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Abstract—Applying the pinball loss in a support vector ma-
chine (SVM) classifier results in pin-SVM. The pinball loss §
characterized by a parameter 7. The 7 value is related to the
guantile distance considered in pin-SVM and different valies are
suitable for different problems. Therefore, tuning 7 becomes an
important issue. In this paper, we establish an algorithm tofind
the entire solution path for pin-SVM with different 7 values.
This algorithm is based on the fact that the optimal solution
to pin-SVM is continuous and piecewise linear with respectd
7. Another contribution is that we show that the non-negative
constraint on 7 is not necessary, i.e., we can extendto negative
values. First, in some applications, a negative may lead to better
accuracy. Secondr = —1 corresponds to a simple solution, which
links SVM and the classical kernel rule. Solution forr = —1 can
be directly obtained and then be used as a starting point of ta
solution path. The proposed method efficiently traverses values
through the solution path, and then achieves good performare
by a suitable 7. Particularly, = = 0 corresponds to C-SVM,
meaning that the traversal algorithm can output a result at least
as good as C-SVM with respect to validation error.

Index Terms—support vector machine, pinball loss, solution
path, piecewise linear

. INTRODUCTION
The pinball loss is defined oR as

u7
—TU,

whereu € R, 7 is the absolute value of the slope an< 0.

u >0,

Lr(u) u <0

(1)

It also can be written as a function of two variables. The two
definitions are equal and we simply use (1) in this paper. Th
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pinball loss is a generalization of the loss ¢ = 1) and the
hinge loss £ = 0). In the classical support vector machine
(SVM, [1] [2]), one minimizes the sum of the regularization
term and the hinge loss, which is calledSVMand takes the
following form:

min w3 #OY Lo (1= 0700w +) - @
wherez; € R",y; € {—1,+1} are the training datag is
the feature map, and’ > 0 is the trade-off parameter. C-
SVM has been insightfully investigated, including its sttital
properties, learning theory, and solving algorithms, sgje [
[10]. In classification problems, there are many possib$s lo
functions, including squared hinge loss, logistic losaste
squares loss, and so on. The properties of these loss foactio
have been insightfully investigated by [4] [5] [11] and [18]}
this paper, we will discuss a variation of the hinge loss. Our
discussion is mainly with/s-norm, but other regularization
terms, likef;-norm [13] or elastic-net [14], are also of interest.

C-SVM is basically to maximize the margin by minimizing
lw||3. In C-SVM, the margin is related to the closest distance
between two classes, since the hinge loss is minimized. ®ue t
the fact that the distance is measured by the minimal distanc
C-SVM is easily corrupted by noise, especially the feature
noise around the decision boundary. Some de-noising method
have been discussed by [15] [16] [17] etc. The sensitivity
to noise comes from the fact that the minimal distance is
maximized. Thus to improve the classification performance
e e : )
for noise-polluted data, we maximize the quantile distance
between two sets. The quantile value is closely relateddo th

This work was supporteds EU: The research leading to these results hapinball loss L (u) with a positiver value, which has been

received funding from the European Research Council urfterBuropean
Union’s Seventh Framework Programme (FP7/2007-2013) / BRG A-
DATADRIVE-B (290923). This paper reflects only the authovséws, the
Union is not liable for any use that may be made of the contbinformation.
e Research Council KUL: GOA/10/09 MaNet, CoE PFV/10/002 (@GEJ,
BIL12/11T; PhD/Postdoc grante Flemish Governmento FWO: projects:
G.0377.12 (Structured systems), G.088114N (Tensor baatd similarity);

PhD/Postdoc grants IWT: projects: SBO POM (100031); PhD/Postdoc

grantso iMinds Medical Information Technologies SBO 20é#Belgian Fed-
eral Science Policy Office: IUAP P7/19 (DYSCO, Dynamicalteyss, control
and optimization, 2012-2017). L. Shi is also supported leyNational Natural
Science Foundation of China (11201079) and the Fundamdteakarch
Funds for the Central Universities of China (2052013323#%29131169).
Johan Suykens is a professor at KU Leuven, Belgium.

X. Huang and J. A. K. Suykens are with the Department of Blsdtr
Engineering ESAT-STADIUS, KU Leuven, B-3001 Leuven, Balgi (e-

mails: huangxl06@mails.tsinghua.edu.cn, johan.suy@=sat.kuleuven.be).

