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Much work on sustainable design has focused on product manufacture/assembly and end of life. Gains in products’ technical efficiency address the use
phase, but how these products are used clearly affects resource consumption. There are two main approaches to design interventions to reduce resource
consumption during product life. Firstly, interventions aim to change user behavior, through information and feedback, as well as physical product
affordances abstracted from lead users to guide or steer users toward the desired behavior. Secondly, automatic adjustment of product systems
performance levels based on personal user profiles and anticipated usage is implemented using artificial intelligence techniques.
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1. Introduction

The ambition to minimize products’ environmental impact by
proper decision-making during design has become known as
eco-design or, when considering design in a broader
perspective, as life-cycle engineering (LCE). In principle, LCE
focuses on the full life-cycle of products: from business-model
conception, over functional and technical product specification,
product manufacture, distribution and use phase, until end-of-
life, possibly taking into account lifetime extending strategies
such as maintenance, repair, refurbishment and
remanufacturing. Without targeting exhaustiveness, the below
overview of reported results provides insights on strategies
most commonly chosen to achieve the impact reduction
envisaged in LCE.

1.1. Business / manufacturing paradigms for LCE support

A series of review papers have been compiled by
optimization-oriented researchers. Westkaemper et al. (2000)
listed approaches for Life Cycle Management, including Life
Cycle Assessment, Product Data Management, Technical
Support and Life Cycle Costing [229]. In response to
globalization, Ueda et al. (2009) discussed decision making with
respect to artifacts, social dilemmas, network externalities, and
sustainability, towards service and production for sustainable
value creation [220]. The growing attention on Product Service
System business models as a paradigm involving
manufacturers, with optimization opportunities over the entire
product life cycle, was summarized by Meier et al. (2010) [144].

Contributions in this category tend to focus on manufacturers’
perspectives when considering sustainability aspects of product
manufacture and consumption, with emphasis on producer
responsibility. This attention has been extended into the social
dimension of sustainability. For example, Sutherland et al.
(2016) explored the effects of manufacturing and globalization
challenges on the social needs of different groups, with

emphasis on worker well-being [206]. In addition to the
socially-relevant work already summarized by Sutherland et al.,
Kondoh et al. (2011) proposed a method to include a wide
variety of societal causalities into a cause-effect pattern library
to support the design and planning of sustainable business ideas
and activities [116].

1.2. Design tools for LCE support

Hauschild et al. (1999) have long recognized the effect of
design on environmental performance and sustainable
industrial culture [96]. However, Hauschild et al. (2004) noted
that simply applying Design for Environment (DFE) does not
always result in environmentally optimized solutions, but
rather localized optimization specific to the DFE tools selected.
Instead, a hierarchy of “refocusing” asks the designer to
consider, how else the intended function may be provided,
which product should be produced, and what are corresponding
environmental challenges, before selecting a DFE tool that best
addresses these challenges [97]. Kara et al. (2008) argued that
to enable sustainable manufacturing, an optimum useful
lifetime for products should be established early in the design
process. Based on product failure mechanisms and
corresponding lifetime prediction, the product’s components
should then be designed to require correspondingly minimal
resource usage and environmental impact [108]. Hauschild et
al. (2005) described the state of Life Cycle Assessment (LCA),
and provided an overview of Design for Environment (DFE).
Tools used to support DFE were discussed, with a focus on tools
for design for disassembly. The authors also identified the need
for stronger legislation, as well as education and attitude
building among future citizens and engineers [98].

1.3. Manufacturing to reduce use-phase consumption
Researchers have also revealed the relevance of
manufacturing-process choices for product performance and
corresponding benefits during the use phase of the product life
cycle. For example, Dornfeld (2014) demonstrated how the
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surface quality achieved by a manufacturing process
determines the energy efficiency of automotive gear trains [58].
Chandra et al. (2014) discussed the role of surfaces and
interfaces that critically influence the characteristics that
determine solar-cell effectiveness. Also assessed were
modifications to the surface interface to realize efficiency
enhancement and cost and energy footprint reduction in solar-
cell manufacturing [33].

1.4. Motivation for current work

The above non-exhaustive domain scan supports that
resource scarcity and the harmful environmental effects of
industrial development have motivated a substantial amount of
research. Much of this effort has focused on developing more
resource-efficient manufacturing, from both product and
manufacturing-system perspectives. However, the way in which
products are used over their functional lifetime is rarely
addressed. This is despite the use phase of the product life cycle
being highly relevant for potential resource conservation in
many product categories. Design optimization efforts typically
target the static performance of products, while how products
can influence their utilization by end-users during the use phase
has received considerably less attention. In addition, Herring
(2006) notes that improved energy efficiency lowers the
implicit price of energy, making its use more affordable, leading
to the rebound effect [24], and that “ultimately what is needed
to limit energy consumption is energy sufficiency (or
conservation) rather than energy efficiency” [101]. That is,
resource-efficient devices may be used longer and remain left
on unnecessarily more so than their less-efficient predecessors.
Such behavior offsets at least part of the anticipated gains in
resource efficiency intended by product-embedded resource-
saving modes and technologies. Therefore, in addition to
creating technically efficient products, designers should also
develop products that encourage and enable users to behave in
more resource-efficient ways, which is the principal focus of the
current paper.

1.5. Paper overview

There are many frameworks that are useful in considering
how to design products to increase environmentally conscious
or sustainable behavior by consumers. Product-design
researchers, Zachrisson & Boks (2010) and Bhamraetal. (2011)
discuss the range of interventions for sustainable behavior in
terms of user versus product control of the desired behavior
[242][25]. At the informing end of the spectrum, information
and feedback allow the user to be in full control. At the
determining end, forcing and automatic performance of desired
actions give control to the product. The persuading middle of
the spectrum involves an interaction between product and user,
and includes enabling, encouraging, guiding, and steering [242].
Lilley et al. (2005) use the terms: eco-feedback, scripting and
behavioral steering, and ‘intelligent’ products and services
[129]. Lockton et al. (2008) categorize interventions as
feedback and persuasion, versus affordances, constraints and
mistake proofing. Context-based approaches combine the two
categories. The cognitive workload required is believed
proportional to the amount of user control [132]. Figure 1
shows various terminologies for interventions along the
spectrum of user versus product control.

The problems and theoretical background differ widely
between the approaches that aim to 1) persuade a human
toward a particular desired behavior, and 2) automatically
perform the desired behavior for the human. Therefore, the
paper is arranged according to these two main approaches as
follows. Section 2 addresses design for behavior change,

starting with models of human behavior and antecedents of
behavior in Section 2.1. The various, growing sources of
information relevant to design for behavior change cover a
rather wide range of disparate domains. Therefore, Section 2.2
summarizes a possible framework in the form of a behavior-
change ontology to systematically organize this information.
The importance of context for information and feedback
approaches is discussed in Section 2.3. Affordance-based
approaches and definitions of affordance are introduced in
Section 2.4, and Section 2.5 outlines a design tool intended to
address different user motivations. Section 3 introduces the
automation approach and underlying artificial intelligence
techniques. A case study that includes both information and
automation approaches is given in Section 4, and Section 5
provides an outlook for future work in the field.

2. Approaches that aim to change user behavior

There is an enormous body of literature on changing human
behavior, and specifically on facilitating pro-environmental
behavior. Two of the most informative review papers by social
psychologists are Abrahamse et al’s (2005) “A review of
intervention studies aimed at household energy conservation”
[2] and Steg & Vlek’s (2009) “Encouraging Pro-Environmental
Behavior: An integrative Review and Research Agenda” [202].

Abrahamse et al. categorized energy-conservation strategies
as antecedent vs. consequence. Antecedent strategies target
factors that precede behavior and include increasing problem
awareness, giving information about options, enabling
commitment and goal setting. Consequence strategies aim to
change consequences after behavior, and include providing
feedback, rewards or penalties [2]. Steg & Vlek also distinguish
between informational vs. structural strategies. Informational
strategies are defined as “being aimed at changing perceptions,
motivations, knowledge, and norms, without actually changing
the external context in which choices are made”. Such strategies
were found to be effective when the desired behavior does not
significantly inconvenience, cost, or constrain individuals, e.g.,
using signage to ask people to turn off lights [205]. Structural
strategies include availability of products and services, legal
regulation, and financial strategies. Such strategies aim to
change the circumstances, e.g. costs and benefits, under which
behavioral choices are being made, and were found to be more
suitable when the desired behaviors are costly or difficult. The
two types of strategies can be used in combination, e.g,
informing people about the need for and consequence of
structural strategies may increase public support for them
[202]. Abrahamse et al. noted the limitations of interventions
aimed to encourage energy conservation. In particular,
information may lead to higher knowledge levels, but not
necessarily to behavioral changes or energy savings [2].
Kollmuss & Agyeman (2002) and others have also recognized
that environmental awareness and knowledge do not
necessarily lead to corresponding behavior [115]. Rewards
have effectively encouraged energy conservation, but with
short-lived effects corresponding to reward availability.
Feedback has shown merits, especially when provided
frequently. However, conclusions were limited by
methodological problems in the studies describing the
interventions. It was also often unclear whether the effects were
maintained over longer periods of time [2]. The persistent
barriers to sustainable behavior highlight the importance of
better understanding existing work and charting new work
towards improved interventions for sustainability.
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Authors <& User in control (high cognitive load) Product in control (low cognitive load)>
Zachrisson & Boks (2010) Informing Persuading Determining
[242] Information, Feedback Enabling, Encouraging, Guiding, Steering Forcing, Automatic

Lilley et al. (2005) [129] Eco-feedback

Scripting and behavioral steering

Intelligent products

Lockton et al. (2008) [132]

Context-based = Feedback & persuasion +Affordances, constraints, mistake-proofing

Figure 1: Intervention terminology of various researchers with respect to user versus product control.

2.1 Models of human behavior

Since design that aims to change behavior necessarily draws
from diverse fields outside of engineering design, relevant
concepts are first reviewed. Table 1 summarizes general
behavioral models adapted from Srivastava (2016) [192].

Psychologists developed models of human behavior that aim
to identify factors that affect behavior and to explain the
processes of behavior change. One model, Bandura’s (1986)
Social Cognitive Theory, describes behavior as one of three
interlocking determinants along with personal factors and
environmental influences [17]. The most difficult of the three to
understand are personal factors, which are represented in many
different ways. One approach is to differentiate users by the
values they hold, e.g., applying Schwartz’s (1992) Universals in
the content and structures of values [181]. A significant amount

of behavior literature is based on Ajzen’s (1991) Theory of
Planned Behavior, which states that the following three factors
together affect behavior: an individual’s attitudes; subjective
norms; and the amount of perceived control the individual has
over the target behavior [3]. Summarized, attitudes refer to the
individual’s positive or negative appraisal of the behavior.
Subjective norms refer to perceived social pressure regarding
appropriate behavior. Also known as self-efficacy [16],
perceived behavior control refer to how individuals perceive
their abilities to perform given behaviors.

The above theories are intended to describe and affect
behavior in general. Some researchers applied these theories to
sustainability-related behavior. For example, Bamberg &
Schmidt (2003) compared the ability of the Ajzen, Triandis, and
Schwartz models to predict car use in university students [14].

Table 1: Summary of selected general models of behavior (adapted from [192])

Model Authors | Summary
Self- Bandura | Self efficacy refers to individuals’ confidence in their ability to perform an action, and has 3 dimensions:
Efficacy |(1977) 1. Strength: strong vs. weak self-efficacy
Theory [16] 2. Generality: self-efficacy across many situations vs. in only some situations

3. Level/Difficulty: self-efficacy in only easy tasks vs. in even difficult tasks
Norm Schwartz| Personal Norms refer to feelings of moral obligation that guide behavior, and are determined by 2 factors:
Activation| (1977) 1. Awareness of a behavior’s negative consequences
Model [180] 2. Feeling responsibility for negative consequences of one’s behavior
Theory of | Triandis | Behavior has 3 main antecedents:
Inter- (1977) 1. Intention, which has 5 determinants:
personal |[216] 1.1. Self Identity
Behavior 1.2. Personal Normative Beliefs (How the user thinks he/she is expected to behave)

1.3. Perceived Social Norms (Role Beliefs / Normative Beliefs)

1.4. Perceived Consequences

1.5. Affect (emotions and emotional state)

2. Habit (behavioral frequency)
3. Facilitating conditions (external factors)

Social Bandura | Triadic Reciprocal Determinism: The following three components are interlocking determinants of each other.
Cognitive | (1986) 1. Behavior (actions)
Theory of |[17] 2. Personal factors (expectations, beliefs, self-perceptions, goals, intentions, sensory abilities, individual physical structure,
Behavior emotional state)

3. Environmental influences (situations)
Theory of | Ajzen Behavior is a result of intention to act, which depends on 3 determinants:
Planned |(1991) 1. Attitude toward behavior (individual’s favorable versus unfavorable appraisal of behavior)
Behavior |[3] 2. Subjective norm (perceived social pressure to perform or not perform behavior)

3. Perceived behavioral control (perceived ease or difficulty of performing behavior)

Other researchers developed theories specific to sustainability-
related behavior. For example, Stern et al. (1999) extended
Schwartz’s Norm Activation Model and developed the Value-
Belief-Norm theory to describe environmentally significant
behavior. This theory states that values, beliefs and norms lead to
attitudes, which lead to behavior, and that problem awareness
depends on values and worldviews [203]. Stern’s (2000)
framework categorized people’s behavior that affects the material
and energy flows of the environment as: active vs. passive,
intentional vs. unintentional, and public vs. private [204]. Shove &
Warde (1998) noted that, although the consumption of utilities,
e.g., electricity and water, is a private matter, the trend toward
higher consumption rates makes related behaviors increasingly
relevant [187]. The terms pro-environmental, environmentally
significant, environmentally conscious, and sustainable behavior
are used by different researchers. This paper will use the most

commonly occurring term, Pro-Environmental Behavior or PEB.
Table 2 summarizes select PEB models, adapted from [192].

2.1.1. Antecedents of behavior

Srivastava identified antecedents of behavior that recur in many
different PEB models [192]. Some of these antecedents are
regrouped into five categories as shown in Fig. 2, ranging from
those that are more internal to a person (e.g., values) to those that
are more external (e.g., physical environment). While engineers
are likely more accustomed to affecting the latter, external
antecedents, understanding the former, more internal antecedents
may enable more coherent interventions for PEB. Steg & Vlek note
that interventions are more effective when they address
antecedents of behavior as well as removing barriers for change.
In addition, different antecedents should be addressed in different
situations. For example, Stern’s value-belief-norm theory on PEB
may be more effective at explaining low-cost environmental
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behavior such as policy acceptance. However, situations with high
behavioral costs or constraints, e.g., reducing car use, may be
better explained by Ajzen’s Theory of Planned Behavior that
includes non-environmental motivations and perceived control
over relevant behavior [202].

1. Individual values, beliefs, and attitudes

The importance of values, beliefs, and attitudes dominates PEB
models. Therefore, their definitions are first discussed.

