Cipra (1997).

Robust estimation of model parameters is less studied. In many applications the model

parameters are supposed to be known, but in practice this is often not the case. Only few

robust estimation procedures have been proposed. Agamennoni et al. (2011) do maximum

likelihood estimation assuming multivariate t-distributed noise. Harvey and Luati (2014)

developed a dynamic conditional score model based on the t-distribution. Their method only

works for univariate time series. We should mention that Muler et al. (2009) developed a

robust estimator of the general ARMA model, which is related to our approach for estimating

linear state space models.

The structure of the paper is as follows. In Section 2 the linear state space model

with its Kalman filter and maximum likelihood estimator are introduced. In Section 3 we

propose a robust approach. The different estimators are compared in a simulation study in

Section 4. The special case of the time varying parameter models is considered in Section 5:

the performance of the robust estimator is studied for simulated and real data sets.
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2 Linear Gaussian state space models

In a state space model we assume that a time series yt is generated from a series of unobserved

states θt. The distribution of the states follows from specifying the initial state density and

the transition density. In a linear Gaussian state space model all distributions are normal and

the expected value of the state only depends linearly on the previous state. The observations

are generated from the states through the observation density. The general linear Gaussian

state space model for a multivariate time series yt is described by:

initial state density p(θ0) ∼ N (θ0|0,P0|0)

transition density p(θt|θt−1) ∼ N (Ftθt−1,Λt) for t ≥ 1

observation density p(yt|θt) ∼ N (Htθt,Σt) for t ≥ 1.

(2.1)

The parameters are θ0|0, P0|0, Ft, Λt, Ht and Σt. Often they are taken to be constant

over time. We assume that they can be written as a function of an unknown multidimensional

parameter φ. A common notation for the same model is:

θt = Ftθt−1 + wt

yt = Htθt + vt

where the innovation noise wt follows a N (0,Λt) and the observation or measurement noise

vt is distributed as N (0,Σt).

An example is the time invariant univariate linear state space model with θ0|0 = 0 and

P0|0 = 102. This is called a diffuse initial state density (Durbin and Koopman, 2012). By

setting Ht = 1, the states are the expected values of the observations. With Ft = F , Λt = λ2

and Σt = σ2, the vector of unknown parameters is chosen as φ = (log σ, log λ, F )′, and varies

in a 3-dimensional space.

Denote the observed time series of dimension d as

y1:T = {y1,y2, . . . ,yT}.

The unknown model parameter φ can be estimated using the maximum likelihood estimator:

φ̂MLE = argmax
φ

log p(y1:T |φ) = argmax
φ

T∑
t=1

log p(yt|y1:t−1,φ)
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with p(y1|y1:0,φ) := p(y1|φ). In above expression, the predictive density still has to be eval-

uated; it is normal with mean ŷt|t−1 and covariance St. The Kalman filter allows to compute

this mean and covariance sequentially. The Kalman recursions are derived analytically, e.g.

Petris et al. (2009), and given by

θ̂t|t−1 = Ftθ̂t−1|t−1

ŷt|t−1 = Htθ̂t|t−1

Pt|t−1 = F′tPt−1|t−1Ft + Λt

St = HtPt|t−1H
′
t + Σt

Kt = Pt|t−1H
′
tS
−1
t

θ̂t|t = θ̂t|t−1 + Kt

(
yt − ŷt|t−1

)
Pt|t = Pt|t−1 −Pt|t−1H

′
tS
−1
t HtPt|t−1.

(2.2)

The likelihood p(yt|y1:t−1,φ) is found by evaluating the density function of a normal with

mean ŷt|t−1 and covariance St at yt. Note that all expressions in (2.2) are conditional on the

model parameter φ. The negative log-likelihood, apart from a constant term, is

1

2T

T∑
t=1

(
log(det St(φ)) +

(
yt − ŷt|t−1(φ)

)′
St(φ)−1

(
yt − ŷt|t−1(φ)

))
. (2.3)

The likelihood depends on φ through ŷt|t−1(φ) and St(φ). The objective function has to

be optimized numerically. We use the Nelder-Mead algorithm implemented in the function

optim in R. A good initial value of φ is needed to start up the numerical optimizer, as the

optimization problem is not convex in general.