L. Shi is with School of Mathematical Sciences, Fudan Umitgr Shanghai,
200433, P.R. China. (e-mail: leishi@fudan.edu.cn)

well studied in the regression field; see, e.g., [18] [19] and
[20]. From the link between the pinball loss and the quantile
value, C-SVM (2) has been extended to the following support
vector machine with the pinball lospi-SVM [21])

min 3wl + O3 Ln (1wl o) +0). @
When a positiver is used, the margin considered in pin-
SVM corresponds to the quantile distance. Compared with the
closest distance, the quantile distance is less sensditbet
noise on features. The hinge loss is a particular case of the
pinball loss forr = 0. Hence, pin-SVM can be regarded as an
extension to C-SVM. Introducing flexibility on can improve
the classification performance of C-SVM. Differentvalues
are suitable for different data. This raises the questiom two
effectively tuner.



In this paper, we will establish an algorithm which traversenformation from the points which are correctly classified,
all 7 values which correspond to convex losses and selectgans can be given whemp,f(z;) > 1. Maximizing the
suitable one. Its basis is that the solution path of the dugdins encourages a larger distance frém: y; f(z;) = 1}.
problem of (3) is continuous piecewise linear with respedtltogether, we can minimize the distance to the cufue:
to 7. The continuity and piecewise linearity make it possiblg; f(x;) = 1} wheny;f(z;) < 1 and maximize the distance
to search on the solution path via linear algebra operatiomghen y; f(z;) > 1, resulting in the pinball loss defined as
A similar technique has been considered in C-SVM (2) fdd). The emphasis foy; f(z;) less or larger thari could be
tuning regularization parametét, since its solution path w.r.t. different and the ratio is described byn L. (u). In subsection
C is also continuous and piecewise linear; see, e.g., [2%A, one can also observe that controls the upper bound
[23] and [24]. Another important application of piecewis®f the dual variables in the dual problem of (3). If we put
linear solution path is to solve Lasso regularized optitidza equal attention to all the training data, then= —1 and it
problem and its variation, such as the Dantzig selectohdse is closely related to the classical kernel rule [31] [32]al$o
fields, the Forward Stagewise Linear Regression and the Lelags been applied in one-bit compressive sensing, whictdcoul
Angle Regression are both based on the piecewise lineaitytee regarded as a classification problem. In that classiicati
discussed in [25] [26] and [27]. task, there are only a few measurements and the pinball loss

Besides the piecewise linearity, efficiently traversing rewvith - = —1 has became popular, see, e.qg., [33] [34].

quires a starting point which can be easily obtained. Recpll  Before discussing pin-SVM with negative values and

the definition of the pinball loss (1), one can find that whegstablishing a traversal algorithm, we first illustrate tres-

7 = -1, L;(u) is a linear function, which follows that pin- formance of differentr values in Fig.2. (The experimental
SVM (2) becomes a non-constrained quadratic programmiggtails will be given in subsection IlI-A.) Generally spawik
problem and can be easily solved. However, in previogsferent problems need different values. In the view of
researches; is required to be non-negative (in C-SVM= 0;  classification accuracy, we can not in advance expect the
and in [21], 7 > 0). In Fig.1, we plot the pinball loss for suitabler value, which is related to feature distribution, noise
different  values. Convexity of the pinball loss requires thakvel, and problem size. This simple example also implies th

7 > —1. From this point of view, the non-negative conditiorpin-SVM with negativer is worthy to study and an efficient
on 7 is indeed not necessary and pin-SVM with a negative algorithm to find a suitable is needed.
is worth studying.
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Fig. 1. Plots of the pinball loss for different values. The convex ones are O o o 5] o
displayed by solid lines. Whem < —1, the pinball loss is non-convex as &' "g 2" "g
shown by the dashed line. Consider two functigh$z) and f2 (z). Assume g S g =@
that they have the same norm, thgpf(z;) is related to the distance to g g g g
] . S ~

yf(z) = 0: yifi(xi) > yi f2(z;) means this point farer from the decision
boundary off; than that off>. The hinge loss does not distinguigh and
f2. While, sigmoid [28], log-likelihood, exponential [29]jstance-weighted
discrimination [30], and the pinball loss with a negativeprefer f1 to fa.

7"_
(d)

Fig. 2. The classification accuracy (blue solid lines) arl titaining time

. . . . . . (red dashed lines, solved by sequential minimization dpétion [6][35])
Cons'de”ng negativer values in pm—SVM IS not Only for different = values. The data sets are downloaded from UCI Repository

becauser = —1 corresponds to a simple solution, but alsef Machine Learning Datasets [36] and include (a) Spect;Mionkl; (c)
due to its statistical meaning. For a classification functigonk2; (d) Monk3. The training time and value are positive correlated.
T iy . The best test accuracy is achieved at differentalues for different sets.
f(z) =w' ¢(x) 4+ b and a training poinfx;, y;), the absolute
value of (y;f(x;) — 1)/|lw||2 measures the distance of this
point to the curveqz : y;f(z;) = 1}. Wheny; f(z;) < 1, The rest of this paper is organized as follows: in Section Il,
the classification is incorrect or not strongly correct. fist pin-SVM with a negativer is investigated. Section Il shows
case, we want to minimize the distance, i.e., penalty isrgivéhat the solution path of pin-SVM is continuous piecewise li
to y; f(x;) and the penalty is minimized. Whepf(z;) > 1, ear and then establishes an algorithm traversing the qratre
traditionally, we do not care about its positions, then tiigl  The proposed algorithm is evaluated by humerical experisnen
loss is applied in SVM formulation. If one also wants to drawn Section IV. Section V ends the paper with conclusions.




