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Solution Path for pin-SVM Classifiers with Positive
and Negativeτ Values
Xiaolin Huang, Lei Shi, and Johan A. K. Suykens

Abstract—Applying the pinball loss in a support vector ma-
chine (SVM) classifier results in pin-SVM. The pinball loss is
characterized by a parameter τ . The τ value is related to the
quantile distance considered in pin-SVM and different values are
suitable for different problems. Therefore, tuning τ becomes an
important issue. In this paper, we establish an algorithm tofind
the entire solution path for pin-SVM with different τ values.
This algorithm is based on the fact that the optimal solution
to pin-SVM is continuous and piecewise linear with respect to
τ . Another contribution is that we show that the non-negative
constraint on τ is not necessary, i.e., we can extendτ to negative
values. First, in some applications, a negativeτ may lead to better
accuracy. Second,τ = −1 corresponds to a simple solution, which
links SVM and the classical kernel rule. Solution forτ = −1 can
be directly obtained and then be used as a starting point of the
solution path. The proposed method efficiently traversesτ values
through the solution path, and then achieves good performance
by a suitable τ . Particularly, τ = 0 corresponds to C-SVM,
meaning that the traversal algorithm can output a result at least
as good as C-SVM with respect to validation error.

Index Terms—support vector machine, pinball loss, solution
path, piecewise linear

I. I NTRODUCTION

The pinball loss is defined onR as

Lτ (u) =

{

u, u ≥ 0,
−τu, u < 0,

(1)

whereu ∈ R, τ is the absolute value of the slope onu < 0.
It also can be written as a function of two variables. The two
definitions are equal and we simply use (1) in this paper. The
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pinball loss is a generalization of theℓ1 loss (τ = 1) and the
hinge loss (τ = 0). In the classical support vector machine
(SVM, [1] [2]), one minimizes the sum of the regularization
term and the hinge loss, which is calledC-SVMand takes the
following form:

min
w,b

1

2
‖w‖2

2 + C

m
∑

i=1

Lτ=0

(

1 − yi(w
T φ(xi) + b)

)

, (2)

where xi ∈ R
n, yi ∈ {−1, +1} are the training data,φ is

the feature map, andC > 0 is the trade-off parameter. C-
SVM has been insightfully investigated, including its statistical
properties, learning theory, and solving algorithms, see [3]–
[10]. In classification problems, there are many possible loss
functions, including squared hinge loss, logistic loss, least
squares loss, and so on. The properties of these loss functions
have been insightfully investigated by [4] [5] [11] and [12]. In
this paper, we will discuss a variation of the hinge loss. Our
discussion is mainly withℓ2-norm, but other regularization
terms, likeℓ1-norm [13] or elastic-net [14], are also of interest.

C-SVM is basically to maximize the margin by minimizing
‖w‖2

2. In C-SVM, the margin is related to the closest distance
between two classes, since the hinge loss is minimized. Due to
the fact that the distance is measured by the minimal distance,
C-SVM is easily corrupted by noise, especially the feature
noise around the decision boundary. Some de-noising methods
have been discussed by [15] [16] [17] etc. The sensitivity
to noise comes from the fact that the minimal distance is
maximized. Thus to improve the classification performance
for noise-polluted data, we maximize the quantile distance
between two sets. The quantile value is closely related to the
pinball lossLτ (u) with a positiveτ value, which has been
well studied in the regression field; see, e.g., [18] [19] and
[20]. From the link between the pinball loss and the quantile
value, C-SVM (2) has been extended to the following support
vector machine with the pinball loss (pin-SVM, [21])

min
w,b

1

2
‖w‖2

2 + C

m
∑

i=1

Lτ

(

1 − yi(w
T φ(xi) + b)

)

. (3)

When a positiveτ is used, the margin considered in pin-
SVM corresponds to the quantile distance. Compared with the
closest distance, the quantile distance is less sensitive to the
noise on features. The hinge loss is a particular case of the
pinball loss forτ = 0. Hence, pin-SVM can be regarded as an
extension to C-SVM. Introducing flexibility onτ can improve
the classification performance of C-SVM. Differentτ values
are suitable for different data. This raises the question how to
effectively tuneτ .
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In this paper, we will establish an algorithm which traverses
all τ values which correspond to convex losses and selects a
suitable one. Its basis is that the solution path of the dual
problem of (3) is continuous piecewise linear with respect
to τ . The continuity and piecewise linearity make it possible
to search on the solution path via linear algebra operations.
A similar technique has been considered in C-SVM (2) for
tuning regularization parameterC, since its solution path w.r.t.
C is also continuous and piecewise linear; see, e.g., [22]
[23] and [24]. Another important application of piecewise
linear solution path is to solve Lasso regularized optimization
problem and its variation, such as the Dantzig selector. In those
fields, the Forward Stagewise Linear Regression and the Least
Angle Regression are both based on the piecewise linearity as
discussed in [25] [26] and [27].

