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“Académie universitaire Louvain”).

1



1 Introduction

In this paper we consider the problem of estimating a semiparametric single-index regression

model, when it is assumed that (some of) the explanatory variables are endogenous. En-

dogeneity is a central issue when modeling statistical data coming from human or medical

sciences, and occurs when some of the independent variables in a regression model are corre-

lated with the error term. It can arise when relevant explanatory variables are omitted from

the model, as a result of sample selection errors or when unobserved subject selection occurs

in experimental studies. The textbook by Hayashi (2000) is an excellent introduction into

the problem of endogeneity and how to cope with it in identification, estimation or testing

problems.

When endogeneity is present, ordinary regression techniques produce biased and incon-

sistent estimators. A possible way out is to make use of so-called ‘instrumental variables’.

These are variables that are not part of the original model, they are correlated with the

endogenous explanatory variables conditional on the other covariates, and they cannot be

correlated with the error term in the model (i.e. the instruments do not suffer from the same

problem as the original explanatory variables).

We illustrate this concept by means of a textbook example taken from Wooldridge (2008).

Consider the following model to estimate the effects of several variables, including cigarette

smoking, on the weight of newborns:

log(bwght) = θ0 + θ1male + θ2parity + θ3 log(faminc) + θ4packs + U,

where male is a binary indicator equal to one if the child is male; parity is the birth order

of this child; faminc is family income; packs is the average number of packs of cigarettes

smoked per day during pregnancy. The variable packs is likely to be correlated with omitted

but important factors to explain the weight bwght. Among the omitted variables we think

of health factors that are not necessarily easy to measure in a statistical survey. Hence,

packs and U might be correlated. If the coefficient β4 is estimated by common least squares

techniques, the resulting estimator might thus be biased. A possible instrumental variable

for packs suggested in Wooldridge (2008) is the average price of cigarettes in the state of

residence, cigprice. That variable is likely to be uncorrelated with e.g. individual’s health

factors but it is certainly correlated with individual decisions to consume some quantity of

cigarette packs.

Many other examples can be found in the literature, see e.g. Angrist & Krueger (2001),

Manzi et al. (2014) or Johannes et al. (2013). Detecting sources of endogeneity and appro-
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priate instrumental variables is a difficult empirical issue and it sometimes leads to animated

debates. The purpose of this paper is not to enter into this discussion. Instead it aims at

studying the interesting statistical challenges encountered when endogeneity arises in semi-

parametric regression.

Throughout the paper we suppose that a random vector (X, Y ) satisfies the following

single-index model:

Y = h(X tϑ) + U, (1)

where the vector of covariates X is endogenous, i.e. the error term U is correlated with X

(or equivalently E(U |X) 6= 0), but we assume that there exists a vector of instruments W

such that E(U |W ) = 0. We suppose that Y is one-dimensional, X is k-dimensional and W

is q-dimensional. The data consist of an i.i.d. sample (Wi, Xi, Yi) (i = 1, . . . , n), having the

same distribution as the vector (W,X, Y ). The function h : R→ R and the parameter vector

θ ∈ Rk are unknown. The true unknown link function is denoted by h0, the true unknown

parameter vector by ϑ.

A number of approaches exist in the literature to identify regression models with endoge-

nous variables. We adopt here the ‘inverse problem’-approach, and develop conditions under

which a certain operator is invertible, leading to the existence and uniqueness of a solution

of model (1). Recent references on this approach in a fully nonparametric setting include

the work by Hall & Horowitz (2005), Cavalier & Golubev (2006), Cavalier (2008), Johannes

(2009), Darolles et al. (2011), Johannes et al. (2011), Bissantz et al. (2013) and Hildebrandt

et al. (2014) to name but a few.

The estimator of ϑ we propose in this paper will be the solution of a certain system of

equations, depending on an estimator of the unknown link function h0. To prove the weak

consistency and asymptotic normality of this estimator, we will make use of Chen et al.

(2003). In this paper high-level conditions are developed under which a parameter estimator

that is defined via an estimating equation depending on a nonparametric nuisance function, is

consistent and asymptotically normal. Although some of these conditions require substantial

amount of work when verified for particular models, their result offers the advantage of giving

the framework of the proof. One does not need to start the proof from zero, but it suffices

in fact to fill in the missing steps in the general proof. We will check each of these high-level

conditions for our model.

The above single-index model has been studied very extensively in the absence of endo-

geneity, see e.g. Powell et al. (1989), Ichimura & Lee (1991), Ichimura (1993), Klein & Spady

(1993), Härdle et al. (1993) and Carroll et al. (1997), for some of the fundamental papers on
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estimation and inference for this model, and e.g. Hristache et al. (2001), Yin & Cook (2002),

Delecroix et al. (2006), Kong & Xia (2007), Lin & Kulasekera (2007), Horowitz (2009), Liang

et al. (2010), Wang et al. (2010), Zhang et al. (2010), Peng & Huang (2011), Xia et al. (2012)

and Ma & Zhu (2013) for some of the more recent contributions. The literature is however

limited when endogeneity is present in the explanatory variables. A general theory of infer-

ence using sieves for semiparametric models in the presence of endogeneity has been recently

initiated by the seminal work of Ai & Chen (2003). The above single-index model belongs to

the class of models considered in the latter paper. The results we derive below are different

from existing work in several aspects. First, we use kernel-based estimators instead of sieves.

Next, our estimator is exploiting the particular structure of the single-index model. Finally,

our estimating view is original because inference relates to an ill-posed inverse problem for

which we propose a regularization procedure. As far as we know, it is the first work where

a regularization technique is combined with inference for endogenous single-index models.

We also note that there exists a (limited) literature on other semiparametric regression

models with endogenous variables, e.g. Chen & Pouzo (2009) for semiparametric inference

with nonsmooth residuals, Florens et al. (2012) for instrumental regression in partially linear

models, and Vanhems & Van Keilegom (2013) for a control function approach to deal with

endogeneity in semiparametric transformation models.

The paper is organized as follows. In the next section, we introduce some notations, and

we propose estimators for the unknown link function h0 and the unknown vector of regression

parameters ϑ. In Section 3 the asymptotic normality of the estimator of ϑ is formulated,

and we also give the conditions under which this result is valid. In Section 4 we present the

results of a simulation study, in which we study the performance of the proposed estimator

for small samples. Some general conclusions, possible extensions and lines of further research

are discussed in Section 5. Finally, the proof of the main asymptotic result is given in the

Appendix.

2 Estimation

Denote the densities of X and W by fX and fW respectively. The support of X, which is

supposed to be a compact subset of Rk, is denoted by X . The parameter vector θ lives in

a known compact set Θ ⊂ Rk. For identifiability reasons we suppose that θ1 = 1, which is

by no means restrictive, since we can always arrange the order of the covariates in such a

way that the first covariate has a non-zero effect on the response. We can therefore write
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Θ = {1} × Θ1, where we assume that Θ1 is a compact subset of Rk−1. The link function h

belongs to a Sobolev space H of degree 2, i.e.

H = W2(Ω) =
{
h : Ω→ R ;h, h′ are absolutely continuous, h′′ ∈ L2(Ω)

and h(Ω) = 0 = h′(Ω)
}
,

where Ω is a compact subset of R containing the support of X tθ for all θ ∈ Θ, L2(Ω) = {h :

Ω→ R ;
∫

Ω
|h(z)|2dz <∞}, and Ω and Ω are the lower and upper endpoint of Ω. We equip

the space H with the following norm:

‖h‖2
H =

∫
Ω

h2(z) dz.

Let r(w) = E(Y |W = w)fW (w) for w ∈ Rq, and for θ ∈ Θ and h ∈ H define the operator

Tθ : H → L2(Rq) : h 7→ Tθh = E
(
h(X tθ)|W = ·

)
fW (·)

=

∫
Ω

h(z)fXtθ,W (z, ·)dz.

For each θ ∈ Θ, define the following functions:

h◦θ,α = arg min
h∈H

∆(h, θ, α)

h◦θ = arg min
h∈H

∆(h, θ, 0),

where

∆(h, θ, α) =

∫
Rq

(
Tθh(w)− r(w)

)2

dw + α

∫
Ω

|h′′(z)|2dz,

and α is a sequence of positive real numbers (possibly depending on n). Note that by

convexity of the maps h 7→ ∆(h, θ, α) and h 7→ ∆(h, θ, 0), the above functions are uniquely

defined on H. Remark also that for θ = ϑ, h◦ϑ = h0 where ϑ is the true parameter.

