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MAXIMUM SIMULATED LIKELIHOOD AND

HIERARCHICAL BAYES

Abstract

In this study, we compare the parameter estimates of the mixed logit model obtained

with maximum likelihood and with hierarchical Bayesian estimation. The choice of the

priors in Bayesian estimation and of the type and the number of quasi-random draws for

maximum likelihood estimation have a big impact on the estimates. Our main focus is

on the effect of the prior for the covariance matrix in hierarchical Bayes estimation. We

investigate several priors such as Inverse Wisharts, the Separation Strategy, Scaled Inverse

Wisharts and the Huang Half-t priors and we compute the root mean square errors of the

resulting estimates for the mean, covariance matrix and individual parameters in a large

simulation study. We show that the default settings in many software packages can lead

to very unreliable results and that it is important to check the robustness of the results.

Keywords: Mixed Logit Model, Hierarchical Bayesian Estimation, Separation Strategy,

Inverse Wishart Distribution, Scaled Inverse Wishart Distribution, Huang Half-t Distri-

bution

1 Introduction

The mixed logit model (also called random parameter logit model) has rapidly become the

standard model to analyze choice behavior within health economics, marketing and the trans-
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portation research literature. The model extends and improves the standard multinomial logit

model by focusing on the distribution of individual-level preferences rather than on average pre-

ferences (Revelt and Train, 1998). To fit the model, one often uses both maximum (simulated)

likelihood estimation or hierarchical Bayesian estimation, where the latter is using Monte Carlo

Markov Chain (MCMC) methods to compute the joint posterior distribution of the parameters.

In theory, both methods should converge to the true parameters if the sample size increa-

ses and the model is correctly specified. With smaller samples, one hopes for similar estimates

from both approaches which was supported by the results in Huber and Train (2001). However,

the evidence of this similarity is not very large as their findings are based on a single dataset.

Besides Huber and Train (2001), there are other studies that have investigated the similarity

based on only one dataset (Regier et al., 2009; Haan et al., 2015). More recently, Elshiewy et

al. (2016) reported on a somewhat larger study but their conclusion is based on a model with

only a few random parameters and a dataset with a huge number of choice sets.

In this paper we investigate how close the estimates from both approaches are based on a

large simulation study. We examine the effect of the priors in Bayesian estimation and of the

number of Halton draws for maximum simulated likelihood. As it turns out that the prior on

the covariance matrix has more impact than expected, we study the effect of some frequently

used priors as well as some recently suggested priors.

The most commonly used prior for the covariance matrix in the hierarchical Bayes approach

is the Inverse Wishart distribution. Though this prior is easy to implement because of it conju-

gacy property for the multivariate normal distribution, it has some objectionable issues which

will be discussed later. Some alternative priors have been suggested: the Separation Strategy

(Barnard,et al., 2000), the Scaled Inverse Wishart distribution (O’Malley and Zaslavsky, 2008)

and the Huang Half-t distribution (Huang, et al., 2013). We will investigate how and to what

extent the results depend on these priors.

This paper is organized as follows. In section 2, the mixed logit model and both the max-

imum simulated likelihood and the hierarchical Bayes approaches are described. We explain

the undesirable issues related to the Inverse Wishart distribution as a prior for the covariance
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matrix and describe some other prior distributions that have been proposed in the literature

in section 3. Section 4 contains a simulation study with different scenarios and an overview of

the root mean square errors (RMSE) of the parameters. Finally, the discussion of the results

and the main conclusions are given in section 5.

2 The Mixed Logit (MXL) Model

As stated before, the mixed logit model describes the heterogeneity in the population by the

distribution of the individual-level preferences rather than relying on average preferences. So the

individual-level parameters, βn, associated with the attributes are assumed to vary according to

a probability distribution βn ∼ f(βn|µ,Σ). In the sequel, we will assume that the heterogeneity

distribution f(βn|µ,Σ) is a multivariate normal distribution.

Conditional on βn, the probability that person n chooses alternative k in choice set s is

pksn(βn) =
exp(x′ksnβn)∑K
i=1 exp(x′isnβn)

, (1)

where xksn is a p-dimensional vector characterizing the attribute levels of alternative k in choice

set s for respondent n with p number of coefficients in the model. The choice is stored in the

variable, yksn, a binary variable that equals one if respondent n chooses alternative k in choice

set s and zero otherwise. Let yn contain all the choices from respondent n corresponding to all

S choice sets. The probability, unconditional on βn, of a respondent n’s choices yn is

πn(yn|µ,Σ) =

∫
βn

(
S∏
s=1

K∏
k=1

(pksn(βn))yksn

)
f(βn|µ,Σ) dβn. (2)

The mixed logit (MXL) model takes into account the correlation of the probabilities for a

single respondent in multiple choices and is therefore also called the panel mixed logit model.
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The log-likelihood of the MXL model is

LL(µ,Σ|y) =
N∑
n=1

ln (πn(yn|µ,Σ)) ,

=
N∑
n=1

ln

[∫
βn

(
S∏
s=1

K∏
k=1

[pksn(βn)]yksn

)
f(βn|µ,Σ) dβn

]
,

(3)

where y = [y1, ...,yN ] denotes the matrix of choices from all N respondents.

