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Since the seminal paper by Cook and Weisberg [9] , local influence, next to case deletion, has
gained popularity as a tool to detect influential subjects and measurements for a variety of
statistical models. For the linear mixed model the approach leads to easily interpretable and
computationally convenient expressions, not only highlighting influential subjects, but also which
aspect of their profile leads to undue influence on the model’s fit [17]. Ouwens, Tan, and Berger
[24] applied the method to the Poisson-normal generalized linear mixed model (GLMM). Given
the model’s non-linear structure, these authors did not derive interpretable components but rather
focused on a graphical depiction of influence. In this paper, we consider GLMMs for binary, count,
and time-to-event data, with the additional feature of accommodating overdispersion whenever
necessary. For each situation, three approaches are considered, based on: (1) purely numerical
derivations; (2) using a closed-form expression of the marginal likelihood function; and (3) using
an integral representation of this likelihood. Unlike when case deletion is used, this leads to inter-
pretable components, allowing not only to identify influential subjects, but also to study the cause
thereof. The methodology is illustrated in case studies that range over the three data types mentioned.

Keywords: Case deletion; Combined model; Logit-normal model; Poisson-normal model;
Probit-normal model; Weibull-normal model.

1. Introduction

Next to linear mixed models (LMM) for hierarchical Gaussian data [26], generalized
linear mixed models (GLMM; [2, 19, 28]) have become a standard tool for the analysis
of hierarchical data of a variety of data types. Routinely, after formulating and fitting
a model, an assessment of model fit and a diagnostic analysis is advisable. Here, we are
concerned with the detection of influential subjects.

A large variety of diagnostic tools is available for (generalized) linear models. Cook
and Weisberg [9] and Chatterjee and Hadi [3] provide early treatises. In linear regres-
sion, Cook’s distances [5–7] have been used extensively. They capture how much a pa-
rameter changes based on the contribution from one particular individual. If unduly
large, the subject is considered influential. Linear mixed models, unlike linear models,
generally do not allow for closed-form parameter estimators. Further, residual analysis
is not straightforward, given the presence of both fixed- and random-effects, so that
even uniquely defining residuals is not possible. For these and related reasons, Lesaf-
fre and Verbeke [17] , chose local influence [1, 8] to examine influence in linear mixed
models. Lesaffre and Verbeke [17] studied how much case-weight perturbation impacts

∗Corresponding author. Email: triaswahyuni.rakhmawati@uhasselt.be

1

Page 1 of 63

URL: http://mc.manuscriptcentral.com/cjas

Journal of Applied Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 23, 2016 Journal of Applied Statistics locinf20˙JAS

parameter estimates; such perturbations refer to infinitesimal deviations from a subject’s
contribution to the log-likelihood. Their proposal has several attractive features. First,
it distinguishes influence in fixed-effects parameters from that in variance components.
Second, for each of these parameter subsets, influence is decomposed in interpretable
components. Third, the influence diagnostics are computationally inexpensive, once the
mixed model is fitted.

The GLMM has received less attention, even though Ouwens, Tan, and Berger [24] ap-
plied local influence to count data. An important complication is that the (log-)likelihood
function does not admit a closed form. Hence, their derivations were numerical in nature,
which makes it less evident to derive meaningful influence components.

Here, we extend local influence for the GLMM in several ways. First, we consider out-
comes of binary, count, and time-to event type. Second, using the extension proposed by
Molenberghs, Verbeke, and Demétrio [20] and Molenberghs et al [21], we flexibly allow
for overdispersion in the GLMM, by introducing conjugate random effects, in addition
to normal ones. This model is referred to as the combined model. Third, apart from
numerical derivations of local influence, we examine two alternative routes: (a) closed
forms for the marginal likelihood such as proposed in Molenberghs et al [21] and (b) the
marginal likelihood with integral form. The closed forms in (a) do not always exist; while
they are available for the probit-(beta-)normal, Poisson-(gamma-)normal, and Weibull-
(gamma-)normal, they are not for the logit-(beta-)normal. Even when they do, they may
be somewhat unwieldy and therefore, route (b) is more promising. Fourth, interpretable
components are derived, allowing to get a better perspective on the data-analytic conse-
quences of candidate influential subjects. In other words, once influential subjects have
been identified, it can be examined precisely which aspects lead to such influences.

The paper is organized as follows. In Section 2 four case studies are introduced, two
counts, one made up of binary, and one of time-to-event type. Their analyses are reported
in Section 6. Section 3 describes the generalized model based on the exponential family.
Section 4 reviews the essence of local-influence theory. The LMM case is sketched in
Section 5.1, and we show that using the integral form of the log-likelihood leads to
exactly the same expressions. The Poisson, probit, logit, and Weibull cases are studied
in Sections 5.2–5.5.

2. Case Studies

2.1 A Clinical Trial in Epileptic Patients

The data considered here are obtained from a randomized, double-blind, parallel group
multi-center study for the comparison of placebo with a new anti-epileptic drug (AED),
in combination with one or two other AED’s. The study is described in Faught et al
[12]. The randomization of epilepsy patients took place after a 12-week baseline period
that served to stabilize the use of AED’s, and during which the number of seizures
were counted. After that period, 45 patients were assigned to the placebo group, 44 to
the active (new) treatment group. Patients were then measured weekly. Patients were
followed during 16 weeks, after which they were entered into a long-term open-extension
study. Some patients were followed for up to 27 weeks. The outcome of interest is the
number of epileptic seizures experienced during the most recent week. The research
question is whether or not the additional new treatment reduces the number of epileptic
seizures.
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2.2 Headache Study

This dataset has been reported by McKnight and Van Den Eeden [18]. The experi-
ment has been done using a two-treatment, double-blind crossover design; the number
of headaches per week is repeatedly measured during 5 weeks of experiment. The study
objective was to investigate whether aspartame causes headaches in subjects who believe
they experience aspartame-induced headaches. Twenty-seven volunteers who responded
to newspaper advertisements were randomized to one of four treatment regimens. Each
regimen began with a seven-day placebo run-in period followed by four treatment peri-
ods of seven days each. Each treatment period was separated by a “washout day.” Both
aspartame (A), given at 30 mg/kg/day, and placebo (P) were administered in capsules
of three doses per day. The four possible orderings of treatment after the run-in period
were APAP, APPA, PAPA and PAAP. Most of the run-in periods were done within 7
days, yet some of the periods were smaller.

2.3 A Clinical Trial in Onychomycosis

These data come from a randomized, double-blind, parallel group, multicenter study for
the comparison of two oral treatments (A and B) for toenail dermatophyte onychomy-
cosis (TDO; [10]). TDO is a common toenail infection, difficult to treat, with prevalence
exceeding 2% [25]. Anti-fungal compounds, classically used for treatment of TDO, need
to be taken until the whole nail has grown out healthily. The development of such new
compounds, has reduced the treatment duration to 3 months. The aim of the present
study was to compare the efficacy and safety of 12 weeks of continuous therapy with
A or B. Twice 189 patients were randomized. Subjects were followed during 3 months
of treatment and followed further until month 12. Measurements were taken at 0, 1, 2,
3, 6, 9, and 12 months. The outcome of interest is severity of infection (0: severe; 1:
non-severe). The estimand is the difference in slope over time between the arms.

2.4 Recurrent Muscle Soreness

These data come from Hosmer and Lemeshow [14]. The study of two treatment modal-
ities was aimed at reducing the occurrence of muscle soreness among 400 middle-aged
men in the beginning of weight training. Subjects were randomized over two instruc-
tional programs designed to prevent muscles soreness. The control treatment consisted
of standard written brochures and instructions used by the health club to explain the
proper technique, including the suggestions for frequency and duration of training. The
new method included 1 hour with a personal trainer as well as brochures. The subjects
were followed for some time and the dates on which muscles soreness limited the pre-
scribed workout were recorded, converted to number of days between soreness episodes.
All subjects had between one and four muscle soreness episodes. The start and end of
each episode is recorded, together with the status indicator to denote whether the end
of the episode corresponds to a muscle soreness or not.

3. Generalized Linear Mixed Models

The generalized linear mixed model [2, 11, 28] is arguably the most frequently used
random-effects model in the context of (non-)Gaussian repeated measurements, extend-
ing both generalized linear models for univariate outcomes and linear mixed models [26].

Let Yij be the jth outcome for subject i = 1, . . . , N , j = 1, . . . , ni and group the ni
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measurements into vector Y i. Assume that, given q-dimensional random effects

bi ∼ N(0, D), (1)

the Yij ’s are independent with model

fi(yij |bi, ξ, φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
,

η[ψ′(λij)] = η(µij) = η[E(Yij |bi, ξ)] = x′ijξ + z′ijbi (2)

for a known link function η(·), with xij and zij p- and q-dimensional vectors of known
covariate values, ξ a p-dimensional vector of unknown fixed regression coefficients, and
with φ a scale (overdispersion) parameter. Let φ(bi|D) be the multivariate normal density
with mean 0 and variance D. The marginal likelihood function is:

L(ϑ, D) =
N∏
i=1

∫ ni∏
j=1

fij(yij |ϑ, bi) φ(bi|D) dbi.

Here, ϑ groups all parameters in the conditional model for Y i given the random effects.
Not always is there a closed form for the integral in (3), nor for the corresponding
moments. The most notorious counterexample is the logit-normal model, where (2) uses
the logit link. While a suite of computational techniques has been derived to approximate
the likelihood numerically, e.g., using Taylor series expansions and numerical integration,
it poses further challenges when additional calculations are requested. We are in this
position, because local influence starts from the likelihood (see Section 4).

3.1 The Linear Mixed Model for Gaussian Data

The hierarchically specified linear mixed-effects model takes the form [26]:

Y i|bi ∼ N(Xiξ + Zibi,Σi), (3)

where ξ is a vector of fixed effects, and Xi and Zi are design matrices. The rows of
Xiξ + Zibi are made up by the linear predictors (2). Evidently, bi is as specified in
(1). The corresponding marginal model, needed for maximum likelihood estimation and
hence the corner stone for local influence [17] obtains easily and is, again, of a multivariate
normal form:

Y i ∼ N(Xiξ, Vi = ZiDZ
′
i + Σi). (4)

3.2 The Poisson-Normal and Poisson-Gamma-Normal Models for Count
Data

From the general developments above, the Poisson-normal model is:

Yij ∼ Poi(λij), (5)

λij = exp
(
x′ijξ + z′ijbi

)
, (6)
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and bi as in (1). Molenberghs, Verbeke, and Demétrio [20] and Molenberghs et al [21]
derived a closed form for the marginal model:

P(Yi = yi) =
1∏ni

j=1 yij !

∑
t

(−1)
∑ni
j=1 tj∏ni

j=1 tj !
· exp

 ni∑
j=1

(yij + tj)x
′
ijξ



× exp

1

2

 ni∑
j=1

(yij + tj)z
′
ij

D
 ni∑
j=1

(yij + tj)zij

 . (7)

The vector-valued index t = (t1, . . . , tni) ranges over all non-negative integer vectors.
When overdispersion is accommodated, as in Molenberghs, Verbeke, and Demétrio [20]

and Molenberghs et al [21]), (5) changes to

Yij ∼ Poi(θijλij), (8)

with λij as in (6) and θij ∼ Gamma(αj , βj). The joint distribution now is:

P(Yi = yi) =
∑
t

 ni∏
j=1

(
yij + tj
yij

)
·
(
αj + yij + tj − 1

αj − 1

)
· (−1)tj · βyij+tjj


× exp

 ni∑
j=1

(yij + tj)x
′
ijξ


× exp

1

2

 ni∑
j=1

(yij + tj)z
′
ij

D
 ni∑
j=1

(yij + tj)zij

 . (9)

For identification, write βj = 1/αj . The modeler may choose αj and βj terms free of j.
While Zeger, Liang, and Albert [29] derived a closed form for the mean function only,

Molenberghs et al [21] thus provided closed forms for all of the moments and for the
joint marginal distribution; they did so for the combined-model extension of the GLMM,
and hence for the GLMM itself. This opens avenues for local influence and corresponding
interpretable components, which goes well beyond what was done in the literature thus
far (e.g., [24]).