Il. NEGATIVE 7 VALUES FORPINBALL LOSSs Since\; = a; — 3; and o; 3; = 0, we can calculate the bias
A. Pin-SVM formulation term by

When the pinball loss is applied in classification, the corre
sponding support vector machine in the primal space is given
by (3). The dual problem has been discussed in [21]. In this
subsection, we will revisit the dual problem and investisgat In the prima| spacer describes the S|0pe of the pmba”
the role ofr. First, (3) can be formulated as the followinggssg L,(u), as displayed in Fig.1. In the dual problem (7),

D yiNK (@i, x5) + b=y, Vi: —7C; < A < .

j=1

constrained quadratic programming problem the objective is a quadratic function independent afnd the
1 m feasible setis-TC; < \; < C;. The upper bound is controlled
min —wlw+ Z Ci&; by C;. After C; is given, we can further tune the lower bound
wbd 2 i=1 by 7. For many problems, tuning the upper bound can improve
s.t. Ui [chb(xi) +b] >1-¢,i=1,2,...,m, (4) the classification accuracy. Similarly, one can expect that
1 performance also relies on the lower bound, as displayed by
where(; could be different. A typical setting, which is simple
and suitable for unbalanced training problems, is B. Pinball loss with negative
Ci = Cy, Vi:y; =1, In classification problems, the hinge loss, i.e., pin-SVNhwi
C; = Hu="oy " iy = -1, ) - _ 0, has been well studied; see, e.g., [4] [5]. One important

B #jy;=1 . . o
’ study on loss functions used in classification problems has

whereCy > 0 is a constant defined by the user. We introdugg,ep, given by [12]. A typical classification logs has the
the Lagrange multipliersy;, 3; > 0 corresponding to the following properties:

constraints in (4). These dual variables meet the following
complementary slackness condition,

o (1=& —yi [wle(z) +0b]) =0,i=1,...,m, ©) L
Bi (yi [wTd(zi) +b] — 16 —=1) =0,i=1,...,m. 4) L(u) is non-negative.
Then we get the dual problem below, It is not hard to verify that the pinball loss with > 0,
m including the hinge loss, satisfies these properties, which
) 1 > . . )
min 5 Z (0 — Bi)yiKays (g — B;) — Z(O‘i —B) follows that whenr > 0, L,(u) enjoys many nice properties

1) L(u) is Lipschitz with a constant;
2) L(u) is convex;

a,p = i1 ] for classification, such as classification-calibration &ayes
m consistency. The corresponding learning rates can be zethly

s.t. Zyi(o‘i —B)=0 as well. In this paper, we further discuss the pinball losthwi
i—1 negativer values. Whenr > —1, the pinball loss is still a

convex function and properties 1)-3) holds, then we have:

a; 20,02 0,i=1,2,...,m. Theorem 1:L,(u) is calibrated ifr > —1.

Introduce)\; = «; — 3; and eliminate the equality constraint
a; + %@ = (. The dual problem of pin-SVM is formulated This is a direct corollary of Theorem 2 of [12]. However,

as many existing analysis for loss functions cannot be exténde
m m m to the pinball loss with negative values, sincel(u) with
min lzz&yi/@jyﬁ\j _ Z)‘i -1 < 7 < 0 may take negati\(e value_and i_s_no§ lower
A 24 = i—1 bounded. If there is no regularization term in (3), it is miegn
m less to consider negatiwvevalues in the pinball loss. However,
s.t. Zyi/\i =0, (7) in practice, we always pursue the discriminant function in a
i=1 bounded function space and there is a regularization term to
—7C; <N <Cii=1,2,...,m, guarantee a good generalization capability. In that cdee, t

pinball loss with negative- values becomes meaningful, as
T discussed before from both the primal space and dual space.
K(wi, zj) = ¢p(x:)" ¢(;). N i
; ! : . Generally, we need to analyze loss functions in a bounded
Solving (7) results in the optimal solution. Then the ob: ~— ° oo .
. . function space. This is different from existing results osd
tained function can be represented as . . ; o
functions, which are usually obtained free of approximatio
N m error caused by the size of function space. Analyzing loss
(@) = Zyi/\iIC(a:,:zri) +b, functions together with the function space could be an inter
=1 esting topic, not only for the pinball loss but also for other
whereb is computed according to the complementary slackess functions which are not lower bounded, such as the one

ness condition (6), i.ey; fA*(z;) = 1,Vi: a; #0 & 3; # 0. used in [33] for one-bit compressive sensing.