The MLE is not robust against observation outliers in two ways. Suppose yt is an outlier.

(i) The second term in the log-likelihood (2.3) becomes large. The estimator φ̂MLE is possibly

seriously affected by this outlier. (ii) The Kalman recursions yield that the prediction of the

next observation is

ŷt+1|t = Ht+1Ft+1

(
θ̂t|t−1 + Kt

(
yt − ŷt|t−1

))
.

One sees that an outlier yt has a large influence on the prediction of the next value. Therefore,

we need robust filter recursions.
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3 A robust approach

In the first subsection we review a suitable robust Kalman filter. In the second subsection

we propose two ways to robustify the maximum likelihood estimator.

3.1 Robust filtering

The robustified Kalman filter of Cipra (1997) is inspired by an alternative derivation of

the Kalman recursions. The state prediction θ̂t|t is equal to the solution of a least squares

problem, as shown in Appendix A:

θ̂t|t = argmin
θ

{(
θ̂t|t−1 − θ

)′
P−1
t|t−1

(
θ̂t|t−1 − θ

)
+ (yt −Htθ)′Σ−1

t (yt −Htθ)

}
, (3.1)

which is equivalent to

θ̂t|t = argmin
θ

{(
θ̂t|t−1 − θ

)′
P−1
t|t−1

(
θ̂t|t−1 − θ

)
+

d∑
i=1

(sit − bitθ)2

}
(3.2)

with st = Σ
−1/2
t Yt and bt = Σ

−1/2
t Ht; bit is the i-th row of the matrix bt. The squares

in (3.2) are replaced by another loss function:

θ̂t|t = argmin
θ

{
1

2

(
θ̂t|t−1 − θ

)′
P−1
t|t−1

(
θ̂t|t−1 − θ

)
+

d∑
i=1

ρ (sit − bitθ)

}
(3.3)

with ρ a loss function that is less sensitive to outliers. Cipra (1997) shows that an approxi-

mate solution of (3.3) leads to the Kalman recursions, but with

St = HtPt|t−1H
′
t + Σ

1/2
t W−1

t Σ
1/2
t , (3.4)

where Wt = diag(w1t, w2t, . . . , wdt) is a diagonal matrix of weights:

wit =
ψ
(
sit − bitθ̂t|t−1

)
sit − bitθ̂t|t−1

, (3.5)

with ψ be the derivative of ρ. We use the Huber ψ-function:

ψH(x) = (ψH(x1), ψH(x2), . . . )′, ψH(xi)


xi if |xi| < k

sign(xi)k otherwise

with k = 2. This adaptation makes the variance (3.4) larger if there is an outlier at time t.
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3.2 Robust estimation of model parameters

We present two robust procedures to estimate the model parameters: the Huber maximum

likelihood and the maximum trimmed likelihood.

Huber maximum likelihood

The Huber maximum likelihood estimator is

φ̂H = argmin
φ

1

2T

T∑
t=1

log(det St(φ)) +
cH
T

T∑
t=1

ρH
(
St(φ)−1/2

(
yt − ŷt|t−1(φ)

))
, (3.6)

where ŷt|t−1(φ) and St(φ) are computed with the robust filter of Cipra (1997) outlined in

the previous section. The quadratic function in the likelihood of (2.3) is replaced by the

multivariate Huber ρ-function (Hampel et al., 1986):

ρH(x) =


1

2
||x||2 if ||x|| < k

k||x|| − k2

2
otherwise.

