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Abstract

As the vibro-acoustic requirements of modern products become more stringent,

the need for robust identification methods increases proportionally. Sometimes

the identification of a component is greatly complicated by the presence of a

supporting structure that cannot be removed during testing. This is where sub-

structure decoupling finds its main applications. However, despite some recent

advances in substructure decoupling, the number of successful applications has

so far been limited. The main reason for this is the poor conditioning of the

problem that tends to amplify noise and other measurement errors.

This paper proposes a new approach that uses a modal model to filter the

experimental frequency response functions (FRFs). This can reduce the impact

of noise and mass loading considerably for decoupling applications and decrease

the quality requirements for experimental data. Furthermore, based on the

uncertainty of the observed eigenfrequencies, an arbitrary number of consistent

(all FRFs exhibit exactly the same poles) FRF matrices can be generated that

are all contained within the variation of the original measurement. This way, the

variation that is observed within the measurement is taken into account. The

result is a distribution of decoupled FRFs of which the average can be used as
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the decoupled FRF set while the spread on the results highlights the sensitivity

or reliability of the obtained results.

After briefly reintroducing the theory of FRF-based substructure decoupling,

the main problems in decoupling are summarized. Afterwards, the new method-

ology is presented and tested on both numerical and experimental cases.

Keywords: Substructure decoupling, Experimental dynamic substructuring,

Frequency based substructuring, Noise filtering

1. Introduction

Since the end of the 60’s, dynamic substructuring techniques are being de-

veloped to analyse large structures and systems by dividing them into smaller,

more manageable parts and coupling them in order to obtain the static and

dynamic behaviour of the total system [1]. Although substructuring techniques

are generally used to couple components, sometimes substructure decoupling,

or the addition of a fictitious ”negative structure” [2], can be useful. For ex-

ample, when a component is too heavy or fragile to suspend freely or when

it is integrated in a drive-train, its dynamics are influenced by the supporting

structure. Substructure decoupling techniques offer an experimental approach

to assess the dynamic behaviour of an individual component that is part of a

larger system.

Earlier publications by Ind et al. in 2003 [3] and D’Ambrogio and Frego-

lent in 2004 [4] focused on a modal approach for substructure decoupling. Also

Allen, Mayes and Kammer used a modal approach to couple and uncouple com-

ponents with the so-called transmission simulator method [5, 6, 7]. In 2005,

D’Ambrogio [8] introduced an FRF-based approach similar to the structural

modification procedure [9]. In 2008, Sjövall and Abrahamson presented a de-

coupling method based on reconstruction of the interface forces acting between

the substructures. They found that the method is most sensitive to the exis-

tence of general anti-resonances in the frequency domain of interest [10]. In the

next years, a more general framework for substructure decoupling was presented
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by D’Ambrogio and Voormeeren describing the primal and dual approach for

substructure decoupling and a family of decoupling techniques, this time solely

relying on experimental data [2, 11, 12, 13]. Research that followed showed that

(rotational) connection degrees of freedom (DoFs) do not need to be measured

explicitly if additional DoFs internal to the test rig are measured [14, 15, 16, 17].

However, despite these advances, the number of successful decoupling ap-

plications remains limited. This is mainly due to the poor conditioning of

the problem that tends to amplify noise and other errors in the measurements

[2, 13, 14, 15]. Some authors have attempted to filter the FRFs before inver-

sion to reduce the detrimental effects of noise. In 2004 Sanliturk and Cakar

[18] used a so-called Hänkel matrix in combination with an truncated singu-

lar value decomposition (TSVD) to filter FRFs. The filtering results are fairly

successful, but the method is hard to automate and can become expensive due

to the TSVD [18]. In [14] D’Ambrogio and Fregolent used the poly-reference

least-square complex frequency domain (pLSCF) method [19, 20], to curve fit a

modal model on noisy FRFs. A significant reduction in accuracy was reported

in the decoupled FRFs. Moreover, in [16] the pLSCF technique was used to

filter the experimentally obtained FRF matrices in a global way. Although the

reconstruction of the original FRFs was fairly good, the decoupling results were

reportedly not satisfactory. In a previous publication [21] a common denomi-

nator polynomial model is used to filter the FRFs and impose consistency at

the same time. The principle is similar to the approach presented in this paper.

The filtering capabilities of the polynomial model are good for different types

of noise, but mass loaded FRFs remain problematic.

In this paper, a new method is proposed that uses a modal model to filter

the FRFs in a column-wise approach while enforcing consistency throughout

the FRF matrix of assembly and residual system. Consistency is achieved by

imposing identical eigenfrequencies for similar poles throughout the FRF matrix.

This way the impact of systematic errors, like e.g. mass loading or a change in

boundary conditions, is greatly reduced. Furthermore, based on the observed

variation of the eigenfrequencies in the experimental data, an arbitrary number
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of consistent FRF matrices can be generated that are all contained within the

variability of the original measurements. This way, the variation that is observed

within the measurement is taken into account. The result is a distribution of

decoupled FRFs of which the average can be used as the decoupled FRF set

while the spread on the results highlights the reliability of the obtained results.

This paper will first briefly reintroduce the dual approach for substructure

decoupling. Then some of the main difficulties encountered in the method are

discussed. After that, the new filtering approach is presented. First the main

characteristics of the new approach are described and then the different calcu-

lation steps are explained more in detail. The method is then tested on both

simulated and experimental results.

=-

AB (known) A (known) B (unknown)

Figure 1: Principle of substructure decoupling

2. Substructure decoupling

This section will first briefly discuss the dual approach for substructure de-

coupling. Afterwards, some of the experimental difficulties encountered with

substructure decoupling are discussed.