where/C corresponds to a positive definite kernel with; =



C. Particular casesr =0 andT = —1 of (7). Denote the optimal dual variables of (7) with a given

Among all the possible values, = 0 is a particular case, 7 @8SA(7), the optimal bias term a(r). ThenA(r) andb(r)
which corresponds to C-SVM. In pin-SVM, the dual variable@'® continuous piecewise linear functions wi.t.To give an
can be categorized into three typdswer bounded support illustration, we setCy = 5,0 = 1 and plot the solution path
vectors(\; = —7C;), free support vectoré—7C; < \; < Cy), of several dual variables for dataset “Spect” in Fig.3.
and upper bounded support vectofs; = C;). Whent = 0,
the lower bounded support vectors become zero. This brings
sparseness, which is meaningful for reducing the storageesp R
for support vectors, but is not necessary from the viewpoint
of accuracy.

Another interesting choice is = —1, for which the optimal
dual variables can be obtained directly. One can verify that
when C; are set as (5), the bias term has no effect on the
objective value of the primal problem (3). We simply get
equal to zero. Then the function corresponding to pin-SVM
with 7= —1is

fl@) = > CK(z,z)— Y CiK(z,z:). (8) ' T
1

iy =-+1 Y =—
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Fig. 3. Typical solution paths of several dual variables ‘®pect” (Cp =

If a linear kernellC(x, z;) = xT z; is used, the decision rule 5,0 = 1): (&) X1 (r) is shown by green solid line; (b)(r) by black dotted
becomes line; (c) Aéo(7) by red dashed line; (d)s2(7) by blue dash-dotted line.

sgn(f(z)) = { +1, if I;“j* > x?’fﬂ Fig.3 shows typical solution pathig,(7) (red dashed line)

-1, if 72y <273, is a linear function with respect to, which is the simplest
wherez, andz_ are the mean ofz;, i : y; = +1} and case and means that the corresponding point is always a lower
{x;, i : y; = —1}, respectively. In other words, we usebounded support vector. Except of this case, other solution
the angles betweem and the centers of the two classes tdaths are polylines. The first changing point corresponds to
determine the label. When a nonlinear kernel is used, pifte A value, from which a lower bounded support vector
SVM with 7 = —1 is to classify the data according to thdoeécomes a free support vector. For the free support vedsrs,
angle in the feature space. Another interesting observagio value could keep unchange, likg () shown by green solid
that (8) gives the classical kernel methods, given by [3tE T line. The value also may increase umil = C;, from then
discussions therein provided insightful understandingpio-  the corresponding point becomes an upper bounded support

SVM with = = —1. vector, as illustrated bys(7) (black dotted line) andz(7)
(blue dash-dotted line).
I1l. FINDING SOLUTIONS FORT > —1 Generally\(7) andb(r) are piecewise linear to, therefore,

i simple linear algebra operations help us searching theisolu
A. Solution path path to effectively find the solutions for different values.

In C-SVM, 7 is fixed to be zero, which has been extende8earching on a piecewise linear path, we have to: i) quickly
to 7 > 0 in [21]. This paper further shows that negativéind a starting point; ii) determine the slope; iii) deteceth
7 values with 7 > —1 are worth considering as well.changing point. The details will be discussed in the next
As a simple example, we consider four data sets “Specgubsection.

“Monk1”, “Monk2”, and “Monk3” (downloaded from the UCI
Repository of Machine Learning Datasets, [36]). The radial _
basis function (RBF) kernel B. Traversal algorithm

Ml — 2

2

) For given\ andb, define the following three sets
g

Kz, zj) = ex
(i-5) p( END) = {iiyf (@) =1,-7C; <\ < Ci},
is used. We tune the kernel parametesnd the regularization L(A\, D) {z : yifA*b(xi) <1,\= Ci} ,
parameterC) basedlqn C_Z-SVM. Then_ differem_vall_Jes are UND) = {z : yifk’b(xi) > 1,0 = —TCZ'} 7
tested and the classification accuracy is plotted in Figd2idd
that in this experiment, we solve pin-SVM by sequentialhere
minimization optimization techniques. AbroN < _ _