(3.7)

If φ is the true parameter, x = St(φ)−1/2
(
yt − ŷt|t−1(φ)

)
is multivariate standard normal,

and ||x|| follows a χd distribution with d degrees of freedom. Therefore we choose k =

F−1
χd

(0.95), which is about 2 for univariate observations. The constant cH is such that

expected value of the objective function in (3.6) is the same as in (2.3). For its computation

we refer to Appendix B.

The Huber ρ-function is quadratic for values of ||x|| smaller than k, but depends only

linearly on ||x|| for values larger than k. Consequently this loss function is less influenced by

large errors than the usual quadratic loss function. Notice that a bounded ρ-function cannot

be taken, since the optimization problem in (3.6) would have a degenerate solution where

St(φ) is zero. If ρH = 1
2
||x||2, and the Kalman filter is used, then the estimator is equal to

the maximum likelihood estimator of the model in (2.1).
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Maximum trimmed likelihood

For all values of yt the Mahalanobis distance to the prediction ŷt|t−1 is computed:

dt(φ) =
(
yt − ŷt|t−1(φ)

)′
St(φ)−1

(
yt − ŷt|t−1(φ)

)
.

The fraction α (f.e. α = 0.1) of the observations with the highest Mahalanobis distances dt

are not considered in the maximum likelihood estimation. The estimator is

φ̂T = argmin
φ

1

2T (1− α)

∑
t∈D

(
log(det St(φ)) + cT

(
yt − ŷt|t−1(φ)

)′
St(φ)−1

(
yt − ŷt|t−1(φ)

))
.

(3.8)

with D the set of epochs t with dt smaller than the (1 − α) largest distance dt. The values

ŷt|t−1(φ) and St(φ) are computed with the robust filter of Cipra (1997) from Subsection 3.1.

The constant cT makes the expected value of the trimmed log-likelihood equal to that of

the untrimmed log-likelihood at the true model parameter. Its computation is given in

Appendix B.

4 Simulations

The estimators are compared in different settings: a univariate model in the first subsection

and a multivariate model in the second subsection.

4.1 Univariate state space model

Consider the following model with univariate states and observations:

θt = Fθt−1 + wt

yt = θt + vt.
(4.1)

with wt ∼ N (0, λ2), vt ∼ N (0, σ2), F = 1, σ = 1, λ = 0.1, θ0 = 0. There is no coefficient

before θt in the observation equation in order to keep the model parameters identifiable. We

use an estimation period of length T = 100 and a subsequent test period of To = 100. The

outliers are generated by replacing σ, the standard deviation of the observation noise, by
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a random variable that has 10% chance of being 10σ and 90% chance of being σ. These

outliers are only added in the estimation period. We do N = 1000 simulations.

The parameter vector is φ = (log σ, log λ, F ) and we choose a diffuse initial state density

with θ0|0 = 0 and P0|0 = 102. The logarithmic transform is done to avoid setting boundaries

on the parameter space. An estimate φ̂ is computed from the estimation period1.

We compare the one-step ahead prediction errors in the out-of-sample period for the

three estimators. The out-of-sample mean squared error (MSE) is

MSE =
1

To

T+To∑
t=T+1

(yt − ŷt|t−1(φ̂))2. (4.2)

Table 1 reports this MSE, averaged over 1000 simulations, for the MLE and the robust

alternatives based on the Huber loss function (3.6) and based on trimming (3.8). The

maximum likelihood estimator is the best for clean data, where no outliers are present.

However, the robust estimators perform barely worse. With the contaminated time series

the maximum trimmed likelihood estimator is the best.

Table 1: Out-of-sample MSE for a univariate state space model, averaged over 1000 simula-

tions.