Next, we will propose an estimator for ϑ. First of all, an estimator of the unknown

operator Tθ can be obtained by kernel smoothing:

T̂θh(w) =
1

n

n∑
i=1

∫ +∞

−∞
kbZ (X t

iθ − z)KbW (Wi − w)h(z)dz,

where bZ and bW are appropriate bandwidth sequences, k is a one-dimensional kernel,

kbZ (u) = b−1
Z k(u/bZ), K(w) =

∏q
j=1 k(wj) is a product kernel of dimension q, and KbW (w) =

b−qW K(w/bW ). An estimator of r is given by

r̂(w) =
1

n

n∑
i=1

YiKbW (Wi − w).
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For h ∈ H and θ ∈ Θ define the criterion function:

∆n(h, θ, α) =

∫
Rq

(
T̂θh(w)− r̂(w)

)2

dw + α

∫
Ω

|h′′(z)|2dz, (2)

and let

ĥθ,α = arg min
h∈H

∆n(h, θ, α).

We are now ready to define the estimator of ϑ, which will be expressed as a Z-estimator

as in Chen et al. (2003). Define the following criterion function for h ∈ H and θ ∈ Θ:

M(h, θ) = E
[
m(W,X, Y, h, θ)

]
,

where

m(W,X, Y, h, θ) = gθ(W )
(
Y − h(X tθ)

)
,

and where gθ(W ) = (g1,θ(W ), . . . , g`,θ(W ))t is a suitable `-dimensional vector of weights,

with ` ≥ k. Note that the weight function is fixed and not chosen from the data, but we

allow a dependence on θ. Although the weight function gθ can be any function, it can be

chosen in an optimal way; see Remark 3 below for more details. Furthermore, for any choice

of gθ, we have that

M(h0, ϑ) = 0,

since E(U |W ) = 0. Now, define the empirical counterpart of this criterion function:

Mn(h, θ) =
1

n

n∑
i=1

m(Wi, Xi, Yi, h, θ).

Finally, let

θ̂ = arg min
θ∈Θ
‖Mn(ĥθ,α, θ)‖, (3)

where ‖A‖ = (tr(AtA))1/2 is the Euclidean norm for any matrix (and in particular any

vector) A.

3 Asymptotic results

We need to introduce a few additional notations. Let L be the second order derivative

operator, defined by

L : H → L2(Ω) : g 7→ Lg = −g′′,

6



and let Sθ = TθL
−1 and Ŝθ = T̂θL

−1. It is well known, that on H L is one-to-one, see e.g.

Florens, Johannes and van Bellegem (2011). Further, let

Γ = −E
[
gϑ(W )h′0(X tϑ)X t

]
− E

[
gϑ(W )

( ∂

∂θt
h◦θ

)∣∣∣
θ=ϑ

(X tϑ)
]

Σ =
(∫

σ2(w)ξj1(w)ξj2(w)fW (w)dw
)

1≤j1,j2≤`

(4)

where σ2(w) = Var(U |W = w), ξ(w) = (ξ1(w), . . . , ξ`(w))t,

ξ(w) = gϑ(w)−
∫
gϑ(ω){(T ?ϑTϑ)−1fXtϑ,W (·, w)}(z)fXtϑ,W (z, ω) dz dω,

and where T ?ϑ is the adjoint operator of Tϑ. Also, for α > 0, s > 0 and p ≥ 1, let Gs,α(Rp)

be the space of functions f : Rp → R satisfying:

1. f is everywhere (m− 1) times partially differentiable for m− 1 < s 6 m and m ∈ N;

2. for some κ > 0 and for all x, the inequality

sup
y:‖y−x‖≤κ

|f(y)− f(x)−Qx(y − x)|
‖y − x‖s

6 ψ(x), (5)

holds true whereQx ≡ 0 whenm = 1 andQx(z) =
∑

0<j1+...+jp≤m−1
∂j1+...+jpf(x)

∂x
j1
1 ...∂x

jp
p

(∏p
i=1 z

ji
i

)
for any z when m > 1;

3. ψ is uniformly bounded by a constant when α = 0 and the functions f and ψ satisfy∫
fα(x) dx <∞ and

∫
ψα(x) dx <∞ when α > 0.

The asymptotic results of this section will be valid under the following assumptions:

(A.1) If Tθ1h1 = Tθ2h2 for some θ1, θ2 ∈ Θ and h1, h2 ∈ H, then θ1 = θ2 and h1 = h2

(identification condition).

(A.2) For all θ ∈ Θ, there exist γθ > 0 and a function ψθ ∈ L2(R) such that h◦θ = (T ?θ Tθ)
γθ/2ψθ,

supθ
∫
ψ2
θ(z)dz <∞ and γ = infθ γθ <∞ (source condition).

(A.3) Each explanatory variable Xj, j = 1, . . . , k has a density belonging to G1,1(R)∩Gs1,2(R)

for some s1 > 1. Moreover, supθ,z fXtθ(z) < ∞ and fXtθ,W belongs to G1,1(Rq+1) ∩
Gs2,2(Rq+1) for all θ ∈ Θ and for some s2 > 1.

(A.4) The kernel function k is a symmetric, twice continuously differentiable probability

density of order p ≥ 2.
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(A.5) nb2ρ
W → 0, nb2p

Z → 0, nb2q
W bZ →∞, nα2γ∧4 → 0, (bW∨bZ)2ρα−2 → 0 and nbqW bZα

2 →∞,

where γ is defined in assumption (A.2), ρ = p ∧ s2, and p and s2 are defined in

assumptions (A.4) and (A.3) respectively.

(A.6) (a) h◦θ ∈ H for all θ ∈ Θ and h◦θ is p times continuously differentiable with respect to

θ, where p is defined in assumption (A.4).

(b) The matrix Γ is of full rank and the matrix Σ is positive definite.

(A.7) The function gθ satisfies supθ E‖gθ(W )‖2 < ∞ and is continuously differentiable with

respect to θ. Moreover, for all δ > 0 there exists ε > 0 such that inf‖θ−ϑ‖>δ ‖M(h◦θ, θ)‖
> ε.

(A.8) For all θ ∈ Θ, the operators Sθ and Ŝθ are compact, and the derivatives of their

eigenfunctions are uniformly bounded with probability 1. Furthermore, for all θ ∈ Θ

and s = 0, 1, 2, the operators Ls/2Tθ and Ls/2T̂θ are compact with singular systems

{(λθ,s,k, φθ,s,k, ψθ,s,k)}k∈N0 respectively {(λ̂θ,s,k, φ̂θ,s,k, ψ̂θ,s,k)}k∈N0 such that

(i) ||Ls/2h◦θ|| < ∞, P(||Ls/2ĥθ,α|| < Cs,1) → 1 for n → ∞, some constants Cs,1 > 0,

and s = 0, 1, and ||Lĥθ,α|| = OP (1).

(ii) supz,θ
∑

k |ψθ,s,k(z)| < ∞ and P(supz,θ
∑

k |ψ̂θ,s,k(z)| < Cs,2) → 1 for n → ∞,

some constant Cs,2 > 0 and s = 0, 1.

(iii) supz,θ(
∑

k |ψθ,2,k(z)|2) <∞ and supz,θ(
∑

k |ψ̂θ,2,k(z)|2) = OP (1).

(iv) There exist functions `s, ̂̀s ∈ L1(N), s = 0, 1, independent of θ, bounded and

monotone decreasing such that

|λϑ,s,l〈φθ,s,k, φϑ,s,l〉| ≤ Cs,3λ̂θ,s,k`s(|k − l|)

P
(
|λϑ,s,l〈φ̂θ,s,k, φϑ,s,l〉| ≤ Cs,3λ̂θ,s,k ̂̀s(|k − l|))→ 1 for n→∞,

and for some Cs,3 <∞.

Remark 1 Note that the source condition in (A.2) can be seen as an assumption on the

smoothness of the density from which the expectation operator is defined in Tθ. A thorough

discussion of the source condition and its connection to smoothness assumptions can be found

in Johannes et al. (2011). The essential point is that the smoothness of the density of X tθ

matters here. But the smoothness of the density of X tθ is itself related to the smoothness

of the density of the covariates. Assumptions (A.3)–(A.8) are rather classical regularity

conditions on the smoothness of certain underlying functions, on the bandwidth sequences,
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on the kernel function, and on the boundedness, non-singularity and compactness of certain

quantities, matrices and operators, respectively. To check the compactness of Sθ or Ŝθ in

(A.8), note that they are both of the form∫
Ω

g(z, ·)(L−1h)(z)dz

with either g(z, w) = fXtθ,W (z, w) or g(z, w) = f̂Xtθ,W (z, w) = n−1
∑n

i=1 kbZ (X t
iθ−z)KbW (Wi−

w). So both operators are similar to Hilbert-Schmidt operators and it can be shown, that

similar to Hilbert-Schmidt operators they are compact if∫ ∫
|g(z, w)|2dzdw <∞.