3.3 The Probit-Normal Model for Binary and Binomial Data

A probit-normal model is specified by Yij ∼ Bin(λij , nij) and

λij = Φ1(x′ijξ + z′ijbi). (10)

Molenberghs et al [21] showed that the marginal joint distribution is:

fni(yi = 1) = Φni(Xiξ;L−1
ni ), (11)

with Lni = Ini − Zi
(
D−1 + Z ′iZi

)−1
Z ′i. Of course, this is only the probability of a (so-

called success) sequence consisting of ones. All other joint probabilities are derived by

5
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the usual combination rules [21]. When overdispersion is allowed for, then again λij is
multiplied by θij ∼ Beta(α, β) and the joint distribution becomes:

fni(yi = 1) =

(
α

α+ β

)ni
· Φni(Xiξ;L−1

ni ) (12)

Should the logit link be used, there is no closed form available. Of course, the approxi-
mation rule for the logit by the probit function can be used [16, 21, 29]:

fni(yi = 1) ≈ Φni

(
cXiξ; L̃−1

ni

)
, (13)

with L̃ni = Ini − c2Zi
(
D−1 + Z ′iZi

)−1
Z ′i and c = (16

√
3)/(15π).

3.4 The Weibull-Normal Model for Time-to-event Data

In the Weibull case, the corresponding model is

f(yi|θi, bi) =

ni∏
j=1

λρyρ−1
ij ex

′
ijξ+z′

ijbie−λy
ρ
ije
x′
ijξ+z′

ijbi

, (14)

with bi as in (1). The joint distribution is [21]:

f(yi) =
∑

(t1,...,tni )

ni∏
j=1

(−1)tj

tj !
λtj+1ρy

(tj+1)ρ−1
ij

× exp

{
(tj + 1)

[
x′ijξ +

1

2
(tj + 1) · z′ijDzij

]}
. (15)

Similar to the Poisson case, (t1, . . . , tni) ranges over all non-negative integer vectors.
When overdispersion is allowed for, the Weibull-Gamma-Normal model is:

f(yi|θi, bi) =

ni∏
j=1

λρθijy
ρ−1
ij ex

′
ijξ+z′

ijbie−λy
ρ
ijθije

x′
ijξ+z′

ijbi

, (16)

with now also θij ∼ Gamma(αj , βj), leading to the closed form:

f(yi) =
∑

(t1,...,tni )

ni∏
j=1

(−1)tj

tj !

Γ(αj + tj + 1)β
tj+1
j

Γ(αj)
λtj+1ρy

(tj+1)ρ−1
ij

× exp

{
(tj + 1)

[
x′ijξ +

1

2
(tj + 1) · z′ijDzij

]}
. (17)
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4. Review of General Theory for Local Influence

4.1 Standard Approach

Local influence was presented by Cook [8] and used by many authors since. The impact
of individuals and measurements on the analysis is assessed by comparing standard max-
imum likelihood estimates with those resulting from slightly perturbing the contribution
of an individual or measurement. The method is to be contrasted with global influence
(case deletion), where impact is assessed by simply deleting an individual or measure-
ment. While local influence comes with a certain amount of technicality, it is easy and
fast to calculate, and in many cases leads to interpretable components of influence. The
existence of such interpretable components is often, and also here, a major rationale for
using the method. Lesaffre and Verbeke [17] introduced influence assessment for the lin-
ear mixed model. A review of several diagnostic procedures for the linear mixed model is
given in Mun and Lindstrom [22]. Verbeke et al [27] used local influence for longitudinal
Gaussian data with dropout, while incomplete binary data were studied by Jansen et
al [15]. Verbeke and Molenberghs [26] and Molenberghs and Verbeke [19] reviewed the
method and provide ample references.

Ouwens, Tan, and Berger [24] applied local influence to the Poisson-normal model.
We will follow their steps, but with extensions in three directions. First, we will provide
closed-form expressions, based on an analytical form for the marginal likelihood function,
as well as based on an integral form for the said likelihood. Second, we consider three
important cases: binary, count, and time-to-event. Third, extensions will be constructed
to allow for overdispersion in all of these settings. Some authors considered specific
extensions as well. For example, Chen, Fu, and Wang [4] considered local influence for
zero-inflated Poisson mixtures.

Let the log-likelihood for the generalized linear mixed model or its combined extension
take the form

`(θ) =
N∑
i=1

`i(θ), (18)

in which `i(θ) is the contribution of the ith individual to the log-likelihood. Let

`(θ|ω) =
N∑
i=1

ωi`i(θ), (19)

now denote the perturbed version of `(θ), depending on an N -dimensional vector ω of
weights, assumed to belong to an open subset Ω of IRN . The original log-likelihood (18)

follows for ω = ω0 = (1, 1, . . . , 1)′. Other perturbation schemes are possible [26]. Let θ̂ be

the maximum likelihood estimator for θ, obtained by maximizing `(θ), and let θ̂ω denote

the estimator for θ under `(θ|ω). Cook [8] proposed to measure the distance between θ̂ω

and θ̂ by the likelihood displacement: LD(ω) = 2
(
`(θ̂)− `(θ̂ω)

)
. LD(ω) will be large

if `(θ) is strongly curved at θ̂. A graph of LD(ω) versus ω brings out information on the
influence of case-weight perturbations. The graph is the geometric surface formed by the
values of the (N + 1)-dimensional vector

ξ(ω) =

(
ω

LD(ω)

)

7
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as ω varies throughout Ω. Following Cook [8] and Verbeke and Molenberghs [26], we will
refer to ξ(ω) as an influence graph.

Zhu and Lee [30] and Zhu et al. [31] proposed another approach to deal

with the measurement of the distance between θ̂ω and θ̂. Instead of using the
observed-data log-likelihood, their method is applied to the objective func-
tion that features in the expectation step of the EM algorithm. Because this
function is usually denoted by Q, their method is known as Q-displacement.
In this paper, we focused on the used of the likelihood displacement LD(ω)
[8].

Cook [8] derived a convenient computational scheme. Let ∆i be the s-dimensional
vector of second-order derivatives of `(θ|ω), w.r.t. ωi and all components of θ, and

evaluated at θ = θ̂ and ω = ω0. Also, write ∆ for the s × r matrix with ∆i in the ith
column. Let L̈ denote the s× s matrix of second derivatives of `(θ), evaluated at θ = θ̂.
For any unit vector h in Ω, it follows that:

Ch = 2
∣∣∣ h′∆′L̈−1∆h

∣∣∣ . (20)

Various choices for h have received attention. First, as will be done here, one can focus
on subject i only, by choosing h = hi, the zero vector with a sole 1 in the ith position.
Local influence then is

Ci ≡ Chi = 2
∣∣∣ ∆′iL̈

−1∆i

∣∣∣ . (21)

Second, h = hmax can be considered, the direction of maximal normal curvature [26].
Expressions can be derived when only a sub-vector of the parameter vector is of interest.
See Supplementary Materials (Section S.1).

4.2 Proceeding When Faced With a Complicated Likelihood

As will be reviewed in Section 5.1.1, Lesaffre and Verbeke [17] proceeded by deriving
local influence based on the explicit expression of the marginalized linear mixed model.
While there are marginal expressions available for the Poisson, probit, and Weibull cases
(Sections 3.2–3.4), these are involved. This is why we also proceed in two alternative
ways. The first one consists of using integral expression (3), essentially combined with
the property that integration and derivation can be interchanged under mild regularity
conditions. Importantly, this route still allows for the derivation of interpretable compo-
nents. A further alternative consists of choosing a fully numerical route, as in Ouwens,
Tan, and Berger [24].

5. Local Influence for Generalized Linear Mixed and Combined Models

5.1 Local Influence for the Linear Mixed Model

5.1.1 Standard Approach, Based on the Marginal Likelihood

The backdrop for our developments is the method as derived for the linear mixed model
[26]. They started from the marginal likelihood (4) directly. For this model, this is easy to
do and hence a natural choice. We will review their derivations, with details relegated to
the Supplementary Appendix Materials (Section S.2). We will then proceed alternatively

8
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by an integral-based approach. This will provide the basis for the analogous calculations
in the non-Gaussian cases.

For the covariance structure, we assume conditional independence, i.e., Σi = σ2Ini ,
with Ini the ni × ni identity matrix.

It is advantageous that Ci admits closed form (21). Lesaffre and Verbeke [17] de-
composed Ci into five interpretable components. Let Ri, Xi, and Zi denote the “stan-

dardized” residuals and covariates for the ith individual, defined by Ri = V
−1/2
i ri,

Xi = V
−1/2
i Xi, and Zi = V

−1/2
i Zi, respectively, with ri = yi−Xiξ̂. Further, for a matrix

A, let ‖A‖ =
√

tr(A′A) be the Frobenius norm of A [13]. The interpretable components
in Ci are then

‖XiXi′‖, ‖Ri‖, ‖ZiZi′‖, ‖I −RiRi
′‖, ‖V −1

i ‖. (22)

First, ‖XiXi′‖ measures the “length” of the standardized covariates in the mean structure
and ‖Ri‖ is an overall measure for how well the observed data for the ith subject are
predicted by the mean structure Xiξ. Second, the components ‖ZiZi′‖ and ‖I−RiRi

′‖
have a similar meaning, but then for the covariance structure. For example, ‖I−RiRi

′‖
will be zero only if Vi equals riri

′. Note that riri
′ is an estimate for var(yi), which

only assumes the mean to be correctly modeled as Xiξ. Therefore, ‖I −RiRi
′‖ can

be interpreted as a residual, capturing how well the covariance structure of the data is
modeled by Vi = ZiDZ

′
i + σ2Ini . Finally, the fifth component ‖V −1

i ‖ will be large if Vi
has small eigenvalues, indicating that the ith subject has little variability.

The decomposition of Ci immediately suggests a practical procedure to find an ex-
planation for the influential nature of an individual, i.e., when Ci is large, we examine
the diagnostics. Such plots are useful to graphically inspect the individuals in view of
their influence. Thus, it is sensible to start with an index plot of Ci. Following this, the
index plots of (22) can be examined. A recurrent practical difficulty with diagnostics is
to establish a threshold above which an individual is defined as “remarkable.” It follows
from (21) that

N∑
i=1

Ci = −2 tr

(
L̈−1

N∑
i=1

∆i∆
′
i

)
,

which converges to 2s, for N approaching infinity. As with leverage in linear regression
[23, pp. 395–396], one could classify an individual for which Ci is larger than twice the
average value (larger than 4s/N , for N large) as influential. However, unlike for the
leverage situation, 2s is only the approximate sum of the Ci, which will not be accurate
if the model is not correctly specified (such that L̈−1

∑N
i=1 ∆i∆

′
i does not converge to

Is) or if N is too small for the asymptotic results to be reliable. In such cases, Lesaffre
and Verbeke [17] proposed to replace 2s by the actual sum; we then call the ith subject
influential if Ci is larger than the cutoff value 2

∑
N

i=1Ci/N .
Given decomposition result (S.1.1), it is interesting to consider sub-vectors ξ and α of

fixed effects and variance components, respectively, with corresponding influences Ci(ξ)
and Ci(α), respectively. Given that the fixed effects and variance components are asymp-
totically independent, it follows that Ci ≈ Ci(ξ)+Ci(α). Lesaffre and Verbeke [17] further
showed that Ci(ξ) can be decomposed using only the first two components ‖XiXi′‖ and
‖Ri‖, while the last three, ‖ZiZi′‖, ‖I −RiRi

′‖, and ‖V −1
i ‖, feature in the decomposi-

tion of Ci(α). Asymptotically therefore, influence for the fixed effects and for the variance
components can be scrutinized by studying the first two and the last three interpretable
components, respectively.
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5.1.2 Integral-based Expression

As mentioned in Section 4, the integral-based approach can be used as an alternative way
to alleviate complexities with the explicit marginal likelihood expressions. To prepare for
developments of Poisson, probit, logit, and Weibull cases, the calculations have been
done first for the linear mixed model setting. Details are in Supplementary Section S.2.2.
This integral-based result is identical to the standard one of Lesaffre and Verbeke [17],
reported in the previous section. Evidently, the same interpretable components as in (22)
ensue.