MLE Huber Trimmed

clean 1.73 1.73 1.82

contaminated 5.08 2.47 2.08

4.2 Multivariate state space model

We do a similar exercise for a multivariate state space model. Consider the following model

θt = θt−1 + wt

yt = θt + vt

1The initial value for the numerical optimizer is set at the true value of φ, for all simulations to come.
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where vt and wt are normal with zero mean and variance Σ and Λ = qΣ and

Σ =

 Σ11 ρ
√

Σ11Σ22

ρ
√

Σ11Σ22 Σ22

 .
The unknown parameters are Σ11, Σ22, ρ and q. The variances Σ11 and Σ22 should be positive

and the correlation ρ should be in [-1,1]. We restrict q to be in [0, 1]. The parameter vector

is a transformation of these parameters such that the restrictions are automatically satisfied:

φ =

(
1

2
log(Σ11),

1

2
log(Σ22), log

(
1 + ρ

1− ρ

)
, log

(
q

1− q

))′
.

We generate the data from a model with Σ11 = Σ22 = 0.25, ρ = 0.5 and q = 0.01. We

take an estimation period of T = 200 and an out-of-sample period of To = 100. We generate

outliers in the estimation period as in the previous section: by replacing Σ by a random

variable that has 10% chance of being

Σout = 100

 25 −24

−24 25


and 90% chance of being Σ. We compute

MSE =
1

To

T+To∑
t=T+1

(yt − ŷt|t−1(φ̂))′(yt − ŷt|t−1(φ̂)) (4.3)

for each simulated series. The averages of the MSE over N = 1000 simulations are reported

in Table 2.

For clean data, the robust estimators have almost the same out-of-sample MSE as the

maximum likelihood estimator. The difference is negligible. For contaminated data, the

robust estimators outperform the MLE, and the trimmed maximum likelihood estimator has

the best MSE. The MLE is heavily affected by the outliers in the estimation period, and

that is reflected in the performance in the out-of-sample period.

5 Time varying parameter models

The linear regression model is widely used, but has its limitations: the constant coefficient

may in fact be time varying. Stock and Watson (1996) show that the regression model with
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Table 2: Out-of-sample MSE for a multivariate state space model, averaged over 1000 sim-

ulations.

MLE Huber Trimmed

clean 0.282 0.283 0.283

contaminated 0.989 0.342 0.314

time varying coefficients has a good performance for forecasting economic time series. In

this section the time varying regression model is estimated in a robust way.

Consider the model

yt = c+ x′tθt + vt, (5.1)

where yt is the response variable, xt the vector of predictor variables, c the intercept and

vt a normally distributed error term with mean 0 and variance σ2, for 1 ≤ t ≤ T . If the

slope coefficient θt is time invariant, the model reduces to a linear regression model, and is

typically estimated by the Ordinary Least Squares (OLS) estimator. The latter estimator is

not robust.

A common way to allow for time varying parameters is to model them as a random walk,

resulting in stochastic regression coefficients. This was already done in the early seventies

by Rosenberg (1972). We consider a linear regression model with time varying coefficients

changing over time like a random walk:

θt = θt−1 + wt. (5.2)

The innovations wt have normal distributions with mean zero and a covariance matrix Λ

with usually only diagonal nonzero elements. Note that (5.1) and (5.2) are a special case

of the linear state space model of (2.1). This can be easily seen by taking Ft the identity

matrix, and Ht = x′t.
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Table 3: Contamination schemes. The outlier probability ε is 0.10.

Description

Clean data vt
iid∼ N (0, σ2).

Symmetric outliers vt
iid∼ (1− ε)N (0, σ2) + εN (0, 100σ2).

Asymmetric outliers vt
iid∼ (1− ε)N (0, σ2) + εN (10σ, σ2).

Bad leverage points with probability (1− ε): xt∼N (2, 1) and vt∼N (0, σ2)

with probability ε: xt∼N (2, 100) and vt∼N (0, 100σ2).

5.1 Simulation results

We apply the time varying model for simulated time series. We take a univariate xt. The

parameters are collected in φ = (c, log σ, log λ)′ with Λ = λ2. The mean and variance of the

initial state density is chosen 0 and 106, respectively, as in Stock and Watson (1996). This

is again the diffuse prior from Durbin and Koopman (2012).