The following sections review the two main procedures for estimating the hyperparameters,

µ and Σ, of the heterogeneity distribution and the related individual-level parameters βn.

2.1 Maximum Simulated Likelihood Estimation

In this approach, the mean vector µ and the covariance matrix Σ are considered fixed but

unknown. The estimators of these parameters are obtained by maximizing the (log-) likeli-

hood. As this maximum depends on the sample at hand the estimators are stochastic. As the

log-likelihood denoted in equation (3) contains a multivariate integral over the individual-level

parameters which cannot be computed analytically, random draws of individual-level para-

meters are required to approximate this multivariate integral. The corresponding simulated

probability is defined as π̂n(yn|µ,Σ)

π̂n(yn|µ,Σ) =
1

R

R∑
r=1

(
S∏
s=1

K∏
k=1

(pksn(βrn))yksn

)
, (4)

with βrn random draws from f(βn|µ,Σ). The simulated log-likelihood is then defined as

SLL(µ,Σ|y) =
N∑
n=1

ln (π̂n(yn|µ,Σ)) . (5)

Either Pseudo-Monte Carlo (PMC) or Quasi-Monte Carlo (QMC) random draws are used

to evaluate these integrals. The quasi-random draws decrease the computation time noticeably

by providing better estimates with a smaller number of draws and there exists an abundant

literature on the performance of different types of QMC draws (for a comparison in a choice
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modeling context, see for instance Bhat, 2001; Sándor & Train, 2004; Bliemer et al., 2008; Yu

et al., 2010).

Table 1: Default settings for some software packages.

Software Package Version Type of Random Draws Number of draws

NLOGIT NLOGIT 6 Pseudo MC 100

R-mlogit 0.2-4 Pseudo MC 40

STATA-mixlogit STATA 14.2 Halton 50

Table 1 has the default settings for some frequently used software packages. In this paper,

we will use the R-package mlogit and only use Halton draws with varying number of draws.

Maximizing the likelihood function only yields estimates for µ and Σ. Estimates for the

individual parameters βn can then be obtained using Bayes’ theorem (Train, 2003):

g(βn|yn,µ,Σ) =
π(yn|βn)f(βn|µ,Σ)

π(yn|µ,Σ)
, (6)

where g(βn|yn,µ,Σ) is the posterior distribution of the individual parameters βn conditional

on the observed sequence of choices and on the unconditional distribution f(βn|µ,Σ) which is

approximated by using the estimates µ̂ and Σ̂ from maximizing the likelihood function.

2.2 Hierarchical Bayes Estimation

Unlike in the previous approach, the parameters µ and Σ are now considered stochastic. This

hierarchical Bayesian technique was developed by Allenby (1997) and generalized by Train

(2001). To obtain the posterior distribution of µ and Σ, one needs to specify prior distributions

m0(µ) and q0(Σ) and combine these with the likelihood function of the data. Gibbs sampling,

in combination with the Metropolis-Hasting algorithm, is then used to obtain draws from the

joint posterior distribution. More precisely, the Gibbs sampling steps are used to update the

parameters when their conditional posterior distributions are available and Metropolis-Hastings

steps are considered otherwise.

In most applications, a non-informative prior distribution is used for the mean µ and the
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covariance matrix Σ. The joint posterior distribution of µ, Σ and βn, for all N respondents

can be written as

f(µ,Σ,β1, ...,βN |y) ∝
N∏
n=1

L(yn|Xn,βn) f(βn|µ,Σ) m0(µ) q0(Σ). (7)

In commonly used software packages as the R-package bayesm, SAWTOOTH and STATA,

m0(µ) is a multivariate normal distribution with zero mean and a diagonal covariance matrix

with large variances and q0(Σ) is an Inverse Wishart distribution with ν degrees of freedom

and a p-dimensional scale matrix T, IW(ν,T).

Draws from this posterior can be obtained by iteratively taking draws from the conditional

posterior distributions of some of the parameters, given all other parameters:

• The conditional posterior distribution of µ, given βn and Σ is N (β̄,Σ/N), with β̄ re-

presenting the sample mean of the current βn values, and N (.) denoting the multivariate

normal distribution.

• The conditional posterior distribution of Σ, given βn and µ is IW (ν+N, T+
∑N

n=1(βn−

µ)(βn − µ)′).