Besides the piecewise linearity, efficiently traversing re-
quires a starting point which can be easily obtained. Recalling
the definition of the pinball loss (1), one can find that when
τ = −1, Lτ (u) is a linear function, which follows that pin-
SVM (2) becomes a non-constrained quadratic programming
problem and can be easily solved. However, in previous
researches,τ is required to be non-negative (in C-SVM,τ = 0;
and in [21], τ ≥ 0). In Fig.1, we plot the pinball loss for
different τ values. Convexity of the pinball loss requires that
τ ≥ −1. From this point of view, the non-negative condition
on τ is indeed not necessary and pin-SVM with a negativeτ
is worth studying.
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Fig. 1. Plots of the pinball loss for differentτ values. The convex ones are
displayed by solid lines. Whenτ < −1, the pinball loss is non-convex as
shown by the dashed line. Consider two functionsf1(x) andf2(x). Assume
that they have the same norm, thenyif(xi) is related to the distance to
yf(x) = 0: yif1(xi) > yif2(xi) means this point farer from the decision
boundary off1 than that off2. The hinge loss does not distinguishf1 and
f2. While, sigmoid [28], log-likelihood, exponential [29], distance-weighted
discrimination [30], and the pinball loss with a negativeτ preferf1 to f2.

Considering negativeτ values in pin-SVM is not only
becauseτ = −1 corresponds to a simple solution, but also
due to its statistical meaning. For a classification function
f(x) = wT φ(x) + b and a training point(xi, yi), the absolute
value of (yif(xi) − 1)/‖w‖2 measures the distance of this
point to the curves{x : yif(xi) = 1}. When yif(xi) < 1,
the classification is incorrect or not strongly correct. In this
case, we want to minimize the distance, i.e., penalty is given
to yif(xi) and the penalty is minimized. Whenyif(xi) > 1,
traditionally, we do not care about its positions, then the hinge
loss is applied in SVM formulation. If one also wants to draw

information from the points which are correctly classified,
gains can be given whenyif(xi) > 1. Maximizing the
gains encourages a larger distance from{x : yif(xi) = 1}.
Altogether, we can minimize the distance to the curve{x :
yif(xi) = 1} when yif(xi) < 1 and maximize the distance
when yif(xi) > 1, resulting in the pinball loss defined as
(1). The emphasis foryif(xi) less or larger than1 could be
different and the ratio is described byτ in Lτ (u). In subsection
II-A, one can also observe thatτ controls the upper bound
of the dual variables in the dual problem of (3). If we put
equal attention to all the training data, thenτ = −1 and it
is closely related to the classical kernel rule [31] [32]. Italso
has been applied in one-bit compressive sensing, which could
be regarded as a classification problem. In that classification
task, there are only a few measurements and the pinball loss
with τ = −1 has became popular, see, e.g., [33] [34].

Before discussing pin-SVM with negativeτ values and
establishing a traversal algorithm, we first illustrate theper-
formance of differentτ values in Fig.2. (The experimental
details will be given in subsection III-A.) Generally speaking,
different problems need differentτ values. In the view of
classification accuracy, we can not in advance expect the
suitableτ value, which is related to feature distribution, noise
level, and problem size. This simple example also implies that
pin-SVM with negativeτ is worthy to study and an efficient
algorithm to find a suitableτ is needed.
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Fig. 2. The classification accuracy (blue solid lines) and the training time
(red dashed lines, solved by sequential minimization optimization [6][35])
for different τ values. The data sets are downloaded from UCI Repository
of Machine Learning Datasets [36] and include (a) Spect; (b)Monk1; (c)
Monk2; (d) Monk3. The training time andτ value are positive correlated.
The best test accuracy is achieved at differentτ values for different sets.

The rest of this paper is organized as follows: in Section II,
pin-SVM with a negativeτ is investigated. Section III shows
that the solution path of pin-SVM is continuous piecewise lin-
ear and then establishes an algorithm traversing the entirepath.
The proposed algorithm is evaluated by numerical experiments
in Section IV. Section V ends the paper with conclusions.
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II. N EGATIVE τ VALUES FORPINBALL LOSS

A. Pin-SVM formulation

When the pinball loss is applied in classification, the corre-
sponding support vector machine in the primal space is given
by (3). The dual problem has been discussed in [21]. In this
subsection, we will revisit the dual problem and investigate
the role of τ . First, (3) can be formulated as the following
constrained quadratic programming problem

min
w,b,ξ

1

2
wT w +

m
∑

i=1

Ciξi

s.t. yi

[

wT φ(xi) + b
]

≥ 1 − ξi, i = 1, 2, . . . , m, (4)

yi

[

wT φ(xi) + b
]