Schwartz (1992) described values as general goals that
transcend situations, e.g., honesty tends to be consistent between
personal and professional situations. Values also act as standards
or criteria, whose role in decision making may be unconscious
unless conflicts occur between different values. Schwartz explains
that human values can be categorized along two dimensions. The
first dimension describes a person’s level of selfishness between
self-enhancement and self-transcendence. Examples of values that
serve individual interests include hedonism, achievement and
power. Values that serve primarily collective interests are
benevolence and universalism. The second dimension describes a
person’s values with respect to conservation
(conformity/tradition and security) versus openness to change
(stimulation and self-direction) [181].

Attitudes are described by Schwartz (2012) as evaluations on a
positive versus negative scale, e.g., good or bad, desirable or
undesirable. Values form the basis for these evaluations, i.e.,
objects consistent with valued goals are evaluated positively and
vice versa [182]. For example, those who have values consistent
with environmental protection are more likely to have a positive
attitude towards resource conservation.

Beliefs are described by Schwartz as “ideas about how true it is
that things are related in particular ways,” varying in one’s
certainty that they are true, and with respect to behavior, an
evaluation of likelihood that behavior has particular
consequences. Many statements of beliefs can be found in Dunlap
and Van Liere’s (1978) New Environmental Paradigm (NEP), an
instrument intended to measure one’s ecological worldview,
which reflects general beliefs on the human-nature relationship.
For example, members of the general public versus an
environmental organization were very different in their
agreement for the statement, “Mankind is severely abusing the
environment” [61]. Schwartz further states, “Unlike values, beliefs
refer to the subjective probability that a relationship is true, not to
the importance of goals as guiding principles in life” [182]. Table 2
confirms the role of values, beliefs, and attitudes in many PEB
models.

2. Expectations of behavior: Personal and Social Norms

Norms refer to internalized expectations about behavior.
Personal norms refer to self expectations, often conceptualized as
feelings of moral obligations. Thggersen (2009) and Doran &
Larsen (2016) developed models specific to PEB, and describe
personal norms as expectations of one’s own behavior based on
reasoning or past experience [209][56]. Social norms refer to
perceptions of expectations of others, and may be experienced as
social pressure. In discussing public littering, Cialdini et al. (1990)
distinguished between injunctive norms as perceptions about
what most others approve or disapprove, and descriptive norms
as perceptions about what most others do [39].

As shown in Table 1, several general behavioral models identify
personal and social norms as significant motivators of behavior.
Schwartz’s Norm Activation Theory (1977) identified personal
norms as the main guide of behavior. Personal norms are
determined by awareness of negative consequences of a behavior
and feeling responsible for negative consequences of one’s
behavior [180]. Triandis’ Theory of Interpersonal Behavior (1977)
included personal and social norms as determinants of intention,

which is one of three behavioral antecedents [216]. Bandura’s
Social Cognitive Theory of Behavior (1986) accounted for
expectations under personal factors, one of three interlocking
determinants of behavior [17]. Ajzen’s Theory of Planned Behavior
(1991) described behavior as resulting from three determinants of
intentions, one of which is subjective norms [3].

As shown in Table 2, several PEB models identify personal and
social norms as antecedents of sustainability-related behavior.
Hirose’s two-phase model of PEB (1994) described personal norm
as an assumption of personal responsibility to act in the first phase,
followed by the intention to comply with social norms in the
second phase [102]. Olander & Thggersen (1995) included social
norms under motivation [164]. Stern identified personal norms as
one of four PEB determinants [204]. Kollmuss & Agyeman account
for social norms under external factors [115]. Steg & Vlek listed
personal norms under morals and normative concerns [202].
Klockner & Blobaum (2010) identify normative processes as
indirectly influencing behavior [111]. Kurisu (2015) lists norms
(including personal and social norms) as the first of ten factors in
either encouraging or hindering PEB [121].

3. Habits and behavioral patterns

Table 2 also shows how several PEB models account for the role
of habits. For example, Kollmuss & Agyeman acknowledge that
existing behavior patterns may hamper adoption of new, more
sustainable behaviors.

Tversky & Kahneman (1974) describe heuristics and cognitive
biases as automatic mental shortcuts people often use to make
decisions without expending much cognitive effort [219]. Triandis’
Theory of Interpersonal Behavior (1977) identifies as one of the
main antecedents of behavior the closeness of a desired behavior
to a person’s existing habits [216].

Thaler & Sunstein’s Nudge model (2008) divides human decision
making into two systems: System 1 is impulsive and spontaneous;
and System 2 is deliberative and mindful [208]. A possible benefit
of turning a desired PEB into habit is that it exploits the
spontaneous nature of System 1, rather than relying on the
effortful nature of System 2. Fujii & Garling (2003) reported that
frequent drivers who changed to public transit during an 8-day
road closure continued to use public transit more often a year after
the closure than the drivers who did not use public transit in the
closure [78]. This study is often cited to support that habits can be
broken, if people try new behavior and learn that the new behavior
has more positive consequences than they anticipated. Davoudi et
al. (2014) investigated rational versus habitual aspects of energy
consumption behavior. They prioritized the forming of new habits
consistent with PEB, as this may elevate related behaviors from
practical or routine to “discursive (intentional, goal-oriented)
consciousness” at the community rather than individual level [49].

4. Individual perceptions of own abilities
Bandura’s Self-Efficacy Theory asserts that people have very
different levels of self-efficacy. That is, people’s confidence in their
ability to perform an action vary greatly at different times and
situations and because of innate differences [16]. This self-efficacy
level determines peoples’ likelihood of performing specific actions.
Ajzen’s Theory of Planned Behavior refers to a similar concept as
perceived behavioral control, or a person’s perceived ease or
difficulty in performing a behavior. Higher perceived behavioral
control increases the likelihood the behavior is performed [3].
Bandura’s Social Cognitive Theory of Behavior includes self-
perceptions under personal factors, which comprise one of the
three main antecedents of behavior [17].

Not included in the general models of Table 1 are the following.
Deci & Ryan’s Self Determination Theory (2000) attributes a
person’s motivation for performing behaviors to three personal
factors: 1) feeling of autonomy in a situation (the amount of
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Fig. 2: Antecedents of behavior: From Values to Circumstances

< More internal More external >
1. Values 2. Expectations 3. Habits 4. Abilities 5. Circumstances
Beliefs, Personal / Schema, Awareness, knowledge, feasibility, Context, Situation, Opportunity,
attitudes, social norms Heuristics, confidence, ease Costs/benefits, incentives, constraints,
intentions Associations Conditions: available products/facilities

Table 2: Summary of selected Pro-Environmental Behavior models (adapted from [192])

Model Authors Summary
Two-Phase Hirose In Phase 1 of pro-environmental behavior, users develop Goal Intentions based on:
Model (1994) 1. Perceived seriousness of the environmental problem

[102] 2. Ascribing of responsibility for acting on the user

3. Belief in the effectiveness of the behavior
In Phase 2 of pro-environmental behavior, Behavior Intentions develop based on Goal Intentions as well as:
1. Feasibility of the behavior
2. Costs/benefits associated with the behavior
3. Concordance with social norms around the user

Motivation Olander There are 3 determinants of pro-environmental consumer behavior:

Ability and 1. Motivation (Based on user beliefs, evaluation of outcomes, attitudes toward behavior, user intentions and
Opportunity Thegersen social norms)

Model of Pro- |(1995) 2. Ability (Knowledge of the task/behavior, and ease of performing behavior)

Environment- |[164] 3. Opportunity (Situational conditions that make behavior possible)

al Behavior

Value-Belief- |Stern et al.| Behavior is modelled as a series of phases:

Norm theory |(1999) 1. Values: Biospheric, Altruistic, Egoistic
of Environ- (2000) 2. Beliefs: Ecological worldview, Adverse consequences for valued objects, Perceived ability to reduce threat
mentalism [203] [204] 3. Personal Norms: Sense of obligation to take pro-environmental actions (perceived ability to reduce threat)

4. Behaviors: Activism, Non-activist public-sphere, Private sphere, (Behaviors in) organizations

Model of Pro- | Kollmuss Pro-environmental behavior is a product of Internal and External Factors.

Environ- and 1. Internal Factors: Environmental consciousness (knowledge of problem, feelings/emotions, values, attitudes).
mental Agyeman 2. External factors: Infrastructure and the social, cultural and political situation around the user.
Behavior (2002) Pro-Environmental behavior can be hampered by:

[115] 1. 0ld problematic behavior patterns

2. Lack of external incentives or possibilities

3. Lack of internal incentives

4. Negative or insufficient feedback about behavior
5. Lack of environmental consciousness

Goal Framing | Linden- Environmental behavior is governed by 3 types of goals
Theory berg and 1. Hedonic goals (pleasure, excitement, avoiding effort)

Steg (2007) 2. Gain goals (money, status, resources)

[130] 3. Normative goals (what “ought” to be done)

One goal is prioritized in every situation. Personality traits and situational factors affect the strength of the goals.

Integrative Steg and Factors that influence environmental behavior are:
Review of Pro- | Vlek (2009) 1. Motivational Factors
Environ- [202] 2. The comparison between costs and benefits of environmental behaviors
mental 3. Moral and normative concerns (user values, level of environmental concern, personal norms and moral
Behavior obligations to act pro-environmentally, social norms to act pro-environmentally)
Change 4. Affect (the emotional response of the user)

5. Contextual Factors
6. Habitual Behavior
Factors 2, 3, and 4 reflect different types of motivational factors, similar to goals in Goal Framing Theory.

Comprehen- Klockner &| Behavior is determined by 3 types of direct influences:
sive Action Blobaum 1 Intentional Processes (Intentions, Attitudes, Beliefs)
Determination | (2010), 2. Habitual Processes (Schemata, Heuristics, Associations)
Model of Klockner 3. Situational Influences (Objective Constraints, Subjective Constraints)
Environment- |(2013) These 3 are combined with indirect influence on 1) Intentional and 2) Habitual Processes from:
al Behavior [111][112] 4. Normative Processes (Values, Social Norms, Personal Norms, Awareness of Need, Awareness of Consequences)
Stage Model of | Bamberg Behavior change has 4 stages (parenthesized variables reflect most significant predictors in each stage):
Self-Regulated | (2013) 1. Predecision (Personal Norms, Emotions Associated with Goal Progress and Perceived Goal Feasibility)
Behavioral [15] 2. Preaction (Attitude towards the suggested behavior intervention over alternatives and Personal Norms)
Change 3. Action (Ability to plan, Ability to adapt to new situations, and Confidence in maintaining a plan)

4. Postaction (Ability to recover from a lapse in behavior)
Pro- Kurisu Pro-environmental behaviors can be encouraged or hindered by the following factors/reasons:
Environment- |(2015) 1. Norm (whether behavior matches personal rules, external expectations, moral expectations or something the
al Behavior [121] user sees other people doing)

2. Attitude (whether behavior is considered good, necessary or considered environmentally friendly)
3. Affect (whether behavior is cool or enjoyable)

4. Cost and Benefit (whether behavior saves money or time)

5. Knowledge (user understanding about behavior)

6. Ability (whether behavior is easy to do)

7. Habit (whether behavior is habitual or easily forgotten)

8. Opportunity (whether there are many chances to perform behavior)

9. Surrounding conditions (whether there are products/facilities available to perform behavior)

10. Sub-effects (whether behavior is good for health or comfortable)
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perceived independence), 2) feeling of relatedness to others in the
situation and 3) assessment of own competence (i.e., self-efficacy)
[54]. Rosenstock et al’s Health Belief Model (1988) listed
perceived self-efficacy as one of the six factors that determine pro-
health behavior [176]. Csikszentmihalyi et al.’s Flow theory (1988)
states that behaviors with ease-of-action (i.e. how well they map to
the person’s abilities) become attractive to people [45].

Although not identified in as many PEB models, there is potential
value from a design perspective to separate individual perceptions
of own abilities from the final category of external factors. Specific
to PEB, Stern listed under beliefs, the perceived ability to reduce
threat. Stern’s conceptualization of efficacy is different from self
efficacy, but rather reflects outcome efficacy. That is, it is not
perception of whether one is capable of engaging in a PEB, but
perception that one’s efforts/behavior would be effective in
reducing (environmental) problems [204]. Bamberg listed under
action, the abilities to plan, adapt and confidence [15]; and Kurisu
used ability to describe whether a behavior is easy to do [121].

5. Circumstances: External/Situational/Contextual Factors

Finally, the external characteristics of a situation refer to context,
situation, opportunity, costs/benefits, incentives, constraints,
conditions, available products and/or facilities. Liu & Sibley (2004)
note that structural interventions, i.e., adding ashtrays and litter
bins, reduced cigarette littering by 64%, without changing
attitudes towards littering [131]. Gardner & Stern (2008) provide
a short list of the most effective actions U.S. households can take to
curb climate change [80]. Efficiency behaviors are described as
replacing less efficient with more efficient products, e.g., buying a
more fuel-efficient home heater. Curtailment behaviors involve
using existing products more efficiently, e.g, reducing
temperature on heater. While efficiency behaviors may be more
impactful and require less cognitive effort than curtailment
behaviors, efficiency behaviors are hindered by a myriad of
obstacles. Such obstacles include financial expense, but also end
users, e.g., renters, may have little control over the choice of
appliances. Even those with both control and financial means,
incentives like rebates are hampered by the logistical challenges of
identifying suitable equipment and arranging the various trades
needed to install such equipment [80]. Such obstacles fall under
external factors. Tables 1 and 2 show that both general and PEB-
specific models make references to such factors under a variety of
names, e.g, facilitating conditions, environmental influences,
contextual factors, situational influences, and external factors.

Other factors

Although the PEB models summarized are by no means
exhaustive, the aspects some mention that do not fall under the
above categories are worth noting. These include: Hirose’s
perceived seriousness of the environmental problem (related to
adverse consequences in Value Belief Norm theory); Lindenberg &
Steg’s (2007) hedonic goals of pleasure and excitement; Bamberg’s
postaction, or ability to recover from a lapse in behavior; Kurisu’s
sub-effects, or whether the desired PEB is also good for health or
comfort, and can be considered as beliefs that predict attitudes.

Finally, Steg & Vlek identified affect, or the user’s emotional
response, as a separate factor that influences PEB [202]. Triandis’
Theory of Interpersonal Behavior ascribes a person’s intention to
perform a behavior to the individual’s affect or emotional state
[216]. Steg (2005) confirms the importance of symbolic and
affective motives, in addition to instrumental (functional) motives
in car use [199]. Bratt et al. (2015) discuss yet other ways of
structuring PEB [27].

2.1.2. Conclusions on antecedents of behavior
Returning to the topic of interventions, Abrahamse et al. noted
that rewards were more effective than penalties in encouraging

PEB, but they tend to have short-lasting effects, i.e., only as long as
the reward is available [2]. Evans et al. (2013) point out that
information campaigns which emphasize self-interested, e.g.,
economic, reasons may fail to cause spillover, or an increase in
other, different environmental behaviors [68].