• The posterior distribution of βn conditional on yn, µ and Σ has no closed form, and we

use a Metropolis-Hasting random walk procedure to take draws from a normal proposed

distribution. By means of the Metropolis-Hastings algorithm, a draw βtn is obtained for

each individual n separately in the tth iteration:

– Stack p independent standard normal values in a vector η and compute a trial draw

β̃
t

n = βt−1n + ρLη, with L the Choleski factor of Σt and ρ a scalar fixed by the

researcher.

– Compute the ratio

F =
L(β̃

t

n) φ(β̃
t

n|µt,Σt)

L(βt−1n ) φ(βt−1n |µt,Σt)
,

with L(βn) the likelihood of the conditional logit model and φ the standard normal

density.
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– Draw a value r from the standard uniform distribution. If r ≤ F then accept the

trial βtn = β̃
t

n. In case r > F , βtn = βt−1n .

Starting from initial values µ0, Σ0 and β0
n ∀n, one iteratively obtains the draws µt, Σt and

βtn (∀n) in the tth iteration according to the given Gibbs and Metropolis-Hastings steps. Execu-

ting these steps many times, the draws converge to draws from the joint posterior distribution

of µ, Σ and βn (∀n). Means of the draws after the burn-in period act as estimates for the

model parameters.

As the simulation study to be described later revealed a large impact of the prior q0(Σ) on

the results, we will have a closer look at the Inverse Wishart and some other priors for Σ.

3 Priors for Covariance Matrices

3.1 Inverse Wishart Distribution

Although the Inverse Wishart distribution is often used in Bayesian estimation because of its

natural conjugacy property with the multivariate normal distribution, its properties are not

commonly known. The density function of an IW(ν,T) is defined as

q(Σ) ∝ |Σ|−(ν+p+1)/2 exp

(
−1

2
tr(TΣ−1)

)
. (8)

This distribution is defined for ν larger than or equal to p but the mean E(Σ) = T/(ν−p−1)

only exists if ν is larger than p + 1. To get more insight, it is useful to know that (denote the

variances by σ2
i and the correlations by ρij):

• σ2
i has a scaled inverse χ2(ν − p + 1, Tii

ν−p+1
) distribution, with Tii the ith diagonal entry

of T, which has a very low density near zero.

• ρij has a complicated density but if T is a diagonal matrix, the density is proportional

to (1 − ρ2ij)
(ν−p+1)/2. This implies that if T is a diagonal matrix and ν = p + 1, the

correlations are uniformly distributed on [−1, 1] (Barthelmé, 2012) .
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• When ν > p + 1 the marginal distribution of each correlation is unimodal around zero

(O’Malley and Zaslavsky, 2005).

• As long as ν ∈ [p, p + 1), the correlations have a bimodal distribution with high density

on -1 and 1 (O’Malley and Zaslavsky, 2005).

• The correlations, ρij, and the variances, σ2
i , are correlated.

Remark that a single hyperparameter ν controls the prior distribution of all the elements of

the covariance matrix, so the Inverse Wishart distribution does not provide flexibility to in-

clude various amounts of prior knowledge for different variance components and/or correlations.

Furthermore, it can be expected that when the true heterogeneity is small, an Inverse Wishart

prior will cause bias toward larger variances because of the low density near zero. Although

there is some discussion in the literature about the best specification of an uninformative prior

for correlations, a uniform or unimodal distribution is clearly to be preferred over the bimodal

distribution. Remark that, choosing the priors on the variances often has an unexpected impact

on the prior for the correlations.

We will illustrate this by showing the prior distribution of σi and ρij for some often used

priors in the literature. Train (2003), for instance, used ν = p, T = νIp and T = Ip. As these

are improper priors, other researchers, such as Rossi, et al. (2003), have used ν = p + 3 or

ν = p + 4. Balcombe, et al. (2009) tried to avoid the resulting inflated estimates by using

ν = p(p + 1)/2 and T = 0.1νIp. The plots in the left panel of Figure 1 illustrate the corre-

sponding prior densities for the standard deviations in case p = 2 and the plot on the right

panel shows that the related priors on the correlation can have rather unexpected patterns. It

is clear that IW1 and IW2 have long tailed distributions for the standard deviations combined

with bimodal distributions for the correlation coefficients. IW3 provides a flat distribution for

the correlations since ν = p+ 1 with a similar prior for the standard deviations. IW4 and IW5

combine relatively small values for the standard deviations with unimodal distribution for the

correlations. Finally, IW6 represents a belief in small values for the standard deviations with a