The basic finding from the results is that we need different FH () = ZO‘Z’C(I“:C) t+b.
7 values for different problems, which requires an efficient _ N )
algorithm to find suitabler values. The basis of this algo-According to the KKT condition for pin-SVM (7)A and b
rithm is the continuity and piecewise linearity of the sant aré the optimal solutions if and only if the following two
path of pin-SVM (7), which can be easily verified from th&onditions are met:
observation that determines the boundary of the feasible set 1) Y., y;A; =0,

i=1



2) there is a partition of the index sét, L, U, such that After illustrating the key update procedure, we give the

E CEN\D),LC LD, U CUND). algorithm in detail:
Initializati
Notice that when the intersection set betwegf\,b) and nitiatization
L(\.b), or U(A,b) is not empty, there could be multiple The starting pointisy = —1, which is the smallest possible

partitions satisfying the above conditions. value for . Moreover, its optimal dual variables can be
Suppose\(ry) andb(r) are optimal to pin-SVM withry.  directly obtained, i.e.\;(—1) = C;. In this case, any partition
Then there is a partitio, L, U satisfying: meets the requirement on the dual variablg¢s.1) is selected
m such that there exists a partitién L, U and the corresponding
Zizl yiAi(10) =0 a;,i=0,1,...,m satisfy:
E C E(M\(10), b(10)), S g = 0,
L € L(A(70),b(70)), a;=0, VielL, (13)
U C u()\(To),b(To)). a; =—1, VieU.

Consider an increasdr > 0. Since A(r) and b(r) are 1here could be multiple solutions meeting the above caonliti

continuous piecewise linear, whéxr is small enoughj(ro+ !N this paper, we use the one with the least absolute value as
A7) andb(ry + A7) can be written as b(7)[r=-1. Along with determining\(7)|-=—1, b(7)|r=-1, the

corresponding®, L, andU are found.
)\1‘(7'0 —|—AT> = Ai(To)—i-aiAT, )
Updating
b(to+ A1) = b(r0) + agAT.

After obtaining the partition®, L, U for 1y, we can update

H FAToFAT),b(To+AT) (1 i i i . _ . . .
Correspondingly.y; f*" ’ () is also a linear A andb following the discussion in the last subsection. First,

function, i.e., the linear equations (9) are solved to ggti = 0,1,...,m. In
ys fATOFATLB(T0HAT) (32y g pA(T0)b(T0) () (9), a;,i € LU are directly given and calculating,i € F
o s A involves an inverse problem. In general situation, the neimb
= Y (ijl YyiaiRij + ao) i of elements inE is not large and hence (9) can be solved
Suitablea;,i = 0,1,...,m should satisfy: efficiently. _
Whena;,7 = 0,1,...,m are found, we can solve linear

1) for ¢ € E, the function value keeps unchanged;
2) fori € L, the dual variable keeps unchanged,;
3) fori € U, the dual variable equals terC;;

equations (10)-(11) to find\7, the maximal value ofAr.
Then the optimal solutions betwegmn, 7o+ Ar] are obtained:

4) fori € E, the dual variable is ifi—7C;, C;]; Ni(mo+ A1) = \(10) + aiAr, VAT € [0, A7),

5) for i € L, the function value is not larger than b A - b A VA 0.7

6) fori e U, the function value is not smaller than (70 + A7) (70) + a0, 7 €[0,A7]
The first three conditions provide linear equations: After calculating the optimal solution betwee# and 7, +

AT, we move tory + Ar. Correspondingly, the partition is

, updated. Supposg is the index which determine&r. There
a; =0, Vi < L, (9) are four situations. Ify € E anda;, > 0, then);, (to+AT) =
@i — -1, Viel, C;, and we will putiy into L, i.e., the partition is updated to
iz Yiti = 0, be E\ {io}, L U{io}, U. The other three situations are

Since £, L, andU is a partition of the index set, the above . if ig € F, a;, < 0, the partition isE \ {io}, L, U U{io};

system involvesn+1 equations andq+1 variables, whichcan  « if i, € L, the partition isE (J{io}, L \ {io}, U;

determine; (in degenerated cases, there are multiple solutions. if i € U, the partition isE (J{io}, L, U \ {io}.

and we simply set the undeterminegdto be zero). o

After calculatinga;, we need further to find the step lengthlérmination
AT, which should keep the last three conditions valid. In other \jith the update processing, is increased until two events

words, A7 should satisfy: happen. The first one is thag > 1. As analyzed before, the
(1 + ATVC; < a; AT + Ni(10) < Gy, Vi € E, (10) reasonable value is less than one and hence we dq not need

m 7o), b(70) to calculate\(),b(r) for 7 > 1. Another possibility is that

Yi (ijl yjakij + GO) AT <1 =gy f7777 @), in update processing, angr > 0 satisfies (10)—(12). Then
' Vie L, (11) AT = oo and we terminate the algorithm since the solutions

m for all 7 are obtained.
Yi (ijl yia;Ki; + ao) AT > 1 — y,; fAO000) (), !