For g = fXtθ,W this simply means that fXtθ,W ∈ L2(Ω × Rq) while for g = f̂Xtθ,W the

condition can be reduced to k ∈ L2(Ω) and K ∈ L2(Rq).

Finally, the identification condition for θ in (A.1) is common in semiparametric models.

In our case with endogenous variables, it means that Tθ1h1 = Tθ2h2 implies that θ1 = θ2 and

h1 = h2, or equivalently that∫
h1(xtθ1)fX|W (x|·) dx =

∫
h2(xtθ2)fX|W (x|·) dx (6)

implies that θ1 = θ2 and h1 = h2. First, note that (6) implies that h1(·tθ1) = h2(·tθ2) if the

family {fX|W (·|w) : w ∈ RW} is complete (see Section 2 in Newey & Powell (2003) and Hu

& Shiu (2011) for the definition of a complete family of conditional densities). Examples of

conditional densities that are complete, are the exponential family and the conditional nor-

mal family and are also presented in the above references. Next, thanks to the identifiability

of the single-index model we know that h1(·tθ1) = h2(·tθ2) implies that h1 = h2 and θ1 = θ2.

We are now ready to give an i.i.d. expansion of the estimator θ̂, from which its asymptotic

normality will follow immediately.

Theorem 1. Assume (A.1)–(A.8). Then, we have:

θ̂ − ϑ =
1

n

n∑
i=1

(ΓtΓ)−1ΓtUiξ(Wi) + oP (n−1/2),

where Ui = Yi − h0(X t
iϑ). Hence,

n1/2(θ̂ − ϑ)
d→ N(0, V ),
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where

V = (ΓtΓ)−1ΓtΣΓ(ΓtΓ)−1,

and where the function ξ(·) and the matrices Γ and Σ are defined in (4).

Remark 2 Note that when ` = k (i.e. when the function gθ contains as many components

as there are parameters in the model), the formula of the asymptotic variance reduces to

V = Γ−1Σ(Γt)−1, since Γ is a square (invertible) matrix in that case.

Also note that the estimation of the asymptotic variance might be cumbersome in prac-

tice. The estimation of the matrix Γ is still manageable (although it involves the estimation

of derivatives of the function h0), but the estimation of the function ξ(·), which appears in

the formula of Σ, is more problematic. In practice, it might therefore be more convenient

to estimate the matrix V by means of a bootstrap procedure. Chen et al. (2003) give suf-

ficient high level conditions under which a naive bootstrap procedure is consistent for the

estimation of the distribution of θ̂. We refer to their paper for more details.

A nice feature of our result is that the (first order) asymptotic distribution does not

depend on the bandwidths bW and bZ . This is similar to the exogenous case (see e.g. Härdle

et al. (1993)).

Remark 3 It can be easily seen that the optimal (theoretical) choice of the function gθ(·) is

given by gθ(·) = E(h′(X tθ)X|W = ·)Var(U |W = ·)−1; see e.g. Florens et al. (2004), Section

17.5.3 p. 440 for a detailed derivation.

4 Numerical aspects and simulations

In this section we discuss the numerical aspects and the finite sample behavior of the pro-

posed estimator. We first define a data generating process on which the performance of the

estimator will be based.

The nonparametric function considered in this analysis is h0(z) = sin[2π(1− z)2] and is

defined over Ω = [0, 1]. This function is twice differentiable on the interval [0, 1] and satisfies

the border conditions h0(0) = 0 and h′0(1) = 0. A single-index model with five covariates is

considered and constructed as follows. First we generate iid joint samples X = (X1, . . . , X5)>
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from

X1 = W + U + V1

X2 = W + 2U + V2

X3 = W 2 + U − 1 + V3

X4 = W 2 + 2U + V4

X5 = W 2 +
1

2
U + V5,

where U,W, V1, . . . , V5 are independent zero-mean Normal random variables with variance

0.5. We fix the vector with parameters of interest to ϑ = (1,−.3, .8, .5, .9)> and consider the

random variable Z = X>ϑ. Since the realizations of this variable are not concentrated into

the interval [0, 1], we consider a linear transformation X̃ of the vectorX such that the random

variable Z̃ = X̃>ϑ belongs to [0, 1] with probability higher than 0.95. To achieve this, we

first consider the vector X as if it was a Normal vector (which is only true in approximation).

By doing so we approximate the random variable Z by a Normal distribution with mean

µZ and standard deviation σZ . After a calculation assuming the Normal approximation, we

arrive at the following transformation of X :

X̃1 = 1
2
− µZ

2×1.96×σZ
+ X1

2×1.96×σZ

X̃i = Xi
2×1.96×σZ

i = 2, . . . , 5,

which is such that most of the realizations of Z̃ = X̃>ϑ belong to [0, 1]. In practice, we

discard the values that are not in [0, 1]. The dependent variable Y is generated from the

single-index model Y = h(X̃>ϑ) + U , see (1). The component U that is the error term

in the single-index model also appears in the generation of X and X̃, introducing non-zero

correlation between the covariates and the error term.

Figure 1(a) illustrates this setting with a sample of n = 400 data points. In the figure the

variable Z̃ is on the x-axis, and Y is on the y-axis. The solid line represents the true function

h(z). The endogeneity of Z̃ is apparent from this figure, since the cloud of data points is

not equally located around the function h. Figure 1(a) also shows the result of the common

kernel estimator of h from the observations of (Z̃, Y ). The Nadaraya-Watson estimator is

used with a Gaussian kernel. The results for various bandwidth choices are superimposed in

the figure. This estimator ignores endogeneity and is therefore biased.

In contrast, the same data are used in Figure 1(b), now with the nonparametric estimator

studied in the previous sections that is minimizing the penalized discrepancy function (2).

The figure superimposes our estimator for various choices of the regularization parameter α.
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Figure 1: Nonparametric estimation of the function h from an i.i.d. sample of Y and Z̃ (with

observed Z̃). In the figure at the left a Nadaraya-Watson estimator is used with bandwidth

values 0.1, 0.2, 0.3 and 0.4, whereas the figure at the right is based on a penalized estimator

with regularization parameter α = 10−9, 10−10 and 10−11.
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(a) Nadaraya-Watson estimator
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(b) Nonparametric instrumental regression estima-

tor

The estimation also includes the choice of the bandwidths bZ and bW (cf Section 2). Little is

known about the optimal choice of those nuisance parameters in such a complex model. In

the simulations we therefore consider Silverman (1998)’s rule of thumb and set bW (resp. bZ)

equal to 1.06σ̂Wn
−1/5 (resp. 1.06σ̂Zn

−1/5). We also found empirically that it might be better

to undersmooth the density of Z. Accordingly we consider three data driven choices for bZ

in our Monte Carlo study below, where we also study the sensitivity of the estimator for a

range of values of α. Note also that, by construction, the estimator in Figure 1(b) satisfies

the constraints imposed by the penalty term (2) so that the estimator is twice differentiable

and is such that ĥ(0) = 0 and ĥ′(1) = 0.

We now turn to the estimation of the vector of parameters ϑ. We report below the

results for ϑ2. To construct the functions ĥθ,α for each θ several choices are considered for

the regularization parameter α (going from 10−9 to 10−5) and for the bandwidth bZ . The

three choices for bZ are: Silverman’s rule of thumb (denoted bZ(1)), bZ(2) = bZ(1)/2 and

12



Table 1: Each cell presents the bias and standard error (in parentheses) of the estimator

θ̂ from 500 simulations. Various choices for α are tested and three data driven choices

of bZ are considered: bZ(1) is Silverman’s rule of thumb, bZ(2) = bZ(1)/2 and bZ(3) =

bZ(1)/4. Two sample sizes are considered : n = 200 and 400. The function g equals

g(W ) = (W,W 2, |W |, sgn(W )
√
|W |, log(|W |))>.

n = 200 n = 400

bZ(1) bZ(2) bZ(3) bZ(1) bZ(2) bZ(3)

α = 10−9
-0.1015 -0.1213 -0.0984 -0.0997 -0.1196 -0.0987

(.34) (.30) (.31) (.32) (.28) (.29)

α = 10−10
-0.1008 -0.1213 -0.1105 -0.1535 -0.1435 -0.1084

(.31) (.35) (.34) (.33) (.32) (.32)

α = 10−11
-0.1045 -0.1148 -0.1083 -0.1044 -0.1098 -0.0973

(.39) (.32) (.33) (.29) (.28) (.32)

bZ(3) = bZ(1)/4. Estimating ϑ as in (3) also requires to choose a multivariate function g of

the instruments. In our simulations, we study several options. In a first set of simulations

we consider g(W ) = (W,W 2, |W |, sgn(W )
√
|W |, log(|W |))t, which is simple to implement

but not optimal. In theory, the optimal choice for this function is gθ(W ) = E(h′(X tθ)X|W )

(see Remark 3 together with the fact that U and W are independent, which implies that

Var(U |W ) is constant). In a second set of simulations, we consider that last function at

the true value of the parameter ϑ. That estimator is theoretically optimal but unfeasible.