≤ 1 +
1

τ
ξi, i = 1, 2, . . . , m,

whereCi could be different. A typical setting, which is simple
and suitable for unbalanced training problems, is

Ci = C0, ∀i : yi = 1,

Ci =
#j:yj=−1
#j:yj=1 C0, ∀i : yi = −1,

(5)

whereC0 > 0 is a constant defined by the user. We introduce
the Lagrange multipliersαi, βi ≥ 0 corresponding to the
constraints in (4). These dual variables meet the following
complementary slackness condition,

αi

(

1 − ξi − yi

[

wT φ(xi) + b
])

= 0, i = 1, . . . , m,
βi

(

yi

[

wT φ(xi) + b
]

− 1
τ
ξi − 1

)

= 0, i = 1, . . . , m.
(6)

Then we get the dual problem below,

min
α,β

1

2

m
∑

i=1

m
∑

j=1

(αi − βi)yiKijyj(αj − βj) −
m

∑

i=1

(αi − βi)

s.t.

m
∑

i=1

yi(αi − βi) = 0

αi +
1

τ
βi = Ci, i = 1, 2, . . . , m,

αi ≥ 0, βi ≥ 0, i = 1, 2, . . . , m.

Introduceλi = αi − βi and eliminate the equality constraint
αi + 1

τ
βi = Ci. The dual problem of pin-SVM is formulated

as

min
λ

1

2

m
∑

i=1

m
∑

j=1

λiyiKijyjλj −
m

∑

i=1

λi

s.t.
m

∑

i=1

yiλi = 0, (7)

−τCi ≤ λi ≤ Ci, i = 1, 2, . . . , m,

whereK corresponds to a positive definite kernel withKij =
K(xi, xj) = φ(xi)

T φ(xj).
Solving (7) results in the optimal solution. Then the ob-

tained function can be represented as

fλ,b(x) =

m
∑

i=1

yiλiK(x, xi) + b,

whereb is computed according to the complementary slack-
ness condition (6), i.e.,yif

λ,b(xi) = 1, ∀i : αi 6= 0 & βi 6= 0.

Sinceλi = αi − βi and αiβi = 0, we can calculate the bias
term by

m
∑

j=1

yjλjK(xi, xj) + b = yi, ∀i : −τCi < λi < Ci.

In the primal space,τ describes the slope of the pinball
loss Lτ (u), as displayed in Fig.1. In the dual problem (7),
the objective is a quadratic function independent ofτ and the
feasible set is−τCi ≤ λi ≤ Ci. The upper bound is controlled
by Ci. After Ci is given, we can further tune the lower bound
by τ . For many problems, tuning the upper bound can improve
the classification accuracy. Similarly, one can expect thatthe
performance also relies on the lower bound, as displayed by
Fig.2.

B. Pinball loss with negativeτ

In classification problems, the hinge loss, i.e., pin-SVM with
τ = 0, has been well studied; see, e.g., [4] [5]. One important
study on loss functions used in classification problems has
been given by [12]. A typical classification lossL has the
following properties:

1) L(u) is Lipschitz with a constant;
2) L(u) is convex;
3) ∂L(u)

∂u
|u=1 > 0;

4) L(u) is non-negative.

It is not hard to verify that the pinball loss withτ ≥ 0,
including the hinge loss, satisfies these properties, which
follows that whenτ ≥ 0, Lτ (u) enjoys many nice properties
for classification, such as classification-calibration andBayes
consistency. The corresponding learning rates can be analyzed
as well. In this paper, we further discuss the pinball loss with
negativeτ values. Whenτ ≥ −1, the pinball loss is still a
convex function and properties 1)–3) holds, then we have:

Theorem 1:Lτ (u) is calibrated ifτ ≥ −1.

This is a direct corollary of Theorem 2 of [12]. However,
many existing analysis for loss functions cannot be extended
to the pinball loss with negativeτ values, sinceLτ (u) with
−1 ≤ τ < 0 may take negative value and is not lower
bounded. If there is no regularization term in (3), it is meaning-
less to consider negativeτ values in the pinball loss. However,
in practice, we always pursue the discriminant function in a
bounded function space and there is a regularization term to
guarantee a good generalization capability. In that case, the
pinball loss with negativeτ values becomes meaningful, as
discussed before from both the primal space and dual space.
Generally, we need to analyze loss functions in a bounded
function space. This is different from existing results on loss
functions, which are usually obtained free of approximation
error caused by the size of function space. Analyzing loss
functions together with the function space could be an inter-
esting topic, not only for the pinball loss but also for other
loss functions which are not lower bounded, such as the one
used in [33] for one-bit compressive sensing.
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C. Particular casesτ = 0 and τ = −1

Among all the possible values,τ = 0 is a particular case,
which corresponds to C-SVM. In pin-SVM, the dual variables
can be categorized into three types:lower bounded support
vectors(λi = −τCi), free support vectors(−τCi < λi < Ci),
and upper bounded support vectors(λi = Ci). Whenτ = 0,
the lower bounded support vectors become zero. This brings
sparseness, which is meaningful for reducing the storage space
for support vectors, but is not necessary from the viewpoint
of accuracy.