The principle of substructure decoupling is shown in figure 1. The DoFs

of the assembled system can be divided into 3 groups: DoFs internal to the

supporting structure A, DoFs internal to the decoupled component B and DoFs

connecting the (two) substructures. The DoFs are illustrated as squares, trian-

gles and dots respectively in figure 1.
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2.1. Dual formulation for substructure decoupling

The decoupling problem can be described using the dynamic stiffness repre-

sentation of the subsystems [12, 13]. The assembly can be expressed as:

ZABuAB = fAB − gAB
ZAB

aa ZAB
ac ZAB

ab

ZAB
ca ZAB

cc ZAB
cb

ZAB
ba ZAB

bc ZAB
bb



uAB
a

uAB
c

uAB
b

 =


fAB
a

fAB
c

fAB
b

−


0

gAB
c

0

 (1)

In this equation, uAB is a displacement vector, ZAB the dynamic stiffness

matrix and fAB the external force vector. The vector gAB , the only unknown

in equation 1, represents a disconnection force applied at the connections. The

subscripts a, b and c denote the test rig, component and connection DoFs

respectively. To determine the interface forces, an identical, but opposite force

gA is applied to the empty test rig to make it behave as if it were loaded by the

component [12, 13]:

ZAuA = fA + gAZA
aa ZA

ac

ZA
ca ZA

cc

uA
a

uA
c

 =

fA
a

fA
c

+

 0

gAc

 (2)

Similar to equation 1, uA is the displacement vector of the empty test rig, ZA the

dynamic stiffness matrix and fA an external force vector. The connection DoFs

of the assembly are decoupled when both the compatibility and equilibrium

condition are satisfied at the interfaces. With the use of a Boolean matrix, the

compatibility and equilibrium condition can be expressed as [12, 13]:

Bu =
[
BAB BA

]uAB

uA

 = uAB
c − uA

c = 0.

LTg =
[
LABT

LAT
]gAB

gA

 = gAB
c + gAc = 0 (3)
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In the dual approach for substructure decoupling, the equilibrium condition

is satisfied a priori by choosing the interface forces in the form g =
[
gAB gA

]T
=

BTλ.

λ are Lagrange multipliers that correspond physically to the interface force

intensities [2, 12, 13]. After reordering, the following expression is obtained [2]:
ZAB 0 BABT

0 ZA −BAT

BAB BA 0



uAB

uA

λ

 =


fAB

0

0

 (4)

The explicit distinction can be made between the Boolean matrices enforcing

compatibility and those enforcing equilibrium, resulting in expression 5, where

E∗ is the Boolean for equilibrium and C∗ the Boolean for compatibility [12].
ZAB 0 EABT

0 ZA −EAT

CAB CA 0



uAB

uA

λ

 =


fAB

0

0

 (5)

When the Lagrange Multipliers λ are eliminated and the inverse of the dy-

namic stiffness is replaced by the receptance, i.e.: Z∗−1 = H∗, the decoupled

response vector uAB can be written as [12]:

uAB
dec =

(
HAB −HABEABT (

CABHABEABT

−CAHAEAT )+
CABHAB

)
fAB

(6)

In this vector, the DoFs of substructure B show the decoupled response.

Note that + denotes the (Moore-Penrose) pseudo-inverse, since the term is not

necessarily square or of full rank [12]. Equivalently, the transfer function matrix

can be written from which the sub-matrix representing substructure B is the

decoupled transfer function [12]:

Hdec = HAB −HABEABT (
CABHABEABT

−CAHAEAT )+
CABHAB (7)

In fact, as shown in inter alia [2, 13, 17], the compatibility and equilibrium

conditions can also be enforced on locations internal to the test rig, and thus not

only at the connections. This method is called the extended interface method

6



[13]. This opens possibilities as the DoFs on the test rig can replace some of the

(rotational) connection DoFs that are usually hard to measure. This approach

is called the mixed interface approach [2]. This can be intuitively understood

because the difference between the loaded and unloaded test rig is considered. A

force at the connections will also influence DoFs internal to the (flexible) test rig.

Therefore the difference in response at other locations than the connections can

be considered to carry equivalent information as the responses captured at the

interfaces. Furthermore it has been shown that compatibility and equilibrium

don’t have to be enforced on the same locations [2, 17]. In practice this means

that the excitation and response locations can be non-collocated, eliminating

the explicit need for driving-point FRFs.

2.2. Problems in substructure decoupling

From a theoretical point of view, the FRF-based decoupling approach is in-

teresting as there is a certain freedom in the choice of measurement locations.

Furthermore, no simulations are required. This makes it potentially a very pow-

erful method for the identification of prototypes and other components of which

no reliable models are immediately available. However, many other difficulties,

of which some are shared with substructure coupling [1, 22], still remain. The

most important issues for decoupling are discussed below:

1. Measurement noise:

Noise on the measurements is to some extent unavoidable. Especially

FRFs between lowly coupled points and directions are the most susceptible

to noise as only a little amount of the input energy is captured by the

output sensor. Moreover, when a hammer is used, the frequency content

of the excitation signal may be hard to control.

2. Systematic errors (e.g. mass loading and frequency shifts):

The use of a shaker allows a better control over the excited frequencies.

However, most often the shaker(s) will be moved around the structure in

order to measure sufficient columns of the FRF matrix. This can make the

measurements to some extent inconsistent with each other as the shaker(s)
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may cause significant mass loading, especially to light structures. This

causes frequency shifts between the different columns of the FRF matrix

[23]. As a result, spurious peaks may be present in the decoupled FRFs

[24].