The conditional expectation appearing in the optimal function g is computed in practice

by the Nadaraya-Watson estimator with a Gaussian kernel and a bandwidth provided by

Silverman’s rule of thumb.

The minimization of (3) is performed by a discretization of the parameter space Θ. For

each configuration the results for 500 Monte Carlo simulations are given in Tables 1 and 2

for various sample sizes.

Monte Carlo simulations show relatively stable results over the considered range of α.

The tables also show that the bias is generally smaller when the bandwidth bZ is smaller than

Silverman’s rule of thumb. Undersmoothing the density of Z is therefore a recommendation

13



Table 2: Each cell presents the bias and standard error (in parentheses) of the estimator θ̂

from 500 simulations. Various choices for α are tested and three data driven choices of bZ

are considered: bZ(1) is Silverman’s rule of thumb, bZ(2) = bZ(1)/2 and bZ(3) = bZ(1)/4.

Two sample sizes are considered : n = 200 and 400. The function g equals gθ(W ) =

E(h′(X tθ)X|W ).

n = 200 n = 400

bZ(1) bZ(2) bZ(3) bZ(1) bZ(2) bZ(3)

α = 10−9
-0.0933 -0.1155 -0.0744 -0.0814 -0.1056 -0.0972

(.29) (.33) (.32) (.30) (.25) (.28)

α = 10−10
-0.0942 -0.0931 -0.1238 -0.1354 -0.1343 -0.0899

(.31) (.29) (.29) (.30) (.31) (.33)

α = 10−10
-0.119 -0.097 -0.111 -0.091 -0.113 -0.080

(.30) (.32) (.29) (.27) (.31) (.30)

for practical implementation. The same exercise with the density of the instrumental variable

W (not reported here) showed that the procedure is less sensitive to changes of bW .

5 Application to the estimation of Engle curves

Following the work of the German statistician Ernst Engle (1821-1896), economists refer to

Engle curves when they study the relationship how the household expenditure on a particular

good or service varies according to the income or expense structure, see e.g. Lewbel (2008).

In this section we use data coming from the Family Expenditure Survey (FES) of the UK

government. Data have been studied in previous reports, and our application uses the cross-

section that has been considered in Blundell et al. (2007), see also Kim et al. (2013).

We consider the sample of 861 families with one child. The dependent variable Y is the

share of household expenses in food excluding catering and alcoholic drinks. The variable Y

is a ratio between 0 and 1. A kernel density estimation of Y is displayed in Figure 2(a). The

single index model considered in our study allows to analyse the share as function of various

expenses. We consider the explanatory variables (X1, X2, X3) given by the log of expenses

14



in household goods, household services and other expenses, respectively. Following the em-

pirical work of Blundell et al. (2007), we consider the total income as the instrument W . We

also consider a three-dimensional function g(W ) given by g(W ) = (W, log(W ),Φ(log(W )))>.

Figure 2: Nonparametric estimation of the density of household share in food (Y ) and of

the link function hθ,α.
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(b) Nonparametric instrumental regression of the

function h

In the process of estimating the single index vector, we selected the bandwidths according

to the conclusion of the above Monte Carlo simulations, that is the Silverman’s rule of

thumb for bW and half the rule of thumb for bZ . A grid of values of θ is used to minimize the

discrepancy function. Several values of the regularization parameters have been used, and we

report the result for α̂ = 10−4. The estimated vector of parameters is θ̂ = (1,−0.2,−0.7) and

the estimated nonparametric link function ĥθ̂,α̂ is shown in Figure 2(b). The monotonicity

of the function hθ,α is remarkable. Observing that the values of θ̂2 and θ̂3 are negative, it

suggests that, all other things being equal, the share of expenditure in food decreases with

an increase of the expenses in services or other expenses than services and goods.
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6 Conclusions

In this paper we have studied the estimation of a semiparametric single-index model when

endogeneity is present in the explanatory variables, and a vector of instruments is available

that is non-correlated with the error term. Under this model, an estimator of the parametric

component of the model is proposed, which is the solution of an ill-posed inverse problem.

The
√
n-consistency and asymptotic normality of the proposed parameter estimator θ̂ is

established using delicate results on the asymptotic theory for general semiparametric es-

timators. As a by-product we also obtain the asymptotic properties of the estimator ĥ of

the link function, which is smooth and twice differentiable. Therefore meaningful quantities

such as the marginal effect of a covariate, which involves the derivative of h, can be easily

estimated. The finite sample performance of the parameter estimator is also studied via a

simulation study. The simulations show the benefits of undersmoothing the density of X tθ,

which is an interesting aspect to notice as well.

Although some indications are given in the simulation study about how to choose the

smoothing parameters bW and bZ and the regularization parameter α in practice, the optimal

choice of these parameters remains an open issue, which is worth to be studied in the future.

Another open problem is the selection of the function g in the estimating equation. It is

expected that the function g has an impact on the variance and the efficiency of the parameter

estimator. This important issue of the method merits further attention, but is beyond the

scope of this paper, since it necessitates an elaborated, lengthy and detailed efficiency study

of the proposed method.
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Appendix: Proofs

We start with a definition and a number of technical lemmas, needed in the proof of the

main result.

Lemma 1. 1. If f and g are two probability densities that belong to Gs,α(R) with α = 1

or 2, then the convolution f ? g ∈ Gs,α(R).

2. If f is a probability density that belongs to Gs,α(R) with α = 1 or 2, and if β 6= 0 then

(1/β)f(·/β) ∈ Gs,α(R).

Proof. We prove the first assertion and restrict attention to the case where s > 1. First
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note that for all x, y,

Qf?g,x(y − x) =
m−1∑
j=1

∂j(f ? g)(x)

∂xj
(y − x)j

=
m−1∑
j=1

∂j

∂xj

∫
f(x− z)g(z)dz (y − x)j =

∫
Qf,x−z(y − x)g(z)dz.

Hence, for all |y − x| ≤ ρf ,

|(f ? g)(y)− (f ? g)(x)−Qf?g,x(y − x)|
|y − x|s

=

∫ ∣∣f(y − z)− f(x− z)−Qf,x−z(y − x)
∣∣g(z)dz

|(y − z)− (x− z)|s

≤
∫
ψf (x− z)g(z)dz = (ψf ? g)(x).

Moreover if α = 1,
∫

(f ? g)(x)dx =
∫ [∫

f(x − z)dx
]
g(z)dz =

∫
f(y)dy ·

∫
g(z)dz = 1 and

similarly
∫

(ψf ? g)(x)dx <∞. For α = 2 we have:∫
(f ? g)2(x)dx =

∫ [ ∫
f(x− z)g(z)dz

]2

dx

≤
∫ [ ∫

f 2(x− z)g(z)dz

∫
g(z)dz

]
dx

=

∫ [ ∫
f 2(x− z)dx

]
g(z)dz =

∫
f 2(y)dy <∞,

since
∫
g(z)dz = 1. In a similar way we can show that

∫
(ψf ? g)2(x)dx <∞. �

The previous lemma has the following consequence: if each variable Xj, j = 1, . . . , k, has

a density in Gs,α(R) (α = 1 or 2), then for any θ ∈ Θ, fXtθ ∈ Gs,α(R). This property will

be used in the proofs below.

The next lemma gives a closed form expression for the functions h◦θ, h
◦
θ,α and ĥθ,α.