Another interesting choice isτ = −1, for which the optimal
dual variables can be obtained directly. One can verify that
when Ci are set as (5), the bias term has no effect on the
objective value of the primal problem (3). We simply setb
equal to zero. Then the function corresponding to pin-SVM
with τ = −1 is

f(x) =
∑

i:yi=+1

CiK(x, xi) −
∑

i:yi=−1

CiK(x, xi). (8)

If a linear kernelK(x, xi) = xT xi is used, the decision rule
becomes

sgn(f(x)) =

{

+1, if xT x̄+ > xT x̄−,
−1, if xT x̄+ < xT x̄−,

where x̄+ and x̄− are the mean of{xi, i : yi = +1} and
{xi, i : yi = −1}, respectively. In other words, we use
the angles betweenx and the centers of the two classes to
determine the label. When a nonlinear kernel is used, pin-
SVM with τ = −1 is to classify the data according to the
angle in the feature space. Another interesting observation is
that (8) gives the classical kernel methods, given by [31]. The
discussions therein provided insightful understanding for pin-
SVM with τ = −1.

III. F INDING SOLUTIONS FORτ ≥ −1

A. Solution path

In C-SVM, τ is fixed to be zero, which has been extended
to τ ≥ 0 in [21]. This paper further shows that negative
τ values with τ ≥ −1 are worth considering as well.
As a simple example, we consider four data sets “Spect”,
“Monk1”, “Monk2”, and “Monk3” (downloaded from the UCI
Repository of Machine Learning Datasets, [36]). The radial
basis function (RBF) kernel

K(xi, xj) = exp

(

−
‖xi − xj‖2

σ2

)

is used. We tune the kernel parameterσ and the regularization
parameterC0 based on C-SVM. Then differentτ values are
tested and the classification accuracy is plotted in Fig.2. Notice
that in this experiment, we solve pin-SVM by sequential
minimization optimization techniques.

The basic finding from the results is that we need different
τ values for different problems, which requires an efficient
algorithm to find suitableτ values. The basis of this algo-
rithm is the continuity and piecewise linearity of the solution
path of pin-SVM (7), which can be easily verified from the
observation thatτ determines the boundary of the feasible set

of (7). Denote the optimal dual variables of (7) with a given
τ asλ(τ), the optimal bias term asb(τ). Thenλ(τ) andb(τ)
are continuous piecewise linear functions w.r.t.τ . To give an
illustration, we setC0 = 5, σ = 1 and plot the solution path
of several dual variables for dataset “Spect” in Fig.3.
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Fig. 3. Typical solution paths of several dual variables for“Spect” (C0 =
5, σ = 1): (a) λ1(τ) is shown by green solid line; (b)λ46(τ) by black dotted
line; (c) λ60(τ) by red dashed line; (d)λ62(τ) by blue dash-dotted line.

Fig.3 shows typical solution paths.λ60(τ) (red dashed line)
is a linear function with respect toτ , which is the simplest
case and means that the corresponding point is always a lower
bounded support vector. Except of this case, other solution
paths are polylines. The first changing point corresponds to
the λ value, from which a lower bounded support vector
becomes a free support vector. For the free support vectors,its
value could keep unchange, likeλ1(τ) shown by green solid
line. The value also may increase untilλi = Ci, from then
the corresponding point becomes an upper bounded support
vector, as illustrated byλ46(τ) (black dotted line) andλ62(τ)
(blue dash-dotted line).

Generally,λ(τ) andb(τ) are piecewise linear toτ , therefore,
simple linear algebra operations help us searching the solution
path to effectively find the solutions for differentτ values.
Searching on a piecewise linear path, we have to: i) quickly
find a starting point; ii) determine the slope; iii) detect the
changing point. The details will be discussed in the next
subsection.

B. Traversal algorithm

For givenλ andb, define the following three sets

E(λ, b) =
{

i : yif
λ,b(xi) = 1,−τCi ≤ λi ≤ Ci

}

,

L(λ, b) =
{

i : yif
λ,b(xi) ≤ 1, λi = Ci

}

,

U(λ, b) =
{

i : yif
λ,b(xi) ≥ 1, λi = −τCi

}

,

where

fλ,b(x) =
m

∑

i=1

αiK(xi, x) + b.

According to the KKT condition for pin-SVM (7),λ and b
are the optimal solutions if and only if the following two
conditions are met:

1)
∑m

i=1 yiλi = 0,
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2) there is a partition of the index setE, L, U , such that

E ⊆ E(λ, b), L ⊆ L(λ, b), U ⊆ U(λ, b).