3. Non-linearities:

Non-linearities may cause the subtraction of assembly and empty test rig

to be dissimilar to the free component as depicted in figure 1. This can

be caused for example by non-linearities in joints or preloading in bolted

connections. Also this can cause spurious peaks in the decoupled FRFs

[24].

4. The conditioning number and the selection of measurement locations:

Despite the use of over-determination, the condition number generally

remains very high. Moreover, the selection of measurement locations in-

fluences the condition of the inversion and therefore the amplification of

errors [11, 12, 15]. A good selection of measurement locations is therefore

vital. In [15] and [25] some measurement selection strategies are discussed,

but no general conclusions could be drawn so far.

The novel method here proposed targets to minimize the influence of problem

1 and 2.

3. Methodology

In this section the methodology of the new filtering method is described.

First the principle and novelty of the method is explained. Afterwards, the

different steps in the procedure are explained more in detail.

3.1. Method

The novelty of the new approach lies primarily in the way it estimates the

modal parameters from the FRF matrix and how it subsequently corrects for

frequency shifts. The new filtering method starts with estimating the modal

parameters of each of the columns of the FRF matrix of assembly and test
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rig separately. As the individual FRFs in each of the columns are measured

simultaneously, they are considered to contain the same poles. However, this is

not necessarily true for the columns mutually, e.g. due to mass loading, changes

in boundary conditions, etc. This is shown in figure 2 and further elaborated

on in [23].

Subsequently the eigenfrequencies of the different columns of the FRF matrix

are sorted and equalized. The other modal parameters are kept unchanged. This

way inconsistencies in the FRF matrix, i.e. frequency shifts, are removed. It

is assumed that the mode shapes are not significantly altered when moderate

mass loading, or a change in boundary conditions is present. This is empirically

shown later in the results, see figure 10.

Figure 2: Workflow of the new filter
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By sampling the eigenfrequencies from the range in which they are mea-

sured, an arbitrary amount of consistent FRF matrices can be generated, while

the uncertainty on the eigenfrequencies is taken into account. This differs from

other filtering approaches that only generate a single filtered FRF matrix. No

assumptions are made a priori to which of the observed eigenfrequencies are cor-

rect, therefore a uniform distribution is used for the generation eigenfrequencies.

The method is applied on the FRF matrix of both the assembly and empty test

rig. The workflow of the new filtering approach is visualized in figure 2.

Afterwards all possible combinations of the FRF sets are used for the decou-

pling calculation. As a result, a large number of possible decoupling solutions

is obtained. In the spread of these results, the sensitivity of the decoupling

method can be observed, while for further processing the average or -assuming

a normal distribution- upper 90 % can be used.
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Algorithm 1: Filtering algorithm (part 1)

NOTATION:

w = Eigenfrequencies

z = Damping values

L = Participation factors

LR, UR = Lower, upper residuals

λ = Poles

V = Modeshapes

M = Reduced matrix

ω = Radial frequency

i = Input index

s = Random sample

Ni = Nr. of inputs

Ng = Nr. of generated matrices

Np = Nr. of poles

U = Uniform distribution

x̄ = Unsorted instances of x

x̃ = Sorted instances of x

INPUT:

H = Complete FRF matrix of assembly or empty test rig

F = Frequency axis

n = Maximum order of the polynomial model

OUTPUT:

Ĥ = Filtered, consistent FRF matrices
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PART 1: ESTIMATING THE MODAL PARAMETERS

for i = 1, . . . , Ni do

STEP 1: Calculate reduced matrix M with LSCF algorithm [26]

M = LSCF(Hi,n)

STEP 2: Compute the stable poles for increasing model orders [26]

λ̄1:n = STABLE(M ,F ,n)

STEP 3: Modified Automatic Model Parameter Selection [27, 28]

[wi, zi,Li] = AMPS(λ̄1:n)

STEP 4: Modes, residuals are estimated in a least-squares way [26]

[Vi,LRi,URi] = LSFD(wi,zi,Li)

end

STEP 5: Combine the parameters for all inputs.

w̄ = wi ∀ i = {1, . . . , Ni}

Identical action for zi, Li, Vi, LRi and URi

PART 2: SORTING THE EIGENFREQUENCIES

STEP 6: Sort the eigenfrequencies based on frequency difference

OR MAC-values and frequency difference

w̃ ← w̄

STEP 7: Sort all other parameters accordingly

Ṽ ← V̄ ; L̃ ← L̄ ; z̃ ← z̄

Note: empty elements are padded with zeros

PART 3: GENERATING CONSISTENT FRF MATRICES

for u = 1, . . . , Ng do

STEP 8: Sampling the eigenfrequencies

ws = wr ∈ U(w̃min
r , w̃max

r ) ∀ r = {1, . . . , Np}

STEP 9: Reconstructing the consistent FRF matrices [29]

Ĥu(jω) =

Np∑
r=1

(
ṼrLr

jω − λr
+
Ṽ ∗
r L

∗
r

jω − λ∗r

)
− [UR]ω2 + [LR] (8)

With λr = zr + jws

end 12



3.2. Workflow

The workflow of the new approach is further explained in algorithm 1. The

most important steps are described more in detail in the following paragraphs.

3.2.1. Estimation of the modal parameters

In this work, the estimation of the modal model from experimental data

is done in two main steps as described by Van der Auweraer in [26]. First a

common denominator polynomial model is fitted on the FRFs for increasing

model orders. Then the poles are selected in a stabilization diagram and the

damping and residues are estimated. This step is called the Least Squares

Complex Frequency domain (LSCF) method. During a second step, the mode

shapes and residuals are estimated with a linear least-squares frequency-domain

(LSFD) solver [26]. Note that for single-input-multiple-output (SIMO) FRFs,

identical results are obtained with the pLSCF algorithm [19, 20].

