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Abstract
Lately there have been novel developments in deep learning
towards solving the cocktail party problem. Initial results are
very promising and allow for more research in the domain. One
technique that has not yet been explored in the neural network
approach to this task is speaker adaptation. Intuitively, infor-
mation on the speakers that we are trying to separate seems
fundamentally important for the speaker separation task. How-
ever, retrieving this speaker information is challenging since the
speaker identities are not known a priori and multiple speakers
are simultaneously active. There is thus some sort of chicken
and egg problem. To tackle this, source signals and i-vectors are
estimated alternately. We show that blind multi-speaker adap-
tation improves the results of the network and that (in our case)
the network is not capable of adequately retrieving this useful
speaker information itself.
Index Terms: Source Separation, Single Channel, Blind Multi-
Speaker Adaptation

1. Introduction
The cocktail party problem, where multiple sound sources, usu-
ally speakers, are simultaneously active, has been studied in the
speech community for decades [1]. The problem is especially
challenging when little assumptions are made. For a general
solution we want to be speaker independent, text independent,
using a single channel and so on. Recently, deep learning ap-
proaches have been used to address the cocktail party problem.
To solve the problem, multiple speakers have to be segregated
and thus an intra-class separation has to be made. Thus it is not
possible to assign specific output nodes of the neural network to
specific classes as is possible in for example speech-noise sep-
aration [2–4], male - female speech separation [5] or speaker
dependent source separation [6]. If the model is to be trained
speaker independently, a permutation problem is faced.

A way of permutation free learning was presented in [7].
They allowed all permutations during training and then only
considered the one with the lowest loss. However at test time
a hard decision had to be made on the permutation and some
tracking was necessary to have consistent speaker assignments
over a complete mixture. Other approaches to tackle the per-
mutation problem consist of mapping each time-frequency bin
(tf-bin) of a mixture spectrogram to an embedding space. Either
an unsupervised clustering mechanism is then used to group tf-
bins per speaker [8,9] or the network learns attractors that draw
points in the embedding space together and each speaker is rep-
resented by such an attractor [10].

In speaker adaptation a system is adapted to better suit
the characteristics of the target speaker. Speaker adaptation
has been successfully applied is automatic speech recognition
tasks using neural networks. There are several ways to incorpo-
rate speaker information in a network. One can apply a space
transform to the input features depending on the speaker iden-
tity, such as maximum likelihood linear regression (MLLR) or

feature-space MLLR (FMLLR) [11, 12]. The network can then
be trained as usual. In model-based adaptation, the whole net-
work or parts of the network are adapted to a specific speaker by
retraining the model to adaptation data of that specific speaker
[13–16]. It is possible to perform so-called blind speaker adap-
tation by clustering speakers together via their i-vector repre-
sentation [17]. For each cluster a network is adapted. At test
time an utterance is first assigned to a cluster and then decoded
with the according network. The term blind is used, since the
identity of the speaker is not known a priori, but still a net-
work is used that is thought to be more adapted to the unknown
speaker. Another way to adapt the network is to add speaker
characterizing features, such as i-vectors [18] at the input [19].
The advantage of such an i-vector is that it models speaker vari-
ability and can also be determined blindly, without any prior
knowledge of the speaker [20].

In this paper an attempt is made to perform blind speaker
adaptation for multi-speaker separation. There are two main
challenges. The first challenge is that the network is to be
adapted to more than a single person. Secondly, there is no
direct way to extract an i-vector for all speakers, since they
are speaking simultaneously. A multi-speaker representation is
sought that can be added to the input of the network. The gen-
eral idea is to first perform blind source separation, then extract
i-vectors on the estimated sources and use these to adapt a sec-
ond network, extract the i-vectors on the new estimates of the
second network and so on. A similar idea was used by Zhang
et al. [21] for noise suppression in presence of speech. They
used speech enhancement to get a better estimate of the pitch,
which they in turn fed in a subsequent network for better speech
enhancement, which allowed for better pitch estimation and so
on. If the i-vector extraction procedure is performed by a neural
network, it is possible to do a final end-to-end training of the
complete network. However, this will not be implemented in
this paper.