VieU. (12) C. Discussion about different values

Simple calculation can find the maximal step length, denotedin [21], the role ofr has been discussed from a statisti-
by A7. Then all the optimal solutions\(7),b(7) for = € cal analysis viewpoint. Now, with the help of the traversal
[70,70 + A7] are found. And we repeat the above procesdgorithm, we can calculate the solutions for all reasomabl

by settingry = 79 + AT. values and observe the corresponding performance. Gineral

Z;—nd y;ja;Kij + a0 =0, VieE,



a positiveT encourages the results to have a small within-
class scatter. Since scatter lacks of invariance for ggalin
we need normalization for pre-processing. In this paper, we
simply scale each feature to have the same range. Minimizing
within-class scatter is suitable to deal with data comiragrfr

a centralized distribution. A typical example is that featu

of each class are drawn from Gaussian distributions. On the 4
contrary, when this property is not true, e.g., when theufesst
come from a uniform distribution, or a mixture of several 2
Gaussian distributions, minimizing the within-class tmats
not reasonable and a negativemay lead to a better result. ~ I

Now we have established a traversal algorithm and then can &
numerically investigate the relationship between the |emb
structure and the suitable value. From the relationship, we
may learn useful information via the selected

For visualization, we consider a 2-dimensional problem -4l
where the features come from Gaussian distributions: data
with y; = 1 are drawn fromMN (u1,%1) and dataz; with
y; = —1 are fromN (uz, X2), where

05 [ -05 o [o2 0 N
/’Ll_|:_3}7:u’1_{ 3]121_22_[ O 3} -2 0 2

It is not hard to verify that the corresponding Bayes classifi
is fe(x) = 2.52(1) + z(2), displayed in Fig.4 by the dashed @ (b)
red lines. We artificially add noise. Their labels are seéct

_ ; i ig. 4. Sampling points in clas$1 are shown by green stars and points in
from { 1, +1} with equal probablllty and the features COm(glass—l are shown by red crosses. The Bayes classifier is given byasted

/ NN ) T
from a Gaussian distribution, of which the mearf0is0]” and  jines and blue solid lines display the classifiers obtaingthb pin-SVM with

-2

-6

the covariance matrix is different ~ values. (a)10 noisy data points are added; (b) unbalanced case,
where the number of the training points in class$ is only one tenth of those
1 0.8 in class—1.
—-0.8 1

This noise has no effect on the Bayes classifier but it wittetff
the training results of SVMs. Applying the traversal aldgjom,
we obtain the classifiers corresponding to differentalues
and then display the classifiers from differentvalues by the
blue solid lines. In Fig.4(a) there a@90 training data for
each class from the considered distribution anchoisy data c0uld be gap between the selected one and therb&tough
points are added. One can find that a positiie suitable for selectlngT via cross-valldau_on is not optlmal_, it _st|ll_prOV|des
this case, since the features in each class is clusteredicarotS€ful hints for understanding the feature distribution.

its center. From another point of view, if a largds selected The above analysis is valid for nonlinear classifiers as well

by the traversal algorithm, we can expect that the originQPt the d_|scu53|on will be in the feature space. As an example
distribution is centralized. In Fig.4(b), we reduce the hem W€ consider the data set “Monk1” from UCI dataset and the
of points in class+1 and test the unbalanced situation. HerBIN-SVM with a RBF kernel( = 1,4 = 1). Via the traversal
the number of points in class1 is one tenth of that in class &90rithm, the classification functiorf(z) for different 7
—1. In Fig.4(b), the varying range for different values is values are obtained and the p.d.f.uof (x;)/ max;{y: f ()}
significantly larger than that in Fig.4(a). are shown in Fig.7(a). With an increasing tr_\e scatter
Next, we add more noisy data into the training set. In Fi§f vif(xi)/ maxi{yf(x:)} becomes smaller. This trend can
5(a) we show the case thab noisy data points are added tcAlso be observed from Fig.7(b), Whlch shows the p.d.f. for
each class and the classifiers obtained from differevalues. 7 = —0-5,1,1.5. From both the two figures, one can observe
The corresponding probability density functions (p.ddf) Fhat a positiver value is su!tablg, meaning that the data points
yif (z:)/ max; {y:f(z:)} are displayed in Fig.5(b). Compared" each class are centra_hzed_m_the_ feature space, e.g., the
with the previous experiment, we need a largavhich draws May come from a Gaussian distribution. If a negativealue
support from the data structure when the noise is more hea@§ieves an accurate result, it generally indicates treaetare
Pin-SVM with a positiver is related to quantile distance,Sub-classes, like the distributions considered in Fig.6.
which is more stable to feature noise. Thus, a significant
improvement fromr = 0 generally implies that the data IV. NUMERICAL EXPERIMENTS
contain heavy noise. In the above sections, we extended the parametérto
We may also meet mixture distributions in applicationsegative values and then established an algorithm traagersi
For example, in Fig.6, points in one class come from twihe entire solution path. With the help of this algorithm we