Lemma 2. The functions h◦θ, h
◦
θ,α and ĥθ,α satisfy:

h◦θ = L−1(S?θSθ)
−1S?θr, h◦θ,α = L−1(αI + S?θSθ)

−1S?θr,

and

ĥθ,α = L−1(αI + Ŝ?θ Ŝθ)
−1Ŝ?θ r̂,

where I is the identity operator.
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Proof. We prove the last statement. The first and the second one can be derived in a

similar way. First, note that the estimator ĥθ,α minimizes the functional

〈T̂θh− r̂, T̂θh− r̂〉+ α〈Lh, Lh〉

over all h ∈ H. The minimizer of this functional is the element in H for which the Fréchet

derivative of this functional in all possible directions h̃ equals zero. Consider

lim
%→0

1

%

{
〈T̂θh+ %T̂θh̃− r̂, T̂θh+ %T̂θh̃− r̂〉+ α〈Lh+ %Lh̃, Lh+ %Lh̃〉

−〈T̂θh− r̂, T̂θh− r̂〉 − 〈Lh, Lh〉
}

= 2
{
〈T̂θh̃, T̂θh− r̂〉+ α〈Lh, Lh̃〉

}
= 2
{
〈h̃, T̂ ?θ T̂θh− T̂ ?θ r̂〉+ α〈h̃, L?Lh〉

}
for all h̃, and therefore

ĥθ,α = (αL?L+ T̂ ?θ T̂θ)
−1T̂ ?θ r̂ = L−1(αI + Ŝ?θ Ŝθ)

−1Ŝ?θ r̂,

where the last equality follows from the definition of Ŝθ. �

The next lemma gathers useful results on the norm of (a function of) operators. It is

quoted from Florens et al. (2011), see their Lemma A.1, p. 489, where a formal proof can

be found.

Lemma 3 (Florens et al. (2011)). Let K : H→ G be a linear operator defined between the

two Hilbert spaces H and G, and let K? be the adjoint operator of K. Then, for all α > 0,

the following bounds on the operator norm hold true:

‖α(αI +K?K)−1(K?K)γ‖ 6

 αγ if 0 < γ 6 1

‖K?K‖γ−1α if γ > 1
,

‖(αI +K?K)−1K?‖ = ‖K(αI +K?K)−1‖ . 1/
√
α ,

‖(αI +K?K)−1‖ 6 1/α ,

‖K(αI +K?K)−1K?‖ 6 1 ,

‖K[I − (αI +K?K)−1K?K]‖ .
√
α ,

‖I − (αI +K?K)−1K?K‖ 6 1 .
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The distance between the operators Ŝθ and Sθ and the corresponding distance between

the adjoint operators is of crucial importance for the proof of the main result. We give its

rate of convergence in the next lemma.

Lemma 4. Assume (A.3) and (A.4). Then,

sup
θ∈Θ
‖Ŝθ − Sθ‖2 = OP ((nbqW bZ)−1 + (bW ∨ bZ)2ρ)

and

sup
θ∈Θ
‖Ŝ?θ − S?θ‖2 = OP ((nbqW bZ)−1 + (bW ∨ bZ)2ρ),

where ρ is defined in assumption (A.5). The same holds true when the operator S is replaced

by T .

Proof. The proof follows from Lemma A.1 in Florens et al. (2012) combined with Markov’s

inequality (except that our result is uniform over θ), and is therefore omitted. �

The next proposition considers the rate of convergence of ĥθ,α − h◦θ with respect to the

|| · ||H-norm uniformly over θ.

Proposition 1. Assume (A.2), (A.3), (A.4) and (A.8). Then,

sup
θ∈Θ
‖ĥθ,α − h◦θ‖2

H = OP
((bW ∨ bZ)2ρ

α2
+

1

α2nbqW bZ
+ αγ∧2

)
,

where γ and ρ are defined in assumption (A.5).

Proof. First, consider

ĥθ,α − h◦θ,α = I + II + III,

where

I = L−1(αI + Ŝ?θ Ŝθ)
−1Ŝ?θ (r̂ − r),

II = L−1(αI + Ŝ?θ Ŝθ)
−1(Ŝ?θ − S?θ )r,

III = L−1(αI + Ŝ?θ Ŝθ)
−1(S?θSθ − Ŝ?θ Ŝθ)(αI + S?θSθ)

−1S?θr.

By Lemma 3 we have that

‖I‖2
H ≤

K

α
‖r̂ − r‖2

H = OP
(b2ρ

W

α
+

1

αnbqW

)
,
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under assumptions (A.3) and (A.4). Next, consider II:

‖II‖2
H ≤

K

α2
‖Ŝ?θ − S?θ‖2 = OP

( 1

α2nbqW bZ
+

(bW ∨ bZ)2ρ

α2

)
,

under assumption (A.3), by Lemmas 3 and 4 above. It remains to consider III. Note that

S∗θSθ − Ŝ∗θ Ŝθ = (S∗θ − Ŝ∗θ )Sθ − Ŝ∗θ (Ŝθ − Sθ),

and hence,

‖III‖2
H ≤

K

α2
‖S?θSθ − Ŝ?θ Ŝθ‖2‖r‖2

H = OP
( 1

α2nbqW bZ
+

(bW ∨ bZ)2ρ

α2

)
,

again by Lemmas 3 and 4. It remains to consider the bias part ‖h◦θ,α− h◦θ‖2
H, which is of or-

der αγ∧2 under assumption (A.2), by using standard arguments (e.g. Florens et al. (2012)).�

In the next lemma we consider the rate of convergence of the L2-norm of [ĥϑ,α−h◦ϑ,α](X tϑ)

and of its first derivative as well as uniform bounds with respect to z and θ for the estimator

and its derivatives.

Lemma 5. Assume (A.3) and (A.4). Then,

EX
(
ĥϑ,α(X tϑ)− h◦ϑ,α(X tϑ)

)2

= oP (1) and EX
(
ĥ′ϑ,α(X tϑ)− h◦′ϑ,α(X tϑ)

)2

= oP (1),

where EX denotes the expectation with respect to the variable X only.

Proof. Let d̂ϑ,α = ĥϑ,α − h◦ϑ,α. The first expectation equals

EX
(
d̂2
ϑ,α(X tϑ)

)
=

∫
d̂2
ϑ,α(z)fXtϑ(z)dz,

and since fXtϑ is uniformly bounded this is bounded up to a constant by
∫
d̂2
ϑ,α(z)dz. The

first result now follows by using similar arguments as in the proof of Proposition 1.

For the second statement the proof is similar. Indeed, we can write

ĥ′ϑ,α − h◦′ϑ,α = L−1/2(αI + Ŝ?ϑŜϑ)−1Ŝ?ϑr̂ − L−1/2(αI + S?ϑSϑ)−1S?ϑr.

The control of this difference is similar to what we did in Proposition 1. We omit the details.

�
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Lemma 6. Assume (A.2), (A.4), (A.5) and (A.8). Then, there exists a constant M > 0

such that

P
(

sup
z∈Ω,θ∈Θ

|ĥ(s)
θ,α(z)| < M

)
→ 1 for n→∞, s = 0, 1.

Furthermore,

sup
z∈Ω,θ∈Θ

|ĥ′′θ,α(z)− h◦′′θ,α(z)| = OP (1).

Proof. Write

|Ls/2ĥθ,α| ≤ |(αI + Ls/2T̂ ?θ T̂θL
s/2)−1Ls/2T̂ ?θ r|+ |(αI + Ls/2T̂ ?θ T̂θL

s/2)−1Ls/2T̂ ?θ (r̂ − r)|

= R1 +R2.

For the first term we have

R1 ≤
∑
k

∣∣∣∣∣ λ̂θ,s,k

α + λ̂2
θ,s,k

∣∣∣∣∣ |〈Tϑh0, φ̂θ,s,k〉| |ψ̂θ,s,k|

=
∑
k

∣∣∣∣∣ λ̂θ,s,k

α + λ̂2
θ,s,k

∣∣∣∣∣ |〈h0, T
?
ϑ φ̂θ,s,k〉| |ψ̂θ,s,k|

≤
∑
k,l

∣∣∣∣∣ λ̂θ,s,kλϑ,s,lα + λ̂2
θ,s,k

∣∣∣∣∣ |〈φ̂θ,s,k, φϑ,s,l〉||〈L−s/2h0, ψϑ,s,l〉| |ψ̂θ,s,k|

≤ Cs,3
∑
k,l

∣∣∣∣∣ λ̂2
θ,s,k

α + λ̂2
θ,s,k

∣∣∣∣∣ ̂̀s(|k − l|)|〈L−s/2h0, ψϑ,s,l〉| |ψ̂θ,s,k|

≤ Cs,3
∑
k

||L−s/2h◦ϑ|| |ψ̂θ,s,k|
∑
l

̂̀
s(|k − l|)

≤ Cs,3
∑
k

||Ls/2h◦ϑ|| |ψ̂θ,s,k|
∑
l

̂̀
s(|k − l|)

by using the basis expansion of φ̂θ,s,k with respect to {φϑ,s,l}l≥0 in the third line, the fact that

z2/(α + z2) ≤ 1 for all α > 0 and assumption (A.8) (iv) in the fourth line, and using that

||L−s/2|| is bounded. R1 is therefore bounded, using assumption (A.8) (ii). For the second

term we see that

R2 ≤
∑
k

∣∣∣∣∣ λ̂θ,s,k

α + λ̂2
θ,s,k

∣∣∣∣∣ |〈r̂ − r, φ̂θ,s,k〉| |ψ̂θ,s,k(z)|

≤ 1

α
||r̂ − r||2

∑
k

|ψ̂θ,s,k(z)| =
[
O
(bρW
α

)
+Oa.s.