5.1.3 Fully Numerical Route

The third and final method examined proceeds fully numerically. Observe that (20) is
based on the first- and second-order derivatives of the log-likelihood function. Method-
ologically, a fully numerical derivation is based on replacing derivatives by appropriately
precise finite differences of the first and second order, for the score vector and Hessian
matrix, respectively. Conveniently, such calculations are routinely done in statistical soft-
ware packages as part of the log-likelihood maximization process. All that is needed is
extracting this information from the package. For the score, individual subjects’ contri-
butions are needed, as is clear in particular from (21). The advantage of this approach is
straightforward implementation for the models considered here but also for other models
with perturbation scheme (19) for the log-likelihood, provided that the score and Hessian
functions are numerically available.

Even though jointly considering the numerical approach and the explicit route appears
redundant, it is beneficial to make use of both. We referred to the computational ease
of the numerical method. At the same time, the explicit calculations can be used to also
calculate the influence components, for enhanced interpretation. This route is followed,
using the SAS procedure NLMIXED.

5.2 Local Influence for the Poisson-normal Model

In this section, local influence for the Poisson-normal model is studied. In the Supplemen-
tary Materials (Section S.3.1), it is shown that, while one could set out from the explicit
marginal distribution, the infinite sum that it contains inhibits both convenient expres-
sions and interpretable components. We therefore prefer an integral-based approach, the
details of which are given in the Supplementary Materials (Section S.3.2). Writing

Ii =

∫
exp

{
f̃(yi) + f̃(bi)

}
dbi,

f̃(yi) =

ni∑
j=1

{cijyij − exp(γij + cij)} ,

f̃(bi) = −1

2
bi
′D−1bi,

Ai = exp
{
f̃(yi) + f̃(bi)

}
,
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it follows that

∂`i(ξ, D)

∂β
=

ni∑
j=1

{yij − E(yij |bi)}xij =

ni∑
j=1

rijxij ,

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
,

where djk is a component of D and δjk is one if j is equal to k, and zero otherwise. Also,
by Var(bi) we mean

∑q
k=1 Var(bik).

Interpretable expressions can now be derived. To this end, in the Supplementary Ma-
terials (Section S.3.2), we first show that

||∆i||2 =

 ni∑
j=1

rijxij

 ni∑
j=1

rijxij

′ +∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

.

Let Ci = C1i + C2i with:

C1i = 2||L̈−1|| ||rixi||2 cos(ϕi), (23)

C2i =
1

2
||L̈−1|| ||(D−1)kl − (D−1D−1)klVar(bi)||2 cos(ϕi), (24)

where rixi =
∑ni

j=1 rijxij . Note that C1i and C2i are the contributions of subject i to
local influence Ci from β and D, respectively. Now, C1i and C2i can be shown to equal:

C1i = 2||L̈−1|| ||xix′i|| ||ri||2 cos(αi) cos(ϕi), (25)

C2i =
1

2
||L̈−1|| cos(ϕi)×

[
tr
{

(D−1)2
kl

}
− tr

{
2(D−1)kl(D

−1D−1)klVar(bi)
}

+tr
{

(D−1D−1)2
klVar(bi)

2
}]
, (26)

where cos(αi) is the angle between vec(xix
′
i) and vec(riri

′), and ϕi is the angle between

vec(−L̈−1) and vec(∆i∆
′
i). Hence, the interpretable components of Ci in the case of the

Poisson-normal model can be described using the ‘length of the fixed effect’ (||xix′i||),
the ‘squared length of the residual’ (||ri||2), and the ‘squared of random effect variability’
(Var(bi)

2).

5.3 Local Influence for the Probit-normal Model

Given the numerical approach of Section 5.1.3, we will focus on the explicit calcula-
tions, using only the integral method. Derivations are in the Supplementary Materials
(Section S.4). The binomial probability, conditional on the random effects, is:

P(yi|ξ, bi) =

ni∏
j=1

λ
yij
ij (1− λij)(1−yij), (27)
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where λij is defined by (10). The joint marginal probability of success is:

f(yi = 1) =
1

(2π)q/2|D|1/2

∫  ni∏
j=1

Φni(X
′
iξ +Z ′ibi)

 exp(−1

2
bi
′D−1bi)dbi. (28)

The first derivatives are:

∂`i(ξ, D)

∂ξ
= [I − (Xiβ)−1]Xi,

∂`i(ξ, D)

∂djk
=

3

2
L−1

(
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

)
,

where Mi =
(
D−1 + Z ′iZi

)−1
. It also follows that

||∆i||2 = [I − (Xiβ)−1]2XiX
′
i +
∑
k,l

9

4L2

(
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

)2
.

Thus, also for this case, the components ||Xi||2 and ||ZiZi′||2 turn up.

5.4 Local Influence for the Logit-normal Model

The derivations for the logit-normal case are given in the Supplementary Materials (Sec-
tion S.5).

Evidently, the same binomial expression (27) is used, but now with logit(λij) = x′ijξ+

z′ijbi. The marginal joint density function is:

f(yi = 1) =
1

(2π)q/2|D|1/2

∫ ni∏
j=1

λij exp

(
−1

2
bi
′D−1bi

)
dbi.

The derivatives take the form:

∂`i(ξ, D)

∂β
=

ni∑
j=1

xij

∫
1

1 + exp(µij)
τ̃(bi|yi)dbi,

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
,

where µij = x′ijξ + z′ijbi. It also follows that

||∆i||2 ∝


ni∑
j=1

xij

 ni∑
j=1

xij

′ +∑
k,l

(
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

.

Reconstructing the fixed- and random-effects components, respectively, like in the Poisson
case, leads to C1i = 2||L̈−1|| ||xi||2 cos(ϕi) and C2i as in (26). Hence, the interpretable
components of Ci for the logit-normal model can be described using the length of fixed
effect (||xi||2) and the squared random-effects variability, Var(bi)

2 (i.e., the sum of all
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variances), in analogy with the Poisson-normal model. The same is true for the Weibull-
normal model, as will be seen next.

5.5 Local Influence for the Weibull-normal Model

The general Weibull model is given by (14). By means of the derivations given in the
Supplementary Materials (Section S.6), the derivatives take the form:

∂`i(ξ, D)

∂β
=

ni∑
j=1

xij − λ
ni∑
j=1

yρijxij exp(µij),

∂`i(ξ, D)

∂djk
= −1

2
(2− δjk)

[
(D−1)jk − (D−1D−1)jkVar(bi)

]
,

where δjk = 1 if j = k and 0 otherwise. It further follows that

||∆i||2 =

 ni∑
j=1

xij

 ni∑
j=1

xij

′ − 2

ni∑
j=1

xijQ
′
i +QiQ

′
i

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

,

where Qi = λ
∑ni

j=1 y
ρ
ijxij exp(µij). Like in the Poisson-normal and binary-

normal cases, a decomposition Ci = C1i + C2i follows, with C1i =
2||L̈−1||

{
||xi||2 − 2xiQi + ||Qi||2

}
cos(ϕi) and C2i as in (26). Hence, interpretable

components analogous to the earlier settings arise.

6. Analysis of Case Studies

6.1 A Clinical Trial in Epileptic Patients

We start from the Poisson-normal (P-N) and Poisson-gamma-normal (PGN) models
formulated by Molenberghs, Verbeke, and Demétrio [20] and Molenberghs et al [21],
with Poisson parameter:

ln(λij) =

{
(ξ00 + bi) + ξ01tj if placebo
(ξ10 + bi) + ξ11tj if treated,

(29)

where Yij represent the number of epileptic seizures patient i experienced during week j,
tj is the time point at which Yij was measured, and with random intercept bi ∼ N(0, d).
Parameter estimates are given in Table 1. Index plots (versus patient ID) for various
local influence analyses are given in Figure 2. The top row of the plot represents the
total local influence, with subsequent rows representing influence for sub-vectors: fixed
effects, random-intercept variance d, and, for the (PGN), the overdispersion parameter
α, respectively. Patients #38, #49, and #62 stand out with large total influence Ci when
compared to other patients. Importantly, influences show a major drop when switching
from (P-N) to (PGN). This is most prominently seen for #38. For an explanation, turn
to the right hand panel of Figure 1. Patient #38 (and to some extent also #62 on the
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left hand side) alternates periodically between very high numbers of episodes and periods
virtually without. This implies that their mean, variance, and association structure are
rather different from the majority of subjects. The impact on the mean structure, by way
of the fixed effects, is evident in the second row. For the (P-N) it is less clear when turning
to d, but we gain a lot of insight from the (PGN) results. Overall influence and influence
on ξ reduce drastically, but there now is clear influence on d and α. What it means
is that with these subjects present, the overdispersion parameter helps capturing their
anomalous behavior, which ‘deflates’ d. In other words, adding overdispersion protects
the inferentially crucial fixed-effects parameter vector. When removing these subjects,
and also #49, little or no influence is left.

Note that the (PGN) model fitted to the full dataset exhibits a smaller value for α,
which corresponds to more overdispersion (no overdispersion corresponds to α approach-
ing +∞), while it does not vanish with removal of the three subjects. Thus, there appears
to be genuine overdispersion in the data, further inflated by the influential subjects.

In agreement with Molenberghs, Verbeke, and Demétrio [20] and Molenberghs et al
[21], we consider the treatment effect in additive (ξ11 − ξ01) and multiplicative (ξ11/ξ01)
form. Important differences are seen on the additive scale. (P-N) shows no significance
(p = 0.7106), which is sustained for (PGN), with p = 0.2225. Removing the influential
subjects leads to a highly significant result for (P-N), with p = 0.0009, which changes
to the still significant p = 0.0350 for (PGN). Hence, the influential subjects mask a
treatment effect. This is logical, because the influential subjects exhibit an oscillating
behavior, introducing an important source of variability. At the multiplicative level, where
the null hypothesis is for the ratio to be 1, the story is nicely confirmed, with p = 0.6872
and p = 0.1166 for (P-N) and (PGN), respectively; the counterparts after deletion are
p < 0.0001 and p = 0.0040, respectively.

To get further insight as to why these subject have higher influence than others, plots
with interpretable components are given in Figure 3: ‘squared length of the fixed effects’
||xix′i||, ‘squared length of the residual’ ||ri||2, and ‘random-effect variability’ Var(bi)

2.
It is hardly surprising that #38 stands out in terms of ||ri||2. Influences on #49 and #62
are less pronounced.

Our analysis has provided insight not available from earlier analysis. The influential
subjects exhibit a cyclic behavior not observed in the majority of patients, but at the
same time well documented. Based on these findings, a focused clinical discussion can
take place, to determine the course of action. Options include removal, retention, or even
setting up a dedicated study to further scrutinize this sub-population. In this case, a
small group of patients with oscillating behavior between two poles has been identified.