We simulate 1000 time series generated by the model defined in equations (5.1) and (5.2)

starting with θ0 = 0. We take as intercept c = 1 and as variance parameters are σ = 1 and

λ = 0.01. We choose the covariate xt ∼ N (2, 1). The parameters are chosen to have a high

enough signal to noise ratio. The variance λ2 is sufficiently high to have a detectable time

varying trend. The length of the estimation period is T = 100. The out-of-sample period

ranges from T + 1 till T + To with To = 100.

We consider the four contamination schemes listed in Table 3. Apart from the clean data,

which are generated from (5.1) and (5.2), there are three outlier contaminated settings. In

the setting with symmetric outliers, the standard deviation of the observation noise σ is

replaced by a random variable that has 10% chance of being 10σ and 90% chance of being σ,

just as in Section 4.1. In the setting with asymmetric outliers, the mean of the observation

noise is replaced by a random variable that has 10% chance of being 10σ and 90% chance of

being zero. We expect that this type of outlier will induce an upward bias in the estimation

of c, and thus deteriorate forecasting performance of nonrobust estimators. In the setting

with bad leverage points, the symmetric outliers have an outlying covariate generated from
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xt ∼ N (2, 100) instead of xt ∼ N (2, 1). The outlying covariate makes the observation more

influential; we expect this type of outlier to have a larger impact than symmetric outliers.

In the out-of-sample period no outliers are present.

We compute the out-of-sample mean squared error, as in (4.2). The average MSE over

the 1000 simulations is tabulated in Table 4. The out-of-sample performance is the best

using the robust estimators in presence of outliers and is barely worse than the MLE for clean

data. The robust estimators have a very similar out-of-sample MSE for outlier contaminated

simulations.

Table 4: Out-of-sample MSE for a time varying parameter model, averaged over 1000 simu-

lations.

MLE Huber Trimmed

Clean data 1.04 1.06 1.05

Symmetric outliers 1.22 1.05 1.05

Asymmetric outliers 1.72 1.06 1.06

Bad leverage points 1.43 1.07 1.06

5.2 Real data example

We investigate the effect of personal disposable income (It) on personal consumption (Ct)

in the United States. The data are quarterly and range from 1959 till the first quarter of

2016. Both time series are plotted in Figure 1a; the units are billions of US dollars. To

render them stationary we go in log-differences and get ∆ logCt and ∆ log It, the series in

percentage changes. The scatter plot in Figure 1b suggests a linear relation between these

two variables. We consider a time varying parameter model:

∆ logCt = c+ θt∆ log It + vt

with θt a random walk and vt the normally distributed error.

We estimate this model with the MLE, the Huber maximum likelihood and the trimmed

maximum likelihood estimator. We also fit a linear model, where θt is a constant θ, using
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Figure 1: (a) Quarterly time series of personal consumption and income in the US. (b)

Scatter plot of personal consumption and income expressed in percentage changes.

the ordinary least squares estimator (OLS) and the robust τ 2 estimator (TAU) of Salibian-

Barrera et al. (2008).

The initial values for the optimization routine needed for the estimation of time varying

models are the estimates of c and σ with the robust τ 2 estimator. The initial value of λ is

equal to 0.1σ, similar as in Stock and Watson (1996).

Each model is estimated using the first T = 100 observations. The models are evaluated

in an out-of-sample period by computing a mean squared one-step ahead prediction error:

MSE =
1

128

228∑
t=101

(∆ logCt −∆ log Ĉt|t−1(φ̂))2.

with φ̂ the estimated parameter vector. The prediction ∆ log Ĉt|t−1(φ̂) makes use of ∆ log I1:t

and ∆ logC1:t−1. In Table 5 this out-of-sample MSE is tabulated. The estimators of the time

varying parameter model perform about equally well, and outperform the time invariant

models.