While i-vector extraction on signal estimates could allow
for speaker verification in multi-speaker scenarios, the focus of
this paper is on source separation quality. The rest of this pa-
per is organized as follows. In section 2 a brief overview of the
baseline, a state-of-the-art multi-speaker source separation us-
ing neural networks, is given. In section 3 a method is proposed
to perform blind multi-speaker adaption for source separation.
Experiments are presented in section 4 and a conclusion is given
in section 5.

2. Single Channel Speaker Separation
This section explains how a neural network, followed by a clus-
tering algorithm can estimate a binary mask (BM) for each
speaker, given a mixture. The framework of [8] and partly of [9]
is used. A permutation problem arises when a neural network is
asked to assign outputs nodes for each target speaker in the mix-
ture. For example if a network is trained to output (A,B) when
presented a mixture of speaker A and B and to output (A,C)



when presented a mixture of speaker A and C, a problem arises
when a mixture of speaker B and C is presented [10]. Therefor
a network has to be trained with a permutation independent loss
function. In [8, 9] this is done by mapping each time-frequency
bin to an embedding space such that bins belonging to the same
speaker are close together and those belonging to a different
speaker are further apart. When assuming only one speaker is
active per bin, an unsupervised clustering mechanism, like K-
means, can be used to group bins and estimate a binary mask
per cluster or target speaker.

Let Xi, i ∈ {1, . . . , N} be the short-time Fourier trans-
form (STFT) of an audio mixture, with i a time-frequency bin
(t, f), N = TF and T and F the number of time frames
and frequency bins, respectively. Project each tf-bin to a D-
dimensional embedding space V = fθ(X) ∈ RN×D using a
neural network. The used neural network is described in sec-
tion 4.1. The embedding vector is normalized to unit length, so
that |vi|2 = 1. Define an (N × C)-dimensional target matrix
Y , with C the number of target speakers, so that yi,c = 1 if
target speaker c has the most energy in bin i and yi,c = 0 if not.
A permutation independent loss function (the columns in Y can
be interchanged without changing the loss function) can then be
presented as

CY (V ) = ||V V T −Y Y T ||2F =
∑
i,j

(〈vi, vj〉−〈yi, yj〉)2. (1)

where ||A||2F is the squared Frobenius norm. Since yi is a one-
hot vector,

〈yi, yj〉 =

{
1, if yi = yj

0, otherwise
. (2)

The angle θi,j between the normalized vectors vi and vj is thus
ideally

θi,j =

{
0, if yi = yj

π/2, otherwise
. (3)

All embedding vectors vi are then clustered into C clusters us-
ing K-means and hence a binary mask, BMc, for each target
speaker c is created. The STFT of the estimated speech for
speaker c is then

Ŝc = X ∗BMc, (4)

where ∗ is an element wise multiplication.

3. Blind multi-speaker adaptation
To perform blind multi-speaker adaptation, first an estimate of
the source signals is obtained as explained in section 2. Sub-
sequently, an i-vector is extracted from each estimate. Option-
ally, the dimensionality of the i-vector can be reduced using
Linear Discriminant Analysis (LDA). All (LDA) i-vectors, to-
gether with the mixture spectrogram, are then fed into another
neural network. The last two steps can be repeated iteratively.
The proposed iterative architecture is shown in figure 1. The
network of level 0 is trained on the mixture spectrogram and is
the state-of-the-art baseline for this paper. The network of level
l is trained on the mixture spectrogram and the (LDA) i-vectors
of level l− 1. Though one might expect improved performance
with more levelsL, no improvements were found beyondL = 1
(see figure 3).