Gaussian distributions, then a largevalue, which pursues
a small within-class scatter, is not reasonable. In thi®e,cas
a negativer leads to a more accurate result. In applications,
we choose the suitable value via cross-validation and there
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05

s yzf(l“:)/ max; {y; f(z:)}
! (b)

Fig. 5. The meaning of plots in (a) is as the same as that in&igut Fig- 6. The meaning of plots in (a) is as the same as that in&itn this

20 noisy data points are added; in (b) the probability densifycfions of flgure_, the training data _o_f each c_Iass come from two Gaugdigtnibutions;

v f(x:)/ max;{y: f(z;)} for different + are displayed. gb) ((j:hf?plays the probability density functions of f(x;)/ max;{y; f(x:)}
or different 7.

can test different values (-1 < 7 < 1) in a short time and 10 times, then report the average classification accuracy on
choose the most suitable one. In this section, we will ittt the test sets and the average time in Table |. For comparison,
the performance of the proposed method on real-life data s&te also apply boosted tree method [40] [41]. The number
The involved data are downloaded from the UCI Dataset [36f ensemble learning cycles is set such that the boosted tree
and LIBSVM data sets [9]. For some problems, there affas similar computational time as the SVMs. The average
training and test data provided. Otherwise, we randomigcsel classification accuracy and the computational time are also
m observations to train the classifier and use the remaining f@ported in Table |I.
test. All the experiments are done in Matlab 2013a in Core One efficient algorithm to solve pin-SVM (7) with a given
i5-1.80 GHz, 4.0GB RAM. is the sequential minimization optimization algorithm (S

In our experiments, the RBF kernel is used aridis set which is designed for C-SVM by [6][37][38][39] and has
according to (5). The regularization coefficiefit and the been modified for pin-SVM by [35]. Roughly speaking, we
bandwidth in the RBF kernef are tuned by 10-fold cross- need abouf00 times of C-SVM to select the suitabtefrom
validation. When the number of training data is less thajn-1,—-0.99,...,0.99} by SMO. From the result reported in
10000, the traversal algorithm is applied. For each pairoof Table I, the ratio between computation time of solving C-SVM
and Cy, the traversal algorithm outputs the solution of (3hy SMO and that of the traversal algorithm is far less tham
for all -1 < 7 < 1. In validation process, we considershowing the efficiency of the proposed traversal algorithm.
T = —1,-0.99,...,0,0.01,...,0.99. Then the parametersGenerally, the computational time of the traversal aldponit
with the least total validation error are picked out. This acceptable and selecting a suitabléarticularly, for some
candidate values fo€) is {0.1,0.5,1,2,5,10} and that for applications, the best is indeed negative) can improve the
o is {0.01,0.1,1,10}. We repeat the training and test procesaccuracy, when the problem size is not large.



TABLE |
TESTACCURACY, THE SUITABLE 7 VALUES SELECTED BY CROSS
VALIDATION , AND COMPUTATION TIME

Data m | boosted tree C-SVM  pin-SVM  r
Spect 80 80.00 82.55 85.53 —0.44
0.116 s 0.008s  0.063 s
Monk1 124 73.75 82.18 84.17 0.37
0.211s 0.094s 0.241s
Monk2 169 77.53 84.54 85.12 0.03
. . . os ! 0.380 s 0.029s  0.390 s
yi f(x:)/ max; {y; f(z:)} Monk3 122 91.80 92.96 95.44 0.28
0.405 s 0.028s  0.216 s
(@ Haber. 150 72.68 73.32 73.40 0.02
0.382's 0.023s  0.293s
iy Statlog 150 81.31 82.31 83.00 —0.11
0.387 s 0.034s  0.303s
N lono. 200 87.33 93.22 93.75 0.11
: 40.73 s 0.042s  0.567 s
Pima 300 74.61 73.20 74.00 0.23
we 0.140 s 0.048s  0.767s
o Breast 500 96.87 96.78 97.30 —0.13
S 2.037s  0.072s 2.675s
Trans. 500 76.19 74.45 76.97 —0.44
os 1.590 s 0.144s  0.925s
; Splice 500 89.73 86.51 86.77 0.10
08 -06 —04‘—02 0 02 04,06 Q8 1 1.743 s 0.213 s 4.163 s
vi (i) max; {yi f ()} Guidel 1000 96.42 96.44 96.88 0.06
b 1.731s 0.783s  7.350's
(b) Spamb. 3000 94.03 96.70 96.78 0.03
3.205 s 0.939s  33.56s
Fig. 7. The probability density functions ef; f(x;)/ max;{y; f(x;)} for RNA 10000 95.12 96.16 96.18 0.02
Monk1. (a) p.d.f. for differentr; (b) p.d.f. form = —0.5 (green dot-dashed 36.10 s 13.18s  63.16 s
line), 7 = 0 (red dashed line), and = 0.5 (blue solid line). Magic 15000 85.25 87.25 87.25 —0.02
50.10 s 21.21s  107.3s
IJCNN1 20000 92.89 97.13 97.13 0.00
46.10 s 25.24s 121.1s