( 1

α
√
nbqW

)]∑
k

|ψ̂θ,s,k(z)|
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Taking the supremum over all θ ∈ Θ and z ∈ Ω and using the fact that Oa.s.((nb
q
Wα

2)−1) =

oa.s.(bZ) = oa.s.(1), gives the first result. For the second statement, we first write |d̂′′ϑ,α(z)| 6
|ĥ′′ϑ,α(z)|+ |h◦′′ϑ,α(z)|, and then follow the lines above by using the weaker conditions for s = 2.

�

Lemma 7. Assume (A.3) and (A.4). Then, for δn = o(1),

sup
‖θ−ϑ‖≤δn

E
[∥∥∥( ∂

∂γ
[ĥγ,α − h◦γ,α]

)∣∣∣
γ=ϑ

(X tθ)
∥∥∥2]

= oP (1),

and

sup
‖θ−ϑ‖≤δn

sup
‖η−ϑ‖≤δn

E
[∥∥∥( ∂2

∂γ∂γt
[ĥγ,α − h◦γ,α]

)∣∣∣
γ=η

(X tθ)
∥∥∥2]

= OP (1).

Proof. Let d̂θ,α = ĥθ,α−h◦θ,α as in the previous proof. Using a Taylor expansion and Lemma

2 we can write

∂

∂γ
d̂γ,α

∣∣∣
γ=ϑ

= Q̂ϑ,αr̂ −Qϑ,αr = (Q̂ϑ,α −Qϑ,α)r + Q̂ϑ,α(r̂ − r),

where D = L?L,

Q̂θ,α =
(
αD + T̂ ?θ T̂θ

)−1{
T̂
?(1)
θ −

[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1

T̂ ?θ

}
Qθ,α =

(
αD + T ?θ Tθ

)−1{
T
?(1)
θ −

[
T ?θ T

(1)
θ + T

?(1)
θ Tθ

](
αD + T ?θ Tθ

)−1

T ?θ

}
,

the operators T
(1)
θ : L2(Rk)→ L2(Rq) and T

?(1)
θ : L2(Rq)→ L2(Rk) are defined by

T
(1)
θ h =

∂

∂θ
(Tθh), T

?(1)
θ g =

∂

∂θ
(T ?θ g),

and

T̂θh =

∫
R

1

n

n∑
i=1

kbZ (X t
iθ − z)KbW (Wi − ·)h(z)dz,

T̂
(1)
θ h =

∫
R

1

nbZ

n∑
i=1

k′bZ (X t
iθ − z)X t

iKbW (Wi − ·)h(z)dz,

T̂ ?θ g =

∫
Rq

1

n

n∑
i=1

kbZ (X t
iθ − ·)KbW (Wi − w)g(w)dw,

T̂
?(1)
θ g =

∫
Rq

1

nbZ

n∑
i=1

k′bZ (X t
iθ − ·)X t

iKbW (Wi − w)g(w)dw.
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It follows that(
Q̂θ,α −Qθ,α

)
r

=
[(
αD + T̂ ?θ T̂θ

)−1 −
(
αD + T ?θ Tθ

)−1
]{
T̂
?(1)
θ −

[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
T̂ ?θ

}
r

+
(
αD + T ?θ Tθ

)−1[
T̂
?(1)
θ − T ?(1)

θ

]
r

−
(
αD + T ?θ Tθ

)−1
{[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
T̂ ?θ

−
[
T ?θ T

(1)
θ + T

?(1)
θ Tθ

](
αD + T ?θ Tθ

)−1
T ?θ

}
r.

Note that (
αD + T̂ ?θ T̂θ

)−1 −
(
αD + T ?θ Tθ

)−1

= −
(
αD + T̂ ?θ T̂θ

)−1
([
T̂ ?θ − T ?θ

]
Tθ + T̂ ?θ

[
T̂θ − Tθ

])(
αD + T ?θ Tθ

)−1

and that[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
T̂ ?θ −

[
T ?θ T

(1)
θ + T

?(1)
θ Tθ

](
αD + T ?θ Tθ

)−1
T ?θ

=
[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1[
T̂ ?θ − T ?θ

]
+
([
T̂ ?θ − T ?θ

]
T̂

(1)
θ + T ?θ

[
T̂

(1)
θ − T

(1)
θ

]
+
[
T̂
?(1)
θ − T ?(1)

θ

]
T̂θ + T

?(1)
θ

[
T̂θ − Tθ

])(
αD + T ?θ Tθ

)−1
T ?θ

−
[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
([
T̂ ?θ − T ?θ

]
T̂θ + T ?θ

[
T̂θ − Tθ

])(
αD + T ?θ Tθ

)−1
T ?θ .

Hence, it suffices to control the differences ‖T̂ϑ− Tϑ‖, ‖T̂ ?ϑ − T ?ϑ‖, ‖T̂
(1)
ϑ − T

(1)
ϑ ‖ and ‖T̂ ?(1)

ϑ −
T
?(1)
ϑ ‖. The former two expressions are oP (1) by Lemma 4. The order of the latter two can

be obtained by using similar arguments. The first part of the statement of the lemma now

follows.

For the second part, write

∂2

∂θ∂θt
(
ĥθ,α − h◦θ,α

)
(z) =

(
Q̂

(1)
θ,α −Q

(1)
θ,α

)
r(z) + Q̂

(1)
θ,α

(
r̂(z)− r(z)

)
, (7)

with

Q̂
(1)
θ,α =

(
αD + T̂ ?θ T̂θ

)−1
{
T̂
?(2)
θ −

[
2T̂

(1)
θ T̂

?(1)t
θ + T̂ ?θ T̂

(2)
θ + T̂

?(2)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
T̂ ?θ

−2
[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
[
T̂
?(1)
θ −

[
T̂ ?θ T̂

(1)
θ + T̂

?(1)
θ T̂θ

](
αD + T̂ ?θ T̂θ

)−1
T̂ ?θ

]t}
,

Q
(1)
θ,α =

(
αD + T ?θ Tθ

)−1
{
T
?(2)
θ −

[
2T

(1)
θ T

?(1)t
θ + T ?θ T

(2)
θ + T

?(2)
θ Tθ

](
αD + T ?θ Tθ

)−1
T ?θ

−2
[
T ?θ T

(1)
θ + T

?(1)
θ Tθ

](
αD + T ?θ Tθ

)−1
[
T
?(1)
θ −

[
T ?θ T

(1)
θ + T

?(1)
θ Tθ

](
αD + T ?θ Tθ

)−1
T ?θ

]t}
,
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where T
(2)
θ h = ∂2

∂θ∂θt

(
Tθh
)
, T

?(2)
θ g = ∂2

∂θ∂θt

(
T ?θ g

)
,

T̂
(2)
θ h =

∫
R

1

nb2
Z

n∑
i=1

k′′bZ
(
X t
iθ − z

)
XiX

t
iKbW

(
Wi − ·

)
h(z)dz,

T̂
?(2)
θ g =

∫
Rq

1

nb2
Z

n∑
i=1

k′′bZ
(
X t
iθ − ·

)
XiX

t
iKbW

(
Wi − w

)
g(w)dw.

Using similar arguments as above, we can show that ‖T̂ ?(2)
θ − T ?(2)

θ ‖ = OP (1) and ‖T̂ (2)
θ −

T
(2)
θ ‖ = OP (1) uniformly over a neighborhood around ϑ. Hence, expression (7) is bounded

in probability uniformly over that neighborhood. �

The proof of the main result will be based on results in Chen et al. (2003). In the

latter paper high-level conditions are given under which a semiparametric Z-estimator (i.e.

any parameter estimator that is obtained as the solution of a system of equations involving

a nonparametric nuisance function) is weakly consistent (Theorem 1) and asymptotically

normal (Theorem 2). For the asymptotic normality we need a small modification of their

result, which we state below. We omit the proof.