Because of the considerable amount of processing required to identify all

columns of both the assembly and empty test rig separately, the automatic

modal parameter selection procedure [27, 28] is used. This algorithm compares

frequency and damping stability over a given set of model orders. In [27] it

was reported that the algorithm tends to overestimate the number of stable

poles (thus selecting also numerical poles). To overcome this, a singular value

decomposition of the FRF column is used to plot the Complex Mode Indicator

Function (CMIF) [30]. As the peaks detected in the CMIF plot indicate the

existence of eigenfrequencies, a peak finding algorithm can reduce the frequency

range in which eigenfrequencies can be detected. This way, the number of falsely

identified poles is greatly reduced, while the number of unidentified physical

poles is also very limited. Another advantage of the SIMO approach is that

clear stabilization diagrams are obtained, despite possible mass loading [23].

It should be noted, as also indicated in [27], that no automatic methods

exist for modal parameter selection that work in all scenarios. However, the

described method proved to be successful on both numerical and experimental

data if SIMO FRFs are used, with relatively high signal-to-noise ratios. A
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limited amount of manual user interaction is however still required to verify that

no error in the automatic process occurred. Now that all poles are identified,

the remaining modal parameters (mode shapes and upper and lower residuals)

are identified.

3.2.2. Sorting of the eigenfrequencies

Afterwards, the different poles must be sorted before the FRFs can be made

consistent. As some poles may be absent in certain FRFs when the excitation

is located on a node, some sorting is needed. This can be done in two ways,

based on the eigenfrequencies, or both the eigenfrequencies and modeshapes.

If the distance between the eigenfrequencies is significantly larger than the

variation on the eigenfrequencies, a simple algorithm can be written that sorts

the poles (and corresponding modal parameters) on the basis of frequency dif-

ference.

If the modal density is of the same order of magnitude as the variations

in eigenfrequencies, the sorting of the poles may be difficult on the basis of

frequency difference alone. In this case, also the modeshape can be compared

using a MAC diagram. This requires a sufficient amount of sensors to fully

capture and distinguish the eigenmodes, especially at higher frequencies [31]. It

should also be noted that some modes may be badly excited if the excitation is

close to a nodal point. In this case, the mode may be badly, or not estimated.

This can make the sorting of the modes difficult.

The choice of sorting algorithm is up to the user. In this work good results

were obtained when the algorithm based on the frequency difference is used for

hammer measurements and cases with very little mass loading. When moderate

or heavy mass loading is present, the sorting algorithm that also takes into

account the modes, is the most reliable.

3.2.3. Generation of consistent FRF matrix matrices

The FRF matrices are reconstructed using equation 8. Each FRF is re-

constructed with its original modeshapes, participation factors, damping and
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residuals. The eigenfrequencies are sampled from the range in which they are

measured. It is also possible to manually define a range in which the poles are

considered to be located. This may be useful when the final design of a compo-

nent is not yet finished or when the boundary conditions are uncertain. It can

also reduce the effect of modelling errors as they are averaged out.

Since it is not known which of the solution is the best or most accurate,

an arbitrary amount of consistent FRF matrices is generated. The amount is

mainly limited by memory requirements and calculation time. Finally, all pos-

sible combinations of assembly and empty test rig matrices are used in equation

7, resulting in many decoupling solutions.

The average solution can be used for further processing or - assuming a

normal distribution - the upper upper 90 %. The spread on the results shows

the sensitivity or reliability of the decoupling method.

4. Results

The new method will be tested on both numerical and experimental cases.

It will be compared with the more standard approach of using raw FRFs. Both

methods are used in combination with a TSVD. The numerical FRFs will be

polluted with different types of noise. This way, it will be demonstrated what

type of error is the most detrimental for the quality of decoupled FRFs for both

methods. For the experimental cases, both hammer and shaker measurements

will be shown.

In order to have a more objective criterion for the comparison of the FRFs,

the frequency assurance criterion (FRAC) [31] will be used to compare the

decoupled FRFs with the reference solution. The reference solution is obtained

by calculating or measuring the FRFs of the decoupled structure directly. The

FRAC between FRF A and B is calculated as follows:

FRACAB =

∣∣HA(ω)HB(ω)T
∣∣2

(HA(ω)HA(ω)T ) ∗ (HB(ω)HB(ω)T )
(9)
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In [31] it is stated that FRAC values can sometimes be quite low while

visually the correlation looks good. This is attributed to errors in the phase. In

this case it can be useful to use the absolute values of the FRFs.

As stated earlier, both the new and the standard approach make use of a

TSVD for the inversion. Depending on the theoretical number of connection

DoFs, noise and other errors, the SVD is truncated at a certain amount of sin-

gular values. If too few singular values are retained, the peaks of the decoupled

result will be badly estimated (the damping is overestimated). If too many are

retained, the results may become very noisy and spurious peaks, due to e.g.

curve fitting errors, become important. In the theoretical case of perfect FRFs,

the extended interface method (using all available measurement locations) is

singular at all frequencies and requires as many singular values as there are

connection DoFs [11]. Since the modal model acts as a filter to noise, it can

generally use more singular values compared to the standard approach before

the noise is amplified too strongly. The choice of singular values may require

some iteration if no reference solution is available. The influence of different

singular values for the standard approach is illustrated in [21]. In this work,

the number of singular values corresponding to the solution with the highest

average FRAC value are used.

4.1. Simulations

The new approach will be tested on two numerical models. The first model

is a 6-DoF analytical lumped-mass model with 2 coupling DoFs. The second is

an FE model of a test rig that will also be used for experimental decoupling.