Social scientists such as Steg et al. (2014) are suggesting a return
to values, rather than extrinsic rewards, in framing messages to
motivate sustainable behavior [200]. Specifically, appeals that
focus on financial incentives may convince people to perform the
targeted sustainable behavior, but such people are less likely to
continue in the behavior, or engage in other sustainable behavior
than if the appeal focused on values, i.e., “This is the right thing to
do.” However, potential rebound effects must be considered [24],
both first-order (see Section 3.4.2) and second-order, where
incentives may lead to higher incomes and additional consumption
in other areas.

While many social psychologists continue to work on message
framing for PEB, how does an engineering designer change the
values of consumers? The current paper proposes that one
approach is by addressing antecedents, numbered 1 to 5, from the
right of Figure 2, moving incrementally leftwards. That is, by
changing external circumstances to support PEB (5), consumers
will then change their individual perceptions of their abilities to
perform PEB (4), and thus habits and behavior patterns (3),
thereby changing their expectations of self and others’ behavior
(2), which then changes at least attitudes, if not also beliefs and
then values (1). In addition, efforts on each antecedent from
external to internal will likely produce insights on how to more
directly affect the next internal antecedent. That is, while designing
to change people’s external circumstances, one may also learn how
to design to change their perceptions of their abilities directly.

2.1.3. Using models to change behavior

In addition to the preceding models, other general models focus
on the process of behavior change. For example, Prochaska &
DiClemente’s Transtheoretical Model (1984) identifies the five
stages of behavior change as: pre-contemplation, contemplation,
preparation, action, and maintenance [173]. While the afore-
mentioned Bandura’s Social Cognitive Theory [17] and Ajzen’s
Theory of Planned Behavior [3] aim to explain the what of behavior
change, the Transtheoretical Model aims to understand the how or
when. Janz & Becker (1984) reviews how the Health-Belief Model,
which incorporates the Transtheoretical Model, is applied to
disease prevention, including exercising and weight loss,
overcoming alcohol/drug/tobacco addiction, and using safety
equipment [107]. Klein et al. (2011) identifies the Health-Belief
Model’s six determinants of behavior related to perception as:
susceptibility, severity, benefits, barriers, motivation and cues for
action [110]. As mentioned, Thaler & Sunstein used nudges, or
small reminders to target people’s cognitive biases towards
desired behavior [208]. Specific to PEB, Bamberg applied the stage
model of self-regulated behavior change to car-use reduction [15].

In the field of product design for behavior change, Lockton et al.’s
(2010) Design with Intent framework defines seven categories of
behavior patterns, called lenses, that correspond to how products
influence user behavior [133]. Examples provided under each lens
may be used for inspiration.

As the basis of persuasive technologies, Fogg (2003) identifies
strategies including: simplifying or guiding through a procedure,
tailoring and individual customization; conditioning and
reinforcement; opportune suggestion and intervention; and self-
monitoring vs. allowing others to track users’ behavior [73]. The
Fogg Behavior Model (2009) also decomposes user behavior into
different types, e.g., doing a familiar behavior once, stopping a
behavior for a period of time, and starting/continuing a new
behavior. The designer is then advised on how to effect behavior
change for each type [74]. However, Brynjarsdottir et al. (2012)
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critically reviewed work on persuasive sustainability, i.e., those
that claim to apply Fogg’s Model to PEB as overly focused on
information and feedback [29]. Coskun et al. (2015) also noted the
overemphasis on information and feedback, and support turning
desired behaviors into habits [43].

2.1.4. Challenges in applying behavior-change literature

As described above, much behavior-change research has been
performed by non-engineers, and may thus be less known to
engineering researchers. In addition, the different aims,
terminology and conventions make such research more difficult to
unify and analyze. Regarding the aims of researchers from
different disciplines, psychologists and behavioral economists
interested in the rational and emotional motivations that lead to
behavior, tend to postulate descriptive models of how behavior
change occurs [150]. In contrast, some design researchers perform
case studies of behavior-change interventions and inductively
identify  design  principles towards behavior change
[242][232][133][193][194][195]. Other design researchers fit
between these approaches, aiming to find principles for change
while creating models of behavior change. Such differing aims,
approaches, and domain-specific terminology used to describe
results, create obstacles in comparing and integrating findings
from different groups of researchers. Insights arising from these
studies are also presented such that they may be difficult for
engineers and designers to apply. Behavior-change strategies or
principles may provide direction in terms of where and how they
should be applied. In contrast, behavior-change models do not
usually prescribe strategies sufficiently specific for application.
Thus, while containing useful insights for engineers, behavior-
change knowledge presents challenges for access and application.

2.2 Behavior-Change Ontology (BCO)

As a possible way to address the above challenges, Srivastava &
Shu (2014a) created an ontology to increase the accessibility of
existing work on behavior change. This ontology serves as a
knowledge framework to organize this body of literature, and
better support its application towards design for behavior change,
e.g., towards reduced resource consumption [195].

Semantic web technologies, e.g. ontologies, provide a useful way
to clarify and organize the results of behavior-change research.
Uschold & Gruninger (1996) describe an ontology as a unifying
framework that defines terms and the relationships between these
terms using formal logic [222]. Ontologies have been used to store
knowledge in many domains. These include design, e.g., user
requirements during conceptual design [37], manufacturing and
sustainability, e.g., knowledge for life-cycle management [57] [95],
and combining functional and sustainability dimensions [198].
Ontologies are also well suited to uniting the concepts in behavior-
change research.
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2.2.1. Behavior-Change Ontology (BCO) classes and sources
Constructed using a web ontology language, the Behavior-Change
Ontology (BCO) categorizes information under the headings:
Authors, Applications, Problem Type, Barriers, Principles,
Strategies, and Mechanisms. A variety of sources were consulted to
create the ontology, and each provided insights on different
aspects of behavior change. Figure 3 shows a schematic of the
main classes used to capture different facets of behavior change.

Authors refer to researchers who reported corresponding
concepts, while applications contain examples showing where
behavior-change concepts have been used, supporting designers
who seek suggestions for a specific product or behavior domain.
Although similar design solutions could be used for different
behaviors, the examples under applications may provide specific
ideas that are not available under the more abstract categories.

Problem type refers to the kind of behavior change targeted.
Sources of insights include psychology and behavioral economics
theories such as Prochaska & DiClemente’s Trans-Theoretical
Behavior Model [173] and Fishbein & Ajzen’s (1975) Theory of
Reasoned Action [71]. The seven levels of problem type include
promoting a behavior that is completely new to a person, and for
an existing behavior, levels range between needing to increase a
behavior and stopping a behavior.

Barriers refer to obstacles that humans face in making behavior
changes. Sources of insights include social-psychology studies, e.g.,
Abrahamse et al.’s review of energy-conservation interventions,
and design studies that aim to capture human needs. Obstacles
include lack of awareness, social restrictions, and limitations in
time or economic terms. Behavior-change interventions also
impose new barriers to effect new behaviors.

Principles refer to generalized approaches for changing behavior
that researchers propose after reviewing intervention case
studies. Design research related to behavior change extrapolated
principles for behavior change, e.g., Zachrisson & Boks refer to
principles as strategy categories [242]. Principles capture
information from many different examples and abstract them into
a generic concept. This abstractness and generality also make
them less effective as starting points for design, as they may lack
details that guide designers towards solutions.

Strategies refer to the particular ways in which interventions are
intended to affect behavior. Design research related to behavior
change also presents strategies for modifying behavior. Compared
with principles, strategies are stated more clearly, e.g., provide
warnings if users deviate from desired actions. They are thus
easier for designers to use for generating ideas. Lockton et al.’s
Design-with-Intent framework refer to strategies as patterns, and
provided 101 of the strategies in the BCO [133].
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Figure 3. General schematic for Srivastava & Shu’s (2014a) Behavior-Change Ontology. (Get image permission)
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2.2.2. Mechanisms for behavior change

Of particular interest for practical use of the Behavior Change
Ontology are Mechanisms, or postulated explanations for why
specific strategies work to change behaviors. Sources include the
uses by Janz & Becker and Rosenstock et al. of the Health Belief
Model [107] [176]. Design researchers, e.g., Fogg & Hreha (2010),
Lockton et al. and Daae & Boks (2011) may also determine
underlying mechanisms behind the strategies identified from case
studies [75][133][46]. From such sources, six examples of
mechanisms describe how strategies lead to behavior change.

1. Obtrusiveness

Many behavior-change strategies work by increasing or
decreasing the obtrusiveness of a product feature. For example,
the Are You Sure strategy, which suggests that a person must
reconfirm a decision before executing the corresponding
command, works by increasing the obtrusiveness of the decision
feature [133]. In manufacturing, machines that require human
operators to use both hands to turn them on to prevent injury, is
an example of a highly obtrusive behavior-changing feature. Such
strategies can help prevent errors and break habits.

2. Operator Ability

Behavior-change strategies also work by increasing or
decreasing a person’s ability to perform certain actions. For
example, the Conveyor Belt strategy moves an object related to a
behavior directly to a person, thereby increasing that person’s
ability to perform the behavior by reducing physical effort [133].
Fogg & Hreha (2010) identify that changes in factors such as time
available, money, physical effort, brain cycles and social pressure
all affect a person’s ability to perform desired behaviors. For PEB,
recycling containers often have openings in shapes that
correspond to the majority of objects intended for that opening,
e.g, round holes for cylindrical bottles and cans. Thus, such
strategies aim to remove barriers and provide opportunities.

3. Comparison

Behavior-change strategies also work by comparing an intended
behavior with other options, e.g., the Framing strategy suggests
presenting a desired behavior in attractive terms, often by
presenting it alongside unattractive alternatives. PEB feedback
often compares one’s use of resources with others’ (lower) uses.
These three examples differ from a psychological point of view.
Framing means emphasizing benefits in line with core values and
can change attitudes. Comparing to unattractive alternatives may
change attitudes (desired behavior looks relatively more
effective). Normative feedback that compares own behavior or
performance to that of others changes descriptive norms.

4. Trigger

Many behavior-change strategies use cues to prompt people to
perform a desired behavior. These may work by triggering
associations between a desired behavior with a person’s already-
routine behavior. For example, medications may be taken at
specific times of days, which may correspond to routine behavior
such as eating meals; although no prompt is introduced, automatic
association is established. As another example, a prompt, e.g.,
sticker to turn off light next to the switch, aims to remind people of
their intention to do so, and breaks or forms a habit or routine.

5. Motivation

Behavior-change strategies often aim to increase a person’s
motivation for performing a behavior. For example, Fogg & Hreha's
(2010) Social Proof strategy shows a person examples of peers
performing the desired behavior to promote it, and relates to

descriptive norms. For PEB, some people may recycle because
their neighbors recycle, and curbside recycling is a highly visible
activity where sorted waste is left out, reflecting modelling
through behavioral examples. A subsequent section further
discusses sources of motivation.

6. Control

Many behavior-change strategies work by increasing or
decreasing the amount of control the human has when performing
a behavior. Lockton et al’s (2010) Defaults strategy sets the
designer-intended mode of use as the default setting, taking away
some control from the user to encourage a particular behavior. For
example, to reduce energy needed to heat water, the default faucet
handle position could be set to deliver cold instead of warm water.

2.2.3. Conclusions on the Behavior-Change Ontology

The BCO presents a flexible and open structure that can be added
to or changed by researchers as they collect additional relevant
work. For example, Daae & Boks (2014) propose nine dimensions
of behavior change as: 1) Control: user vs. product; 2)
Obtrusiveness: demand attention vs. stay unnoticed; 3)
Encouragement: promote vs. discourage; 4) Meaning: fun vs.
sensible; 5) Direction: desirable vs. undesirable to user; 6)
Empathy: focus on user vs. on others; 7) Importance: users find it
important vs. unimportant; 8) Timing: prompt users before vs.
during vs. after behavior; 9) Exposure: frequent vs. rare
intervention [47]. Gifford & Nilsson’s (2014) review identifies 18
personal and social factors that combine to influence PEB. They
recognize that PEB may also be caused by motivations other than
the 18 factors, such as saving money and improving health [87].

Many studies in the area of behavior-change research involve
case studies, for which a standardized way of collecting and storing
corresponding data facilitates comparison with other case studies.
For example, Golan & Fenko (2015) found that people’s evaluation
of the amount of running tap water is significantly affected by
sound, suggesting possible benefits of amplifying this sound in
redesigned water faucets, especially in public-use contexts, where
less frequent use reduces acclimatization effects [88]. Linked to
behavior determinants, adding sounds make people more aware of
the behavior, and may increase the likelihood that they consider
the consequences of their behavior. The effect of sound had
already been used to increase awareness of the consumption of
other resources, e.g., electricity. If researchers are supported in
examining relationships and comparing properties between
concepts, they may more quickly identify overlaps between
findings, and identify new connections in transferring behavior-
change interventions between application areas.

2.3. Role of context on information and feedback

Social scientists continue to focus on the effect of information
and feedback, e.g., Arpan et al. (2015) studied the interaction
between message framing and values and norms in building-
occupant responses to an energy-efficiency program. They found
that personal norms “predicted willingness to dress differently,
and perceptions that other occupants tried to conserve energy
were related to increased intention to complain about the
program” [8]. Bailey et al. (2015) reported that participants
exposed to “vivid” messages used cooler water for hand washing
than those not exposed to these messages [12].

In addition to other limitations of using information and
feedback as interventions, such information only works if it is
consistent with the goals of the user. For example, someone
uninterested in resource conservation is unlikely to be affected by
feedback concerning resource consumption. Furthermore, even if
feedback works, there is a limit on how much information a person
can absorb and heed. However, because information and feedback
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constitute simpler and likely less costly interventions than those
based on affordances or automation, there is value in better
understanding how it could be improved.

With respect to product design, one may consider context in two
ways, context-based design, and design-of-context, when using
information towards behavior change. Context-based design
involves designing with existing context in mind. Design-of-
context involves redesigning the use context, e.g., by providing
information and feedback.

Benzoni & Telenko (2016) review intervention studies aimed at
domestic water conservation, and support the importance of
context in the use of information and feedback as behavior-change
interventions. Context is used to mean situational awareness, i.e.,
of consequences because of users’ experiences. The authors
discuss how generally ineffective information and tips on how or
why to conserve water, successfully led to significant water
savings when given in a drought context [23].

Consistent with General Design Theory [240], context is crucial
to the effectiveness of interventions. Many interventions that
provide or collect only information, targeted at customers, citizens,
manufacturers, designers, etc. have failed. Such failures clarify the
importance of mastering and sharing context to realize common
understanding, e.g, in product design, service design, act for
environmental load reduction, etc. As beliefs, ethos, culture and
daily activities are all formed with context, to realize common
understandings, context sometimes must be changed by both
information sharing and consensus building.

The Japanese concept of ba is a certain shared state for context
sharing and rebuilding. The German concept of Aufheben also
explains the above-mentioned context sharing/rebuilding process.
Creating good ba has revealed itself as one of the most important
issues for realizing good interventions. Yoshikawa (1981) used the
term “field” to refer to ba to explain his function or design
knowledge models in general design theory as, "The field is the
circumstance which is effective for a function to manifest,” and
"Many different functions manifest on an entity according to fields"
[240]. Tomiyama and Yoshikawa (1986) also use “field” to refer to
ba as follows: "When the design solution is materialized, although
itis exposed to the specified field, it might have behaviors different
from the specifications. These behaviors are called unexpected
functions" [212]. This definition relates and concepts of ba and
affordances, detailed in the next section.