uniform prior for the correlations.
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Figure 1: Prior distributions of the standard deviation (σ1) and the correlation (ρ12) implied by different Inverse
Wishart distributions on the covariance matrix in case p = 2 (based on 10000 draws); (i) IW1 = IW (ν = p, Ip);
(ii) IW2 = IW (ν = p, νIp); (iii) IW3 = IW (ν = p + 1, νIp); (iv) IW4 = IW (ν = p + 3, νIp); (v) IW5 =
IW (ν = p+ 4, νIp); (vi) IW6 = IW (ν = 0.5p(p+ 1), 0.1νIp).
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Figure 2: Scatterplot of the correlation coefficient vs. the first variance component implied by different Inverse
Wishart distributions on the covariance matrix in case p = 2 (based on 10000 draws); Prior Distributions: (i)
IW1 = IW (ν = p, Ip); (ii) IW2 = IW (ν = p, νIp); (iii) IW3 = IW (ν = p + 1, νIp); (iv) IW4 = IW (ν =
p+ 3, νIp); (v) IW5 = IW (ν = p+ 4, νIp); (vi) IW6 = IW (ν = 0.5p(p+ 1), 0.1νIp).

Figure 2 shows the correlation between the standard deviations and the correlations sho-

wing that large standard deviations are assumed to go together with large absolute values for

the correlation as was pointed out by Barthelmé (2012). This association seems to be less

strong for the IW3 and IW4. Remark that the plots in Figure 1 and 2 can easily be obtained

by the R-code included on the website (https://github.com/dakinc/estimation-comparison/)

which relies heavily on the R-code given by Matt Simpson (2012) on his website.

In order to solve some undesirable issues related to IW priors, some alternative prior dis-

tributions have been recently proposed in the literature.
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3.2 Separation Strategy

To get rid off the correlation between the standard deviations and the correlations, Barnard

et al. (2000) developed a Separation Strategy (SS) which models these components of the

covariance matrix independently. The covariance matrix is decomposed as Σ = ∆R∆ where

∆ is a diagonal matrix with elements σi and R is a correlation matrix. Separate priors are

used for both components as follows:

(i) log(σi)
iid∼ N (bi, ξ

2
i )

(ii) R starts from an IW (ν,T) distribution which is transformed into a correlation matrix.

As such, the priors on the standard deviations can be chosen without influencing the prior

on the correlations. We denote this prior as SS(ν,T, b, ξ) where ξ is a vector of ξi and b is a

vector of bi. It can be shown that ν = p+ 1 still leads to a uniform prior on the correlations.

This prior seems to solve the main issues described earlier. The main disadvantage however

is that taking draws from the posterior distribution of the mixed logit model parameters, which

is easy in case of Inverse Wishart priors, becomes much more involved because of the transfor-

mation in step (ii). Therefore, this prior cannot be used in standard estimation algorithms.

The recently developed software, STAN, which uses Hamiltonian Monte Carlo (HMC) (a

Metropolis strategy that manages all parameters simultaneously to take draws more efficiently

from the joint posterior distribution), can deal with this prior. In the STAN manual (Stan

Development Team, 2016), the Separation Strategy is recommended with the following prior

specifications:

(i*) σi
iid∼ Cauchy+(bi, ξi)

(ii*) R ∝ det |R|η−1, the LKJ(η) distribution with shape parameter η where LKJ stands for

Lewandowski, Kurowicka and Joe (2009)

We will denote this distribution as SSSTAN(η, b, ξ). As Gelman (2006) suggested, the half-

Cauchy distribution with mode bi, and a large scale value ξi is here used as prior for standard

deviations in order to have a long tailed positive distribution. It is possible to use an easier
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representative distribution as prior for the correlation, as the HMC approach does not require

this conjugacy property.

The shape parameter η controls how much correlation is expected among the parameters.

With η = 1 one gets uniformly distributed correlation coefficients. With η > 1, the correlations

have a unimodal distribution around zero and as η increases, the correlations are more likely to

have values close to zero. So, the LKJ prior is easier to tune than choosing the hyperparameters

of an Inverse Wishart prior and then transforming it to a correlation matrix.

3.3 Scaled Inverse Wishart Distribution

To avoid the computational problems that are related to the Separation Strategy of Barnard

et al. (2000), O’Malley and Zaslavsky (2008; published as a working paper in 2005) proposed

a Scaled Inverse Wishart (SIW) prior, which also uses a decomposition approach as in the

Separation Strategy but avoids the problematic transformation step. Let the covariance matrix

be Σ = ∆Φ∆ and assume for

(i) ∆ a diagonal matrix with elements δi and log(δi)
iid∼ N (bi, ξ

2
i )

(ii) Φ a classical IW (ν,T) distribution

We denote this prior as SIW (ν,T, b, ξ). By definition, ∆ and Φ now jointly deter-

mine the standard deviations as σi = δi
√

Φii, but only Φ determines the correlations as

ρij = Φij/
√

ΦiiΦjj. Gelman and Hill (2007) suggested to use for Φ an IW (ν = p + 1, Ip)

yielding uniform priors on [−1, 1] for the correlations.