As explained before, C-SVM is a special case of pin-SVM
with 7 = 0. Thus, considering differentvalues could improve
the performance from C-SVM almost surely in the view of
validation error. But when the data size increases, theoperf
mance varying for different values becomes less significantone-bit compressive sensing [33]. As reported in Table I,
In other words, for a large range of, the classification for small-scale problems, suitably selecting a non-zexan
performance are almost the same. Moreover, the compugtiofnProve the classification accuracy, hence, it is worthyde u
efficiency of the traversal algorithm decreases with thea ddfe traversal algorithm, which takes a longer time but gares
scale increasing, since the main factor of computing tinfetter result.
for the traversal algorithm is the number of segments in the
solution path. Therefore, when there are plenty of training
data, we suggest = 0, i.e., C-SVM. If one wants to further
improve the accuracy, we can consider several small values,
e.g.,7 = —0.02,-0.01,0,0.01,0.02, and use SMO to solve =
the corresponding pin-SVM, which is the strategy used in our <

18]

experiments when the number of training data> 10000. / N / “\‘\

To further observe the role of different values, we plot e ST e
p.d.f. of y; f(x;)/ max;{y;f(x;)} for four real data sets in di (@) iy f )} vif (@) maxi{y: (@)}
Fig.8. Curves in different color correspond to the resufts o @ (b)

pin-SVM with differentr values: the RGB vector is set to be .
[0.5 — 7/2,0,0.5 + 7/2]. Generally, the result for different N
7 values may vary a lot, especially when the data size is
small, e.g., in Fig.8(a) and Fig.8(b), there are ohd4 and =
169 training data, respectively. While, in Fig.8(d), which =
corresponds to data set “RNA’, the p.d.f. fer > 0 are N :
hard to distinguish. This phenomenon also can be observed ”y'f}“(xi ; gi/if(?)/ma?ci{yi(xi)}
in Table I, where the improvement achieved by tuning © d
becomes less significant when the problem size increases.
Roughly speaking, if there not enough training data, drgwirfig. 8. The probability density functions @f; f (x;)/ max; {y; f(z:)} for
information from correctly classified points is helpful. fact, different 7 values. Whenr is smaller, the color has more red components
. . .. . and for a largerr, the corresponding color has more blue components. (a)
dealing with small training set is the purpose of other 10§gonk1; (b) Monk2; (c) Spamb.: (d) RNA.
functions with non-zero value on correctly classified psint

such as the distance weighted discriminant [30] and robust

3




V. CONCLUSION [12]

Support vector machines with the pinball loss have a tuning
parameterr, which is the slope of the loss function.also [13]
controls the feasible set in the dual space. Traditionallig
fixed to be zero (corresponding to C-SVM) or a positive [14]
However, the nonnegativity condition onis not necessary
and onlyr > —1 is needed to keep the problem convex. In
this paper, we extended pin-SVM to negativealues, which 19
encourages the correctly classifier points going away frioen t
decision boundary via giving gains according to the distanc
The meaning of negative values are explained from both!16]
primal and dual space. One interesting observation is tteat t
optimal variables forr = —1 are easily calculated and that17]
loss is closely linked with classical kernel rule.

Extending pin-SVM tor > —1 requires an efficient method ;g
for tuning 7. In this paper, we established an algorithm tgo]
traverse the entire path from= —1, which is based on the
fact that the solution path of pin-SVM is piecewise linear.tw. (20]
7. In numerical experiments, the traversal algorithm shows
the effectiveness and can improve the classification acgura
especially for small-scale problems. (21]

The theoretical understanding for the pinball loss with-neg
ative 7 is a difficult but interesting topic. The main difficulty [22]
is that we cannot analyze the loss functions which may take
negative values independently from the function space. By
fact, investigating its property in a bounded function spac
is meaningful for non-negative loss functions as well, isea [24]
in practice a loss function is always minimized togethethwit

a regularization term. [25]
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