Notice that when the intersection set betweenE(λ, b) and
L(λ, b), or U(λ, b) is not empty, there could be multiple
partitions satisfying the above conditions.

Supposeλ(τ0) and b(τ0) are optimal to pin-SVM withτ0.
Then there is a partitionE, L, U satisfying:

∑m

i=1
yiλi(τ0) = 0

E ⊆ E(λ(τ0), b(τ0)),

L ⊆ L(λ(τ0), b(τ0)),

U ⊆ U(λ(τ0), b(τ0)).

Consider an increase∆τ ≥ 0. Since λ(τ) and b(τ) are
continuous piecewise linear, when∆τ is small enough,λ(τ0+
∆τ) andb(τ0 + ∆τ) can be written as

λi(τ0 + ∆τ) = λi(τ0) + ai∆τ,

b(τ0 + ∆τ) = b(τ0) + a0∆τ.

Correspondingly,yif
λ(τ0+∆τ),b(τ0+∆τ)(xi) is also a linear

function, i.e.,

yif
λ(τ0+∆τ),b(τ0+∆τ)(xi) − yif

λ(τ0),b(τ0)(xi)

= yi

(

∑m

j=1
yjajKij + a0

)

∆τ.

Suitableai, i = 0, 1, . . . , m should satisfy:
1) for i ∈ E, the function value keeps unchanged;
2) for i ∈ L, the dual variable keeps unchanged;
3) for i ∈ U , the dual variable equals to−τCi;
4) for i ∈ E, the dual variable is in[−τCi, Ci];
5) for i ∈ L, the function value is not larger than1;
6) for i ∈ U , the function value is not smaller than1.
The first three conditions provide linear equations:















∑m

j=1 yjajKij + a0 = 0, ∀i ∈ E,

ai = 0, ∀i ∈ L,
ai = −1, ∀i ∈ U,
∑m

i=1 yiai = 0,

(9)

SinceE, L, andU is a partition of the index set, the above
system involvesm+1 equations andm+1 variables, which can
determineai (in degenerated cases, there are multiple solutions
and we simply set the undeterminedai to be zero).

After calculatingai, we need further to find the step length
∆τ , which should keep the last three conditions valid. In other
words,∆τ should satisfy:

−(τ + ∆τ)Ci ≤ ai∆τ + λi(τ0) ≤ Ci, ∀i ∈ E, (10)

yi

(

∑m

j=1
yjajKij + a0

)

∆τ ≤ 1 − yif
λ(τ0),b(τ0)(xi),

∀i ∈ L, (11)

yi

(

∑m

j=1
yjajKij + a0

)

∆τ ≥ 1 − yif
λ(τ0),b(τ0)(xi),

∀i ∈ U. (12)

Simple calculation can find the maximal step length, denoted
by ∆τ . Then all the optimal solutionsλ(τ), b(τ) for τ ∈
[

τ0, τ0 + ∆τ
]

are found. And we repeat the above process
by settingτ0 = τ0 + ∆τ .

After illustrating the key update procedure, we give the
algorithm in detail:

Initialization

The starting point isτ0 = −1, which is the smallest possible
value for τ . Moreover, its optimal dual variables can be
directly obtained, i.e.,λi(−1) = Ci. In this case, any partition
meets the requirement on the dual variables.b(−1) is selected
such that there exists a partitionE, L, U and the corresponding
ai, i = 0, 1, . . . , m satisfy:







∑m

i=1 yiai = 0,
ai = 0, ∀i ∈ L,
ai = −1, ∀i ∈ U.

(13)

There could be multiple solutions meeting the above condition.
In this paper, we use the one with the least absolute value as
b(τ)|τ=−1. Along with determiningλ(τ)|τ=−1, b(τ)|τ=−1, the
correspondingE, L, andU are found.

Updating

After obtaining the partitionE, L, U for τ0, we can update
λ andb following the discussion in the last subsection. First,
the linear equations (9) are solved to getai, i = 0, 1, . . . , m. In
(9), ai, i ∈ L

⋃

U are directly given and calculatingai, i ∈ E
involves an inverse problem. In general situation, the number
of elements inE is not large and hence (9) can be solved
efficiently.

When ai, i = 0, 1, . . . , m are found, we can solve linear
equations (10)–(11) to find∆τ , the maximal value of∆τ .
Then the optimal solutions between[τ0, τ0+∆τ ] are obtained:

λi(τ0 + ∆τ) = λi(τ0) + ai∆τ, ∀∆τ ∈ [0, ∆τ ],

b(τ0 + ∆τ) = b(τ0) + a0∆τ, ∀∆τ ∈ [0, ∆τ ].