This test rig is decoupled in 6 DoFs. First the different types of noise that will

be used to pollute the FRFs will be briefly explained.

4.1.1. Noise modelling

In order to assess the impact of noise and inconsistencies on the decoupled

FRFs, the following types of noise are used:

• Background noise:
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A uniformly distributed random complex matrix is added to the FRF

data. This mainly affects the amplitude and phase of the FRFs with the

lowest magnitude, therefore simulating a noise floor on the FRF data.

• Multiplicative noise:

Each value in the FRF matrix is multiplied with (1 + R), with R being

a small zero-mean random complex value with a uniform distribution. In

this case 1
R2 approximates the signal-to-noise ratio. It affects the whole

FRF independently of the magnitude.

• Phase noise:

In this case, the phase of the FRF signal is perturbed with a zero-mean

uniformly distributed random value without affecting the amplitude of the

FRF. Phase noise is considered because the phase of driving point FRFs is

a good indicator for the quality of the measurement. It can be shown that

small errors in the driving point phase have a strong detrimental impact

on the decoupling results.

• Mass loading:

To simulate mass loading, the elements of the (diagonal) mass matrix

are multiplied by 1 + R, with R being a zero-mean normally distributed

random value. This is repeated for each column of the FRF matrix.

• Frequency shifting:

As the calculation of direct FRFs from large FE models is computationally

expensive, frequency shifts are introduced on the columns of the FRF

matrices of the FE model to approximate the effect of mass loading. This

is done by simply shifting the FRFs of a single column along the frequency

axis with a random number of frequency lines.

4.1.2. Analytical model

The first model is an analytical 6-DoF lumped mass model with 2 coupling

degrees of freedom. The model can be decoupled at the locations of masses m2
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and m3 as shown in figure 3. The decoupled system therefore consists of masses

m2b, m3b and m4. All parameters are listed in table 1. Complex damping is

chosen at 0.5 %. Frequencies are considered between 20 and 400 Hz.

m1

m2b
m3b

m4

m2a
m3a

k101 k102

k12
k13

k24
k34

l24 l34

l12 l13

l101 l102

Figure 3: 6-DoF analytical model

As a first validation, the method is used on perfect unperturbed FRFs from

the analytical model. The modal parameters are automatically estimated and

sorted as described in the previous section. The individual solutions (blue) as

well as the average (red) and the upper 90 % (orange) solutions are plotted

against the reference solution (green) in figure 5. The driving point FRF at

Connection 2 (C 2) is considered. It is clear that the variation on the result is

extremely small. In fact, the only source of uncertainty is in the way the different

columns of the FRF matrix are treated by the modal estimation algorithms.

This is a characteristic of the modal estimation procedure. Because of the low

uncertainty, the number of calculations is limited to just 50.

Indeed, with an average relative error of around 0.01 %, the decoupled FRFs

are very accurate. The minimum value of the frequency response assurance

criterion (FRAC) [31] is 99.6 %. This shows that the modal model filter can be

accurate enough, at least when the condition number of the inversion is not very

high. When perfect data is considered, the condition number for this model is
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Mass [kg]

m1 = 40

m4 = 50

m2 = m2a + m2b = 5 + 10 = 15

m3 = m3a + m3b = 11 + 7 = 18

Inertia [kgm]

l1 = 2.5

l4 = 3

Stiffness [N/m]

k101 = 1.0e7 k102 = 1.5e7

k12 = 6.0e6 k13 = 7.0e6

k24 = 8.0e6 k34 = 7.0e6

Length [m]

l101 = 0.5 l13 = 0.45

l102 = 0.5 l24 = 0.45

l12 = 0.45 l34 = 0.45

Table 1: Properties of the analytical model

31 on average with peaks into the several hundred when the extended interface

method is used with 2 out of 4 singular values. All of the peaks can be traced

back to the eigenfrequencies of one of the 3 subsystems. This is illustrated in

figure 4.

To test its filtering capabilities, the modal model will be used to filter dif-

ferent types of noise on the FRF matrices of the assembly and empty test rig.

The number of decoupling calculations is set to a maximum of 500. The re-

sults will be compared with those from the more often used raw FRFs, both in

combination with a TSVD. For both methods, the extended interface method

for decoupling is used. For reasons of comparability, the same noise levels will

be used as in [21]. The goal is to compare the boundaries where both methods

provide meaningful results.
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Figure 4: Condition number for the analytical model with 2 out of 4 singular values (extended

interface method)

FRAC Modal model Standard approach

Minimum 0.986 0.182

Average 0.994 0.410

Maximum 0.997 0.624

Table 2: Analytical model with background noise: FRAC results

Background noise.

In the first case the FRFs are polluted with a background noise level of 5e−3

[m/s2/N ]. An example of a decoupled FRF for both methods is shown in figure

6. It is clear that the new method is insensitive to background noise compared

to the standard approach, even when an SVD is used. Best results are obtained

for both methods by using 3 and 2 (out of 4) singular values respectively. The

corresponding FRAC values are listed in table 2.

Phase noise.

When introducing random errors of maximum 5 degrees in the phase of the

FRF, the results deteriorate significantly. Especially the standard approach

is very sensitive to phase errors, resulting in very noisy FRFs. The modal
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Figure 5: Example of a decoupled FRF using the modal model filter

FRAC Modal model Standard approach

Minimum 3e-4 (0.650) 0.071 (0.305)

Average 0.070 (0.746) 0.225 (0.452)

Maximum 0.194 (0.798) 0.271 (0.526)

Table 3: Analytical model with phase noise: FRAC results with complex (absolute) values

model also suffers from the phase errors in the FRF matrix resulting in spurious

peaks in some FRFs. However, as these spurious peaks consistently appear at

eigenfrequencies of one of the two original systems, they are easily filtered out in

further processing. As an example, the decoupled FRF between the connections

(C) is shown in figure 7.