Finally, using the Huber estimate of φ, we picture the estimate θ̂t|t of the time varying

coefficient in Figure 2. The 95% confidence interval is [θ̂t|t − 1.96
√
P̂t|t, θ̂t|t + 1.96

√
P̂t|t],
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Table 5: The out-of-sample MSE for predicting consumption growth.

time invariant time varying

OLS TAU MLE Huber Trimmed

5.54·10−5 5.31·10−5 4.15·10−5 4.11·10−5 4.33·10−5

1960 1970 1980 1990 2000 2010

0.0

0.2

0.4

0.6

θ t
|t

Figure 2: The time varying coefficient θ̂t|t. The dark and light gray zones are the 80% and

95% confidence intervals, respectively.

where P̂t|t is computed with the robust Kalman filter. The coefficient clearly varies over

time. As of 1980, the effect of income growth on consumption growth starts to decrease.

6 Conclusion

In earlier papers the main focus is on robust filtering, but not on robust estimation of model

parameters of a linear state space model. We robustify the maximum likelihood estimator,

combined with a robust filter to approximate the likelihood. The time varying parameter

linear regression model is considered as an important special case.

Our proposed method is robust against additive outliers. Such outliers do not persist,
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and don’t contain information about subsequent observations. Other types of outliers, as in-

novation outliers may occur as well. To have robustness against these outliers we recommend

to use a robust filter that is robust against innovation outliers.

In our approach we chose the robust filter of Cipra (1997). There exist other suitable

robust filters. If a filter supplies a one-step ahead prediction ŷt|t−1(φ) and the accompanying

one-step ahead prediction error variance St(φ), it can be used instead of the filter of Cipra

(1997). We list a number of alternative robust filters. An early suggestion was from Masreliez

and Martin (1977). Yang et al. (2001) made an extension and generalization of this method

which they call the adaptively robust Kalman filter. This adaptation of the Kalman filter

is robust against both additive and innovation outliers. More recently, Gandhi and Mili

(2010) proposed the Generalised-Maximum Likelihood Kalman Filter. This filter is also

robust against different types of contamination. The disadvantage is that the dimension of

the observations needs to be larger than the dimension of the state. Other proposals are in

Ruckdeschel et al. (2014) and Marczak et al. (2017).

In this paper we give two proposals to estimate the model parameters robustly: Huber

maximum likelihood and maximum trimmed likelihood. These robust estimators produce

lower out-of-sample forecasting errors than the Gaussian maximum likelihood estimator if

there are outliers. This conclusion is confirmed by the simulations for several settings,

including the time varying parameter model.
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A Derivation of filtered state estimates through least

squares

We prove equation (3.1)

θ̂t|t = argmin
θ

(
θ̂t|t−1 − θ

)′
P−1
t|t−1

(
θ̂t|t−1 − θ

)
+ (yt −Htθ)′Σ−1

t (yt −Htθ) .

The derivative with respect to θ is

2P−1
t|t−1

(
θ − θ̂t|t−1

)
− 2H′tΣ

−1
t (yt −Htθ) .

Because Pt|t−1 and Σt are positive definite, setting the derivative equal to zero and solving

for θ gives the solution:

θ =
(
I + Pt|t−1H

′
tΣ
−1
t Ht

)−1
(
Pt|t−1H

′
tΣ
−1
t Yt + θ̂t|t−1

)
=

(
P−1
t|t−1 + H′tΣ

−1
t Ht

)−1 (
H′tΣ

−1
t Yt + P−1

t|t−1θ̂t|t−1

)
.