After calculating the optimal solution betweenτ0 andτ0 +
∆τ , we move toτ0 + ∆τ . Correspondingly, the partition is
updated. Supposei0 is the index which determines∆τ . There
are four situations. Ifi0 ∈ E andai0 > 0, thenλi0 (τ0+∆τ) =
Ci0 and we will puti0 into L, i.e., the partition is updated to
be E \ {i0}, L

⋃

{i0}, U . The other three situations are

• if i0 ∈ E, ai0 < 0, the partition isE \ {i0}, L, U
⋃

{i0};
• if i0 ∈ L, the partition isE

⋃

{i0}, L \ {i0}, U ;
• if i0 ∈ U , the partition isE

⋃

{i0}, L, U \ {i0}.

Termination

With the update processing,τ0 is increased until two events
happen. The first one is thatτ0 > 1. As analyzed before, the
reasonableτ value is less than one and hence we do not need
to calculateλ(τ), b(τ) for τ > 1. Another possibility is that
in update processing, any∆τ > 0 satisfies (10)–(12). Then
∆τ = ∞ and we terminate the algorithm since the solutions
for all τ are obtained.

C. Discussion about differentτ values

In [21], the role ofτ has been discussed from a statisti-
cal analysis viewpoint. Now, with the help of the traversal
algorithm, we can calculate the solutions for all reasonable τ
values and observe the corresponding performance. Generally,
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a positiveτ encourages the results to have a small within-
class scatter. Since scatter lacks of invariance for scaling,
we need normalization for pre-processing. In this paper, we
simply scale each feature to have the same range. Minimizing
within-class scatter is suitable to deal with data coming from
a centralized distribution. A typical example is that features
of each class are drawn from Gaussian distributions. On the
contrary, when this property is not true, e.g., when the features
come from a uniform distribution, or a mixture of several
Gaussian distributions, minimizing the within-class scatter is
not reasonable and a negativeτ may lead to a better result.
Now we have established a traversal algorithm and then can
numerically investigate the relationship between the problem
structure and the suitableτ value. From the relationship, we
may learn useful information via the selectedτ .

For visualization, we consider a 2-dimensional problem
where the features come from Gaussian distributions: dataxi

with yi = 1 are drawn fromN (µ1, Σ1) and dataxi with
yi = −1 are fromN (µ2, Σ2), where

µ1 =

[

0.5
−3

]

, µ1 =

[

−0.5
3

]

, Σ1 = Σ2 =

[

0.2 0
0 3

]

.

It is not hard to verify that the corresponding Bayes classifier
is fc(x) = 2.5x(1) + x(2), displayed in Fig.4 by the dashed
red lines. We artificially add noise. Their labels are selected
from {−1, +1} with equal probability and the features come
from a Gaussian distribution, of which the mean is[0, 0]T and
the covariance matrix is

[

1 −0.8
−0.8 1

]

.

This noise has no effect on the Bayes classifier but it will affect
the training results of SVMs. Applying the traversal algorithm,
we obtain the classifiers corresponding to differentτ values
and then display the classifiers from differentτ values by the
blue solid lines. In Fig.4(a) there are200 training data for
each class from the considered distribution and10 noisy data
points are added. One can find that a positiveτ is suitable for
this case, since the features in each class is clustered around
its center. From another point of view, if a largeτ is selected
by the traversal algorithm, we can expect that the original
distribution is centralized. In Fig.4(b), we reduce the number
of points in class+1 and test the unbalanced situation. Here
the number of points in class+1 is one tenth of that in class
−1. In Fig.4(b), the varying range for differentτ values is
significantly larger than that in Fig.4(a).

Next, we add more noisy data into the training set. In Fig.
5(a) we show the case that20 noisy data points are added to
each class and the classifiers obtained from differentτ values.
The corresponding probability density functions (p.d.f.)of
yif(xi)/ maxi{yif(xi)} are displayed in Fig.5(b). Compared
with the previous experiment, we need a largerτ which draws
support from the data structure when the noise is more heavy.
Pin-SVM with a positiveτ is related to quantile distance,
which is more stable to feature noise. Thus, a significant
improvement fromτ = 0 generally implies that the data
contain heavy noise.

We may also meet mixture distributions in applications.
For example, in Fig.6, points in one class come from two
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Fig. 4. Sampling points in class+1 are shown by green stars and points in
class−1 are shown by red crosses. The Bayes classifier is given by red dashed
lines and blue solid lines display the classifiers obtained by the pin-SVM with
different τ values. (a)10 noisy data points are added; (b) unbalanced case,
where the number of the training points in class+1 is only one tenth of those
in class−1.

Gaussian distributions, then a largeτ value, which pursues
a small within-class scatter, is not reasonable. In this case,
a negativeτ leads to a more accurate result. In applications,
we choose the suitableτ value via cross-validation and there
could be gap between the selected one and the bestτ . Though
selectingτ via cross-validation is not optimal, it still provides
useful hints for understanding the feature distribution.