To avoid the tuning of this many parameters, it is often assumed that log(δi)
iid∼ N (0, 1).

This provides for rather large values for the standard deviations which may cause convergence

problems in MCMC if the true heterogeneity is small.

The main advantage of SIW is that one can set priors on standard deviations and on corre-

lation coefficients semi-separately which gives much more flexibility than the default IW prior.

A disadvantage of SIW is that the dependency between correlations and standard deviations

has been diminished but is not completely eliminated.
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3.4 Huang Half-t Distribution

Huang and Wand (2013) proposed a hierarchical approach for the prior of a covariance matrix,

instead of decomposing it. They start from an Inverse Wishart distribution and therefore retain

the tractable properties of this prior in MCMC. They use the prior IW (ν + p − 1, 2ν∆) with

∆ a diagonal matrix with elements λi which are assumed to be independently distributed as

Gamma
(

1
2
, 1
ξ2i

)
. We use the notation Hht(ν, ξ) to refer to this prior.

It was shown in Huang and Wand (2013) that this prior Σ ∼ Hht(ν, ξ) results in Half-t

distributions with ν degrees of freedom and scale parameter ξi for the standard deviations. Half-

t priors for the standard deviations were recommended by Gelman(2006) as non-informative

priors which do allow for small values. The higher the value of ξi, the larger the uncertainty

about the standard deviations. Furthermore, ν = 2 still leads to a uniform prior for the

correlation coefficients.

3.5 Visualizing the Priors for Covariance Matrices

Table 2: Hyperparameters given in Alvarez, et al.(2014) and STAN Manual (2016)

Prior distribution Hyperparameters for this prior distribution

IW (ν,T ) ν = p+ 1,T = Ip

SS(ν,T, b, ξ) ν = p+ 1,T = Ip, bi = log(0.72)/2, ξi = 1

SSSTAN(η, b, ξ) η = 1, bi = 0.72, ξi = 1

SIW (ν,T, b, ξ) ν = p+ 1,T = 0.8Ip, bi = 0, ξi = 1

Hht(ν, ξ) ν = 2, ξi = 1.04

To illustrate and compare the properties of the Inverse Wishart, the Separation Strategy,

the Scaled Inverse Wishart and the Huang Half-t priors, we follow the STAN Manual (2016)

and Alvarez, et al. (2014) who selected parameters to get uniform priors for the correlations

and similar medians for the prior distributions of the standard deviations, see Table 2. Remark

that we assume here the same prior density for all standard deviations although the last four

priors can easily cope with different knowledge for the various σi’s.

The corresponding prior distributions of the standard deviations and the correlation coef-
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Figure 3: Prior distributions of the first standard deviation (σ1) and the correlation (ρ12) implied by the different
priors on the covariance matrix in case p = 2 (based on 10000 draws); Prior Distributions: (i) IW = IW (ν, Ip);
(ii) SS = SS(ν,T,b, Ip); (iii) SSSTAN (η, b, ξ) (iv) SIW = SIW (ν,Λ, b, ξ); (v) Hht = Hht(ν, ξ).

ficient are shown in Figure 3. The left panel shows that the last four distributions indeed all

allow for very small standard deviations and cover a large range of possible values. The right

panel of Figure 3 reveals that all prior distributions can indeed provide uniform priors for the

correlation coefficients.

Figure 4 shows the correlation pattern between the correlation coefficient and the standard

deviation for the priors in Table 2. It is clear that only for the Separation Strategy approaches

there is no dependence between the correlation coefficients and the variance components but

the scaled IW and the Hht prior diminish this dependence compared to the IW prior.
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Figure 4: Scatterplot of the correlation coefficient vs. the first variance component implied by the different
priors on the covariance matrix in case p = 2 (based on 10000 draws); Prior Distributions: (i) IW = IW (ν, Ip);
(ii) SS = SS(ν,T,b, Ip); (iii) SSSTAN (η, b, ξ) (iv) SIW = SIW (ν,Λ, b, ξ); (v) Hht = Hht(ν, ξ).

3.6 Implementation of Separation Strategy, Scaled Inverse Wishart

and Huang Half-t Priors in HB Estimation

Using the Separation Strategy prior in STAN

As stated before, the Separation Strategy prior can easily be implemented in STAN software

which uses the Hamiltonian Monte Carlo method to draw values from the joint posterior distri-

bution as to update all parameters simultaneously. Interested readers may turn to the STAN

manual (Stan Development Team, 2016) for a detailed description and extensive examples on

the features of the HMC. As the details of the HMC approach is beyond the scope of this study,

we only provide the R-STAN codes for the implementation of SS priors to estimate the mixed

logit model on the website (https://github.com/dakinc/estimation-comparison/). Ben-Akiva
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et al. (2015), have also used R-STAN with SS prior by setting flat distributions for the standard

deviations and the correlations and have explained the procedure in detail. They have found

that the standard Gibbs sampling combined with a Metropolis-Hastings step outperformed the

Hamiltonian Monte Carlo in terms of computation time.