6.2 Headache Study

For these data, the model of Ouwens, Tan, and Berger [24] is used again:

E(Yij |ξ, bi) = tij exp(ξ0 + Tijξ1 + bi), (30)

where Tij indicates whether either placebo or Aspartame is given to patient i at occasion
j, bi ∼ N(0, d), and tij is the length of this period in days. We consider (P-N) and (PGN).

Figure S.4 in Supplementary Material shows the individual profiles. From this figure,
and from some influence graphs in Figure S.5, patients #13, #25, #4, and #10 de-
serve further investigation. The individual profiles show that the former two have more
headaches than is typically the case; the latter two have none. Subjects #4 and #10 show
up in the total influence and that on d for the (P-N), while #13 is influential for the
fixed effects. No further influences are seen after removal of these four patients. Also, the
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relatively strong influences in (P-N) essentially disappear when turning to the (PGN).
In other words, these influential subjects induce overdispersion which, when accommo-
dated, strongly alleviates their influential status. Parameter estimates (standard errors)
are reported in Table 1. While there is a borderline significant treatment effect in the
(P-N) fitted to all data (p = 0.0463), and a borderline non-significant one in the (PGN)
fitted to the full data (p = 0.0639), it disappears after removal (p = 0.2542 for (P-N)
and p = 0.2962 for (PGN)). This underscores that a few subjects might drive the alleged
treatment effect. Note that the effect of removal in terms of significance is opposite to
that in the epilepsy study. The interpretable components do not lead to additional insight
(Figures S.6 in Supplementary Material).

6.3 A Clinical Trial in Onychomycosis

Molenberghs et al [21] assumed Yij |bi ∼ Bernoulli(πij), where Yij is severity of infection
(1 for severe, 0 for non-severe) for patient i at occasion j, Ti is the treatment indicator (1
for experimental, 0 for standard) for subject, tj is the time point (months) at which the
jth measurement has been taken, and bi ∼ N(0, d). The conditional success probability
is expressed as:

logit(πij) = ξ1(1− Ti) + ξ2(1− Ti)tij + ξ3Ti + ξ4Titij + bi.

Both the logit-normal (L-N) and logit-beta-normal (LBN) are fitted. Parameter esti-
mates (standard errors) are displayed in Table 1, with local influence plots in Figure S.7
(in Supplementary Material). Subjects #6, #30, and #53 are detected as influential,
overall, and with respect to the fixed effects, in the (L-N). Accommodating overdisper-
sion, hence turning to the (LBN), deflates the magnitude of influence. Likewise, influence
is drastically diminished by removing these three subjects. Thus, in case the influential
subjects should remain in the analysis, the (LBN) may be the most sensible route for-
ward. Alternatively, in case they are considered anomalous, one can remove them. To
decide on which scenario is preferred in this case, we note that all three subjects are
unusual: they set out with a sequence of non-severe ratings, but then switch to a severe
rating (‘0000111’ for #6, ‘0000011’ for #30, and ‘0000001’ for #53). Arguably, there is
no reason to remove these subjects from analysis, partly also to safeguard randomization.
However, it is uncommon to switch from non-severe to severe in this particular way, so
these patients must be further clinically scrutinized. Also for these data, the interpretable
components do not lead to further insight (Figure S.8 in Supplementary Materials).

The (L-N) and (LBN) lead to borderline significance when applied to the full data
[p = 0.0268 additively and p = 0.0560 multiplicatively for (L-N); p = 0.0627 additively
and p = 0.0964 multiplicatively for (LBN)]. When influential subjects are removed,
these values all become highly significant [in the same order, p < 0.0001, p = 0.0007,
p = 0.0011, and p = 0.0099]. These findings are qualitatevely similar to the epilepsy
cases, but different from the headache study.

6.4 Recurrent Muscle Soreness

The Weibull-normal (W-N) and Weibull-gamma-normal (WGN) models are considered,
with scale parameter λ = 1, and linear predictor ηij = ξ0 + bi + ξ1Ti, where Ti is an
indicator for treatment and bi ∼ N(0, d). Parameter estimates (standard errors) are in
Table 1. Local influence plots and interpretable components are displayed in Figures S.9
and S.10 in Supplementary Materials, respectively. Unlike in the three previous studies,
no subjects stand out. It is clear though, that influence goes down when turning from
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the (W-N) to the (WGN). It is equally important to see no influence is detected when
there happens to be none.

7. Simulation Study

In order to evaluate the relative performance of local influence in the context
of the two different models, standard and combined, a small-scale simulation
study was conducted. To define realistic simulation scenarios, the various
standard models were considered, for the epilepsy data, the onychomycosis
data, and the recurrent muscle soreness data, respectively (see Table 1).
These parameter estimates were then used as true values in the simulations
and plugged into the corresponding model for each of the three data types.
This model is then used to generate the response variables Y new

ij . Various sets
of covariate values from the original dataset were considered; they were kept
fixed across simulation runs. Some predetermined influential subjects are
chosen prior to the simulation study for each situation. We consider three
types of predetermined influential subjects: high, medium, and low. The local
influence analysis is run for each simulated dataset. A cut-off value for local
influence is defined as 2

∑N
i=1Ci/N [17]. Every time, 200 replicated datasets

were generated.
The simulation results are presented in Tables 2–4. Table 2 shows the sum-

mary statistics. While convergence was unproblematic in the count and time-
to-event cases, more difficulties were encountered in the binary case: the com-
bined model gave valid result only for 145 simulations. It is known that iden-
tifying overdispersion on top of data correlation in the binary case is harder.
From this table, it can be seen that the combined model for all data types
identified the influential subjects more frequently than the standard GLMM.
Observe that the mean of the local influence values for the combined models
are lower than those from the GLMM (Table 3). These findings are in line
with the analysis from the original datasets, showing that the local influence
for combined models are lower than those from the GLMM.

A classification of the predetermined influential subjects is given in Ta-
ble 4. Most of the highly influential subjects are classified as influential, for
both models and all three data types. In contrast, medium- and low-influence
subjects are not always recognized.

8. Concluding Remarks

Local influence was studied before as a means to detect outlying subjects, and features
thereof, for the linear mixed model and some generalized linear mixed models. We have
extended this work in several ways. First, local influence measures are derived for several
GLMM: Poisson-normal, logit-normal, probit-normal, and Weibull-normal. Second, also
for the extensions of these model that capture overdispersion, i.e., the combined model,
influence measures are derived. Third, using the integral form of the log-likelihood, it has
been possible to derive interpretable components of influence, like for the LMM, but un-
like in earlier influence work for the GLMM. Beyond identifying influential subjects, this
allows us to scrutinize which aspects leads to influence on important model parameters
and conclusions based there upon.

In all four case studies analyzed, it is seen that accounting for overdispersion allevi-
ates influence, whether for a few outlying subjects or for the dataset as a whole. When
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there are outlying subjects in the GLMM, it is often seen that removing them leads to
reductions similar to switching to the combined model. Of course, these actions are very
different and depend on whether one wants to either homogenize the original data or,
conversely, retain these subjects for analysis, but then change the model to one that
allows for this without undue influence. The combined model is a good candidate for
this. This is underscored by the fact that treatment effect assessment can change in
different ways upon removing influential subjects. In the epilepsy and onychomycosis
studies, treatment effect turns from non- to (highly) significant; in the headache study,
a borderline significant effect disappears after removing influential subjects.

Evidently, beyond the distributions considered here, others could be studied as well.
For example, with time-to-event data, it is not uncommon to use log-normal rather than
Weibull distributions. Our method is generic and has been applied to a collection of
distributions; similar calculations would lead to expressions for alternative distributions.

Web Appendices S.1–S.6, referenced in Section 5, are available in conjunction with this
paper.

The methodology developed here has been implemented in the SAS soft-
ware system. Fitting the models is done using the SAS procedure NLMIXED
and macros have been developed for the local influence calculations. The
codes are available in the Supplementary Materials.
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Table 1. Parameter estimates (standard errors) for the generalized linear mixed and combined models.

Epilepsy Poisson-normal Poisson-gamma-normal
Effect Par. Full #(38,49,62) Full #(38,49,62)

Interc. plac. ξ00 0.818(0.168) 0.903(0.157) 0.911(0.176) 0.907(0.163)
Slope plac. ξ01 -0.014(0.004) -0.031(0.005) -0.025(0.008) -0.031(0.008)
Interc. treat. ξ10 0.648(0.170) 0.492(0.162) 0.656(0.178) 0.510(0.169)
Slope treat. ξ11 -0.012(0.004) -0.007(0.005) -0.012(0.007) -0.009(0.007)
Treat. eff. ξ11 − ξ10 0.002(0.006) 0.024(0.007) 0.013(0.011) 0.022(0.011)
Treat. eff. ξ11/ξ10 0.840(0.398) 0.236(0.170) 0.475(0.335) 0.281(0.250)
Std. rand. int. σ 1.076(0.086) 0.982(0.081) 1.063(0.087) 0.969(0.082)
Overdisp. par. α 2.464(0.211) 3.109(0.329)

Headache Poisson-normal Poisson-gamma-normal
Effect Par. Full #(4,10,13,25) Full #(4,10,13,25)

Intercept ξ0 -1.715(0.172) -1.609(0.136) -1.710(0.174) -1.599(0.139)
Treatment ξ1 0.283(0.142) 0.187(0.164) 0.289(0.156) 0.187(0.179)
Std. rand. int. σ 0.695(0.140) -0.388(0.120) 0.682(0.144) -0.349(0.137)
Overdisp. par. α 12.47(16.53) 8.916(9.982)

Onychomycosis Logit-normal Logit-beta-normal
Effect Par. Full #(6,30,53) Full #(6,30,53)

Interc. plac. ξ0 -1.630(0.435) -1.940(0.523) -1.604(4.026) -2.420(3.089)
Slope plac. ξ1 -0.404(0.046) -0.430(0.049) -6.478(1.439) -6.075(1.264)
Interc. treat. ξ2 -1.749(0.448) -1.604(0.536) -16.21(3.58) -15.21(3.02)
Slope treat. ξ3 -0.563(0.060) -0.872(0.100) -8.075(1.600) -8.755(1.437
Treat. eff. ξ11 − ξ10 -0.159(0.072) -0.442(0.105) -1.596(0.858) -2.680(0.822)
Treat. eff. ξ11/ξ10 1.394(0.206) 2.028(0.302) 1.246(0.148) 1.441(0.171)
Std. rand. int. σ 4.015(0.381) 4.814(0.490) 60.88(14.22) 56.47(11.69)
Overdisp. par. α/β 0.281(0.035) 0.231(0.031)

Muscle Soreness Weibull-normal Weibull-gamma-normal
Effect Par. Full Full

Intercept ξ0 -3.664(0.1103) -3.870(0.141)
Slope ξ1 0.352(0.064) 0.404(0.073)
Shape par. ρ 1.027(0.027) 1.118(0.045)
Std. rand. int. σ 0.242(0.066) 0.199(0.096)
Overdisp par. α 5.781(2.174)
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Table 2. Simulation study. The mean for total number of influence subjects across all simulations.

Source Mean Std. Dev. Mean Std. Dev.