The minimum, average and maximum FRAC values of the decoupled FRFs

for both methods, shown in table 3, are significantly lower than the previous

case. More importantly, the FRAC values for the modal model are lower than

those for the standard approach, while the FRF shown in figure 7 is signifi-

cantly less noisy and easier to interpret. Therefore, the FRAC values are also

calculated with the absolute values of the FRFs [31]. This is shown between

brackets in table 3. Indeed, the absolute FRAC values confirm that the modal

model provides a better estimate of the decoupled FRFs, at least when only
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Figure 6: Analytical model: new approach (left, 3/4 sing. vals) vs. standard approach (right,

2/4 sing. vals): background noise

FRAC Modal model Standard approach

Minimum 0.867 0.268

Average 0.906 0.483

Maximum 0.968 0.694

Table 4: Analytical model with multiplicative noise: FRAC results

the amplitude of the FRFs is considered. Some errors in the phase are indeed

present, but these do not outweigh the noise present in the FRFs of the standard

approach.

Multiplicative noise.

The effect of multiplicative noise is relatively limited: the FRAC values

of the modal model approach are very high (see table 4) and both methods

provide FRFs that are easily interpretable. The decoupled FRFs of the standard

approach are noisy in the lower amplitudes whereas the modal model approach

exhibits very little spurious peaks or systematic errors. An example is shown in

figure 8.

Mass loading.
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Figure 7: Analytical model: new approach (left, 3/4 sing. vals) vs. standard approach (right,

3/4 sing. vals): phase noise

To simulate the effect of mass loading, each column of the FRF matrix of

the assembly and empty test rig is calculated with a mass matrix of which the

(diagonal) elements are perturbed with a normal random distribution with a

value of 5 % of the original mass as standard deviation. The effect is a shift of

the eigenfrequencies that increases with frequency. The variation on each of the

eigenfrequencies of the assembly is shown in figure 9. The diagonal of a MAC

diagram between the estimated modes from two different columns of the FRF

matrix of the assembly confirms the assumption that the modes shapes are not

significantly altered. This is shown in figure 10.

The effect on the decoupled FRF is most significant at the higher frequencies

where a clear spurious peak is observed around 310 Hz in some of the FRFs in

the standard approach. As there is some significant uncertainty on the eigen-

frequencies, the use of the new approach is best illustrated. By taking many

averages, the modal model is capable of reducing this peak and indicating that

this area is highly uncertain. Increasing the number of decoupling calculations

can further average out this peak. The standard approach suffers from signifi-

cant spurious peaks, especially around 300 Hz, where the 6th mode is situated.
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Figure 8: Analytical model: new approach (left, 3/4 sing. vals) vs. standard approach (right,

3/4 sing. vals): multiplicative noise

FRAC Modal model Standard approach

Minimum 0.727 0.353

Average 0.862 0.696

Maximum 0.915 0.945

Table 5: Analytical model with mass loading: FRAC results

The right column in table 5 shows that by using more singular values (3

instead of 2), the standard approach can still provide good results for the least

sensitive FRFs. The modal model on the other hand shows an improvement for

the most sensitive FRFs as well as on average while losing only little accuracy

on the least sensitive FRFs.

Combination of noise.

As real measurements generally exhibit a combination of different types of

noise and/or mass loading, the noise values from the cases above are combined.

An example of a decoupled FRF is shown in figure 12. In this scenario, the model

modal approach has the most use. It filters the noise and makes the columns

of the FRF matrices more consistent with regard to each other. While none of

the individual solutions are perfect (blue dots), the averaged result (red curve)
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Figure 9: Mass loading: uncertainty on the estimated eigenfrequencies

or upper 90 % curve (orange curve) approximates the solution well, while only

small spurious peaks are still visible. The results are confirmed by the FRAC

values of the complex and absolute values of the FRFs for both approaches.

This is shown in table 6.

FRAC Modal model Standard approach

Minimum 0.111 (0.603) 0.023 (0.175)

Average 0.320 (0.653) 0.089 (0.230)

Maximum 0.505 (0.680) 0.131 (0.299)

Table 6: Analytical model with combined noise: FRAC results with complex (absolute) values

4.1.3. FE model

The second example is an FE model of a test rig that will also be used for

experimental decoupling. It is shown in figure 13. The design of the test rig is

similar to a test rig presented by D’Ambrogio and Fregolent in [16, 17], although

some slight modifications are introduced. The design was chosen because a rel-

atively good decoupling was obtained [17] while leaving room for improvement.

The test rig consists of 4 aluminium beams with a cross section of 50 x 10 mm

connected with 4 M6 bolts at each of the connections. The upper horizontal
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Figure 10: Mass loading: influence on the modes

beam will be decoupled from the lower structure using the extended interface

method. The square aluminium piece at the right of the upper beam is added

to ensure the first 5 eigenmodes are below 1 kHz and thus easily excitable by a

hammer with soft tip. As a consequence, the first and second in-plane mode of

the decoupled upper beam are also observed in the out-of-plane direction. A list

of the dimensions is shown in table 7. The structure is suspended very softly

using bungees to approximate free-free conditions. The black plastic straps in

figure 13 are removed during testing.