Using the Woodbury matrix identity we find:

θ =
(
Pt|t−1 −Pt|t−1H

′
t

(
HtPt|t−1H

′
t + Σt

)−1
HtPt|t−1

)(
H′tΣ

−1
t Yt + P−1

t|t−1θ̂t|t−1

)
= θ̂t|t−1 −Pt|t−1H

′
t

(
HtPt|t−1H

′
t + Σt

)−1
Htθ̂t|t−1

+Pt|t−1H
′
t

(
I−

(
HtPt|t−1H

′
t + Σt

)−1
HtPt|t−1H

′
t

)
Σ−1
t Yt

= θ̂t|t−1 −Pt|t−1H
′
t

(
HtPt|t−1H

′
t + Σt

)−1
Htθ̂t|t−1

+Pt|t−1H
′
t

(
HtPt|t−1H

′
t + Σt

)−1
Yt

= θ̂t|t−1 + Pt|t−1H
′
t

(
HtPt|t−1H

′
t + Σt

)−1
(
Yt −Htθ̂t|t−1

)
= θ̂t|t−1 + Kt

(
Yt −Htθ̂t|t−1

)
,

which is equal to θ̂t|t as given in the Kalman recursions (2.2).

B Computation of constants cH and cT

The constants cH and cT make that the expected value of respectively the Huber likelihood

in (3.6) and the trimmed likelihood in (3.8) are the same as the expected value of the likeli-

hood in (2.3) if φ is the true model parameter, and if the Kalman filter is used. The constants
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can be computed analytically. The standardized residual x = St(φ)−1/2
(
yt − ŷt|t−1(φ)

)
has

a multivariate standard normal distribution. Therefore its norm has a χd distribution. We

need to set cH such that

cH =
1
2
E(X2)

E(ρH(X))

where X has a χd distribution with d degrees of freedom. From (3.7) we have

E(ρH(X)) =
1

2
E(X2 I(X < k)) + E((kX − k2

2
) I(X > k))

Z = X2 has a χ2
d distribution. We find that

E(X2 I(X2 < k2)) = E(Z I(Z < k2))

=

∫ k2

0

z
1

2
d
2 Γ
(
d
2

)z d
2
−1 exp

(
−z

2

)
dz

=

∫ k2

0

1

2
d
2 Γ
(
d
2

)z d+2
2
−1 exp

(
−z

2

)
dz

= d

∫ k2

0

1

2
d+2
2 Γ

(
d+2

2

)z d+2
2
−1 exp

(
−z

2

)
dz

= d Fχ2
d+2

(k2)

(B.1)

and

E(X I(X > k)) =

∫ +∞

k

x
1

2
d
2
−1Γ

(
d
2

)xd−1 exp

(
−x

2

2

)
dx

=

∫ +∞

k

1

2
d
2
−1Γ

(
d
2

)x(d+1)−1 exp

(
−x

2

2

)
dx

=
√

2
Γ
(
d+1

2

)
Γ
(
d
2

) ∫ +∞

k

1

2
d+1
2
−1Γ

(
d+1

2

)x(d+1)−1 exp

(
−x

2

2

)
dx

=
√

2
Γ
(
d+1

2

)
Γ
(
d
2

) (1− Fχd+1
(k)) =

√
2

Γ
(
d+1

2

)
Γ
(
d
2

) (1− Fχ2
d+1

(k2)).

Since E(X2) = d, we find

cH =
d

dFχ2
d+2

(k2) + 2k
√

2
Γ( d+1

2 )
Γ( d

2)
(1− Fχ2

d+1
(k2))− k2(1− Fχ2

d
(k2))

with Fχ2
d

is the cumulative distribution function of a χ2 distribution with d degrees of freedom.

For the maximum trimmed likelihood, the constant cT needs to be set at

cT =
E(X2)

E(X2 I(X2 < F−1
χ2
d

(1− α)))
,
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with F−1
χ2
d

the quantile function of a χ2 distribution with d degrees of freedom. By setting

k2 = F−1
χ2
d

(1− α) in (B.1), we get

cT =
1

Fχ2
d+2

(F−1
χ2
d

(1− α))
.

This constant is equal to the consistency factor of the minimum covariance determinant

estimator, computed in Croux and Haesbroeck (1999).
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