The Scaled Inverse Wishart and Huang Half-t priors can easily be implemented into a regu-

lar MCMC algorithm. The only difference between using these priors and the IW priors occurs

at the computation of the conditional posterior distribution of Σ, as the conditional posterior

of µ and βn remain the same as given in section 2.2.

Gibbs sampling with the Scaled Inverse Wishart prior

In the Scaled Inverse Wishart prior specification, SIW (ν,T, b, ξ), the prior for Σ is expres-

sed as Σ = ∆Φ∆. A combination of a Gibbs step and a Metropolis-Hastings step is used to

update Σ in this case.

• The conditional posterior distribution of Φ, given βn, µ and ∆ is IW (ν + N, T +

∆−1
[∑N

n=1(βn − µ)(βn − µ)′
]

∆−1).

• The log-conditional posterior distribution of σi is given by O’Malley and Zaslavsky (2008)

as

log f(σi) = constant− (N + 1) log(δi)− [Φ−1]iiSii/(2σ
2
i )

− 1

σi

∑
j 6=i

[Φ−1]ijSij/(σj)− (log(δi)− bi)2/(2ξ2i )

where Sij is the ijth element of
[∑N

n=1(βn − µ)(βn − µ)′
]

and [Φ−1]ij is the ijth element

of Φ−1. In order to update the value σi, a Metropolis-Hastings random walk procedure

is used with a proposal distribution to simulate the target posterior distribution given

above. The proposal distribution, which has been used in the literature (O’Malley and

Zaslavsky (2008), is the logarithm of a t-distribution with 3 degrees of freedom, with the

current value of σt−1i as location parameter and with a scale parameter which is tuned

to make the acceptance rate around 0.44 (the details on this optimal rate are given in

Gelman, et al., 1996).

• By using the draws of Φ and σi, the new draw of Σ is obtained by Σ = ∆Φ∆.
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Gibbs sampling with the Huang Half-t prior

In case of a Huang Half-t prior Hht(ν, ξ) for Σ, the following Gibbs steps are used.

• The conditional posterior distribution of Σ, given βn, µ and λi, is IW (ν + N + p −

1, 2ν∆ +
∑N

n=1(βn − µ)(βn − µ)′), where ∆ a diagonal matrix with elements λi.

• As the prior distribution of λi is Gamma
(

1
2
, 1
ξ2i

)
, the conditional posterior distribution

of λi, given βn, µ and Σ is Gamma
(
ν+p
2
, 1
ξ2i

+ ν(Σ−1)ii

)
where (Σ−1)ii denotes the iith

element of the inverse of Σ.

The R-codes for the MCMC algorithm with IW, SIW and Hht priors can be obtained from

https://github.com/dakinc/estimation-comparison.

4 Simulation Study

In this section, we compare the results of hierarchical Bayes estimation with various prior

distributions for the covariance matrix and of maximum simulated likelihood estimation with

different numbers of Halton draws. To be able to generalize the results, we consider several

scenarios following Arora and Huber (2001), Toubia et al. (2004) and Yu et al. (2001). They

consider a low and a high level for both the response accuracy and the consumer heterogeneity

to cover a large range of situations. We simulated choices for 200 respondents based on 18

choice sets consisting of 3 alternatives. Each alternative is described by 3 attributes with 3

levels (33/3/18). These choice sets were generated by minimizing the local D-error for the

multinomial logit model (MNL). Effects coding is used to represent the attribute levels.

The individual-level parameters, βn, which are used to simulate the choices, are assumed

to come from a multivariate normal distribution with mean vector µ and variance matrix Σ.

The values for µ and Σ that were used in the simulation study are listed in Table 3a for the

scenarios without correlation and in Table 3b for the scenarios with correlation. Remark that

p, the number of coefficients in the model, is 6.

As in Arora and Huber (2001), we define the values of the variance relative to the magnitude

of the mean vector. For high respondent heterogeneity, the variance is twice the population
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Table 3a: Scenarios without correlation in the covariance matrix

True mean vector (µ)
True heterogeneity (Σ)

Low Heterogeneity High Heterogeneity

Low response accuracy
0.25Ip 1.0Ip

0.5× (−1, 0,−1, 0,−1, 0)

High response accuracy
1.0Ip 4.0Ip

2.0× (−1, 0,−1, 0,−1, 0)

Table 3b: Covariance matrices with correlations

True mean vector (µ) True heterogeneity (Σ)

2.0× (−1, 0,−1, 0,−1, 0)

Ip + α×


0.0 0.0 1.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0 0.0 1.0
1.0 0.0 0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0 1.0
1.0 0.0 1.0 0.0 0.0 0.0
0.0 1.0 0.0 1.0 0.0 0.0


α = 0.1 for medium correlation

α = 0.5 for medium correlation

α = 0.9 for high correlation

mean and in case of low respondent heterogeneity, it is set to half the population mean. Remark

that the MNL local optimal design were also constructed using the true parameter values.