Dimension L1 L2 L3 L4 L5 L6 L7

[mm] 360 80 30 550 200 100 250

Table 7: Test rig dimensions

The FE model consists of 532 quadratic shell elements and 1911 nodes. This

ensures at least 20 elements along the length of the wavelength of all modes

encountered up to 4.5 kHz. The material properties are taken from standard

tables. The density is 2700 kg/m3 and the stiffness is 72 GPa. The connections
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Figure 11: Analytical model: new approach (left, 3/4 sing. vals) vs. standard approach (right,

3/4 sing. vals): mass loading

are made with rigid 6-DoF multi-point constraint (MPC) elements. The model

is considered in free-free conditions. The proposed method is tested first on clean

FRFs obtained with a direct frequency response analysis. The excitation takes

place at the nodal locations in the FE model. Afterwards the same procedure

will be followed as for the previous example. Only the out-of-plane motion

is considered. The information of the out-of-plane direction at the connection

is used for decoupling, augmented with 25 DoFs distributed over the test rig.

The reference solution of the FE model is calculated by performing the direct

frequency response analysis on the beam alone.

Clean FRFs. As the FE model is significantly more complex than the analytical

model and the 6-DoF connection is modelled as perfectly clamped (RBE2), the

condition of the inversion is higher. Whereas the analytical model has an average

condition number of just 32 with perfect FRFs (the extended interface method

was used), the FRF matrix of the FE model has an average condition number

of 1.2e7 with peaks up to 1e9. It is therefore likely that any modelling or

measurement errors will be strongly amplified. To counter some of the effects

of the modelling errors on the decoupled FRFs, a perturbation of 10 Hz on the

eigenfrequencies and 1000 decoupling calculations are used on clean FRFs. 12
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Figure 12: Analytical model: new approach (left, 3/4 sing. vals) vs. standard approach (right,

2/4 sing. vals): combination of noise

Type of noise Value

Background noise 2e−2 m/s2/N

Multiplicative noise 2e−2 m/s2/N

Phase noise 1◦

Frequency shifts Max. 8 Hz

Table 8: Noise pollution values for FE model

singular values were used for the inversion of the modal model and 6 for the

standard decoupling method.

Polluted FRFs. In order to test the resistance to noise, a combination of differ-

ent types of noise is added to the FRFs. The noise values are listed in table 8.

In the FRF shown in figure 15, there is a clear improvement around the eigen-

frequency at 1600 Hz. It is clear that that modal filter is much less sensitive to

noise and inconsistencies than the standard approach. This is confirmed by the

FRAC-values.
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Figure 13: Design with measurement locations and photo of test rig

FRAC Modal model Modal model Standard approach

Errors Clean Noisy Noisy

Min. 0.335 0.243 0.052

Average 0.687 0.529 0.160

Max. 0.873 0.686 0.297

Table 9: FRAC-values for the FE model FRFs

4.2. Experimental results

The test rig presented in the previous section was built and will be decoupled

using shaker measurements as well as hammer measurements. The 15 collocated

excitation and response locations are shown in figure 13.

4.2.1. Shaker measurement

During the measurements, a shaker is placed at different locations in order to

obtain different columns of the FRF matrices. The structure is suspended using

elastic bands on a fixed frame. As the structure is relatively light in comparison

to the weight of the shaker, the mass loading is considerable, especially at high
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Figure 14: FE model: new approach (left, 12/26 sing. vals) vs. standard approach (right,

6/26 sing. vals): decoupled FRF with clean data

frequencies. To reduce some of this effect, some masses are glued to the structure

at the locations at which the shaker is currently not exciting. As expected, the

decoupling results are better at the lower frequencies. However, the goal of

this paper is not to determine the best decoupling strategy for this particular

structure, but to show that inconsistent measurements can be improved by a

modal model.

The identification of the modes is done with the modified automatic modal

parameter selection procedure. The modes are subsequently sorted based on

a MAC analysis. A matrix of the sorting of the modes and the variation of

the corresponding eigenfrequencies is shown in figure 16. All modes (Y-axis)

are listed for each measurement run (X-axis) and the frequency has been given

a color for easy interpretation. It is clear that most, but not all modes are

consistently identified in the different measurement runs. This is not necessarily

a problem for the method, but it reduces the possible gains as the FRF matrix

is not fully consistent. For example, around 600 Hz, there are several closely

spaced modes which tend to be strongly influenced by the excitation position,

causing them to switch order or disappear in some excitation points (based on

the MAC analysis). This makes it hard to identify and subsequently sort them.
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Figure 15: FE model: new approach (left, 12/26 sing. vals) vs. standard approach (right,

9/26 sing. vals): decoupled FRF with noisy data

The difference between highest and lowest identified eigenfrequency of iden-

tical modes is shown in figure 16 on the right. The variation is significant and

follows roughly the same trend as the mass loaded 6-DoF model shown in figure

9. The reconstructed FRFs contain eigenfrequencies sampled from this varia-

tion. An example of different versions of a reconstructed FRF is shown in figure

17.

Figure 18 shows an example of a decoupled FRF calculated with both meth-

ods. It is clear from the left plot that a lot of uncertainty exists in the higher

frequencies as the spread of the individual decoupling solutions is quite large

(blue dots). With the standard approach, shown in the right plot, the 3rd bend-

ing mode around 750 Hz is not visible in the decoupled FRF and some spurious

peaks are present, e.g. at 320 Hz. The modal model filter is better capable of

reconstructing the two modes at 750 and 800 Hz while it shows a more stable

FRF in the area between the eigenfrequencies. Also the first eigenfrequency is

better reconstructed with the modal model filter, although the spurious peak

around 150 Hz is present for both methods.