Epilepsy Poisson-normal Poisson-gamma-normal
Total Local Influence (Ci) 6.630 1.122 8.180 0.890
Local Influence(ξ) 6.630 1.067 7.250 0.928
Local Influence (d) 9.220 1.371 8.885 1.048
Local Influence (α) 6.035 1.009

Onychomycosis Logit-normal Logit-beta-normal
Total Local Influence (Ci) 23.920 4.820 33.538 7.947
Local Influence(ξ) 29.790 5.552 27.379 8.856
Local Influence (d) 20.850 3.251 25.841 4.739
Local Influence (α) 43.179 19.089

Muscle Soreness Weibull-normal Weibull-gamma-normal
Total Local Influence (Ci) 21.195 3.350 39.610 4.476
Local Influence(ξ) 2.205 0.494 55.300 4.098
Local Influence(ρ) 40.28 4.152 42.165 3.764
Local Influence (d) 29.985 3.710 25.825 3.698
Local Influence (α) 52.955 80.190

Table 3. Simulation study. The mean of local influence across all simulations.

Source Mean Std. Dev. Mean Std. Dev.

Epilepsy Poisson-normal Poisson-gamma-normal
Total Local Influence (Ci) 0.663 1.052 0.219 0.011
Local Influence(ξ) 0.622 1.001 0.135 0.008
Local Influence (d) 0.024 0.007 0.021 0.003
Local Influence (α) 0.070 0.007

Onychomycosis Logit-normal Logit-beta-normal
Total Local Influence (Ci) 0.048 0.002 0.042 0.152
Local Influence(ξ) 0.040 0.002 0.020 0.137
Local Influence (d) 0.006 0.001 0.002 0.001
Local Influence (α) 0.014 0.037

Muscle Soreness Weibull-normal Weibull-gamma-normal
Total Local Influence (Ci) 1.446 0.091 0.023 0.001
Local Influence(ξ) 0.090 0.006 0.010 0.00001
Local Influence(ρ) 0.034 0.002 0.005 0.00015
Local Influence (d) 0.940 0.050 0.006 0.001
Local Influence (α) 0.003 0.009
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Table 4. Simulation study. Classification of predetermined influential subjects across all simulations.

Category Subject Not Influential Influential Not Influential Influential

Epilepsy Poisson-normal Poisson-gamma-normal
High #5 0 200 0 200

#38 1 199 0 200
#49 0 200 0 200
#62 0 200 0 200

Medium #2 174 26 1 199
#16 200 0 200 0
#60 173 27 151 49
#73 0 200 0 200

Low #11 200 0 145 55
#39 200 0 200 0
#63 23 177 12 188
#67 200 0 200 0

Onychomycosis Logit-normal Logit-beta-normal
High #6 0 200 1 139

#30 0 200 1 144
#53 0 200 1 144
#198 0 200 2 143

Medium #3 0 200 1 143
#13 0 200 2 142
#276 0 200 2 139
#279 0 200 1 143

Low #244 94 106 139 1
#257 94 106 139 1
#272 152 48 136 1
#290 152 48 136 1

Muscle Soreness Weibull-normal Weibull-gamma-normal
High #62 7 193 0 200

#169 27 173 0 200
#328 0 200 0 200
#378 0 200 0 200

Medium #31 200 0 0 200
#64 200 0 0 200
#259 0 200 0 200
#317 0 200 0 200

Low #30 200 0 198 2
#161 200 0 175 25
#237 0 200 0 200
#299 0 200 0 200
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Figure 1. Epilepsy Data. Individual profiles.

Poisson-normal Poisson-gamma-normal

full dataset without #38, #49 and #62 full dataset without #38, #49 and #62

Total Local Influence (Ci)

Local Influence(ξ)

Local Influence (d)

Local Influence (α)

Figure 2. Epilepsy Data. Local influence plots.
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full dataset without #38, #49 and #62 full dataset without #38, #49 and #62
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Figure 3. Epilepsy Data. Plots of interpretable components of local influence.
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SUPPLEMENTARY MATERIALS

Local Influence Diagnostics for Generalized Linear Mixed
Models With Overdispersion
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S.1. Expressions for Standard Local Influence: Subsets

When only a subset θ1 of θ = (θ′1,θ
′
2)′ is of special interest, the methodology still applies.

it follows that (Verbeke and Molenberghs 2000) the corresponding influence:

Ch(θ1) = Ch + 2h′∆′
(

0 0

0 L̈−1
22

)
∆h ≤ Ch, (S.1.1)

with obvious notation. Should L̈12 = 0, then an influence decomposition is possible:

Ch = Ch(θ1) + Ch(θ2). (S.1.2)

For weakly correlated sub-vectors, (S.1.2) holds approximately.

S.2. Local Influence for the Linear Mixed Model

S.2.1 Standard Approach, Based on the Marginal Likelihood

The backdrop for our developments is the method as derived for the linear mixed model
(Verbeke and Lesaffre 1997b, Verbeke and Molenberghs 2000). We will sketch their de-
velopments, and then turn to an alternative derivation based on the likelihood in integral
form.

In line with these authors, we consider (4), but with in addition the conditional inde-
pendence assumption Σi = σ2Ini , with Ini the ni × ni identity matrix.

For Ci as in (21), a convenient form can be derived:

Ci = −2
(
θ̂ − θ̂1

(i)

)′
L̈(i)L̈

−1L̈(i)

(
θ̂ − θ̂1

(i)

)
, (S.2.1)

where a subscript (i) indicates that the corresponding quantity is based on the deletion of

the ith subject and further the vector θ̂1
(i) is the one-step approximation to θ̂(i) obtained

from a single Newton-Raphson step in the maximization procedure of `(i)(θ), using θ̂ as
the starting value. For sufficiently large sample size, it follows that Ci is an approximation

S.1
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to the classical global case-deletion diagnostics. Note that the expression is exact when
properly used for local influence purposes.

It is advantageous that Ci admits a closed form (21). Lesaffre and Verbeke (1998)
decomposed Ci into five interpretable components. Let Ri, Xi, and Zi denote now the

“standardized” residuals and covariates for the ith individual, defined by Ri = V
−1/2
i ri,

Xi = V
−1/2
i Xi, and Zi = V

−1/2
i Zi, respectively, with ri = yi−Xiβ̂. Further, for a matrix

A, let ‖A‖ =
√

tr(A′A) be the Frobenius norm of A (Golub and Van Loan 1989). The
interpretable components in Ci are then

‖XiXi′‖, ‖Ri‖, ‖ZiZi′‖, ‖I −RiRi
′‖, ‖V −1

i ‖. (S.2.2)

First, ‖XiXi′‖ measures the “length” of the standardized covariates in the mean structure
and ‖Ri‖ is an overall measure for how well the observed data for the ith subject are
predicted by the mean structure Xiβ. Second, the components ‖ZiZi′‖ and ‖I−RiRi

′‖
have a similar meaning, but then for the covariance structure. For example, ‖I−RiRi

′‖
will be zero only if Vi equals riri

′. Note that riri
′ is an estimate for var(yi), which

only assumes the mean to be correctly modeled as Xiβ. Therefore, ‖I −RiRi
′‖ can

be interpreted as a residual, capturing how well the covariance structure of the data is
modeled by Vi = ZiDZ

′
i + σ2Ini . Finally, the fifth component ‖V −1

i ‖ will be large if
Vi has small eigenvalues, which indicates that the ith subject is assumed to have small
variability.

The decomposition of Ci immediately suggests a practical procedure to find an expla-
nation for the influential nature of an individual, i.e., when Ci is large, we examine the
diagnostics. Such plots are useful to graphically inspect the individuals in view of their
influential nature. Thus, it is sensible to start with an index plot of Ci. Following this, the
index plots of (??) can be examined. A recurrent practical difficulty with diagnostics is
to establish a threshold above which an individual is defined as “remarkable”. It follows
from (21) that

N∑
i=1

Ci = −2 tr

(
L̈−1

N∑
i=1

∆i∆
′
i

)
,

which converges to 2s, for N approaching infinity. As for leverage in linear regression
(Neter, Wasserman and Kutner 1990, pp. 395–396), one could classify an individual for
which Ci is larger than twice the average value (larger than 4s/N , for N large) as being
influential. However, unlike for the leverage situation, 2s is only the approximate sum
of the Ci, which will not be accurate if the model is not correctly specified (such that
L̈−1

∑
i ∆i∆

′
i does not converge to Is) or if N is too small for the asymptotic results

to yield good approximations. In such cases, Lesaffre and Verbeke (1998) proposed to
replace 2s by the actual sum, and we call the ith subject influential if Ci is larger than
the cutoff value 2

∑
N

i=1Ci/N .
Given decomposition result (S.1.1), it is interesting to consider sub-vectors β and

α of fixed effects and variance components, respectively, with corresponding influences
Ci(β) and Ci(α), respectively. Given that the fixed effects and variance components are
asymptotically independent, it follows that

Ci ≈ Ci(β) + Ci(α). (S.2.3)

Lesaffre and Verbeke (1998) further showed that Ci(β) can be decomposed using only
the first two components ‖XiXi′‖ and ‖Ri‖, while the last three components ‖ZiZi′‖,

S.2
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‖I−RiRi
′‖, and ‖V −1

i ‖ feature in the decomposition of Ci(α). Asymptotically therefore,
influence for the fixed effects and for the variance components can be scrutinized by
studying the first two and the last three interpretable components, respectively.

S.2.2 Integral-based Expression

As previewed in Section 4, the integral-based approach is used here as an alternative way
to alleviate complexities with the explicit marginal likelihood expressions. To prepare for
developments of Poisson, probit, logit and Weibull cases, we set out this way for the
linear mixed model.

The marginal density corresponding to the linear mixed model is defined by the fol-
lowing expression:

f̃(yi) =

∫
f̃(yi|β, bi)f̃(bi|D) dbi. (S.2.4)

The conditional density of the response variable takes the form:

f̃(yi|β, bi) =

(
1

2πσ2

)ni/2
exp

{
− 1

2σ2
(yi −Xiβ −Zibi)

′(yi −Xiβ −Zibi)

}
= (2πs)−ni/2 exp[f(yi)], (S.2.5)

where f(yi) = −(2s)−1(yi− ŷi)′(yi− ŷi) ; ŷi = Xiβ+Zibi, and s = σ2. The conditional
density of the normal random effect is:

f(bi) =
1

(2π)q/2|D|1/2
exp

(
−1

2
bi
′D−1bi

)
= 2π−q/2|D|−1/2 exp{g(bi)}, (S.2.6)

where g(bi) = −1
2bi
′D−1bi. Thus, the marginal density for the linear mixed model is:

f̃(yi) = (2π)−(ni+q)/2s−ni/2|D|−1/2

∫
exp{f(yi) + g(bi)}dbi. (S.2.7)

From (S.2.7) the likelihood derives as:

L(β, D, s) =

N∏
i=1

f̃(yi), (S.2.8)

and the corresponding log-likelihood is (18). Thus, the log-likelihood contribution of the
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ith individual takes the form:

`i(β, D, s) = log

[
(2π)−(ni+q)/2s−ni/2|D|−1/2

∫
exp{f(yi) + g(bi)}dbi

]

= −(ni + q)

2
log(2π)− ni

2
log(s)− 1

2
log |D|

+ log

∫
exp[f(yi) + g(bi)]dbi

∝ −ni
2

log(s)− 1

2
log |D|+ logKi, (S.2.9)

where Ki =
∫
Iidbi and Ii = exp{f(yi) + g(bi)}.

To derive the local influence as described in (21), the components of local influence
need to be derived. Lesaffre and Verbeke (1998) showed that Ci equals:

Ci = 2||L̈−1|| ||∆i||2 cos(ϕi), (S.2.10)

where ϕi is the angle between vec(−L̈−1) and vec(∆i∆
′
i), ∆i is the first derivative of

`i(β, D, s) with respect to the model parameters, and L̈−1 is the s× s matrix of second
derivatives of `(β, D, s) with respect to the parameters.