A Universal Background Model - Gaussian Mixture Model
(UBM-GMM) is trained on development data. A supervector
M is derived for each utterance (e.g. from the estimates Ŝc of
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Figure 1: Proposed iterative architecture

level l − 1), using the UBM. M is then represented by an i-
vector w and its projection based on the total variability space,

M = m+ Tw, (5)

where m is the UBM mean supervector, w is the total variabil-
ity factor or i-vector and T is a low-rank matrix spanning a sub-
space with important variability in the mean supervector space
and is trained on development data [18, 22].

LDA can be used to further reduce the dimension of the i-
vector. LDA is a rank reduction operation that tries to minimize
intra-class variance and maximizes inter-class variance. Here,
each class is represented by a single speaker. LDA tries to find
the orthogonal directions d that optimize the following ratio:

J(d) =
dtSbd

dtSwd
(6)

with Sb the intra-speaker variance and Sw the inter-speaker
variance. The eigenvectors of the following eigenvalue equa-
tion are then found

Sbv = λSwv, (7)

where λ is the diagonal matrix of eigenvalues. The eigenvectors
with the highest eigenvalues are then stored in the projection
matrixA and the LDA i-vectorsw∗ are then obtained as follows

w∗ = ATw. (8)

Thus, a vector with inter-speaker discriminating dimensions is
found.

These (LDA) i-vectors are obtained from the estimates of
the previous neural network. The i-vectors are then stacked over
all time frames of the mixture and fed into the new neural net-
work, which is thus trained with extra speaker information.

4. Experiments
4.1. Experimental set-up

The proposed architecture was evaluated on two-speaker single-
channel mixtures of the corpus introduced in [8], which con-
tains 20,000 training mixtures (∼ 30h), 5,000 validation mix-
tures (of which only 1,500 are used due to computing time
restrictions) and 3,000 test mixtures. The mixtures were ar-
tificially mixed using utterances of the Wall Street Journal 0
(WSJ0) at various signal-to-noise ratios, randomly chosen be-
tween 0dB and 10 dB and sampled at 8 kHz. The training and
validation set were constructed using the si tr s set and the
evaluation set consists of 16 held-out speakers of the si dt 05
set and the si et 05 set. Since some form of blind speaker



adaptation is performed, using the same speakers in the train-
ing and validation set might lead to some over fitting, but since
evaluation is done on held out speakers, evaluation results are
expected to only get better should the validation set also con-
tain held out speakers. The magnitude of the STFT with a 64ms
window length and 16ms hop size was used at the network’s in-
put, using mean and variance normalization, obtained over the
whole training set.

The si tr s set of Wall Street Journal 1 (WSJ1) was
used as development data to train the UBM, T and A. 13-
dimensional Mel-Frequency Cepstral Coefficients (MFCC’s)
are used as features and a VAD was used to leave out the silence
frames. The UBM has 256 mixtures and w is 400-dimensional,
unless mentioned otherwise. The dimensionality of A is a tun-
able parameter in the experiment section. The MATLAB MSR
Identity Toolbox v1.0 [23] was used to determine the UBM, T
and A and to obtain the (LDA) i-vectors.

The neural network has 2 fully connected BLSTM layers
with 600 hidden units each with a tanh activation [24]. The
embedding dimension D was set to 20 so that the linear out-
put layer had FD = 256 ∗ 20 = 5120 units. The input di-
mension was equal to F = 256. When (LDA) i-vectors were
used the input dimension increased to (F + C ∗ ivec dim).
The Adam learning algorithm was used with initial learning rate
10−3, β1 = 0.9, β2 = 0.999 and ε = 10−8 [25]. Unlike in [9],
dropout on the feedforward weights did not improve results, so
it was not used in the experiments. The batch size was taken
at 128 and every 10 batches the validation loss of equation 1
was calculated. If the validation loss increased, the previous
validated model was restored and the learning rate was halved.
Early stopping was applied when validation loss increased 3
consecutive times. Zero mean Gaussian noise with standard
deviation 0.6 was applied to the training inputs (including the
i-vectors for the speaker adapted networks).Tf-bins with mag-
nitude -40 dB, compared to the maximum of the utterance, were
omitted in the loss function of equation 1 to prevent the network
from learning on empty or low-energy bins. In the experiments
below, for every architecture, six independent runs were used
and the network with the lowest validation loss was kept. This
was to cope with some variability due to the applied input noise
and the random initialization of the networks (the latter did not
apply if the network was initialized with another network). The
networks were trained using curriculum learning [26], i.e. the
networks were presented an easier task before tackling the main
task. Here, the network was first trained on 100-frame non-
overlapping segments of the mixtures. This network was then
used to initialize for training over the full mixture. All networks
were trained using TensorFlow [27].