Furthermore, Nonaka et al. (2000) defined ba as "shared
dynamic contexts”, which has long been discussed in the Japanese
business science field [160]. Many failures in manufacturing and
supplying environmentally friendly products and services can be
explained as sharing problems in context, ba or field. Case studies
in Product-Service Systems (PSS) on supplying environmentally
friendly micro-energy systems for developing countries report the
existence of barriers on introducing such systems. Namely, Miiller
et al. (2009) found many differences between developing and
developed countries’ stakeholder customs, cultures, social rules,
local conditions and specific circumstances. In some cases, misread
and insufficiently understood context have led to failed
introductions of environmental friendly systems [155].

Nemoto et al. (2015) present a context-based PSS design
methodology as an approach for good ba creation for relating
stakeholders [159]. Akaka & Vargo (2015) also refer to the
importance of ba and "context" in the service-marketing research
area. They introduced the concept of servicescapes to have very
limited meaning of physical, tangible service offerings, provider-
user communication environment and space [4]. Servicescape can
be interpreted as a limited form of ba, and service providers use
servicescapes as communication channels to provide context
information to their customers. An example of successful ba
involves Digital Grid Corporation, through local kiosk businesses,
replaced oil lamps with electric lanterns in Tanzania [1].

2.4. Approach based on physical product affordance

Many design researchers support user-centered design as a way
to develop products that support PEB. For example, Wever et al.
(2008) and Daae & Boks (2015) review user-centered design
methods, focusing on the social-psychology factors that affect
behavior, towards creating solutions that favor sustainable
behavior [230] [48]. Cor etal. (2014) present a protocol to perform
usage-oriented eco-design that combines a task-realization
analysis with a model of the entire use phase [40]. Elias et al.
(2008) describe user-centered eco-design as designing for either
current or new behaviors. For example, after narrowing down
targets to those with both high-energy consumption and high user
interaction, user observation revealed that the major use impact
with a refrigerator is the amount of time that the door is open,
which allows cold air to escape and warm air to enter. Noting that
the time taken to remove items from the refrigerator is almost
double the time to return items, improved concepts were proposed
that would better present refrigerator contents so that items can
be found faster or be seen without opening the door [64].

The concept of affordances provides a useful construct to design
products that change behavior by examining how the user-product
interaction takes place [161]. Affordances correspond to potential
uses of an object [137]. Therefore, changing product affordances
may modify the degree to which a user can perform a behavior.
Bhamra et al. described eco-steer as design-oriented affordances
and constraints that facilitate users in adopting more sustainable
use habits through the prescriptions and constraints of use
embedded in the product’s design. An example involves detergent
tablets that counter excessive detergent consumption by
prescribing the correct dose [25].

2.4.1 Definitions

Shu et al. (2015) describe affordances as possible ways of
interacting with products, which may be independent of designer
intention [186]. This is consistent with Gibson (1977), who defined
affordances as relational qualities that are functions of both user
attributes and object attributes [85]. When users interact with a
product, they perceive a set of affordances corresponding to the
actions or uses they imagine they can perform with the product.
Conversely, when designers develop a product, they intend certain
uses, often defined as the functions of the product.

For example, any flat horizontal surface affords the placing of
items on it. Such flat surfaces may be intended for such uses, e.g.,
bookshelves and tabletops are flat horizontal surfaces that exist for
the function of supporting items. However, many such surfaces
arise from other functions, but still afford the placing of items on
top, which may not always be desirable. For example, flat
horizontal surfaces often occur on top of enclosures that include
ventilation grills, as with some dehumidifiers, heaters, etc. Iltems
placed upon such flat surfaces may reduce ventilation or constitute
fire hazards. To reduce possibility for this misuse, inclined slopes
on top of such products removes this flat-surface affordance. On
the other hand, product geometry that arbitrarily prevents the
resting of objects on top, e.g, for aesthetic reasons, may
unnecessarily thwart a commonly experienced need.

Ideally, agreement between a product’s intended and perceived
use is better managed, i.e., users only perceive those product uses
that are desirable or possible. In addition to the potential misuse
of products just described, user frustration can arise when users
perceive actions that are not possible with the product.

Other researchers focus on different aspects of affordances. For
example, Gaver (1991) identified characteristics of product
affordances with respect to perceptual information as perceptible
(discernable), hidden (indiscernable) and false (misconstrued)
[82]. Verbeek (2006) states that affordances are similar to scripts,
as described by Akrich (1992) and Latour (1992), i.e., they exert
influence on users to act in particular ways [226] [5] [124].
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Shu et al. studied the relationships among a product’s
affordances, specifically users’ perceived affordances and
designers’ intended affordances. User-perceived affordances are
described as either perceptible or false, depending on whether
they are present in the object. Of particular interest are false
affordances, since they lead to significant user frustration. Also of
interest are designer-intended affordances, because products that
do not afford intended uses represent a failure in design [186].

2.4.2. Lead users in affordance-based approach

Affordance-based methods emphasize what users will think of
doing with objects, enabling designers to better understand
products from the user’s perspective, which may lead to insights
on how users can be guided to interact with the product in
different, sometimes surprising ways. For example, Son & Shu
(2012) noted that products which collapse and fold to support
portability lead to spontaneity in carrying out sustainable
behavior, e.g., a compact reusable shopping bag better supports
spontaneous shopping than a bulkier bag [190].

In addition to observing average users common to user-centered
design, one approach taken at University of Toronto in identifying
novel insights begins with seeking lead users in resource
conservation. These insights are then abstracted into principles
and applied in ways to encourage conservation in mainstream
users. Von Hippel (1986) defined lead users as those who have
needs in advance of the mainstream, and have often devised their
own solutions for their unmet needs [228]. For example, text
messaging was reportedly first used by deaf people, who have a
clear need for such communication. However, text messaging has
proven itself widely relevant to the general, hearing population.

Srivastava & Shu (2013a) defined as lead users in resource
conservation, those who conserve more than the mainstream, e.g.,
due to cultural values or lack of resources [193]. For example, Old-
Order Mennonites were selected as lead users in resource
conservation. Their discrete-unit resources, e.g., logs of firewood,
buckets of water, and cans of kerosene, were observed to contrast
with the continuously flowing electricity and water of mainstream
society. An experiment confirmed that mainstream participants
performing a washing task using discrete quantities of water (in
containers) used less water than when using continuous-flow
water from a faucet. Finally, products that incorporate principles
such as discretization aim to transfer relevant strategies to
mainstream users. For example, discretization can be incorporated
in practical ways into mainstream products such as showers, as
shown in Figure 4 [193]. Affordances corresponding to resource
discretization include imparting to the user: a suggested quantity
for consumption, awareness of rate of use, and of the amount of
resource remaining [194]. The effectiveness of such products can
be validated by studying whether working prototypes can reduce
resource consumption over extended periods.

Bhamra et al. used “clever design” to describe innovative product
design that decreases environmental impacts without changing
user behavior. An example was given of an integrated toilet and
washbasin, which decreases water use by re-using water for hand-
washing to flush the toilet [25]. Such clever designs could
potentially be expedited by watching lead users in resource
consumption. Such lead users could also emerge through actual or
simulated circumstance, e.g., during a power outage or water
shortage, where one would be more creative in resource use.

Lead-user insights can often be abstracted and implemented as
physical product affordances. Srivastava & Shu (2013b)
investigated how affordances can be used to design products that
support sustainable behavior, i.e.,, enable, encourage, guide, or
steer desired behavior [194]. In addition to the Old Order
Mennonites, relevant lead users include individuals who transport
bulky items while walking, biking and using public transit [191]

and individuals who maintain indoor temperatures much closer to
ambient outdoor temperatures in both summer and winter [148].

Lead users have been shown to contribute to innovation in
design in general, as well as specifically related to sustainability.
Other lead users include Bangladeshis [196] and Do-It-Yourselfers
(DIYer), such as “IKEA Hackers”, who repurpose furniture for
aesthetic as well as functional reasons [123]. Such DIYers may be
lead users in being able to recognize alternative uses for products
and thus effectively substituting the need for new products by
extending the functional life time of products broadly perceived as
obsolete. Such lead users are more likely to recognize and make
product modifications to improve use efficiency, which could be
implemented in subsequent versions of the product. Lead users
can also be found in FabLabs or makerspaces that foster sustain-
ability-oriented behavior [113], e.g., by hosting repair cafes [141].

2.4.3. Outlook on affordance-based approach

Although the concept of affordances has long been mainstream
in the field of human-computer interaction, researchers have only
begun to explore affordances in lieu of functions as a basis for
mechanical design [28]. Physical affordances are inherently more
difficult than functions to study, understand, and predict, as they
have to do with how users perceive physical objects, whether or
not users are aware of, and whether or not designers intended,
such perceptions. In addition, there are theoretically an infinite
number of ways that different users can interact with a physical
product, where there are more limited ways of interacting with
software artifacts, e.g., text boxes, radio buttons and pull-down
menus. With respect to PEB, Srivastava & Shu (2015) noted the
large number of ways in which potential consumers
misinterpreted concepts intended to encourage PEB [197].
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Figure 4: Water-conserving shower concept that incorporates
discretization and also suggests maximum quantity [193][194].

2.5. Towards individualized interventions

Social scientists have also studied individual differences
regarding PEB. Milfont et al. (2006) found that European New
Zealanders consider environmental issues according to biospheric
concern, i.e., as costs or benefits to ecosystems. In contrast, Asian
New Zealanders were found to consider environmental issues
more on a personal basis, i.e., egoistic environment concern. Such
results suggest that environmental education campaigns could
emphasize different aspects of environmental issues when
targeting different ethnic groups [147]. More generally, Milfont’s
(2012) review of cultural differences in environmental
engagement points to affluence and value orientations as the main
determinants across cultures [146]. Hirsh et al. (2012) also suggest
personalized persuasion by tailoring appeals to the intended
recipient’s personality traits to increase the messages’ effect [103].
Hirsh (2014) examined “whether nationally aggregated
personality traits can be significant predictors of a country’s
environmental sustainability,” towards interventions targeted
towards specific groups of individuals [104].
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Regarding different goals that underlie relevant behaviors,
Kormos et al. (2015) found that messages which highlight
descriptive social norms increased sustainable transportation
behavior relative to private vehicle use for commuting, i.e., school,
work, but not non-commuting, i.e., appointments, shopping,
leisure, purposes [118]. Therefore, different factors may affect
closely related behaviors, and require different solutions.

2.5.1. Further motivation to address individual differences

In addition to the range of product versus user in control shown
in Figure 1, product designers have considered other ways of
developing product interventions. Tromp et al. (2011) discussed
interventions with respect to force (strong vs. weak) and salience
(hidden vs. apparent) [217]. Lockton (2012) described designers’
models of users, and that designers choose intervention
approaches based on how they believe the user acts [134].

Design researchers also identified the need for different PEB
interventions based on individual differences. Withanage et al.
(2014) studied energy-use behavior related to cooking, and found
two types of users to target: 1) those who did not know the correct
behavior to perform, and thus could benefit from more knowledge
and 2) those who did know the correct behavior, but would not
perform it, and thus needed intervention other than information
[233]. Since the first user type may become the second user type
after gaining knowledge, they may also benefit from interventions
intended for the second user type. Regarding eco-design, Telenko
& Seepersad (2014) noted that levels of income, knowledge and
available time also affect how users interact with products [207].

There are also many reasons why eco-products are not adopted.
Yim & Herrmann (2003) explored why consumers do not buy eco-
products, using consumer behavior analysis to identify technical
aspects of eco-products to increase their appeal [239]. Goucher-
Lambert & Cagan (2014) report that the addition of environmental
information to a product alters how it is perceived by users, with
different consumers assessing that additional information
differently [89]. Goucher-Lambert et al. (2017) used neuroimaging
to understand moral product preference judgments involving
sustainability. They observed that functional attributes become
more important and esthetic attributes become less important
when sustainability is a factor [90]. Gromet et al. (2013) showed
that promoting the energy-efficiency benefits of a product can
negatively affect its adoption due to political polarization around
environmental issues [93]. Their first study showed that politically
conservative individuals placed less value on reducing carbon
emissions and supported investment in energy-efficient
technology less than those who were politically liberal. In a second
study, participants had a choice between buying Compact
Fluorescent Light (CFL) or incandescent bulbs. While the CFL
bulbs were more expensive than incandescent bulbs, participants
generally agreed that the CFL bulbs were better with respect to
function, savings over the product’s lifetime, and environmental
benefit. However, politically moderate and conservative
participants were deterred from choosing the CFL over an
incandescent bulb, when the CFL bulb was labeled with an
environmental message. These participants were more likely to
choose the CFL bulb when it was unlabeled, because the
environmental label directly conflicted with their dislike of
investments in energy-saving measures [93]. Thus, promoting a
feature meant to increase appeal of a product may actually deter
some consumers. These results add another dimension to the
limitations of information-based campaigns.

2.5.2. Approaches for designers to address user differences
Researchers can address user-group differences in different
ways, including case-by-case customisation. Kok et al. (2011)
applied Intervention Mapping, originally developed for health
promotion initiatives, to reduce home energy consumption [114].

Recognizing that different groups have different objectives, they
recommended tailoring interventions by executing a six-step
Intervention Mapping process for each group. Klein et al. (2011)
developed a mobile-phone application (app) that prompts users to
engage in healthy behavior [110]. Using a model that combines
many behavior-change models, the app asks the user questions to
determine values for each of its parameters, and then provides a
series of prompts and tasks customized to the user’s profile. The
modeling of heterogeneous consumer preferences itself is a
complex problem. Zhao & Thurston (2013) used a mathematical
model to forecast consumer demand based on varying preferences
to maximize profits from end-of-life and initial sales [243].
Another way of addressing different needs for PEB follows.

2.5.3. Multi-motive behavior-change framework

To address differences between users, Srivastava & Shu (2015)
adopted an approach originally applied to agricultural behavior
change [197]. Pannell et al. (2006) and Farmar-Bowers & Lane
(2006) found that Australian farmers had different goals and
motivations, responding best to interventions toward resource-
conservation practices that were consistent with their interests
[167] [72]. Greiner et al. (2007) categorized these farmers under
three sources of motivation (financial, social, and environmental).
They then determined the types of incentives that matched these
motivations, finally recommending a combination of incentives to
motivate as many farmers as possible to increase their resource-
conserving behavior [90]. Srivastava & Shu generalized Greiner et
al.’s motivation types as: egoistic, sociocultural and altruistic. While
users could be otherwise motivated, or be insensitive to any
motivation, this is a starting point to better understand how to
develop concepts for different sources of motivation.