The procedure to construct derivatives with respect to the parameters is as follows.
First, the derivative with respect to fixed effect β is:

∂`i(β, D, s)

∂β
=

1

Ki

∫
Ii

1

s
Xi
′(yi − ŷi)dbi =

1

s
Xi
′Li
Ki
, (S.2.11)

where

Ki =

∫
Iidbi =

∫
exp[f(yi) + g(bi)]dbi = cφ̃(yi) (S.2.12)

and

Li =

∫
Ii(yi − ŷi)dbi

=

∫
Ii(yi −Xiβ −Zibi)dbi

= yi

∫
Iidbi −Xiβ

∫
Iidbi −Zi

∫
Iibidbi. (S.2.13)
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Component
∫
Iibidbi of Li can be rewritten as:∫

Iibidbi =

∫
cφ̃(yi, bi)bidbi

= c

∫
φ̃(yi)φ̃(bi|yi)bidbi

= cφ̃(yi)

∫
biφ̃(bi|yi)dbi

= cφ̃(yi)E(bi|yi)

= cφ̃(yi)DZ
′
iV
−1
i (yi −Xiβ)

= cφ̃(yi)DZ
′
iV
−1
i ri, (S.2.14)

where ri = yi −Xiβ. Expanding the component functions of (S.2.11) leads to:

∂`i(β, D, s)

∂β
=

1

s
Xi
′Li
Ki

=
1

s
Xi
′ {yi −Xiβ −ZiDZ

′
iV
−1
i (yi −Xiβ)

}
=

1

s
Xi
′ {(Ini −ZiDZ

′
iV
−1
i )(yi −Xiβ)

}
=

1

s
Xi
′ [{(s+ZiDZ

′
i)V

−1
i −ZiDZ

′
iV
−1
i

}
(yi −Xiβ)

]
=

1

s
Xi
′sV −1

i (yi −Xiβ)

= Xi
′V −1

i ri. (S.2.15)

Second, the derivative with respect to s ≡ σ2 is as follows:

∂`i(β, D, s)

∂s
= −ni

2s
+

1

Ki

∫
Ii

1

2s2
(yi − ŷi)′(yi − ŷi)dbi

= −ni
2s
− 1

sKi

∫
Iif(yi)dbi

= −1

s

{
ni
2

+
1

Ki

∫
Iif(yi)dbi

}
, (S.2.16)
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where Ki is given in (S.2.12). The component
∫
Iif(yi)dbi can be rewritten as:∫

Iif(yi)dbi = − 1

2s

∫
Ii(yi −Xiβ −Zibi)

′(yi −Xiβ −Zibi)dbi

= − 1

2s

∫
Ii(ri −Zibi)

′(ri −Zibi)dbi

= − 1

2s

(
ri
′ri

∫
Iidbi − ri′Zi

∫
biIidbi

)

− 1

2s

{
−
(∫

biIidbi

)′
Z ′iri +

∫
bi
′Z ′iZibiIidbi

}

= − 1

2s
cφ̃(yi)

{
ri
′ri − ri′ZiE(bi|yi)

}
− 1

2s
cφ̃(yi)

[
−(E(bi|yi))′Z ′iri + E(bi

′Z ′iZibi)
]
, (S.2.17)

where E(bi|yi) = DZ ′iV
−1
i ri and

E(bi
′Z ′iZibi) = tr{ZiVar(bi|yi)Z ′i}+ E(bi|yi)′Z ′iZiE(bi|yi)

= tr
{
Zi(Z

′
is
−1Zi +D−1)−1Z ′i

}
+ ri

′V −1
i ZiD

′Z ′iZiDZ
′
iV
−1
i ri

= tr
[
Zi

{
D −DZ ′i(s+ZiDZ

′
i)
−1ZiD

}
Z ′i
]

+ ri
′V −1

i ZiD
′Z ′iZiDZ

′
iV
−1
i ri

= tr
{
ZiDZ

′
i + (Ini − V −1

i ZiDZ
′
i)
}

+ ri
′V −1

i ZiD
′Z ′iZiDZ

′
iV
−1
i ri

= tr
(
ZiDZ

′
iV
−1
i s
)

+ ri
′V −1

i ZiD
′Z ′iZiDZ

′
iV
−1
i ri

= tr
{

(V i − s)V −1
i s
}

+ ri
′V −1

i ZiD
′Z ′iZiDZ

′
iV
−1
i ri

=
{
nis− s2tr(V −1

i )
}

+ ri
′V −1

i ZiD
′Z ′iZiDZ

′
iV
−1
i ri. (S.2.18)
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Thus, (S.2.17) simplifies to:∫
Iif(yi)dbi = − 1

2s
cφ̃(yi)

{
ri
′ (Ini −ZiDZ

′
iV
−1
i − V

−1
i ZiDZ

′
i

)
ri
}

− 1

2s
cφ̃(yi)

{
ri
′V −1

i ZiD
′Z ′iZiDZ

′
iV
−1
i ri + nis− s2tr(V −1

i )
}

= − 1

2s
cφ̃(yi)

[
ri
′ {(Ini − V −1

i ZiDZ
′
i)(Ini − V −1

i ZiDZ
′
i)
′} ri]

− 1

2s
cφ̃(yi)

{
nis− s2tr(V −1

i )
}

= − 1

2s
cφ̃(yi)

[
ri
′MiM

′
iri +

{
nis− s2tr(V −1

i )
}]

= − 1

2s
cφ̃(yi)

{
ri
′V −1
i ssV −1

i ri + nis− s2tr(V −1
i )

}
, (S.2.19)

where Mi = {V −1
i (s+ZiDZ

′
i)− V −1

i ZiDZ
′
i}.

Expanding the components of (S.2.16) leads to:

∂`i(β, D, s)

∂s
= −1

s

{
ni
2

+
1

Ki

∫
Iif(yi)dbi

}

= −ni
2s

+
1

2
ri
′V −1
i V −1

i ri +
ni
2s
− 1

2
tr(V −1

i )

= −1

2

{
tr(V −1

i )− ri′V −1
i V −1

i ri
}
. (S.2.20)

Third, the derivative with respect to D is:

∂`i(β, D, s)

∂djk

= −1

2
(2− δjk)(D−1)jk +

1

Ki

∫
Ii
∂g(bi)

∂djk
dbi,

= −1

2
(2− δjk)(D−1)jk +

1

2Ki

∫
Iibi

′D−1EjkD
−1bidbi, (S.2.21)

where djk is the (j, k) element of D. Further, Eij is a matrix of zeros everywhere except
a one in entries (j, k) and (k, j). The integral part of the first derivative with respect to
D can be written as:∫

Iibi
′D−1EjkD

−1bidbi = cφ̃(yi)

∫
bi
′D−1EjkD

−1biφ̃(bi|yi)dbi,

= cφ̃(yi)E(bi
′D−1EjkD

−1bi|yi), (S.2.22)
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where

E(bi
′D−1EjkD

−1bi|yi)

= E{tr(bi′D−1EjkD
−1bi)}

= tr[{D−1EjkD
−1E(bi

′bi|yi)}]

= tr[D−1EjkD
−1
{

Var(bi|yi) + E(bi|yi)′E(bi|yi)
}

]

= tr{D−1EjkD
−1Var(bi|yi)}+ E(bi|yi)′D−1EjkD

−1E(bi|yi)

= tr[D−1EjkD
−1
{
D −DZ ′i(s+ZiDZ

′
i)
−1ZiD

}
] + ri

′V −1ZiEjkZ
′
iV
−1ri

= tr
{
D−1EjkD

−1
(
D −DZ ′iV −1ZiD

)}
+ (2− δjk)ri′V −1Zi

(j)Zi
(k)′Z ′iV

−1ri

= tr(D−1Ejk)− tr(EjkZ
′
iV
−1ZiD) + (2− δjk)ri′V −1Zi

(j)Zi
(k)′Z ′iV

−1ri

= (2− δjk)(D−1)jk − (2− δjk)Zi
(j)′V −1Zi

(k)

+(2− δjk)ri′V −1Zi
(j)Zi

(k)′Z ′iV
−1ri

= (2− δjk)
{

(D−1)jk −Zi
(j)′V −1Zi

(k) + ri
′V −1Zi

(j)Zi
(k)′Z ′iV

−1ri

}
. (S.2.23)

Expanding the components of (S.2.21) leads to:

∂`i(β, D, s)

∂djk

= −1

2
(2− δjk)

(
Zi

(j)′V −1Zi
(k) − ri′V −1Zi

(j)Zi
(k)′Z ′iV

−1ri

)
. (S.2.24)

This integral-based result, based on (S.2.15), (S.2.20), and (S.2.24) is identical to the
standard one of Lesaffre and Verbeke (1998). Hence also, the same interpretable compo-
nents as in (S.2.2) ensue.

S.8

Page 31 of 63

URL: http://mc.manuscriptcentral.com/cjas

Journal of Applied Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 23, 2016 Journal of Applied Statistics locinf20˙JAS

S.3. Local Influence for the Poisson-normal Model

S.3.1 Explicit Marginal Expression

The log-likelihood contribution for the ith subject based on closed form solution (7) is
defined as:

`i(β, D) = log

(
1∏ni

j=1 yij !

)
+ log

∑
t

(−1)
∑ni
j=1 tj∏ni

j=1 tj !
· exp


ni∑
j=1

(yij + tj)x
′
ijξ


× exp

1

2


ni∑
j=1

(yij + tj)z
′
ij

D


ni∑
j=1

(yij + tj)zij




∝ log

{∑
t

(−1)
∑ni
j=1 tj∏ni

j=1 tj !
· exp

(
Vti
′β +

1

2
Wti

′DWti

)}

∝ log

(∑
t

Kti

)
, (S.3.1)

where

Vti =

ni∑
j=1

(yij + tj)xij ,

Wti =

ni∑
j=1

(yij + tj)zij ,

Kti =
(−1)

∑ni
j=1 tj∏ni

j=1 tj !
· exp

(
Vti
′β +

1

2
Wti

′DWti

)
.

The first derivative with respect to the fixed effects is:

∂`i(β, D)

∂β
=

1∑
tKti

∑
t

(−1)
∑ni
j=1 tj∏ni

j=1 tj !
· exp

(
Vti
′β +

1

2
Wti

′DWti

)
Vti ,

=

∑
tKtiVti∑
tKti

. (S.3.2)

Further,the first derivative with respect to the D matrix components is:

∂`i(β, D)

∂djk
=

1∑
tKti

∑
t

Kti

(
1

2
Wti

′DEjkWti

)
, (S.3.3)

where Eij is as in Section 5.1.2. The infinite series of t in all first derivatives is as defined
in (S.3.2) and (S.3.3); it may lead to computational difficulties. Hence, the integral-based
expression here is more promising, as will be demonstrated next.
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S.3.2 Integral-based Expression

To circumvent the occurrence of infinite series as in the previous section, the likelihood
based on integral approach was used to derive the interpretable components of local
influence. From the marginal likelihood in integral form (3), the joint marginal density
for the Poisson-normal model could be written:

P(Yi = yi) =

∫ ni∏
j=1

1

yij !
exp{(γij + cij)yij} exp[− exp{(γij + cij)}]

×
exp(−1

2bi
′D−1bi)

(2π)q/2|D|1/2
dbi

=


ni∏
j=1

1

yij !

exp (γijyij)

(2π)q/2|D|1/2


×
∫ ni∏

j=1

exp

{
cijyij − exp(γij + cij)−

1

2
bi
′D−1bi

}
dbi

=
1

(2π)q/2|D|1/2

 ni∏
j=1

1

yij !

 exp


ni∑
j=1

(γijyij)

 Ii, (S.3.4)

where γij = x′ijβ and cij = z′ijbi. Further, Ii is as follows:

Ii =

∫ ni∏
j=1

exp

{
cijyij − exp(γij + cij)−

1

2
bi
′D−1bi

}
dbi

=

∫
exp

 ni∑
j=1

{cijyij − exp(γij + cij)} −
1

2
bi
′D−1bi

 dbi
=

∫
exp

{
f̃(yi) + f̃(bi)

}
dbi =

∫
Aidbi = cη̃(yi),

where:

f̃(yi) =

ni∑
j=1

{cijyij − exp(γij + cij)} ,

f̃(bi) = −1

2
bi
′D−1bi,

Ai = exp
{
f̃(yi) + f̃(bi)

}
.
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From (S.3.4), the log-likelihood contribution for subject i derives as:

`i(β, D) = −q
2

log(2π)− 1

2
log |D|+ log

 ni∏
j=1

1

yij !