The above analysis is valid for nonlinear classifiers as well
but the discussion will be in the feature space. As an example,
we consider the data set “Monk1” from UCI dataset and the
pin-SVM with a RBF kernel (C0 = 1, δ = 1). Via the traversal
algorithm, the classification functionf(x) for different τ
values are obtained and the p.d.f. ofyif(xi)/ maxi{yif(xi)}
are shown in Fig.7(a). With an increasingτ , the scatter
of yif(xi)/ maxi{yif(xi)} becomes smaller. This trend can
also be observed from Fig.7(b), which shows the p.d.f. for
τ = −0.5, 1, 1.5. From both the two figures, one can observe
that a positiveτ value is suitable, meaning that the data points
in each class are centralized in the feature space, e.g., they
may come from a Gaussian distribution. If a negativeτ value
achieves an accurate result, it generally indicates that there are
sub-classes, like the distributions considered in Fig.6.

IV. N UMERICAL EXPERIMENTS

In the above sections, we extended the parameterτ into
negative values and then established an algorithm traversing
the entire solution path. With the help of this algorithm we
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Fig. 5. The meaning of plots in (a) is as the same as that in Fig.4 but
20 noisy data points are added; in (b) the probability density functions of
yif(xi)/ maxi{yif(xi)} for different τ are displayed.

can test differentτ values (−1 ≤ τ ≤ 1) in a short time and
choose the most suitable one. In this section, we will illustrate
the performance of the proposed method on real-life data sets.
The involved data are downloaded from the UCI Dataset [36]
and LIBSVM data sets [9]. For some problems, there are
training and test data provided. Otherwise, we randomly select
m observations to train the classifier and use the remaining for
test. All the experiments are done in Matlab 2013a in Core
i5-1.80 GHz, 4.0GB RAM.

In our experiments, the RBF kernel is used andCi is set
according to (5). The regularization coefficientC0 and the
bandwidth in the RBF kernelσ are tuned by 10-fold cross-
validation. When the number of training data is less than
10000, the traversal algorithm is applied. For each pair ofσ
and C0, the traversal algorithm outputs the solution of (3)
for all −1 ≤ τ ≤ 1. In validation process, we consider
τ = −1,−0.99, . . . , 0, 0.01, . . . , 0.99. Then the parameters
with the least total validation error are picked out. The
candidate values forC0 is {0.1, 0.5, 1, 2, 5, 10} and that for
σ is {0.01, 0.1, 1, 10}. We repeat the training and test process
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τ
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(b)

Fig. 6. The meaning of plots in (a) is as the same as that in Fig.4. In this
figure, the training data of each class come from two Gaussiandistributions;
(b) displays the probability density functions ofyif(xi)/ maxi{yif(xi)}
for different τ .

10 times, then report the average classification accuracy on
the test sets and the average time in Table I. For comparison,
we also apply boosted tree method [40] [41]. The number
of ensemble learning cycles is set such that the boosted tree
has similar computational time as the SVMs. The average
classification accuracy and the computational time are also
reported in Table I.

One efficient algorithm to solve pin-SVM (7) with a givenτ
is the sequential minimization optimization algorithm (SMO),
which is designed for C-SVM by [6][37][38][39] and has
been modified for pin-SVM by [35]. Roughly speaking, we
need about200 times of C-SVM to select the suitableτ from
{−1,−0.99, . . . , 0.99} by SMO. From the result reported in
Table I, the ratio between computation time of solving C-SVM
by SMO and that of the traversal algorithm is far less than200,
showing the efficiency of the proposed traversal algorithm.
Generally, the computational time of the traversal algorithm
is acceptable and selecting a suitableτ (particularly, for some
applications, the bestτ is indeed negative) can improve the
accuracy, when the problem size is not large.
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Fig. 7. The probability density functions ofyif(xi)/ maxi{yif(xi)} for
Monk1. (a) p.d.f. for differentτ ; (b) p.d.f. for τ = −0.5 (green dot-dashed
line), τ = 0 (red dashed line), andτ = 0.5 (blue solid line).

As explained before, C-SVM is a special case of pin-SVM
with τ = 0. Thus, considering differentτ values could improve
the performance from C-SVM almost surely in the view of
validation error. But when the data size increases, the perfor-
mance varying for differentτ values becomes less significant.
In other words, for a large range ofτ , the classification
performance are almost the same. Moreover, the computational
efficiency of the traversal algorithm decreases with the data
scale increasing, since the main factor of computing time
for the traversal algorithm is the number of segments in the
solution path. Therefore, when there are plenty of training
data, we suggestτ = 0, i.e., C-SVM. If one wants to further
improve the accuracy, we can consider several small values,
e.g., τ = −0.02,−0.01, 0, 0.01, 0.02, and use SMO to solve
the corresponding pin-SVM, which is the strategy used in our
experiments when the number of training datam ≥ 10000.