Egoistic motives have to do with the user’s self-interest. Similar
to traditional design objectives, such motives include a desire for
improved convenience and performance, e.g., reduced time, cost,
effort and steps of operation. These motives are similar to the self-
enhancement values in the Schwartz Theory of Basic Values
discussed earlier [182]. Specific to PEB, Davoudi et al. identify
concern for oneself as a major antecedent of energy consumption
behavior [49]. Three of the six drivers of product utility identified
in a study of consumer purchasing behavior, productivity,
simplicity, and convenience, can be categorized as egoistic [30].

Sociocultural motives describe the desire to be perceived
positively by one’s family, peers and other social group. Social
attitudes and norms, discussed earlier in detail, have been shown
to influence environmentally relevant behavior, such as whether
people waste food [67], dispose of old possessions [171], adopt
energy-saving home innovations [36], and reduce water
consumption [41]. These motives are also manifested as the social-
risk and potential image enhancement users assess in new
products [30]. Greiner et al. noted that farmers who were most
interested in maintaining a tradition of farming and community
respect, responded best to image-enhancing interventions [90].
Peschiera et al. (2010) and Toner et al. (2014) found people were
most successful in conserving energy or motivated to change
behavior when they believed that their current behavior differed
from an important peer or reference group [170] [213].

Altruistic motives are related to values of self-transcendence in
the Schwartz Theory of Basic Values [182], describe the user’s
concern for others and the environment, and are well documented
as an influence on behavior. Greiner & Gregg (2011) found that
many Australian farmers were motivated primarily by a desire to
conserve the land and be good stewards [92].

2.5.4. Testing of multi-motive behavior-change framework

The framework was tested empirically by developing concepts,
each intended to address single motive types. Online respondents
were asked to evaluate these concepts, where participant
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preferences were compared with self-assessed motivation types.
Deviations from expected results were mainly due to unexpected
perceptions, both positive and negative, of the concepts. However,
there may be practical value in explicitly considering different
motivation types rather than the ability to target a single type in a
given concept [192].

2.5.5. Multi-motive behavior-change concept matrix

Figure 5 shows a matrix-based design tool that incorporates this
user-motivation framework, where the three major rows
correspond to the three types of motives in this framework. The
columns of the matrix correspond to the range of user versus
product control that concepts allow shown in Figure 1. This range
integrates the work of several researchers, from levels of
automation [185] to work specific to sustainable behavior [242].
Left-most-column concepts offer information intended to
persuade users to perform behavior change. Right-most-column
concepts give the user no choice but to perform the proposed
behavior. The range was explicitly divided to encourage exploring
levels beyond information and feedback, which dominate concepts
proposed for behavior change. In this tool, completing the left-
most column provides value by clarifying the underlying message
for subsequent columns.

Each row is further split into positive interventions that reward
the desired behavior versus negative interventions that penalize
the undesired behavior. Behavior change can also be addressed by
curtailing one behavior or promoting an alternative, where the
positive intervention could reward the desired alternative. This
division gives yet another perspective for designers to consider.
Other researchers, e.g.,, Daae & Boks (2014) also divide strategies
along the dimension of encouragement, i.e., whether to promote or
discourage a behavior, in design for behavior-change [47].

The multi-motive behavior-change concept matrix in Figure 5 is
completed with concepts towards the desired behavior/outcome
of turning off lights (or other resource-consuming device) when
leaving a room. Italicized concepts (in the enabling/ encouraging)
columns are left abstract, while the remaining concepts are more
concrete, to demonstrate yet another possible dimension. In
addition, some columns are combined in some concepts, and some
concepts combine both reward and penalty rows.

2.5.6. Multi-motive behavior-change design matrix conclusion

Srivastava studied expert use of this design matrix, and
suggested collapsing the more similar columns together, i.e.,
information with feedback, and enabling with encouraging, etc.
[192]. Although other researchers may use more levels, e.g., Daae
& Boks differentiate nine levels in their scale of user control [47],
such a large number may not be necessary for concept generation.
In the end, both the numbers of columns and rows can be changed,
e.g., Steg et al. differentiate between altruistic values as concern for
others and biospheric values as concern for the environment [52]
and recommend including hedonic values in PEB studies [201]. In
addition, other categories of motivation [26], or difference could
be used in lieu of the row and/or column categories shown.

The ultimate benefit of such a tool may be in improving designer
understanding of the problem by considering several different
perspectives, e.g., different user motivations, levels of user control
and positive versus negative reinforcement. In completing the
matrix, designer understanding of the parameters and constraints
of the problem may be improved through sheer repetition.
Designers can also use such a matrix to determine 1) the breadth
of appeal for a concept, and 2) the number of ways in which a
concept will influence users. The most effective concepts will likely
combine several parts of the matrix, i.e., appeal to more than one
type of user and use more than one strategy to persuade them.

INFORMATION FEEDBACK ENABLING ENCOURAGING GUIDING STEERING FORCING/

General Messages Data reflecting Make Advise user on Recommend action Selects best AUTOMATION

user performance behavior which behavior to to user via action, cues user User /product

easier to do perform messages/cues to perform action | mustdo action
EGOISTIC MOTIVES | Signage: “Turning off | Show amount of (Financial) rewards for turning off | Install light switch | Have light switch
~Minimize | jights saves money.” | money [saved/ lights. at same level as, partly block door

cost/time/steps; | s ugoeping lights on wasted] by [turning next to door knob. | knob when on.
Incre‘;?ii?ef;:/, wastes money.” off/not turning off] | (Financial) penalties for not
Vi lights. turning off light.

SOCIO-CULTURAL
MOTIVES

Show number of
[likes/ dislikes] on

Signage that shows:
Others [approving

Make light-switching-off behavior
highly visible to other people

Exit door only
opens after
light is turned

Require name badge to turn on and off
lights. Show number of light turn-ons

lncreé}Sbe FFESFigel /disapproving] those | social media for vs. turn-offs for each name near light off
/sense OIOii(:ll”legl’lll(;gt who [turn offlights / | light [turning Make not-switching-off-light switch.
" | keep lights on] when | off/not turning off] | behavior highly visible to other Lights turn off
leaving. behavior. people. automatically
ALTRUISTIC | Reward: Tell user ecological benefits of Resources saved goes to Light switch consists of two pictures

MOTIVES Minimize

- resources (they) saved.
environmental

environmental causes.

that are slid into and out of view.

impact; Improve

lives of others; Penalty: Tell user ecological costs of

resources (they) wasted.

Resources wasted goes to anti-
environmental causes.

Picture of [forest/desert] corresponds
to light [off/on].

Figure 5: Multi-motive behavior-change concept matrix for turning off lights when leaving room. Italicized concepts are abstract.

3. Approach using automated impact minimization based on
self-learning usage anticipation

Computer science concepts as the Internet-of-Things (IoT) and
Artificial Intelligence (AI) enable an approach to automatically
reduce the resource consumption of devices. As such, the strategy
is no longer to reduce environmental impact through users’ PEB,
but to minimize impact directly while assuring product
functionality. The approach thus corresponds to product-
controlled strategies, referred to as intelligent products by Lilley
etal. (2005) in the methodological framework of Section 1.5.

Work on this subject, in various application areas, has been
extensively reported in literature. This section first describes the
design objective of the automated approach in more detail,
followed by a disquisition of methods and techniques. Then a
summary of case studies is provided in Section 3.3. Section 3.4 and
3.5 respectively present the evaluation and limitations of the
approaches. Finally, an outlook is presented in Section 3.6.
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Figure 6: Intelligent products classification [149]

3.1. Intelligent systems

The subject fits in the emerging domain of Intelligent Products.
Various authors have tried to universally define intelligent
products. The most relevant definition for the applications
considered in this section is the one proposed by Venti (2007),
which states that intelligent products and systems 1) continuously
monitor their status and environment, 2) react and adapt to
environmental and operational conditions, 3) maintain optimal
performance in variable circumstances, also in exceptional cases
and 4) actively communicate with the user, environment or with
other products and systems [225]. As opposed to other definitions,
this description is more focused on decision-oriented products and
on the running and maintenance of products in use. However, all
definitions focus on certain aspects and thus do not cover the
entire field of intelligent products. Therefore, Meyer et al. (2009),
in a special issue on intelligent products in the Computers in
Industry journal, introduced a classification of intelligent products
that covers all aspects of the field [142]. This classification,
illustrated in Figure 6, consists of three dimensions: level of
intelligence, location of intelligence and aggregation level of
intelligence. For this discussion, only the level of intelligence
dimension is of interest. The applications covered later on in this
section correspond to intelligent products with decision-making
capabilities. Editors of the special issue, Framling et al. (2009)
state, “Although many academic and technical challenges remain,
perhaps the greatest challenge in this space is in demonstrating
that intelligent products are not simply gimmicks but that they
have a valuable and useful role to play in a more energy- and
material-efficient, cleaner society” [76].

Hazas et al. (2011) identify the following four broad approaches
in the history of domestic energy consumption research [99]:
* provide feedback on energy consumption details to users;
* implement economics-based strategies, such as incentives, to

reduce energy demand;
* examine social factors concerning energy-use practices;
* intervene using technology to sense and control energy usage.

This categorization of energy consumption reduction strategies
also holds for the more general case of resource consumption. The
first three categories correspond to the approaches covered in the
previous section, i.e. they aim to change user behavior. The last
approach, next to enabling feedback systems and strategies
requiring active user involvement, also allows for an automatic
reduction in consumption. For this purpose, infrastructure,
buildings and appliances should be made smarter, more adaptive
and should work in harmony with occupants as well as energy
providers to find new ways to reduce consumption and carbon
emissions [99]. This is facilitated by intelligent control systems.
However, a trade-off exists between system functionality and
resource conservation. That is, user needs must be satisfied while
reducing consumption. Therefore, these intelligent controllers aim
to accurately predict future usage and adjust control accordingly.
Hereto, machine learning techniques are used to construct a
prediction model from historical data, including historical usage,
temporal and optionally other environmental information. Such
knowledge is then exploited to train a classification model which
can forecast system usage based on new data.

A methodology to determine the reduction potential by
intelligent control of any given application was developed by
Duflou et al. (2016), as part of the PERPETUAL project [169]. The
authors identified the following selection of system and usage
features that influence the reduction potential [60]:

* Consumption rates Psate of different system states (e.g.
operational, standby);

* Tardiness T, or inertia, of a system, i.e. the duration of a
transition from one state to another;

* User Tolerance UT, the level of discomfort that is acceptable;

* Variability V of the usage in terms of statistical repeatability of
usage patterns;

* Time Window TW defined as the period of time during which
usage can occur;

* Time Fraction TF representing the maximum potential fraction
of usage time within TW that can be saved;

* and finally, the Fractionality F representing the number of
discrete usage blocks within TW.

Once these variables are determined, it is possible to compute the

Consumption Reduction Potential CRP and related Impact

Reduction Potential IRP:

CRP =TF «TW = APoperational +(1—-F)* [(APstartup * tstartup)

+ (APsputdaown * tshutdown)
IRP = CRP * EI

where APg,.. represents the difference between Pgye and
Pstandbys tstate the duration of a transition from standby to a
certain state (e.g. startup) or vice versa (e.g. shutdown) and EI the
environmental impact per unit resource consumption.

These features and their influence should be taken into account
when designing an intelligent control system in order to optimize
the consumption-functionality trade-off. Preferably, the usage
variability is sufficiently low as to assure good predictability.
Otherwise, adequately high user tolerance levels are required.
Furthermore, low fractionality is desirable especially for systems
with a high inertia. As an illustration, the potential amount of time
usage can be saved by anticipative control is depicted in function
of the time fraction, system tardiness and fractionality in Figure 7.

3.2 Methods and techniques

The number of research contributions on smart, resource
efficient systems, such as smart home applications and electric
vehicles, is substantial. In general, the approaches can be classified
into the categories pervasive computing, usage profiling
/prediction and intelligent control. This section presents a brief
description of the different methods and their application for
environmental sustainability.

3.2.1. Pervasive computing

Pervasive computing, or ubiquitous computing, is a concept
involving the embedment of microprocessors into everyday
objects which enables computing and communication, as its name
implies, anywhere and everywhere. Therefore, it is well suited to
address many of the core challenges in environmental
sustainability, such as monitoring the state of the physical world;
managing the direct and indirect impacts of large-scale human
enterprises such as agriculture, transport, and manufacturing; and
informing individuals’ personal choices in consumption and
behavior [235].

Sustainability has also received increasing attention in the
related field of Human Computer Interaction (HCI). DiSalvo et al.
(2010) indicate the following five genres of sustainable HCI [55]:
1) Persuasive technology, where systems are designed that try to
convince users to adopt more sustainable behavior; 2) Ambient
awareness on the other hand merely informs and makes the users
aware of their wasteful behavior through ambient displays; 3)
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Sustainable interaction design is about rethinking the role and
outcome of design; 4) Formative user studies aim to understand
users’ attitudes towards sustainability as a first step to new design;

and 5) Pervasive and participatory sensing deals with sensors to
monitor and report on environmental conditions and using the
gathered data to change those conditions.
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Figure 7: Potential reduction of usage time as a function of Total Tardiness and Time Fraction for different Fractionality values (Duflou et al. 2016) [60].
Three labeled data points show that larger Time Fraction and lower Tardiness and Fractionality all enable higher savings.

Although these techniques primarily seem suited for systems
that try to steer user behavior, they enable the creation of
automatic systems by exploiting the collected data in an intelligent
way. Cardenas-Tamayo et al. (2009) and Amft etal. (2011) present
a selection of pervasive computing applications for environmental
sustainability [32] and smart energy systems [6].

3.2.2. Usage profiling/prediction

This category of methods extends pervasive computing by
intelligently using the data collected by sensors or other connected
devices to reduce consumption. This approach is situated within
the ambient intelligence field. Ambient Intelligence (Aml) is
similar to Pervasive Computing but focuses more on the user, the
idea of human-centered design and the intelligence required to
enable the system to anticipate the needs of its user(s) [11].
Augusto (2007) defined Aml as: “A digital environment that
proactively, but sensibly, supports people in their daily lives”,
which emphasizes that intelligence is a fundamental element of an
Aml system [9]. Furthermore, Augusto describes it as the
confluence of ubiquitous/pervasive computing and artificial
intelligence. Such systems facilitate a reduction in resource
consumption by anticipating user requirements and hence future
usage. Instead of a user learning to use new products or
technologies, an Aml system tailors its behavior to the user by
learning preferences, needs and habits in a non-intrusive,
transparent way. Enhanced efficiency of devices can be achieved
by such a self-learning Aml system. Figure 8 illustrates the general
process of such systems.

Machine learning and Al techniques are employed to learn from
user behavior and to enable the prediction of future usage. For
example, data from sensors collecting occupancy information can
be used to predict the future occupancy of a certain room and to
steer the heating schedule accordingly, instead of using a fixed,
inflexible heating schedule. Furthermore, as users’ requirements
must be satisfied, their preferences, e.g., comfort, temperature,
should be learned from the data and user feedback.

Some techniques extract patterns, or so called profiles, from the
data. In the heating example this would correspond to different
occupancy patterns, e.g., on workdays and weekends. These
profiles are then exploited to forecast future usage.