+

ni∑
j=1

(γijyij) + log Ii

∝ −1

2
log |D|+

ni∑
j=1

(γijyij) + log Ii. (S.3.5)

First, we construct the first derivative with respect to the fixed-effect parameter:

∂`i(β, D)

∂β
=

ni∑
j=1

xijyij +
1

Ii

∂Ii
∂β

. (S.3.6)
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The first derivative of Ii can be rewritten as:

∂Ii
∂β

=
∂

∂β

∫ ni∏
j=1

exp

{
cijyij − exp(γij + cij)−

1

2
bi
′D−1bi

}
dbi

=

∫
∂

∂β

ni∏
j=1

exp(cijyij) exp{− exp(γij + cij)} exp

(
−1

2
bi
′D−1bi

)
dbi

=

∫  ∂

∂β
exp

−
ni∑
j=1

exp(γij + cij)


 exp


ni∑
j=1

(cijyij)−
1

2
bi
′D−1bi

 dbi

=

∫ exp

−
ni∑
j=1

exp(γij + cij)

 · ∂∂β
−

ni∑
j=1

exp(γij + cij)




× exp


ni∑
j=1

(cijyij)−
1

2
bi
′D−1bi

 dbi

=

∫ exp

−
ni∑
j=1

exp(γij + cij)

 ·
−

ni∑
j=1

exp(γij + cij)xij




× exp


ni∑
j=1

(cijyij)−
1

2
bi
′D−1bi

 dbi

= −
∫
Ai

ni∑
j=1

exp(γij + cij)xijdbi

= −cη̃(yi)

∫
η̃(bi|yi)

ni∑
j=1

exp(γij + cij)xijdbi

= −cη̃(yi)

ni∑
j=1

{
exp(x′ijβ)xij

∫
exp(z′ijbi)η̃(bi|yi)dbi

}

= −cη̃(yi)

ni∑
j=1

[
exp(x′ijβ)xijE{exp(z′ijbi|yi)}

]

= −cη̃(yi)

ni∑
j=1

{
exp

(
x′ijβ +

1

2
z′ijDzij

)
xij

}
. (S.3.7)
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Expanding the component function of (S.3.6) leads to:

∂`i(β, D)

∂β
=

ni∑
j=1

xijyij +
1

Ii

∂Ii
∂β

=

ni∑
j=1

{
xijyij − exp

(
x′ijβ +

1

2
z′ijDzij

)
xij

}

=

ni∑
j=1

{
yij − exp

(
x′ijβ +

1

2
z′ijDzij

)}
xij

=

ni∑
j=1

{yij − E(yij |bi)}xij

=

ni∑
j=1

rijxij . (S.3.8)

Second, the first derivative with respect to the D components is:

∂`i(β, D)

∂djk
= −1

2
(2− δjk)(D−1)jk +

1

Ii

∂Ii
∂djk

. (S.3.9)

The first derivative of Ii with respect to D can be derived as:

∂Ii
∂djk

=

∫
exp f̃(yi)

∂

∂djk
exp f̃(bi)dbi

=

∫
exp f̃(yi) exp f̃(bi)

{
−1

2
bi
′(−D−1EjkD

−1)bi

}
dbi

=
1

2

∫
Aibi

′D−1EjkD
−1bidbi

=
1

2
cη̃(yi)

∫
η̃(bi|yi)bi′D−1EjkD

−1bidbi

=
1

2
cη̃(yi)E(bi

′D−1EjkD
−1bi)

=
1

2
cη̃(yi)E

{
tr(bi

′D−1EjkD
−1bi)

}
=

1

2
cη̃(yi)tr

{
D−1EjkD

−1E(bi
′bi|yi)

}
. (S.3.10)

The quantity E(bi
′bi|yi) is derived by means of the closed-form solution for the Poisson-
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normal model, as follows:

E(bi
′bi|yi) =

∫
bi
′biη̃(bi|yi)dbi

=

∫
bi
′bi
η̃(yi|bi)η̃(bi)

η̃(yi)
dbi

=

∫
bi
′bi

∑
t Fij exp(ω′ijbi − 1

2bi
′D−1bi)

|D|1/2(2π)q/2
· 1∑

t Fij exp(1
2ω
′
ijDωij)

dbi

=
1∑

t Fij exp(1
2ω
′
ijDωij)

· 1

|D|1/2(2π)q/2

×
∑
t

Fij

∫
bi
′bi exp

(
ω′ijbi −

1

2
bi
′D−1bi

)
dbi, (S.3.11)

where

Fij =
∑
t

(−1)
∑ni
j=1 tj∏ni

j=1 tj !
· exp


ni∑
j=1

(yij + tj)x
′
ijξ

 (S.3.12)

and ωij =
∑ni

j=1(yij + tj)zij . We now reorganize the components of the exponential

expression under the integral form in (S.3.11) as follows:

−1

2
bi
′D−1bi + ω′ijbi = −1

2
(bi − k)′D−1(bi − k) + `, (S.3.13)

where

k = Dωij , ` =
1

2
ω′ijDωij , b̃i = bi − k.
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Combining (S.3.11) and (S.3.13) produces:

E(bi
′bi|yi) =

∑
t Fij∑

t Fij exp(1
2ω
′
ijDωij)

· 1

|D|1/2(2π)q/2

×
∫

(b̃i + k)′(b̃i + k) exp

(
−1

2
b̃i
′
D−1b̃i + `

)
dbi

=

∑
t Fij exp(1

2ω
′
ijDωij)∑

t Fij exp(1
2ω
′
ijDωij)

· 1

|D|1/2(2π)q/2

×
∫

(b̃i + k)′(b̃i + k) exp

(
−1

2
b̃i
′
D−1b̃i

)
dbi

=

∑
t Fij exp(1

2ω
′
ijDωij)∑

t Fij exp(1
2ω
′
ijDωij)

· E
{

(b̃i + k)′(b̃i + k)
}

=

∑
t Fij exp(1

2ω
′
ijDωij)∑

t Fij exp(1
2ω
′
ijDωij)

· E
{
b̃i
′
b̃i + 2b̃ik + k′k

}

=

∑
t Fij exp(1

2ω
′
ijDωij)∑

t Fij exp(1
2ω
′
ijDωij)

· E
(
bi
′bi
)

= Var(bi). (S.3.14)

Plugging (S.3.14) into (S.3.10) yields:

∂Ii
∂djk

=
1

2
cη̃(yi)tr

{
D−1EjkD

−1E(bi
′bi|yi)

}
=

1

2
cη̃(yi)tr

{
D−1EjkD

−1Var(bi)
}

=
1

2
cη̃(yi)tr

(
D−1EjkD

−1
)

Var(bi)

=
1

2
cη̃(yi)(2− δjk)(D−1D−1)jkVar(bi). (S.3.15)

Thus, (S.3.9) leads to:

∂`i(β, D)

∂djk
= −1

2
(2− δjk)(D−1)jk +

1

Ii

∂Ii
∂djk

= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
, (S.3.16)

where δjk is one if j is equal to k, and zero otherwise. We can rewrite the local influence
expression as in (S.2.10), where ∆i, the first-order partial derivative of the contribution
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of the ith subject to the log-likelihood, is given by:

∆i =



∑ni
j=1 rijxij

−1
2(D−1)11 + 1

2(D−1D−1)11Var(bi)

−(D−1)12 + (D−1D−1)12Var(bi)

−1
2(D−1)22 + 1

2(D−1D−1)22Var(bi)

·
·
·

−(D−1)q−1,q + (D−1D−1)q−1,qVar(bi)

−1
2(D−1)qq + 1

2(D−1D−1)qqVar(bi)



.

Rewriting ||∆i||2 as the sum of the squares of the contributions for the ith individual
yields:

||∆i||2 =

 ni∑
j=1

rijxij

 ni∑
j=1

rijxij

′

+

q∑
k=1

{
−1

2
(D−1)kk +

1

2
(D−1D−1)kkVar(bi)

}2

+
∑
k<l

{
−(D−1)kl + (D−1D−1)klVar(bi)

}2

=

 ni∑
j=1

rijxij

 ni∑
j=1

rijxij

′

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

. (S.3.17)

Let Ci = C1i + C2i with:

C1i = 2||L̈−1|| ||rixi||2 cos(ϕi), (S.3.18)

C2i =
1

2
||L̈−1|| ||(D−1)kl − (D−1D−1)klVar(bi)||2 cos(ϕi), (S.3.19)

where rixi =
∑ni

j=1 rijxij . Note that C1i and C2i are the contributions of subject i to
local influence Ci from β and D, respectively. Reconstructing the component C1i leads
to:

||ri@i||2 = tr(rixix
′
iri
′) = vec(xix

′
i)vec(riri

′) = cos(αi)||xix′i|| ||ri||2, (S.3.20)

where cos(αi) is the angle between vec(xix
′
i) and vec(riri

′). Further, the component C2i
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is:

||(D−1)kl − (D−1D−1)klVar(bi)||2

= tr
[{

(D−1)kl − (D−1D−1)klVar(bi)
}2
]

= tr
{

(D−1)2
kl

}
− tr

{
2(D−1)kl(D

−1D−1)klVar(bi)
}

+ tr
{

(D−1D−1)2
klVar(bi)

2
}
. (S.3.21)

Thus, it follows from (S.3.20) and (S.3.21) that:

C1i = 2||L̈−1|| ||xix′i|| ||ri||2 cos(αi) cos(ϕi), (S.3.22)

C2i =
1

2
||L̈−1|| cos(ϕi)

×
[
tr
{

(D−1)2
kl

}
− tr

{
2(D−1)kl(D

−1D−1)klVar(bi)
}

+tr
{

(D−1D−1)2
klVar(bi)

2
}]
. (S.3.23)

Hence, the interpretable components of Ci in the case of the Poisson-normal model can
be described using the ‘length of the fixed effect’ ||xix′i||, the ‘squared length of the
residual’ ||ri||2, and the ‘squared of random effect variability’ Var(bi)

2.

S.4. Local Influence for the Probit-normal Model

Given that the numerical route was generically described in Section 5.1.3, we will focus
on the explicit calculations only, using the integral method. The general binary case of
the logit-based model can be described as:

P(yi|β, bi) =

ni∏
j=1

λ
yij
ij (1− λij)(1−yij), (S.4.1)

where κij is (10). The marginal joint density function between probit response and normal
random effect takes the following form:

f(yi = 1)

=
1

(2π)q/2|D|1/2

∫ 
ni∏
j=1

Φni(X
′
iξ +Z ′ibi)

 exp

(
−1

2
bi
′D−1bi

)
dbi. (S.4.2)

Above expression, as explained in Molenberghs (2010) leads to (11). The log-likehood
contribution for the ith subject is

`i(β, D) ∝ 1

2
log |L| − 1

2
log Ii,
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where s = Xiβ, u = −1
2s
′Ls and

Ii =

∫ Xiβ

−∞
exp

(
−1

2
s′Ls

)
ds

=

∫ Xiβ

−∞
exp(u)(s−1)′L−1du

= {exp(Xiβ)} · {(Xiβ)−1}′L−1.