The K-means clustering was done with the built-in MAT-
LAB function using the cosine distance and 10 random ini-
tializations, choosing the version with lowest total sum of dis-
tances. Again, tf-bins with magnitude -40 dB, compared to the
maximum of the utterance were omitted.

4.2. Results

Performance was measured in signal-to-distortion ratio (SDR)
improvements on the evaluation set, using the bss eval tool-
box [28]. The average SDR of the mixture was 0.15dB. The
baseline system did not use any speaker adaptation and was
based on section 2. Results are comparable to [8]. Results for
the multi-speaker adapted networks are shown in figure 2. For
the oracle experiments, (LDA) i-vectors were obtained from the
original single speaker utterances, which are normally not avail-
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Figure 2: SDR improvements for oracle and realistic experi-
ments (in dB)

able at test time. Results are shown for i-vectors with different
dimensions. For the LDA i-vectors, the original i-vectors were
400-dimensional and LDA was used to reduce the dimension.
Improvements up to 0.35 dB were found by adding this sim-
ple multi-speaker representations. These oracle networks were
then used to initialize the realistic networks. For these realistic
networks, i-vectors are used which are obtained from the signal
estimates produced by the baseline network, both for training
and testing. The realistic results are similar to the oracle results,
up to 0.32 dB increase compared to the baseline. This seems
to indicate that the network learns to cope with the fact that for
the realistic experiments, i-vectors are not obtained from clean
single-speaker utterances but rather from estimated source sig-
nals. Also, it might not be ideal to try to represent both speakers
separately and concatenating both representations. Possibly, a
true multi-speaker representation, where a single representation
is used for the combination of the two speakers, would allow
for further improvements.

Results are not too much dependent on the dimensionality
of the i-vector. This can be explained by the fact that the first
dimensions contain the most variation, both for the i-vectors as
for the LDA i-vectors. There is also no big difference between i-
vectors and LDA i-vectors. This may indicate that the first few
components of the i-vectors reflect mostly inter-speaker vari-
ation rather than channel effects and the like. Also, a repre-
sentation of intra-speaker variability can be useful for source
separation while it is expected that LDA would remove this in-
formation.

In figure 3 it is shown how results further improve when
using the outputs of the first level to again estimate new (LDA)
i-vectors and use these at the input of the second level network,
which was initialized using the level 1 network. Since the sep-
aration quality of the first level is better then the baseline, i-
vectors are expected to be a better representation of a speaker.
However, the increase from 1 to 2 levels is very minimal. There
is only a small difference between the oracle and realistic ex-
periments in figure 2 and thus cleaner i-vectors do not make a
big difference. Furthermore, the increase of separation quality
of the first level compared to the baseline is only limited and
thus no big difference in i-vector extraction quality is expected.
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i-vector LDA i-vector
baseline oracle real baseline oracle real

dim=5 42.8 44.9 43.5 24.4 25.1 24.3
dim=10 30.2 32.6 30.8 29.6 26.9 30.3
dim=20 22.3 22.5 21.4 19.7 20.3 19.3
dim=40 39.4 38.7 37.7 24.6 26.0 24.8