The predictions enable saving energy when it is expected that the
appliance will not be used for a certain period of time and form the
input for some control mechanism.

3.2.3. Intelligent control

In the Aml system described in Figure 8, intelligent control
corresponds to the implementation of the acting stage. The control
method incorporates the learned knowledge (e.g. profiles, system
model, predictions) to optimally control the system regarding
functionality and resource consumption. In general, intelligent
control refers to a class of control techniques that employ Al
methods such as neural networks.
A widely used control strategy is Model Predictive Control (MPC)
which relies on a dynamic model of the process to optimize its
control. In the previously used heating example, the characteristics
of the environment, such as inertia, define the system model.
Knowledge of the required amount of time for a room to heat up
enables a more efficient control strategy. Furthermore, room
occupancy and weather forecasts can be incorporated into the
MPC controller. Accurate predictions of future heating
requirements allow optimal control of the heating system. As such,
the control mechanism optimizes the aforementioned trade-off
between system functionality and resource consumption. Proper
weighting of the comfort and resource preservation targets allows
to determine an objective function for the optimization procedure.
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Figure 8: Process of an Ambient Intelligence (Aml) system [11]
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3.3 Case studies

As increasingly more tasks become automated, in combination
with the rise of the IoT and environmental awareness, a
substantial amount of research has been conducted on self-
learning systems to minimize impact while guaranteeing
functionality. A wide variety of applications have been studied,
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although smart buildings are by far the most extensively explored
subset. This section presents an overview of different applications
and is subdivided according to identified important application
areas.

3.3.1. Intelligent buildings

The US Intelligent Building Institute (IBI) defines an intelligent
building as “one which provides a productive and cost-effective
environment through optimization of its four basic elements,
including structures, systems, services and management and the
interrelationships between them” [234]. Its European counterpart,
the Intelligent Building Group (IBG), specifies it as “one that
creates an environment which maximizes the effectiveness of the
building’s occupants, while at the same time enabling efficient
management of resources with minimum life-time costs of
hardware and facilities” [234]. Both definitions contain the aspect
of human comfort as well as resource-efficiency. Satisfying comfort
requirements while reducing energy consumption in intelligent
buildings is the goal of Building Energy and Comfort Management
Systems (BECMS) [163]. Occupant presence and activity
information are highly correlated with energy demand of heating,
cooling, lighting and appliances; therefore, BECMS can
substantially reduce energy consumption by regulating building
control according to actual user needs [163].

Heating, Ventilation and Air Conditioning (HVAC)

Heating, Ventilation and Air Conditioning (HVAC) is typically the
main energy consumer in buildings. In the US, in both commercial
and residential buildings, HVAC accounts for more than 40% of
total building energy consumption [62][63]. Currently, HVAC
control is mainly scheduled manually, i.e., the heating schedule is
manually programmed by the user based on experience. However,
these schedules are usually defined once during installation and
are rarely updated afterwards. This can lead to outdated,
inaccurate schedules and thus increased energy consumption and
diminished comfort level. Peffer et al. (2011) reported that only
half the programmable thermostats in the US are used as intended,
due to complex user interfaces, lengthy manuals and social and
practical barriers [168]. In addition, at least 30% of US households
do not use their thermostats’ programming feature [143].

Significant savings can be obtained by regulating HVAC
according to actual user needs, e.g, Erickson et al. (2013)
estimates approximately 30% energy savings based on live tests
[65]. Occupancy information, typically gathered using a sensor
network, allows intelligent control systems to reduce energy
consumption and improve user comfort. These systems are able to
predict user presence. Hence, they can anticipate future usage and,
for example, start heating up the house such that the target
temperature is reached upon user arrival. Furthermore, vacant
rooms will no longer be unnecessarily conditioned. Finally,
occupancy information, possibly derived from CO:z sensors, also
facilitates demand control ventilation. Nowadays, many spaces are
needlessly over-conditioned as the control system assumes
maximum occupancy. Demand control ventilation therefore
adjusts the ventilation rate based on the number of occupants,
which further reduces HVAC energy consumption. Posselt et al.
(2015) present a computational fluid dynamic model coupled with
a wireless sensor network to estimate temperature and air flows
within factory buildings. The approach aims to improve control
strategies of HVAC systems towards a more energy-efficient and
demand-oriented climate conditioning [172].

Recently, smart home applications, and smart thermostats in
particular, received increasing attention in both research and
industry. The former is briefly discussed next, while the latter is
illustrated by the recent emergence of thermostat solutions like
Google’s Nest, Anna by Eni, Qivivo, Heat Genius, etc. In research, Al

techniques are used to model and predict user behavior. More
specifically, user presence is detected and predicted to facilitate
tailored HVAC control. Mamidi et al. (2012) implemented a sensor
network to model and predict the number of occupants using
machine learning techniques [138]. The predictions are then used
to optimize HVAC control for each room. Erickson et al. (2013)
report approximately 30% reduced HVAC consumption using
occupancy-based conditioning. In this work, occupancy data were
collected by a combined network of cameras and motion sensors
and user presence was predicted using a blended Markov chain
[65]. Lu et al. (2010) reported similar savings for The Smart
Thermostat, which achieved average energy savings of 28% using
basic sensing technology and a hidden Markov model to exploit
occupancy and sleep patterns [136]. Mozer et al’s (1997)
Neurothermostat predicts occupancy by combining a neural
network with a look-up table of occupancy states indexed by time
of day to take advantage of the periodic nature of human behavior
[152]. Other well-known techniques for occupancy-driven heating
control are the GPS thermostat, which uses GPS information [94]
and PreHeat, which uses k-nearest neighbors [183], to predict
occupancy. Krumm & Brush (2011) represent the problem of
learning presence schedules as a linear matrix problem. They solve
itusing least squares and combine it with the driving time heuristic
of Gupta’s GPS thermostat [120]. Kleiminger et al. (2014) analyzed
comparative performance on some of these state-of-the-art
methods, reporting achievable savings of 6-17% [109].

Some studies apply user modeling to fully exploit occupancy data
[18][50][211][223][224]. User models or user profiles consist of
preferences and occupancy patterns, which are identified by
clustering techniques that group together similar days. Knowledge
of occupants’ habits enables the development of HVAC strategies
that optimize the trade-off between energy consumption and user
comfort. As part of the PERPETUAL project [169], De Bock et al.
(2016a) present a smart thermostat that establishes and exploits
a user model to predict future occupancy and steer the heating
accordingly. The resulting potential energy reduction of 259.2
kWh per year corresponds to 25.5% of the total energy
consumption for a single-user office in Belgium [50]. Moreover, as
user conduct changes over time, the profiling method was adapted
in order to handle drifting behavior [51]. All or the majority of the
discussed smart heating systems are oriented towards single-user
environments or treat a group of users as a single entity. Therefore,
Auquilla et al. (2016) extended this case study to a situation with
multi-user interactions and conflicting user preferences [10].

Finally, various researchers optimize HVAC systems by
anticipating future cooling demand [22][127][128][177][238].
Cooling load prediction techniques are especially useful for HVAC
systems with thermal energy storage. As with heating, cooling has
a large inertia and requires a predictive model for optimization,
which typically uses Artificial Neural Networks (ANN).

Lighting

Interior lighting is another major source of energy consumption
in buildings, accounting for approximately 17% of the electricity
consumed by commercial buildings in the US [63]. In such
buildings, lights are typically constantly on during business hours.
Significant energy savings can be achieved by automatically
switching off lights in unoccupied rooms and by exploiting natural
light. The former is based on occupancy sensing, while the latter is
known as daylight harvesting. Typically, occupancy-based lighting
control systems automatically turn off lights when no movement is
detected for a fixed, predefined period of time, i.e. the delay factor.
Daylight harvesting on the other hand, conserves energy by
sensing the ambient light present in a space and dimming artificial
lights accordingly. These two technologies facilitate a substantial
reduction in lighting energy consumption. To further reduce
consumption, more attention has been paid to individual lighting
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preferences, which also increases visual comfort, leading to
increased productivity of occupants [163]. As the cost of salaries
typically greatly exceeds energy costs in commercial buildings,
[189], many new buildings have Personal Environment Modules
(PEMSs), through which occupants can control their environment
individually and augment their personal performance.

However, the delay factor of occupancy sensors greatly affects
both user comfort and energy savings. A large delay factor results
in energy waste as vacant rooms are illuminated. A small delay
factor facilitates energy savings, but leads to discomfort as lights
are turned off when the occupant is present but moving
infrequently, e.g., when reading. Also, researchers have observed
that people tend not to use their PEMs when their preferences
conflict with other users sharing their environment [189].
Artificial Intelligence provides a means to overcome these
problems by implementing self-learning usage anticipation
strategies. Garg & Bansal (2000) introduced smart occupancy
sensors that use a statistical model to generate an adaptive delay
factor based on occupancy behavior, saving an additional 5%
energy [81]. Sandhu et al. (2004) proposed supervised and
reinforcement learning techniques to emulate user actions based
on sensor data, such as presence and illuminance [179].

Singhvi et al. (2005) present an intelligent lighting control
system that optimizes the comfort/savings trade-off using a sensor
network [189]. This intelligent lighting control system tunes
lighting levels to occupants’ preferences, implements daylight
harvesting and active sensing, and anticipates user movement. To
satisfy the lighting preferences of multiple users, the room is
divided into small zones with separate light controls. As a single
lamp affects multiple zones, optimal settings that maximize
comfort of the users affected by the lamp and minimize energy
costs are found by solving a multi-criterion optimization problem
using scalarization. The system is thus able to predict lighting
levels in each zone and learns how each lamp affects each zone.
Energy consumption is further reduced by daylight harvesting and
active sensing, the latter of which reduces the consumption of the
sensor network. Finally, the system proactively controls lighting
by anticipating the movement of users from one room to another.
Although predictive lighting drastically increases comfort, it also
increases energy consumption since unoccupied adjacent rooms
are sometimes illuminated [189].

Hot water control

This topic was the focus of limited research efforts. Each year
thousands of liters of water are wasted by people waiting for hot
water to come out of the faucet while cold water flows down the
drain. This delay is caused by pipe lag, which results from water
remaining in the pipes after previous usage has cooled to room
temperature. Hot Water Recirculation (HWR) systems address this
problem by continuously circulating hot water through the pipes,
and require the installation of a pump and a return pipe from the
faucet to the water heater. HWR systems effectively reduce water
wastage, but the energy consumption of the pump and the heater
to compensate for pipe heat loss can increase yearly electricity
costs by more than 360% [77]. Frye et al. (2013)’s Circulo tackles
this problem by circulating hot water just-in-time. Their system
collects historical data regarding hot water usage and identifies
patterns using a Naive Bayes Classifier to predict future hot water
events. The input data of the classifier consist of the time of day,
day of the week and the amount of time hot water consumed in the
previous 15, 60 and 120 minutes. When usage is predicted, the
pump is enabled to circulate water in the pipes to the heater, and
hot water from the heater to the faucet. In this way, Circulo reports
areduction in energy consumption of HWR systems by 30% while
providing instantaneous hot water over 90% of the time [77].

Prodhan & Whitehouse (2012)’s Hot Water D] aimed to reduce
the energy wasted by heat loss of water pipes, which amounts to

20% of the total energy consumption of a water heater.
Furthermore, the hot water tap is often turned off before the hot
water effectively reaches the faucet. Including these so-called
short events, total pipe loss accounts for 24% of total energy
consumption [174]. As most faucets are typically used for the same
activities (e.g., the kitchen sink is used for washing dishes),
gathering usage information such as temperature and pipe lag
allows one to infer temperature and delay patterns for each faucet.
The Hot Water D] intelligently selects an optimal water
temperature for each faucet based on its usage history, and
intelligently introduces a delay to anticipate short events. Next,
water of the required temperature is provided to each faucet by
adding cold water to the hot water using a mixer located close to
the hot water tank. As a result, the water that remains in the pipes
after the usage eventis less hot and thus less energy is wasted. The
user has a “comfort” button to control the temperature and delay
settings. If hotter water than provided is required, the user can
override the system by turning the hot water tap off and on
multiple times, increasing the water temperature by 5°F each time.
Prodhan & Whitehouse report that energy savings of 10 - 18% can
be achieved by the Hot Water D] [174].

Appliances
Energy conservation opportunities for appliances consist of

dynamic power management and load shifting techniques.
Dynamic power management refers to the process of adapting the
power mode of a system according to its workload. When idle, an
appliance is typically switched to standby mode, which usually
draws a small amount of power. However, as most appliances
remain in standby mode for a long period of time, this ultimately
may account for a significant amount of energy consumption.
Forecasting device usage allows more intelligent and energy
efficient power management by completely powering off the
device when usage is unexpected, and switching to standby or
active mode in anticipation of future demand [53][126][188].
Standby power consumption is thus reported as reduced by 27-
44% [126]. Within the PERPETUAL project, De Hauwere et al. used
reinforcement learning to optimize control of a coffee machine in
an office environment, to balance user comfort and energy
consumption, enabling potential yearly savings of 67-88% [53].

Load shifting on the other hand involves intelligently scheduling
appliance usage to minimize peak demand. Shifting loads to off-
peak periods avoids the operation of peaking power plants and the
corresponding carbon emissions. Furthermore, as energy tariffs
are cheaper during off-peak periods, load shifting also reduces cost
for the user. However, user comfort should also be taken into
account since rescheduling to night time, for example, may not
always be acceptable. Forecasting appliance usage enables
suggestions that minimize the impact on the user while reducing
cost and carbon emissions by determining the best time for
appliance use [19][20][70][218]. Appliance usage forecasting
systems typically consist of usage profiling [34] and prediction
techniques [35]. In manufacturing, Beier et al. (2017) developed a
method that allows real-time control of manufacturing systems,
aiming at a high utilization of (on-site) generated renewable
energy without compromising system throughput [21].

3.3.2. Electric vehicles

Electric vehicles (EV), including hybrid electric vehicles (HEV)
and plugin hybrid electric vehicles (PHEV), can reduce fossil-fuel
consumption and air pollution caused by conventional combustion
engine based transportation. However, widespread adoption of
EVs will introduce technical issues such as overloading and
increasing power losses in future smart grids. Gharavi & Ghafurian
(2011) define the Smart Grid as “an electric system that uses
information, two-way, cyber-secure communication technologies,
and computational intelligence in an integrated fashion across
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electricity generation, transmission, substations, distribution and
consumption to achieve a system that is clean, safe, secure,
reliable, resilient, efficient, and sustainable” [84].