To present this modified result, we need to introduce a number of additional notations.

As before we assume that θ belongs to a parameter space Θ, and we will assume that the

nuisance functions h belong to a certain space H. This space is not necessarily equal to

the space H introduced before, and will be chosen in the proof of the main result, in such

a way that the high level conditions of Proposition 2 below will be satisfied. The space H
is endowed with a pseudo-norm ‖ · ‖H. The functions h in H will often be indexed by the

parameter vector θ and we will identify h with (hθ)θ.

Since in the result below we assume that θ̂ and ĥ are weakly consistent, we can restrict

the spaces Θ and H to shrinking neighborhoods around the true ϑ and h0. Let Θδ = {θ ∈ Θ :

‖θ − ϑ‖ ≤ δn} and Hδ = {h ∈ H : supθ∈Θδ
‖hθ − h◦θ‖H ≤ δn} for some δn = o(1). Moreover,

for any θ ∈ Θδ, we say that M(hθ, θ) is pathwise differentiable at hθ ∈ Hδ in the direction

[hθ−hθ] if {hθ + τ(hθ−hθ) : τ ∈ [0, 1]} ⊂ H and limτ→0[M(hθ + τ(hθ−hθ), θ)−M(hθ, θ)]/τ

exists. We denote the limit by Λ(hθ, θ)[hθ − hθ].
The modification with respect to Theorem 2 in Chen et al. (2003) consists in the fol-

lowing two changes. First of all we suppose in the result below that M(hθ, θ) is linear in

hθ, which implies that condition (2.3)(i) in Theorem 2 in Chen et al. (2003) is automat-

ically satisfied. Moreover, it can be easily seen from the proof of the latter result that

the condition supθ∈Θδ
‖ĥθ,α − h◦θ‖H = oP (n−1/4) in (2.4) can in that case be replaced by

supθ∈Θδ
‖ĥθ,α − h◦θ‖H = oP (1). The second change with respect to Theorem 2 is related
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to their condition (2.3)(ii). The proof of their theorem shows that this condition can be

replaced by ‖Λ(h◦θ, θ)[ĥθ,α − h◦θ]−Λ(h0, ϑ)[ĥϑ,α − h0]‖ ≤ oP (1)δn +OP (n−1/2), i.e. instead of

taking all hθ in a neighbourhood of h◦θ, we only consider ĥθ,α.

Proposition 2. Suppose that M(h0, ϑ) = 0 and θ̂ − ϑ = oP (1). In addition, assume that

(C.1) ‖Mn(ĥθ̂,α, θ̂)‖ = infθ∈Θδ ‖Mn(ĥθ,α, θ)‖+ oP (n−1/2).

(C.2) The ordinary derivative Γ(h◦θ, θ) := ∂
∂θ
M(h◦θ, θ) exists for all θ ∈ Θδ and is continuous

at θ = ϑ. Moreover, the matrix Γ := Γ(h0, ϑ) is of full (column) rank.

(C.3) For all θ ∈ Θδ the pathwise derivative Λ(h◦θ, θ)[hθ−h◦θ] exists in all directions [hθ−h◦θ] ∈

H. Moreover, for all (hθ, θ) ∈ Hδ × Θδ, M(hθ, θ) is linear in hθ, i.e. M(hθ, θ) −

M(h◦θ, θ) − Λ(h◦θ, θ)[hθ − h◦θ] = 0, and ‖Λ(h◦θ, θ)[ĥθ,α − h◦θ] − Λ(h0, ϑ)[ĥϑ,α − h0]‖ ≤

oP (1)δn +OP (n−1/2).

(C.4) For all θ ∈ Θδ, P (ĥθ,α ∈ H)→ 1 and supθ∈Θδ
‖ĥθ,α − h◦θ‖H = oP (1).

(C.5) For all sequences εn = o(1),

sup
‖θ−ϑ‖≤εn,supθ∈Θδ

‖hθ−h◦θ‖H≤εn
‖Mn(hθ, θ)−M(hθ, θ)−Mn(h0, ϑ)‖ = oP (n−1/2).

(C.6) For some positive definite matrix Σ, n1/2{Mn(h0, ϑ) + Λ(h0, ϑ)[ĥϑ,α − h0]} d→ N(0,Σ).

Then,

n1/2(θ̂ − ϑ)
d→ N(0, V ),

where

V = (ΓtΓ)−1ΓtΣΓ(ΓtΓ)−1.

We are now ready to prove the main result of the paper.

Proof of Theorem 1. First of all, let us define the space H by

H =
{
h : Ω→ R;h, h′ are absolutely continuous,

sup
z∈Ω
|h(z)| ≤M and sup

z∈Ω
|h′(z)| ≤M

}
(8)
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where M is defined in Lemma 6, and let ‖h‖2
H = ‖h‖2

H =
∫

Ω
h2(z) dz.

We will first show that θ̂ − ϑ = oP (1) by checking the conditions of Theorem 1 in Chen

et al. (2003). Condition (1.1) in the latter paper is automatically satisfied by construction,

whereas (1.2) follows from assumption (A.7). For condition (1.3), write

sup
θ
‖M(hθ, θ)−M(h◦θ, θ)‖ = sup

θ

∥∥∥E[g(W )
{
hθ(X

tθ)− h◦θ(X tθ)
}]∥∥∥

≤
∥∥∥E(g2(W ))1/2

∥∥∥ sup
θ
E
(

(hθ − h◦θ)2(X tθ)
)1/2

.

The former expected value is finite by assumption (A.7), whereas the latter one is bounded

by C supθ ‖hθ−h◦θ‖2
H for some C <∞, since supθ,z fXtθ(z) <∞ by assumption (A.3). Next,

condition (1.4) follows from Proposition 1, whereas condition (1.5) can be verified in a similar

way as condition (C.5) from Proposition 2, which we show below. Hence, we have shown

that the conditions of Theorem 1 in Chen et al. (2003) are satisfied, except for condition

(1.5) of which we postpone the verification to later.

We are now ready to show the asymptotic normality of θ̂, using Proposition 2 above.

(C.1) This is automatically satisfied by construction of the estimator θ̂.

(C.2) The derivative with respect to θ is

Γ(h◦θ, θ)(θ̄ − θ)

= lim
τ→0

1

τ

{
E
[
gθ+τ(θ̄−θ)(W )

(
Y − h◦θ+τ(θ̄−θ)(X

t{θ + τ(θ̄ − θ)})
)]

−E
[
gθ(W )

(
Y − h◦θ(X tθ)

)]}
=
{
E
[( ∂
∂γ
gγ(W )

)∣∣∣
γ=θ

(Y − h◦θ(X tθ))
]
− E

[
gθ(W )h◦′θ (X tθ)X t

]
−E
[
gθ(W )

( ∂

∂γt
h◦γ

)∣∣∣
γ=θ

(X tθ)
]}

(θ̄ − θ).

The first part of (C.2) is therefore fulfilled if h◦′θ , ∂h◦θ/∂θ and ∂gθ/∂θ exist and are contin-

uous in θ (guaranteed by assumption (A.6) (a) and (A.7)). The second part is fulfilled by

assumption (A.6) (b). Note that for θ = ϑ we have h◦ϑ = h0 and the expression reduces to

Γ(h◦ϑ, ϑ) = −E
[
gϑ(W )h′0(X tϑ)X t

]
− E

[
gϑ(W )

( ∂

∂γt
h◦γ

)∣∣∣
γ=ϑ

(X tϑ)
]

since

E
[( ∂
∂γ
gγ(W )

)∣∣∣
γ=ϑ

(Y − h◦ϑ(X tϑ))
]

= E
[( ∂
∂γ
gγ(W )

)∣∣∣
γ=ϑ

E[(Y − h0(X tϑ))|W ]
]

= 0.
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(C.3) We calculate the functional derivative as

Λ(h◦θ, θ)[hθ − h◦θ] = lim
τ→0

1

τ

{
E
[
gθ(W )

(
Y − {h◦θ + τ(hθ − h◦θ)}(X tθ)

)]
−E
[
gθ(W )

(
Y − h◦θ(X tθ)

)]}
= −E

[
gθ(W )(hθ − h◦θ)(X tθ)

]
.

It follows that the first part of (C.3) is fulfilled, i.e.