To further observe the role of differentτ values, we plot
p.d.f. of yif(xi)/ maxi{yif(xi)} for four real data sets in
Fig.8. Curves in different color correspond to the results of
pin-SVM with differentτ values: the RGB vector is set to be
[0.5 − τ/2, 0, 0.5 + τ/2]. Generally, the result for different
τ values may vary a lot, especially when the data size is
small, e.g., in Fig.8(a) and Fig.8(b), there are only124 and
169 training data, respectively. While, in Fig.8(d), which
corresponds to data set “RNA”, the p.d.f. forτ ≥ 0 are
hard to distinguish. This phenomenon also can be observed
in Table I, where the improvement achieved by tuningτ
becomes less significant when the problem size increases.
Roughly speaking, if there not enough training data, drawing
information from correctly classified points is helpful. Infact,
dealing with small training set is the purpose of other loss
functions with non-zero value on correctly classified points,
such as the distance weighted discriminant [30] and robust

TABLE I
TEST ACCURACY, THE SUITABLE τ VALUES SELECTED BY CROSS

VALIDATION , AND COMPUTATION T IME

Data m boosted tree C-SVM pin-SVM τ

Spect 80 80.00 82.55 85.53 −0.44
0.116 s 0.008 s 0.063 s

Monk1 124 73.75 82.18 84.17 0.37
0.211 s 0.094 s 0.241 s

Monk2 169 77.53 84.54 85.12 0.03
0.380 s 0.029 s 0.390 s

Monk3 122 91.80 92.96 95.44 0.28
0.405 s 0.028 s 0.216 s

Haber. 150 72.68 73.32 73.40 0.02
0.382 s 0.023 s 0.293 s

Statlog 150 81.31 82.31 83.00 −0.11
0.387 s 0.034 s 0.303 s

Iono. 200 87.33 93.22 93.75 0.11
40.73 s 0.042 s 0.567 s

Pima 300 74.61 73.20 74.00 0.23
0.140 s 0.048 s 0.767 s

Breast 500 96.87 96.78 97.30 −0.13
2.037 s 0.072 s 2.675 s

Trans. 500 76.19 74.45 76.97 −0.44
1.590 s 0.144 s 0.925 s

Splice 500 89.73 86.51 86.77 0.10
1.743 s 0.213 s 4.163 s

Guide1 1000 96.42 96.44 96.88 0.06
1.731 s 0.783 s 7.350 s

Spamb. 3000 94.03 96.70 96.78 0.03
3.205 s 0.939 s 33.56 s

RNA 10000 95.12 96.16 96.18 0.02
36.10 s 13.18 s 63.16 s

Magic 15000 85.25 87.25 87.25 −0.02
50.10 s 21.21 s 107.3 s

IJCNN1 20000 92.89 97.13 97.13 0.00
46.10 s 25.24 s 121.1 s

one-bit compressive sensing [33]. As reported in Table I,
for small-scale problems, suitably selecting a non-zeroτ can
improve the classification accuracy, hence, it is worthy to use
the traversal algorithm, which takes a longer time but givesa
better result.
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Fig. 8. The probability density functions ofyif(xi)/ maxi{yif(xi)} for
different τ values. Whenτ is smaller, the color has more red components
and for a largerτ , the corresponding color has more blue components. (a)
Monk1; (b) Monk2; (c) Spamb.; (d) RNA.
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V. CONCLUSION

Support vector machines with the pinball loss have a tuning
parameterτ , which is the slope of the loss function.τ also
controls the feasible set in the dual space. Traditionally,τ is
fixed to be zero (corresponding to C-SVM) or a positiveτ .
However, the nonnegativity condition onτ is not necessary
and onlyτ ≥ −1 is needed to keep the problem convex. In
this paper, we extended pin-SVM to negativeτ values, which
encourages the correctly classifier points going away from the
decision boundary via giving gains according to the distance.
The meaning of negativeτ values are explained from both
primal and dual space. One interesting observation is that the
optimal variables forτ = −1 are easily calculated and that
loss is closely linked with classical kernel rule.

Extending pin-SVM toτ ≥ −1 requires an efficient method
for tuning τ . In this paper, we established an algorithm to
traverse the entire path fromτ = −1, which is based on the
fact that the solution path of pin-SVM is piecewise linear w.r.t.
τ . In numerical experiments, the traversal algorithm shows
the effectiveness and can improve the classification accuracy,
especially for small-scale problems.

The theoretical understanding for the pinball loss with neg-
ative τ is a difficult but interesting topic. The main difficulty
is that we cannot analyze the loss functions which may take
negative values independently from the function space. In
fact, investigating its property in a bounded function space
is meaningful for non-negative loss functions as well, because
in practice a loss function is always minimized together with
a regularization term.
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