A wide range of solutions has been proposed to overcome the
problems potentially linked to intensive use of electric vehicles.
Garcia-Villalobos et al. (2014) present a review of smart charging
approaches [79]. Currently, due to limited penetration of PEVs, a
no-integration strategy (uncontrolled charging) or a passive
strategy (typically off-peak charging, which encourages charging
during night time) is implemented. The main drawback of these
strategies is that they produce sudden increases in power demand
as the charging process for most PEVs would start almost
simultaneously. Smart charging on the other hand facilitates
technical and economic benefits by scheduling PEVs charging
profiles based on anticipated demand and user convenience. Two
smart charging approaches are distinguished, namely valley-filling
and peak-shaving, which can be implemented by either centralized
or decentralized control. In the centralized case, the aggregator is
responsible for managing the charging process of PEVs. Historical
data and user preferences are used to forecast demand, which in
turn is used to define the PEVs’ charging schedules. With
decentralized control, the decision making resides in the PEVs
themselves. Each PEV thus requires a form of intelligence to
autonomously optimize the charging process in terms of user
preferences, cost, etc. Garcia-Villalobos et al. (2014) also consider
the vehicle-to-grid (V2G) concept to efficiently integrate PEVs into
the grid. Through V2G technology EV owners can sell demand-
response services such as returning electricity to the grid while
their cars are parked, allowing them to make revenue [79].
Additionally, Iversen et al. (2014) use a Markov chain to model
driving patterns and integrate this while determining when and
how much to charge [106]. Oliveira et al. (2013) use machine
learning techniques, specifically artificial immune systems, to
optimize PHEV charging [165].

Optimizing energy management of HEVs has received increasing
attention. Murphey et al. (2012) propose a framework combining
dynamic programming and machine learning to optimize energy
management of an HEV [156]. The authors aim to minimize fuel
consumption while maintaining performance by predicting
roadway types, traffic congestion levels and driving trends to learn
optimal energy settings, and reported fuel savings of 5-19% in the
second part of their study [157]. Finally, Moreno et al. (2006) use
ultracapacitors and neural networks that learn an optimal control
policy from driving cycles for energy management of HEVs [151].

3.3.3. Anomaly detection

Anomaly (or outlier) detection, aims to identify observations
that indicate abnormal behavior, which could detect and help
rectify incorrect or inefficient usage of a device to avoid losses.
Devices can be repaired before the faulty behavior leads to fatal
damage. The below discussion focusses on fault detection, one of
the many applications of anomaly detection.

Machine learning techniques are used to model usage. Therefore,
they can also be used to detect behavior deviating from the
modelled normal patterns. Support vector machines (SVM) are
used for fault detection and diagnosis (FDD) in chillers, improving
energy efficiency and reducing maintenance costs [236]. Other
applications for FDD include air-handling units [241], rotating
machineries [175] and smart buildings [31]. For the latter,
statistical pattern recognition techniques and artificial neural
ensemble networks, coupled with outlier detection methods, are
used to substantially reduce total building-energy demand by
effectively detecting anomalous consumption, such as peaks in
lighting and total electrical power when very few occupants are
present. Early detection of gas or water leakage can thus be
facilitated, avoiding excessive consumption and potentially

dangerous situations. Other examples include anomalous
consumption of cold rooms, HVAC systems, etc. Furthermore, swift
identification of erroneous behavior can prevent fatal damage to
appliances, extending their life time.

3.3.4. Miscellanea

In addition to the application domains detailed in previous
sections is a non-exhaustive list of less visible but relevant
application areas. Examples include carpooling, or other forms of
shared mobility, that match users based on their mobility profiles
[215]; intelligent coordinated traffic-light control that optimizes
traffic flow for reduced traffic jams and thus emissions [122];
machine learning for optimizing elevator group control [44]; and
smart manufacturing [149]. Currently existing are a small number
of so-called smart cities, where IT is combined with infrastructure,
architecture, everyday objects and even human bodies to tackle
social, economic and ecological problems [214]. For example, in
Barcelona, some neighborhood street lights are automatically
extinguished when no activity is detected, and dumpsters keep
track of their contents to optimize pick-up times [13].

3.4 Effectiveness assessment

Given the predictive nature of the applications discussed,
prediction accuracy as an evaluation metric occurs in the majority
of the reported studies. Since the aim is to use these predictions to
reduce resource consumption, a percentage expressing potential
savings is frequently reported. Although such a percentage is
convenient for a straightforward comparison, Nguyen & Aiello
(2013) note that consumption or impact avoidance per functional
unitis also desirable to assess the absolute relevance of the savings
potential [163]. Few of the reported studies however contain life
cycle assessment analysis results. Additionally, user comfort is a
crucial evaluation criterion for successful intelligent systems
[163]. Therefore, some studies introduce a discomfort measure
such as ‘miss time’ in smart heating systems. Miss time then
represents the fraction of time the user experienced inconvenience
as the model falsely predicted user absence and thus did not turn
on, e.g, heating [50]. Finally, many of the reported potential
savings are based on simulations. Therefore, as noted for BECMS
frameworks, it is essential that their feasibility is confirmed by
evaluation in real-life experiments [163].

3.4.1. Enabling effect

Although these metrics provide some insight on the performance
of specific applications, knowledge of the global effect of intelligent
systems on the environment would be of interest. The Global e-
Sustainability Institute (GeSI) has been studying the role of
Information and Communications Technology (ICT) in
sustainability. Their third report, #SMARTer2030, reports that ICT
can potentially enable a 20% (12Gt) reduction of global COze
emissions by 2030, maintain 2015 emissions level and decouple
economic growth from emissions growth [83]. Furthermore, the
ICT sector’s expected 2030 footprint is nearly 10 times lower (1.25
Gt or 1.97%) than the avoided emissions. Also, ICT additionally
offers other substantial environmental benefits, such as an
increase of 30% in agricultural crop yields, a reduction of over 300
trillion liters of water consumption and reducing oil usage by 25
million barrels per year. These savings are a result of applications
enabled by all forms of ICT. For this study, only the savings
accomplished by smart systems are of interest. These are
presented in Figure 9, resulting in a total COze abatement of 12.08
Gt. Although not all considered applications are autonomous/self-
learning, it is clear that intelligent systems have a substantial
environmental impact reduction potential.

3.4.2. Rebound effect
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However, due to improved efficiency and the related cost
reduction, end-users tend to adjust their habits which may result
in increased usage of the systems under consideration. This
phenomenon, known as the (direct, or first-order) rebound effect,
reduces the potential savings. For example, a more fuel-efficient
car results in a lower threshold for taking the car, and thus an
increase in car usage, because of the reduced cost. This effect was
also accounted for in the #SMARTer 2030 report [83], as shown in
Figure 9, reducing total abatement to 10.71 Gt. However, it is not
clear whether the indirect rebound effect, which reflects the
impact of re-spending the saved money on other goods and
services, was also considered. The American Council for an
Energy-Efficient Economy (ACEEE) estimates the extent of the
indirect rebound effect to be approximately 11%, although more
profound studies are required [158]. However, even with this
additional 11% savings reduction, smart systems still provide a
substantial impact avoidance potential.
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Figure 9: Greenhouse gas (GHG) abatement potential of smart systems
(based on [83], Smart Mobility is the combination of Traffic Control
Optimization and Connected Private Transportation)

Furthermore, Serna-Mansoux et al. (2014) developed a model to
evaluate eco-oriented strategies, and account for dynamic
product-user interaction [184]. Their model considers a mitigation
rate, or an exponential decrease of the strategy’s success to
promote environmentally conscious behavior. This rate is
especially applicable to feedback strategies, as messages have
been shown to lose their persuasiveness over time [184]. In the
case of autonomous smart systems, the relevance of the mitigation
rate may be limited, as such systems aim to satisfy user comfort in
addition to automatically making eco-oriented decisions. Indeed,
for the example of heating, preheating a room in anticipation of an
occupant’s arrival will always increase impact as compared with
an occupant switching on a heating system upon arrival. While
optimized interactive control may show a better resource
preservation performance, intelligent automatic control is likely to
achieve substantial savings when compared to a preprogrammed
static control. The degree to which improvements can be expected
severely depend on the factors outlined in Section 3.1.

3.5 Limitations of automated approaches

The previous section highlighted the benefits of automated
approaches for impact minimization. However, several limitations
have also been identified and are discussed next.

For the applications to automatically minimize consumption and
satisfy user preferences, they must gather relevant data and learn
from them. Therefore, in some cases, additional devices, e.g.,
sensors, must be installed. Additionally, the more data are
required to facilitate accurate predictions, the greater the delay in
effectively using the system. The structure of the data constitutes
another limitation. No matter how advanced the employed
modeling technique, it cannot identify meaningful patterns nor
accurately predict usage based on data reflecting random or non-

systematic usage. Also, storage of the data can impose challenges.
Storing a high-resolution data set locally can cause issues
concerning memory capacity. Cloud storage on the other hand
creates privacy concerns and poses a security risk as hackers
might be able to intercept (potentially sensitive) data, e.g.,
embedded occupancy information in self-learning heating
systems. Next, most techniques or solutions are application
specific. Miiller (2004) summarizes the situation rather well in,
“There does not seem to be a system that learns quickly, is highly
accurate, is nearly domain independent, does this from few
examples with literally no bias and delivers a user model that is
understandable and contains breaking news about the
characteristics of the user” [154].

3.5.1. Interaction

Several limitations have also been identified regarding user
interaction. For example, Yang & Newman (2013) concluded that
there is a bidirectional inability of understanding between a user
and a machine [237]. That is, the system fails to grasp user intent,
and the user does not understand how the system works. Although
their study was focused on Google’s Nest thermostat, they believe
that the identified problems reflect deeper challenges in intelligent
home-system design. The authors provide suggestions to
overcome the challenges, namely exception flagging, incidental
intelligibility and constrained engagement. Exception flagging is a
way for people to inform the system that their current behavior is
exceptional and should not be remembered. Incidental
intelligibility helps users understand how the system interprets
and acts upon the input data by embedding interaction elements
in the tasks users aim to accomplish. Lastly, constrained
engagement aims to spur user engagement as the user has more
knowledge about the current and future situation. User
engagement should, however, be limited to avoid overwhelming
the user. This constrained engagement could be facilitated by both
an attractive and thoughtful design.

Another interaction-related limitation is that users tend to
completely rely on the system. For example, in the case of smart
occupancy sensors [81], which predict when lights could be
switched off, people relied on the system to extinguish the lights.
As a result, savings were reduced by about 30% as often lights
were left on for too long.

3.5.2. Discomfort

Due to the complexity of human behavior and the environment, the
prediction accuracy of applications will never be 100%. As aresult,
the user could suffer a degree of discomfort. Therefore, many
intelligent systems provide a means to control the trade-off
between comfort and impact or cost.

Also, certain kinds of sensors, needed to gather data for the
system, could be intrusive to the users and make the user feel
uncomfortable. Examples of such sensors are cameras and
wearables. Nguyen & Aiello argues that in energy conservation
applications, a limited loss in accuracy could be tolerated in favor
of using simple, non-intrusive sensors [163].

However, user trust is based on the system'’s accuracy and the
experienced inconvenience. System performance should be
adequately high as otherwise users might lose their trust, disable
the system and revert to a less resource-conserving static solution.

3.5.3. Validation

With respect to evaluation, the main limitations are the lack of
large real-life public data sets, real-life experiments and
benchmarks. Smart energy systems are a hot topic in research,
which means that a large amount of relevant data has been
collected. However, these datasets are rarely made public or
shared among researchers. The availability of open datasets,
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benchmarks and informative evaluation metrics would be
beneficial for the development and comparison of methods.
Furthermore, Nguyen & Aiello found that the majority of studies
are currently based on simulations, possibly due to the complexity
and cost of test setups [163]. Therefore, there is a vital need for
real-life experiments to evaluate the true performance and
achieved savings of the targeted applications.

3.6 Outlook on automated impact minimization

Ever cheaper and more powerful electronics, and the increasing
number of connected devices (forming the [0T) aid in realizing and
expanding the demonstrated potential of ICT towards automated
impact minimization in system/product usage. Findings of
#SMARTer2030 show a cleaner, healthier and more prosperous
ICT-enabled world [83]. Smart buildings and transportation
systems will develop into smart cities. One major difference with
the current situation is the user-centric nature of these systems, as
users will be able to personalize and co-create services in
accordance with their preferences [83]. Enforcing national and
global emission targets, incentivizing ICT investments,
encouraging sustainable ICT-enabled services through consumer’s
buying power, etc. will help accelerate the widespread adoption of
more sustainable ICT solutions [83].

However, several issues are associated with this evolution and
need to be addressed. User activity, behavior and the
environmental context, are identified as major inputs in
automation systems, especially in BECMS [163][153]. Ubiquitous
sensing is required to gain this knowledge. Moreover, all energy
intelligent systems require some monitoring and data processing.
To this end, sensors and actuators must be installed. A widespread
adoption of such systems can by itself cause environmental
burdens, such as growing electronic waste streams [235]. Caution
should also be taken with regard to the intrusiveness of the sensing
setup and related privacy concerns. Transparency is necessary to
tackle the privacy problem. According to new European privacy
guidelines, users should at least be aware of the data that are being
stored and for what these are used [13]. Furthermore, Mozer
(2004) noted, technology will only be adopted if the perceived
return outweighs the efforts required to understand the system
[153]. A well-designed user interface is thus of the utmost
importance. Again transparency could be advantageous. Indicating
the learned behavior, preferences and making users aware of their
consumption might enable additional savings.

Finally, minimizing resource consumption while satisfying user
comfort remains a challenging problem considering the conflicting
nature of these objectives. The proposed systems should be able to
deal with the complexity of user behavior and infer accurate
predictions from raw sensor data. Therefore, further research is
required towards combining preferences in multi-user
environments. Auquilla et al. (2016), and Salem & Rauterberg
(2004) provided some initial studies on this topic [10] [178].
Another ongoing challenge is the dynamic modelling of user needs
and preferences. As user behavior and preferences evolve over
time, the systems must be able to detect and adapt to these
changes. De Bock et al. (2016a) presented an approach to deal with
dynamic behavior for smart heating systems [50]. Again, it is
essential that approaches are validated in real-life experiments.
Developments on these challenges will improve the reliability of
the envisaged systems and increase their sustainability potential.

4. Case study: From information and feedback to automatic
control towards efficient truck driving

Scania trucks feature two systems that support efficient driving: 1)
Scania Driver Support, a default feature on trucks that came into
existence before 2) Scania’s Cruise Control Active Prediction.

4.1 Driver support using information and feedback

Scania Driver Support (SDS) is a real-time system that gives a
truck drivers feedback via the instrument cluster on how well they
are controlling the truck. SDS continually analyses data from
sensors in the truck, with the goal of assisting drivers to operate
the truck as safely and efficiently as possible. Drivers selectively
receive recommendations while driving, as well as accumulated
assessment of their driving style. Four aspects of driving
performance are measured and evaluated: 1) hill driving, i.e., how
the accelerator pedal and vehicle’s momentum are utilized; 2)
anticipation, which consists of heavy accelerations and
decelerations, as well as the intervals between accelerating and
braking, which are used to assess how well the driver anticipates
different situations; 3) brake use, i.e., the frequency and harshness
of brake applications, as well as efficient use of the auxiliary brake
system; and 4) choice of gears, i.e.,, how gears are selected and
shifted to match the engine load and terrain. When driving in
hybrid mode, another category for brake use is adopted as well.
Figure 10 shows example feedback given to a driver based on SDS
analysis. When CCAP is active, feedback is given only for category
4) choice of gears. Besides the categories, other tips are shown, e.g.,
regarding revolutions per minute (RPM).