M(hθ, θ)−M(h◦θ, θ)− Λ(h◦θ, θ)[hθ − h◦θ] = 0.

For the second part we have∥∥∥Λ(h◦θ, θ)[ĥθ,α − h◦θ]− Λ(h◦ϑ, ϑ)[ĥϑ,α − h◦ϑ]
∥∥∥

=
∥∥∥E[gθ(W )

{
(ĥϑ,α − h◦ϑ)(X tθ)− (ĥϑ,α − h◦ϑ)(X tϑ) + (ĥθ,α − h◦θ − (ĥϑ,α − h◦ϑ))(X tθ)

}]∥∥∥
≤ C

(
E
∥∥∥gθ(W )

∥∥∥2)1/2(
E[I2

1 ] + E[I2
2 ] + E[I2

3 ] + E[I2
4 ]
)1/2

,

with d̂θ,α = ĥθ,α − h◦θ,α, dθ,α = h◦θ,α − h◦θ, and

I1 = d̂ϑ,α(X tθ)− d̂ϑ,α(X tϑ), I2 = d̂θ,α(X tθ)− d̂ϑ,α(X tθ),

I3 = dϑ,α(X tθ)− dϑ,α(X tϑ), I4 = dθ,α(X tθ)− dϑ,α(X tθ).

The terms E[I2
3 ] and E[I2

4 ] are O(αγ∧2) (as was shown at the end of the proof of Proposition

1), which is O(n−1/2) under assumption (A.5). We obtain by a Taylor expansion of d̂θ,α(X tθ)

around X tϑ that

I1 = d̂′ϑ,α(X tϑ)X t(θ − ϑ) +
1

2
d̂′′ϑ,α(ξn)(θ − ϑ)tXX t(θ − ϑ).

Here ξn denotes a random variable between X tθ and X tϑ. Because X belongs to some

compact set we have ‖XX t‖ ≤ κ for some κ <∞. Hence,

E[I2
1 ] ≤ C1

∣∣∣(θ − ϑ)tE
[
d̂′2ϑ,α(X tϑ)XX t

]
(θ − ϑ)

+(θ − ϑ)tE
[
d̂′′2ϑ,α(ξn)2XX t(θ − ϑ)(θ − ϑ)tXX t

]
(θ − ϑ)

∣∣∣
≤ C2‖θ − ϑ‖2E

[
d̂′2ϑ,α(X tϑ)

]
+ C3‖θ − ϑ‖4E

[
d̂′′2ϑ,α(ξn)

]
≤ oP (1)δ2

n +OP (δ4
n)

by Lemma 6, uniformly over all ‖θ − ϑ‖ ≤ δn, and where C2 = C1κ and C3 = C1κ
2. Using

a similar development for I2, we obtain that

E[I2
2 ] ≤ C4

(
‖θ − ϑ‖2E

[∥∥∥ ∂
∂γ
d̂γ,α

∣∣∣
γ=ϑ

(X tθ)
∥∥∥2]

+ ‖θ − ϑ‖4E
[∥∥∥ ∂2

∂γ∂γt
d̂γ,α

∣∣∣
γ=η

(X tθ)
∥∥∥2])

,
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for some η on the line segment between θ and ϑ. The latter is of the order oP (1)δ2
n +OP (δ4

n)

by Lemma 7. This shows that the second part of (C.3) is satisfied.

(C.4) Using the definition of the space H given in equation (8) and using Lemma 6,

it is easily seen that for all θ ∈ Θδ we have that P (ĥθ,α ∈ H) → 1 as n tends to infinity.

Moreover, supθ ‖ĥθ,α − h◦θ‖H = oP (1) by Proposition 1 and the definition of the norm ‖ · ‖H.

(C.5) For proving condition (C.5), we make use of Theorem 3 in Chen et al. (2003). If

conditions (3.2) and (3.3) in the latter theorem are verified, then (C.5) holds true. Condition

(3.2) is easily seen to be valid for r = 2 and sj = 1 (j = 1, . . . , `) (using the notation of

Chen et al. (2003)). For (3.3), it follows from e.g. Theorem 2.7.1 in Van der Vaart & Wellner

(1996) that logN(ε,H, ‖ · ‖H) ≤ Kε−1 for all 0 ≤ ε ≤M , where N(ε,H, ‖ · ‖H) is the covering

number, i.e. the smallest number of balls of ‖ · ‖H-radius ε needed to cover the space H.

Condition (3.3) now follows.

(C.6) We need to show the asymptotic normality of

Mn(h◦ϑ, ϑ) + Λ(h◦ϑ, ϑ)
(
ĥϑ,α − h◦ϑ

)
.

Now, Mn(h◦ϑ, ϑ) is already a sum of independent identically distributed random variables

with zero mean, since

E[Mn(h◦ϑ, ϑ)] = M(h◦ϑ, ϑ) = 0.

From the first part of (C.3) we have

Λ(h◦ϑ, ϑ)[ĥϑ,α − h◦ϑ] = M(ĥϑ,α, ϑ)−M(h◦ϑ, ϑ)

= −E[gϑ(W )(ĥϑ,α(X tϑ)− h◦ϑ(X tϑ))]

= −
∫
R2

gϑ(w)(ĥϑ,α(z)− h◦ϑ(z))fXtϑ,W (z, w)d(z, w).

We can write∫
R2

gϑ(w)(ĥϑ,α(z)− h◦ϑ(z))fXtϑ,W (z, w)d(z, w) =

∫
R
gϑ(w)SϑL(ĥϑ,α − h◦ϑ)(w)dw

= 〈gϑ, Sϑ(S?ϑSϑ)−1S?ϑ(r̂ − ŜϑLh◦ϑ)〉+ 〈gϑ, Sϑ[(αI + Ŝ?ϑŜϑ)−1Ŝ?ϑ − (S?ϑSϑ)−1S?ϑ]r̂〉

+〈gϑ, Sϑ(S?ϑSϑ)−1[Ŝ?ϑ − S?ϑ]Lh◦ϑ〉

= In,1 + In,2 + In,3.
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First, note that

(S?ϑSϑ)−1S?ϑ(r̂ − ŜϑLh◦ϑ)(z)

=
1

nbW

n∑
i=1

{
(T ?ϑTϑ)−1

∫
K
(Wi − w

bW

)[
Yi −

∫
1

bZ
k
(X t

iϑ− z
bZ

)
h◦ϑ(z)dz

]
fXtϑ,W (·, w)dw

}
(z)

=
1

n

n∑
i=1

Ui

{
(T ?ϑTϑ)−1

∫
K(w)fXtϑ,W (·,Wi − bWw)dw

}
(z)

−µm(k)
bpZ
n

n∑
i=1

h◦ϑ
(p)(X t

iϑ)
{

(T ?ϑTϑ)−1

∫
K(w)fXtϑ,W (·,Wi − bWw)dw

}
(z)

+oP (bpZ)
1

n

n∑
i=1

{
(T ?ϑTϑ)−1

∫
K(w)fXtϑ,W (·,Wi − bWw)dw

}
(z)

=
1

n

n∑
i=1

Ui{(T ?ϑTϑ)−1fXtϑ,W (·,Wi)}(z) +OP (bpZ) +OP (bρW ),

where both remainder terms are of order oP (n−1/2) since nb2p
Z → 0 and nb2ρ

W → 0. Hence, we

obtain for In,1 :

In,1 =
1

n

n∑
i=1

Ui

∫
gϑ(w){(T ?ϑTϑ)−1fXtϑ,W (·,Wi)}(z)fXtϑ,W (z, w)d(z, w) + oP (n−1/2),

which gives the following contribution to the i.i.d. sum :

− 1

n

n∑
i=1

Ui

∫
gϑ(w){(T ?ϑTϑ)−1fXtϑ,W (·,Wi)}(z)fXtϑ,W (z, w)d(z, w).

Further we get

In,3 = 〈(S?ϑSϑ)−1S?ϑgϑ, [Ŝ
?
ϑ − S?ϑ]Lh◦ϑ〉

=

∫ ∫
(S?ϑSϑ)−1S?ϑgϑ(w)Lh◦ϑ(z)

[
(f̂Xtϑ,W (z, w)− E[f̂Xtϑ,W (z, w)])

+(E[f̂Xtϑ,W (z, w)]− fXtϑ,W (z, w))
]
dz dw,

where, by standard calculations, the bias part is of order O((bZ ∨ bW )2ρ) = o(n−1/2) and

the stochastic part is of order oP (n−1/2) due to the additional integration. In a somewhat

similar way we can show that also In,2 is asymptotically negligible. �
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