The FRAC values calculated with complex (absolute) values are shown in

table 10. The average and maximum FRAC values (both for complex and abso-
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Figure 16: Shaker measurement: sorting and variation of the eigenfrequencies

lute values) are higher with the new approach. This confirms the improvement

over the standard approach. The applied modal model provided an improve-

FRAC Modal model Standard approach

Minimum 0.001 (0.106) 0.002 (0.006)

Average 0.032 (0.237) 0.022 (0.135)

Maximum 0.121 (0.532) 0.069 (0.390)

Table 10: Shaker measurements: FRAC results with complex (absolute) values

ment for most decoupled FRFs but suffered from spurious peaks and systematic

errors in other FRFs. In these FRFs it did not bring a substantial improvement

compared to the standard method, other than showing a large spread on the

results, indicating a large amount of inconsistency. It was observed in both

experimental and numerical experiments, that FRFs between lowly coupled di-

rections (lower in amplitude) suffer the most from experimental and modelling

errors.
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Figure 17: Different versions of a reconstructed FRF

4.2.2. Hammer measurement

In the previous section, the method was tested on a rather extreme case of

mass loading. To test how the method performs with good measurement data,

the structure was excited with a hammer with aluminium tip in the same points

as shown in figure 13. The sorted poles and the maximum difference found for

the eigenfrequencies is shown in figure 19. It is clear that the consistency of

the data is much higher. Almost all modes are consistently identified and the

variation in the eigenfrequencies is limited to less than 3 Hz in the frequency

range below 1 kHz. The small variation that is still present in the eigenfre-

quencies is attributed to minor changes in the location of the suspension during

the measurement. Similar consistency was observed in the FRF matrix of the

empty test rig.

Indeed, with such good data, the decoupling results of both methods are very

good. 7 out of 9 singular values are used for both methods. The eigenfrequencies

of the modal model are perturbed with a maximum of 10 Hz and 2500 decoupling

calculations are performed. An example of a decoupled FRF is shown in figure

20. Both the averaged and upper 90 % curves provide a very good estimate of

the decoupled FRF.

It should be noted that whereas most FRFs are very well reconstructed, some
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Figure 18: Shaker excitation: new approach (left, 9/9 sing. vals) vs. standard approach (right,

7/9 sing. vals)

FRFs remain very sensitive to noise and modelling errors for both methods. An

example of such an FRF is shown in figure 21. In some FRFs a consistent

spurious peak at 650 Hz is present in both methods.

5. Conclusions and future work

5.1. Conclusions

In this paper a new method for decoupling is proposed that is able to filter

the noise from FRF matrices and quantify and correct inconsistencies. The

method is particularly useful when the highest quality of FRF measurements

for experimental decoupling cannot be guaranteed. The new method filters the

experimental data by estimating the modal parameters for each column of the

FRF matrix separately. An existing algorithm for automatic modal parameter

selection (AMPS) has been augmented with an extra filter based on the CMIF

plot of the FRF column, facilitating the AMPS. Then, the eigenfrequencies and

modes are compared and sorted based on the frequency difference or MAC-value.

Based on the observed variation of the eigenfrequencies, or a given variation, an

arbitrary number of FRF sets can be generated.
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Figure 19: Hammer measurement: Sorting and variation of the eigenfrequencies

Figure 20: Hammer excitation: new approach (left, 7/9 sing. vals) vs. standard approach

(right, 7/9 sing. vals) (1)

Since it is not known which of the different measurement runs provides

the measurement that is closest to reality, a large number of calculations is

performed, of which the average or upper 90 % curve provides a good estimation

of the decoupled FRF.

It has been shown that the sorting of the eigenfrequencies is robust as it

doesn’t require all modes to be consistently identified to obtain good results.
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Figure 21: Hammer excitation: new approach (left, 7/9 sing. vals) vs. standard approach

(right, 7/9 sing. vals) (2)

However, the approximation of the original FRF is vital and remains difficult to

control, especially if eigenfrequencies are present just outside the investigated

frequency range. This can cause modelling errors to be more detrimental than

measurement errors.

The new method is tested on both numerical models as well as experimental

data and compared to the more often used method that makes use of raw FRFs.

First the influence of different types of noise is investigated for both methods

on an analytical model. Secondly, the robustness of the new method to noise

and measurement errors is demonstrated on numerical FRFs of an FE-model of

a test rig.

Finally, the method is tested on the physical test rig. In the first mea-

surement, the FRF matrices are measured with a roving shaker, introducing

considerable inconsistencies in the data. In this case, the new method improved

the results. In the second measurement, FRFs were obtained using a roving

hammer, resulting in very high quality FRFs. Here, the new method provided

similar, good results as the standard approach for most FRFs proving that

modelling errors can be small enough not to influence the decoupling results

too much.
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5.2. Future work

FRF-based substructure decoupling remains very sensitive to measurement

and/ or modelling errors. A modal model can filter noise from the FRF matrices

but the fitting of the model on the FRFs remain difficult to control. Other

modal parameter estimation methods, like e.g. the MLMM estimation method

presented by El-Kafafy et al. [33] may improve the approximation as the modal

parameters are estimated iteratively, allowing a better approximation to the

original FRF.

In this paper, the distribution of the different solutions of the decoupled

FRFs is assumed to be normal. As an alternative to the average or upper 90 %

curve, it can be investigated what type of distribution fits best on the decoupled

solutions to allow a more reliable estimate of the most likely solution.

During the simulations as well as the measurements, it was observed that

FRFs that are low in amplitude, especially those between lowly coupled direc-

tions, are most sensitive to modelling and measurement errors. A criterion could

be established to determine which FRFs are the most likely to be successfully

decoupled.

More research could focus on establishing a practical criterion for the optimal

selection of measurement locations that ensures the lowest condition number

possible.
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