Driving tips

Driving tips

Next time: Release accel. Well anticipated!

pedal before top

pm by > % kK Kk

(a) Feedback on hill driving (b) Feedback on anticipation
Figure 10: Example feedback displayed in instrument cluster (Scania)

SDS builds upon the skills acquired during driver training
courses by truck manufacturer Scania, and using SDS, extends the
effects of the courses. Scania’s own tests have shown that its
training concept, i.e, combined training with SDS and regular
coaching based on evaluation reports of the driver’s performance
compared with other drivers, can reduce fuel consumption as well
as its variation (indicating a more consistent driving style).
According to Scania, most drivers who have taken the training
courses seem to appreciate the real-time feedback of SDS.

4.2 Driver support using automation

Cruise Control Active Prediction (CCAP) is an automatic
controller that Scania has commercially sold and installed on its
own trucks since 2012. CCAP enables automatic adjustment of a
truck’s speed and gear based on topographical data, its
performance mode concerning fuel efficiency (standard mode
versus economy mode) pre-selected by the driver, and product
data including vehicle mass, wheel radius, engine torque and gear
ratio. The key technology lies in the controller’'s use of a
topographical map, especially data concerning the inclination of
upcoming roads.

CCAP uses a Global Positioning System (GPS) to determine the
current vehicle position on the truck route, and predict near-future
topography based on road data (available for about 95% of the
main and secondary roads in western and central Europe) to
proactively control the speed of the vehicle in a fuel-efficient way.
Prior to driving, a truck driver sets two speeds for the CCAP, a
cruising speed for flat reads, (e.g. 85 km/h), and a downhill speed
(e.g. 89 km/h) for descents.

Typically, CCAP reduces the speed before a descent, where the
vehicle will accelerate by its own weight, to minimize driving
resistance and avoid unnecessary braking (see Figure 11). In this
way, fuel is saved compared to a speed-control system that does
not use topographical data. CCAP also aims to use a high gear
during speed reduction to minimize engine frictional losses. On the
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other hand, during ascent, CCAP increases the speed before the
uphill portion, leading to reduced driving time, but also increased
fuel consumption, i.e., the added fuel consumption is often smaller
than the fuel savings gained from the descent [100].

o T e

N

Figure 11: A comparison between CCAP and a traditional system (Scania)

Downhill 89
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Compared to a traditional cruise controller, CCAP better controls
the vehicle speed with respect to fuel consumption, resulting in on
average, about 3% decrease in energy consumption during the use
phase without increasing the overall travel time in the standard
mode. According to Hellstrém et al. (2009), in economy mode, fuel
consumption is decreased even more, but the travel time is
increased [100]. Fuel consumption is obviously road-dependent;
for example, Eriksson et al. (2016) is formulating a benchmark
problem for fuel-efficiency determination in the long-haul truck
sector taking into account this factor [66]. On undulating roads,
where a vehicle will often accelerate or decelerate by its own
weight, it is harder to drive in a fuel-efficient manner. According to
Scania, on such roads, CCAP helps the driver to save more than 3%
on fuel consumption since there are more opportunities to
optimize the speed. On a completely flat road, no such opportunity
is given to CCAP, leading to no change in energy consumption.
Regarding benefits and drivers’ skills, less experienced drivers are
likely to benefit more and also have an opportunity to learn an
economical driving style in the process. This presents possibilities
to change user behavior, although no concrete data are available in
this respect yet. Highly-skilled drivers benefit less, especially on
well-known routes, but on unknown routes, and especially in the
dark or in bad weather conditions, CCAP is more likely to help
them save fuel.

Because CCAP is used in real life, some practical features are also
implemented. For instance, before a hill, the speed is allowed a
maximum 6% drop from the set cruising speed to decrease the risk
of collision with a following car. In economy mode, the maximum
drop is 12%. Furthermore, the road data are stored in the Scania
Communicator, which continuously collects and transmits driver
and vehicle data as well as positioning to the Scania Fleet
Management portal. This creates possibilities to further improve
fuel efficiency by analyzing a large amount of stored data.
Concerning users, there is resistance by some drivers for using
CCAP; reasons for which include a desire to minimize driving time.
Therefore, drivers’ mindsets on acceptance of a system’s automatic
control are also relevant.

In summary, CCAP realizes automatic control of a product by
software based on the product’s anticipated usage, its user
preference, and the product’s data.

5. Summary and outlook

One frequently described obstacle to PEB is that individuals
question the impact their actions may have on seemingly
overwhelming environmental problems [204]. At the same time,
designers and engineers may underestimate the tremendous effect
on consumer behavior and resource consumption that even subtle

features of products play. As individuals, engineers and designers
then, have a disproportionate opportunity, and thus responsibility,
to properly design and realize products and systems to most
effectively minimize resource consumption during the use phase
of products.

As the content of the present paper reveals, realizing PEB-
enabling products is by necessity a multi-disciplinary endeavor
that requires at least an appreciation of the other fields involved.
Uiterkamp & Vlek (2007) note that “isolated monodisciplinary
approaches or a noninteracting set of separate disciplines are
insufficient for an adequate understanding of rather complex
societal problems, of which (un)sustainable development is an
urgent example” [221].

This paper presented several dimensions through which to view
design for reduced resource consumption during the use phase of
products. The two major parts of the paper correspond to two
different approaches: convincing users to adopt the desired
behavior, or having technology perform the desired behavior for
people. The two approaches also occupy different parts of a
commonly used range that describe the extent a human or product
is in control of the desired behavior. Each point along this range
offers advantages as well as limitations. In the end, it is up to the
designer to determine the most appropriate point(s) in the range,
for a particular goal. Below are both summarized and additional
aspects to consider when making this determination.

5.1. Information and Feedback

Information and feedback dominate existing PEB interventions,
perhaps because they are the easiest and cheapest to implement.
Certainly such interventions can be a first step, and even
informational signs can benefit from being well-designed.

However, researchers have long noted that information and
feedback are effective only if they help users achieve preexisting
goals [139]. That is, information and feedback on resource
consumption does little for those uninterested in resource
conservation, just as nutritional labeling of food does little for
those uninterested in healthier eating.

Shove & Warde highlight the shifting standards and norms in
expectations of cleanliness, comfort and convenience [187]. Much
consumption behavior has been driven by commercial interests,
i.e., advertising that exploits psychology to prescribe what people
desire and require. Future information-based interventions can no
longer take the form of dry warnings from government and
scientists, but must exploit the same advertising forces that drove
overconsumption in the first place. Thorpe (2010) noted that
consumer goods have become symbolic resources. Profit-seeking
commercial interests control these symbols, and without
providing alternatives “the challenge of sustainable consumption
lies well beyond the reach of typical informed choice models that
environmentalists have tended to pursue” [210]. Noppers et al.
(2014) suggest that consumers may not recognize the significance
of symbolic motives for their adopting sustainable innovations
[162]. However, as fewer commercial interests benefit from
curtailed consumption, the costs of such advertising may have to
be borne by the public sector, and be consistent with resource-
conserving policies.

5.2. Enabling and encouraging

While behavior is believed to follow attitude, a change in
behavior may also lead to a change in attitude, perhaps to reduce
cognitive dissonance. Cognitive dissonance refers to the state of
having inconsistent beliefs, or performing actions that contradict
beliefs [69]. In a meta-analysis of 87 published reports containing
253 experimental treatments, Osbaldiston & Schott (2012)
identified that treatments incorporating cognitive dissonance,
amongst other factors, showed the largest effect in resource
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conservation [166]. Thus, persuading users to perform a desired
behavior, even if such behavior contradicts their beliefs, may have
benefits over simply performing the behavior for them.

Cognitive heuristics are unconscious rules utilized to enhance
the efficiency of information processing and are possible
antecedents of cognitive biases, which may lead to perceptual
distortion, inaccurate judgment and illogical interpretation.
Cialdini (1984) identified many strategies (reciprocity,
commitment and consistency, social proof, authority, liking and
scarcity) that can be linked to cognitive biases [38]. These
strategies have formed the basis for many PEB interventions.
Lockton et al. (2010) also use a number of cognitive biases in the
Design-with-Intent framework [133]. Discretization of resources,
abstracted from studying Old Order Mennonites, and incorporated
as shown in Figure 3, may resonate with many people because it
triggers a specific cognitive bias. The unit bias has been observed
in food consumption, as people generally tend to consume
quantities suggested by unit sizes. In addition, the pre-filled
shower tank may contribute to norm-setting of water quantity.

A related approach is to physically change defaults. For example,
single-handle faucets, where lifting the handle in a symmetric
default manner produces warm water, should be changed such
that the default manipulation yields cold water. Where possible, an
ability to opt out of defaults should be possible without too much
difficulty, as products that are inappropriately forceful are likely to
be disabled. For the faucet example, this could be a cue to move the
handle away from the default symmetric maneuver in order to
obtain warm water.

Much existing work on PEB involves application of social
psychology. Future interventions could investigate the increased
application of cognitive psychology. For example, behavioral
economists Thaler and Sunstein (2008) describe as “nudges”
examples of physical affordances that change behavior [208]. One
nudge involves painting white stripes more closely together on a
dangerous portion of curved road. Such stripes give the sensation
that driving speed is increasing, thereby urging drivers to slow
down. Vicente (2006) identified another nudge that involves
placing stickers that depict flies in urinals, which significantly
improved aim and thus reduced spillage [227]. Identifying other
triggers of behavior relevant to PEB will complement the large
amount of existing work that focuses on social psychology.

5.3. Forcing and automation

While automation has demonstrated clear benefits for resource
conservation, it also has surprising limitations. For example, lack
of standardization may cause users to neglect performing the
required action, e.g., turning off a manual faucet, when they have
become accustomed to such actions being automated by sensor-
operated faucets. Standardization is not just a problem that
involves automation. Duffy & Verges (2009) found that in public
settings, specialized recycling container lids (compared with no
lids) increased recycling rate by 34%, suggesting that perceptual
affordances of specialized container lids improve recycling
compliance. However, adaptive cognition is presented as a
possible mechanism. That is, because most public recycling
containers have specialized lids, people may associate receptacles
without specialized lid as for discarding trash, whereas any
receptacle with a specialized lid is for discarding recyclables [59].

Faulty sensors not only waste resources, e.g., auto-flush toilets
triggered to flush multiple times instead of once, but may also
inspire users towards creative ways of overriding such
automation. While identifying technology’s four roles in resource
conservation, Midden et al. (2007) note that “modern systems gain
intelligence at a dazzling pace, but they risk a loss of transparency
and predictability at the same time. This signifies the issue of user
acceptance and people’s willingness to trust and delegate control
to such systems” [145]. Lee’s (2006) comprehensive summary of

the pitfalls of automation with respect to human factors and
ergonomics may have particular relevance to automation for PEB.
Information about the pitfalls is derived from the many decades of
experience of human-factors researchers with automation in
various environments. Pitfalls identified include: out-of the-loop
unfamiliarity, clumsy automation, automation-induced errors,
inappropriate trust (misuse, disuse and complacency), behavioral
adaption, and interaction between automation problems [125].
Again, an option must be provided to opt out of such automation,
especially when it fails to meet user needs in critical situations.
While in cases where users are not motivated for PEB, the
possible effects of automation can limit impact considerably.
However, in the case of well-motivated users, the benefits can
indeed be non-existent or even negative. Pre-heating a dwelling in
anticipation of the arrival of an inhabitant may add to the comfort
level, but will never help to preserve energy in comparison with a
motivated user switching on a heating system upon arrival and
anticipating departure by an early switch off of the same.

5.4. Outlook

The need for further studies that can help to optimize the flexible
choice between user-driven control in the case of well-motivated
end-users of systems, and automated resource preservation
strategies in the case of negligent behavior is acknowledged. An
optimal combination of both strategies is likely to exceed the
performance of the individual approaches, but requires
assessment of the performance achieved by the user and
comparing this with the use of well-optimized automated
strategies.

Designers must achieve a delicate balance between nudging
consumers towards the desired resource-conserving behavior,
and the perception that resource-conserving behavior is still a
choice, not unlike some safety-related behavior. An obvious but
non-pervasive approach towards this goal is to design products
such that the easiest (functionally, cognitively, ergonomically and
aesthetically) options are those that support PEB.

This paper suggests that designers should also consider the
range of factors from those that are internal to people, e.g., values
and beliefs, to those that are external to them, e.g., physical
environment, including available products. Social scientists
believe that automation without the user’s explicit choice towards
resource conservation will neither instill nor sustain values that
lead users to pursue or persist in sustainable behavior. For
example, Evans et al. (2013) support the possibility of “spillover”
from one PEB to another by appealing to self-transcendent rather
than self-interested motives [68].

However, to supplement interventions that emphasize self-
transcendence, additional values that support PEB must be
identified and drawn upon to engage those who have little or no
self-transcendent tendencies. Whitmarsh (2009) and Gifford &
Sussman (2012) note that people often perform sustainable
behavior for reasons unrelated to the environment [231][86].
Corral-Verdugo et al. (2015) found that sustainable behavior is
strongly related to values of frugality and equitable behavior, in
addition to pro-ecological and altruistic values [42]. Srivastava &
Shu (2013a) noted that resource-conserving lead users, Old Order
Mennonites value self-sufficiency, but have low altruism towards
those outside of their community [193].

Observing or studying other lead users in PEB may be used to
uncover further strategies that support PEB, which could form the
basis for new products. For example, an often reported but
counter-intuitive strategy used by United Parcel Service drivers to
reduce fuel consumption involves minimizing left-hand turns
[140]. Mostly to increase safety, Google’s navigation app Waze has
a feature to help drivers avoid left-hand turns at difficult
intersections [119]. Another example involves the “Dutch reach”,
i.e., drivers opening their car door using their far arm, thereby
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turning and checking for cyclists before they collide into their
opened door. A website promoting this practice suggests that
drivers tie a ribbon on the door handle to remind them to do this
(www.dutchreach.org). Product designers could redesign the door
handle such that it is more ergonomic to use the far hand to open
the door. Ideally such a handle could still be used by those who
physically cannot use their far hand, but would be guided in some
other way to check for cyclists before opening the door.

Much existing work on PEB relies on surveys and thus self-
reported behavior. Not surprisingly, Huffman et al. (2014) note
that self-reported and observed recycling behavior are correlated,
but not strongly [105], while other researchers are reviewing the
validity of self-report measures [117]. The realization of more
products to support PEB should therefore be evaluated through
observation, and not self reported behavior.

Product designers are in a unique position to catalyze PEB. By
creating more successful PEB-supporting products, designers add
to existing interventions towards resource-conserving standards.
Itis widely accepted that personal behavior is significantly affected
by others’ behaviors [7]. By using product design to increase the
number of people who take part in PEB beyond a critical mass,
other people will follow, further increasing the proportion of
participation needed to justify corresponding shifts in
infrastructure, possibly shape public policy, and thus set new
norms in consumptive behavior.
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