Table 1: Identification accuracy (in %) of speakers in multi-
speaker mixtures

4.3. Speaker identification and representation analysis

The focus of this paper was on source separation quality. How-
ever, because i-vectors were obtained in the proposed architec-
ture, it is checked how they would cope in speaker identifica-
tion experiments. Note, however, that the i-vectors were chosen
as extra input features for the neural net and they are not op-
timized towards speaker identification accuracy. In the test set
there were 9 speakers, for which at least 5 of their utterances
from the WSJ0 database were not used to create test mixtures.
For each of these 9 speakers, (LDA) i-vectors were obtained
for these left-over utterances and speaker models were created
by averaging i-vectors per speaker. An i-vector was also ob-
tained for each source signal that was estimated by a network.
It was then classified to a test speaker i-vector model using the
cosine distance. Only source signal estimates belonging to one
of these 9 speakers were considered. Speaker identification ac-
curacy is shown in table 1. Notice however, that the speaker
i-vector models were obtained on clean utterances, while test
i-vectors were obtained from estimated source signals, which
explains the low identification accuracy. To clarify, the base-
line results in table 1 refer to i-vectors extracted by a level 0
network. The oracle results refer to the i-vectors extracted by
a level 1 network, when oracle i-vectors were used at the in-
put. The real results refer to the i-vectors extracted by a level 1
network, when i-vectors extracted by the level 0 network were
used at the input.

In most cases, i-vectors obtained from the real networks
achieve better speaker identification accuracy then those de-
duced from the baseline network. This was expected since SDR
was also higher and thus the estimates are closer to the original
signals.

corr ID oracle incr false ID oracle incr
dim=5 6.04 +0.04 6.12 +0.05
dim=10 5.76 +0.12 5.85 +0.08
dim=20 6.02 -0.07 6.06 +0.01
dim=40 6.32 +0.03 5.98 +0.12

Table 2: Average SDR improvement (in dB), depending on cor-
rect LDA i-vector representation, and the difference with the
oracle experiments.

Finally, a small experiment was done to analyze the quality
of representation of the i-vector. The i-vectors obtained from
the output of the baseline are used at the input for the real
level 1 network experiments. It is expected that a good i-vector
representation of a speaker, will allow for better source sepa-
ration. If the representation is insufficient, it is expected that
the source separation using the oracle i-vector representations
will be better. The i-vector representation, obtained from the
baseline network, is said to be sufficient when it is classified to
the correct test speaker in the speaker identification experiment.
In table 2 the average level 1 SDR improvement of signal es-
timates where the speaker was correctly identified is shown, as
well as the average SDR improvement of signal estimates for
falsely identified speakers. The table also shows the average
SDR increase when oracle representations were used instead of
baseline i-vectors. Due to space constraint only experiments for
LDA i-vectors are shown.

It is noticed that usually the SDR increase for the oracle
experiments is bigger for utterances that had an insufficient
i-vector representation. The above assumption, that a better
speaker representation leads to better separation quality, thus
holds to some extent. However, because SDR of the oracle ex-
periments in figure 2 were not much higher than the real exper-
iments, differences are very small and might not be statistically
significant.

5. Conclusions

In this paper it was shown that the presented neural network
baseline is not adequately capable of extracting speaker infor-
mation in multi-speaker mixtures for a source separation task.
It was shown that explicitly extracting this speaker information
(using a baseline network) and adding this information to the in-
put of the network, improves results. Improvements of about 0.3
dB were found. Further research should point out whether this
gain changes when deeper or different architectures are used.

An initial attempt was made to make a multi-speaker repre-
sentation. In this paper, two single-speaker representations were
concatenated to make such a multi-speaker representation. Bet-
ter results are expected when a single representation is directly
used for the combination of two speakers. Especially if the rep-
resentation focuses on the difference between the two speakers.
This seems very relevant when performing speaker segregation.
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