We used the R-code and R-STAN code that were described in section 3.6, to get the estimates

based on the hierarchical Bayes approach. For the maximum simulated likelihood approach,

we use the R-package mlogit with 100, 400 and 1000 Halton draws. For hierarchical Bayesian

estimation, we used the standard prior for the mean: a multivariate normal distribution with

zero mean vector and large variances, 100Ip. For each design scenario, we generated an optimal

design and then simulated choices and estimated the mixed logit model 10 times. To measure

the accuracy of the estimates obtained with these different estimation methods, we computed

the root mean square errors RMSEµ and RMSEΣ for µ and Σ, respectively. These measures

are given by

RMSEµ =

√
(µ̂− µ)′(µ̂− µ)

p
, (9)
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with µ̂ and µ respectively the estimates and the true values of the mean and

RMSEΣ =

√
(σ̂β − σβ)′(σ̂β − σβ)

p(p+ 1)/2
, (10)

with σβ consisting of the p(p+1)/2 unique elements from Σ and σ̂β the corresponding estimates.

We also computed the root mean square errors separately for the standard deviations and for

the correlations, but these results are not reported as they do not give extra insights.

We also computed the precision of the individual preference parameters by

RMSEβ =

√√√√ 1

N

N∑
n=1

(β̂n − βn)′(β̂n − βn)

p
, (11)

with β̂n and βn respectively the estimates and the true values for the coefficients of person n

and N the number of respondents.

We used various priors for the covariance matrix which are listed in Table 4. We consider

Table 4: Priors on the covariance matrix for hierarchical Bayes estimation of the mixed logit model

Type of prior distribution Hyperparameters for this prior distribution

IW1(ν,T ) ν = p,T = Ip

IW2(ν,T ) ν = p,T = νIp

IW3(ν,T ) ν = p+ 1,T = νIp

IW4(ν,T ) ν = p+ 3,T = νIp

IW5(ν,T ) ν = p+ 4,T = νIp

IW6(ν,T ) ν = 0.5p(p+ 1),T = 0.1νIp

SS1BMM(ν,T , b, ξ) ν = p+ 1, bi = 0, ξi = 1

SS2BMM(ν,T , b, ξ) ν = p+ 4, bi = 0, ξi = 0.5

SS3STAN(η, b, ξ) η = 1, bi = 0, ξi = 2.5

SS4STAN(η, b, ξ) η = 50, bi = 0, ξi = 2.5

SIW1(ν,T, b, ξ) ν = p+ 1,T = νIp, bi = 0, ξi = 0.1

SIW2(ν,T, b, ξ) ν = p+ 4,T = 0.5νIp, bi = 0, ξi = 0.1

Hht1(ν, ξ) ν = 2, ξi = 1

Hht2(ν, ξ) ν = 2, ξi = 0.5

Hht3(ν, ξ) ν = p+ 4, ξi = 1

six Inverse Wishart distributions that have often been used in the discrete choice literature,

four Separation Strategy approaches, two Scaled Inverse Wishart distribution and three Huang
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Half-t distributions.

To illustrate the differences between these priors, we plot in Figure 5 the corresponding

prior densities of the first standard deviation and the first correlation coefficient. It is clear

from these plots that some of the priors do not allow for small values of the standard deviations

and are expected to perform badly when the true variances are quite small. On the other hand,

some priors can be expected to perform better in the high heterogeneity case.

It is also clear from the graphs that one can model variances and correlation coefficients

separately by using SS prior. While allowing for large values for the variances, correlations can

be kept close to zero, by using for instance SS with LKJ(50). SIW priors can scale down the

variance components to some degree while keeping a flat prior for the correlation coefficients.

However, Hht priors allow for even smaller values for the variances while allowing for larger

correlation values.

Results in case there is no correlation

Figure 6 shows the RMSEΣ values obtained for all scenarios in Table 3a with on top the

true density of the first coefficient in βn to visualize the different scenarios. The boxplots cor-

responding to HB are shown first in the same order as in Table 4. The last three boxplots in

each figure correspond to MSL estimation with different numbers of Halton draws.

In general, we get the results that can be expected: IW2-IW5 do not perform well if the

true variance is quite small, as these priors do not allow for values close to zero. IW6 has a

very limited range for the standard deviations so it performs well if the range is well specified

but is bad otherwise. The Separation Strategy, the Scaled IW and the Huang Half-t allow for

small values as well as larger values and therefore perform quite well in most cases.

To get more insight, we look in more detail to the results of the two most extreme scenarios,

in the top left panel (low accuracy and low heterogeneity) and the bottom right panel (high

accuracy and high heterogeneity). For the first scenario, we expect the priors that have high

densities for values close to zero for both the standard deviations and the correlations, such as

IW6, SS4, SIW2 and Hht3, to outperform the other priors and this is confirmed by the boxplots

in the top left panel. Furthermore, it turns out that all the selected SIW and Hht priors give
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Figure 5: Prior distributions of the first standard deviation (σ1) and the first correlation coefficient (ρ12) implied
by the different priors on the covariance matrix in case p = 2 given in the same order as in Table 4 (based on
10000 draws).
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very reliable results too.

For the latter scenario, we expect the priors with long-tailed distribution for standard devi-

ations and with the density for correlations close to zero, such as IW2-IW5, SS2 and SIW2, to

outperform the other priors. It is seen from Figure 6, these IW priors perform well when the

true variances are quite large. However, the estimates obtained from SIW2 have less variability

in contrast to IW priors and SS2.

We also computed the boxplots of RMSEµ and RMSEβ values which can be found in Ap-

pendix A. The boxplots of the RMSEµ values show similar patterns as those of the RMSEΣ

values that we have discussed before, but are less dependent on the prior for Σ. The RMSEβ

values do not seem to be affected by the different priors for Σ at all.

Results in case there is correlation

Figure 7: RMSEΣ values using the prior distributions of Table 3b in HB estimation and using 100, 400 and
1000 Halton draws in MSL estimation in the scenario with correlation (see Table 3b).

In order to see the effect of the different priors on the correlation structure, we generate

data with different levels of correlation as summarized in Table 3b. We only show the results
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for α = 0.9, as similar remarks can be made for other values of α.

In this case, we have standard deviations of 1 and an equal number of extremely high

correlations and zero correlations. The priors with high density around one for the standard

deviations and with a large range of likely values for the correlations are expected to perform

better. Based on Figure 5, we can for instance expect IW1 and SIW2 to perform well and IW6

and SS4 to perform badly. Figure 7 confirms that this is indeed the case. Also, the three Hht

priors perform quite well although the last one does not allow for large correlations.

Results of MSL estimation compared to HB estimation

As can be seen from Figures 6 and 7, the number of draws has most impact if the heteroge-

neity is high as a larger parameter space has to be covered. It is clear that in this case, the small

default number of draws in most software packages are insufficient (see Table 1). In almost

all cases, the HB approach, even with misspecified priors, leads to more precise estimates than

the MSL approach, even when using 1000 Halton draws which is much more than the default

settings in most packages.

5 Discussion and Conclusions

In this paper, we compared maximum simulated likelihood (MSL) and hierarchical Bayes (HB)

methods to estimate the mixed logit model. The precision of MSL and HB estimates highly

depends on the number of draws and the types of the draws in MSL and on the prior distribu-

tions in HB estimation. There are many studies in the literature that compare different types

of Quasi-Monte Carlo random(QMC) draws with Pseudo-Monte Carlo (PMC) random draws.

Though these studies strongly recommend the QMC draws over PMC random draws, many

software packages still use the PMC draws by default. Even more problematic, the default

number of draws of many software packages are way too low to get reliable estimates.

The software packages for HB estimation use the Inverse Wishart distribution as the default

prior for the covariance matrix because of the conjugacy property. However, this prior has some

undesirable properties. The default IW prior settings do not allow for small variances. Another
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issue of IW priors is that there is a strong dependency among the components of the covariance

matrix, such that larger variances are associated with extreme correlation values and small

variances are associated with small correlations.

We compared the results obtained with IW priors with some alternative priors that have

been proposed in the literature: the Separation Strategy (SS), the Scaled Inverse Wishart

(SIW) and the Huang Half-t (Hht) priors. The Separation strategy approach is more flexible

as it models variances and correlations components separately. This prior enables to have very

different prior distributions for each component of the covariance matrix, however, deciding

on a proper prior distribution becomes quite complex. Additionally, this prior cannot be used

in a standard Gibbs sampling combined with Metropolis-Hastings steps and therefore requires

non-standard software and longer computation times.

Both SIW and Hht priors are more flexible than IW priors, but the dependency between

the variances and the correlation components is not completely eliminated. When using a SIW

prior, one needs to select extra hyperparameters. The Huang Half-t priors are more straight-

forward to use as less hyperparameters have to be chosen.

Based on our results, we strongly recommend that the reliability of the parameter estimates

is always checked. With MSL estimation, this can easily be done by increasing the number of

draws until convergence. In a HB approach, we suggest to try different and more flexible priors

to check the robustness of the results.
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Appendix A: The Boxplots of RMSEµ and RMSEβ Values

for All Scenarios in Table 3a:
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