The first derivative with respect to the fixed effects is

∂`i(β, D)

∂β
=

1

Ii

∂Ii
∂β

= [I − (Xiβ)−1]Xi.

Further, the derivative with respect to D is

∂`i(β, D)

∂djk
=

1

2L

∂L

∂djk
+

1

Ii

∂Ii
∂djk

, (S.4.3)

where

∂L

∂djk
=

∂

∂djk

{
Ini − Zi

(
D−1 + Z ′iZi

)−1
Z ′i

}
= Ini − ZiMiM

′
iD
−1EjkD

−1Z ′i

= Ini − ZiMiM
′
i(D

−1D−1)jkZ
′
i, (S.4.4)

and

∂Ii
∂djk

=
∂

∂djk

[
{exp(Xiβ)} ·

{
(Xiβ)−1

}′
L−1

]
= {exp(Xiβ)} ·

{
(Xiβ)−1

}′
L−1L−1 ∂L

∂djk

= {exp(Xiβ)} ·
{

(Xiβ)−1
}′
L−1L−1

×
{
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

}
, (S.4.5)

where Mi =
(
D−1 + Z ′iZi

)−1
. Thus, (S.4.3) takes the following form:

∂`i(β, D)

∂djk
=

3

2
L−1

{
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

}
. (S.4.6)

The first-order derivative for ith subject yields:

||∆i||2 = {I − (Xiβ)−1}2XiX
′
i

+
∑
k,l

9

4
L−2

{
Ini − ZiMiM

′
i(D

−1D−1)jkZ
′
i

}2
(S.4.7)
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Hence, reformulating above expression leads to the components of local influence for the
probit-normal model: ||Xi||2 and ||ZiZi′||2.

S.5. Local Influence for the Logit-normal Model

In this section, we will derive local influence using the integral-based approach for the
logit-normal model. The general binary case of logit model follows from:

P(yi|β, bi) =

ni∏
j=1

λ
yij
ij (1− λij)(1−yij), (S.5.1)

where

κij =
exp(x′ijξ + z′ijbi)

1 + exp(x′ijξ + z′ijbi)
.

The marginal joint density function between logit response and normal random effect
takes the following form:

f(yi = 1) =
1

(2π)q/2|D|1/2

∫ ni∏
j=1

λij exp(−1

2
bi
′D−1bi)dbi. (S.5.2)

The log-likelihood contribution for the ith subject is

`i(β, D) = log

{
1

(2π)q/2|D|1/2

}
+ log


∫ ni∏

j=1

λij exp

(
−1

2
bi
′D−1bi

)
dbi


∝ −1

2
log |D|+ log Ii, (S.5.3)

where Ii =
∫
Jidbi = cτ̃(yi) and

Ji =

ni∏
j=1

λij exp

(
−1

2
bi
′D−1bi

)
. (S.5.4)

The first derivative with respect to fixed effects:

∂`i(β, D)

∂β
=

1

Ii

∫
∂

∂β

 ni∏
j=1

λij

 · exp

(
−1

2
bi
′D−1bi

)
dbi

=
1

Ii

∫  ni∏
j=1

λij

 ni∑
j=1

1

λij

∂λij
∂β

 exp

(
−1

2
bi
′D−1bi

)
dbi, (S.5.5)

where

∂λij
∂β

=
exp(µij)xij{1 + exp(µij)} − exp(µij) exp(µij)xij

{1 + exp(µij)}2
=

λijxij
1 + exp(µij)

.
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Thus, equation (S.5.5) leads to:

∂`i(β, D)

∂β
=

1

Ii

∫
Ji

 ni∑
j=1

xij
1 + exp(µij)

 dbi

=

ni∑
j=1

xij

∫
1

1 + exp(µij)
τ̃(bi|yi)dbi, (S.5.6)

where µij = x′ijξ + z′ijbi.
Further, the first derivative with respect to D is:

∂`i(β, D)

∂djk
= −1

2
(2− δjk)(D−1)jk +

1

2Ii

∫
Jibi

′D−1EjkD
−1bidbi. (S.5.7)

Expanding the integral expression of (S.5.7) leads the same result as (S.3.14) and (S.6.12).
Thus, the first derivative with respect to D takes the following form:

∂`i(β, D)

∂djk
= −1

2
(2− δjk)(D−1)jk +

1

2
tr
{
D−1EjkD

−1Var(bi)
}

= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
. (S.5.8)

The vector ∆i of first-order partial derivative of the contribution of the ith subject to
the log-likelihood is now given by:

∆i =



∑ni
j=1 xij

∫
1

1+exp(µij) τ̃(bi|yi)dbi
−1

2(D−1)11 + 1
2(D−1D−1)11Var(bi)

−(D−1)12 + (D−1D−1)12Var(bi)

−1
2(D−1)22 + 1

2(D−1D−1)22Var(bi)

·
·
·

−(D−1)q−1,q + (D−1D−1)q−1,qVar(bi)

−1
2(D−1)qq + 1

2(D−1D−1)qqVar(bi)



.
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Rewriting ||∆i||2 as the sum of squares of the contributions for the ith individual yields:

||∆i||2 =


ni∑
j=1

xij

∫
1

1 + exp(µij)
τ̃(bi|yi)dbi


2

+

q∑
k=1

{
−1

2
(D−1)kk +

1

2
(D−1D−1)kkVar(bi)

}2

+
∑
k<l

{
−(D−1)kl + (D−1D−1)klVar(bi)

}2

∝

 ni∑
j=1

xij

 ni∑
j=1

xij

′

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

. (S.5.9)

Reconstructing the components of fixed- and random-effects as in the Poisson and Weibull
cases, leads to:

C1i = 2||L̈−1|| ||xi||2 cos(ϕi), (S.5.10)

C2i =
1

2
||L̈−1|| cos(ϕi)

×
[
tr
{

(D−1)2
kl

}
− tr

{
2(D−1)kl(D

−1D−1)klVar(bi)
}

+tr
{

(D−1D−1)2
klVar(bi)

2
}]
. (S.5.11)

Hence, the interpretable components of Ci for the logit-normal model can be described us-
ing the length of fixed effect ||xi||2 and the squared of random effect variability Var(bi)

2,
in analogy with the Poisson-normal and Weibull-normal models.

S.6. Local Influence for the Weibull-normal Model

The general Weibull model for repeated measurement data as described in (14) can be
re-expressed as:

f(yi|θi, bi) =

ni∏
j=1

λρyρ−1
ij exp(µij) exp{−λyρij exp(µij)}

= λρ

 ni∏
j=1

yρ−1
ij

 exp

 ni∑
j=1

{
µij − λyρij exp(µij)

}

= λρ

 ni∏
j=1

yρ−1
ij

 exp
{
f̃(yi)

}
, (S.6.1)
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where µij = x′ijξ + z′ijbi and f̃(yi) =
∑ni

j=1

{
µij − λyρij exp(µij)

}
. Thus, the marginal

density of the Weibull-model takes the following form:

f(yi) =

∫
f(yi|β, bi)f(bi|D) dbi

=
λρ
(∏ni

j=1 y
ρ−1
ij

)
(2π)q/2|D|1/2

∫
exp[f̃(yi) + g̃(bi)]dbi, (S.6.2)

where g̃(bi) = −bi′D−1bi/2. The log-likelihood contribution for the ith subject can be
written as:

`i(β, D) = log

λρ
(∏ni

j=1 y
ρ−1
ij

)
(2π)q/2|D|1/2

∫
exp{f̃(yi) + g̃(bi)}dbi


∝ −1

2
log |D|+ logKi, (S.6.3)

where Ki =
∫
Iidbi = cφ̃(yi) and Ii = exp{f̃(yi) + g̃(bi)}.

The first derivative of the log-likelihood with respect to the fixed effects takes the
following form:

∂`i(β, D)

∂β
=

1

Ki

∫
Ii

 ni∑
j=1

{xij − λyρij exp(µij)xij ]

 dbi

=

ni∑
j=1

xij −
1

Ki

ni∑
j=1

{
λyρijxij

∫
Ii exp(µij)dbi

}
. (S.6.4)

The component relative to the integral part in (S.6.4) can be rewritten as:∫
Ii exp(µij)dbi = cφ̃(yi)

∫
exp(µij)φ̃(bi|yi)dbi

= cφ̃(yi) exp(x′ijβ)

∫
exp(z′ibi)φ̃(bi|yi)dbi

= cφ̃(yi) exp(x′ijβ) exp

(
1

2
z′ijDzij

)

= cφ̃(yi) exp

(
x′ijβ +

1

2
z′ijDzij

)
. (S.6.5)

Expanding the component functions in (S.6.4) leads to:

∂`i(β, D)

∂β
=

ni∑
j=1

xij − λ
ni∑
j=1

yρijxij exp(µij). (S.6.6)
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Further, the first derivative with respect to the D-components is:

∂`i(β, D)

∂djk
= −1

2
(2− δjk)(D−1)jk +

1

2Ki

∫
Iibi

′D−1EjkD
−1bidbi. (S.6.7)

Solving the integral expression leads to:∫
Iibi

′D−1EjkD
−1bidbi = cφ̃(yi)E(bi

′D−1EjkD
−1bi|yi)

= cφ̃(yi)E{tr(bi′D−1EjkD
−1bi)}

= cφ̃(yi)tr{D−1EjkD
−1E(bi

′bi|yi)}, (S.6.8)

where Ejk is as in Section 5.1.2. Expectation E(bi
′bi|yi) is derived using the closed form

for the Weibull-normal model:

E(bi
′bi|yi)

=

∫
bi
′biφ̃(bi|yi)dbi

=

∫
bi
′bi
φ̃(yi|bi)η̃(bi)

φ̃(yi)
dbi

=
1

φ̃(yi)

∫
bi
′bi
∑
m

ni∏
j=1

(−1)mj

mj !
λmj+1ρy

(mj+1)ρ−1
ij

× 1

|D|1/2(2π)q/2
exp

{
(mj + 1)µij −

1

2
bi
′D−1bi

}
dbi

=
1

φ̃(yi)

∑
m

ni∏
j=1

(−1)mj

mj !
λmj+1ρy

(mj+1)ρ−1
ij

× 1

|D|1/2(2π)q/2

∫
bi
′bi exp

{
(mj + 1)µij −

1

2
bi
′D−1bi

}
dbi, (S.6.9)

where φ̃(yi) equals (15). Reorganizing the components of the exponential expression in
the integrand of (S.6.9) leadas to:

−1

2
bi
′D−1bi + (mj + 1)µij = −1

2
(bi − k)′D−1(bi − k) + `, (S.6.10)

with

k = (mj + 1)Dzij , ` = (mj + 1)[x′ijβ +
1

2
(mj + 1)z′ijDzij ], b̃i = bi − k.
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Rewriting φ̃(yi) leads to:

φ̃(yi) =
∑
m

ni∏
j=1

(−1)mj

mj !
λmj+1ρy

(mj+1)ρ−1
ij exp(`). (S.6.11)

Combining (S.6.9) and (S.6.10) produces:

E(bi
′bi|yi) =

1

φ̃(yi)

∑
m

ni∏
j=1

(−1)mj

mj !
λmj+1ρy

(mj+1)ρ−1
ij · exp(`)

|D|1/2(2π)q/2

×
∫

(b̃i + k)′(b̃i + k) exp

(
−1

2
b̃i
′
D−1b̃i

)
db̃i

=
1

φ̃(yi)

∑
m

ni∏
j=1

(−1)mj

mj !
λmj+1ρy

(mj+1)ρ−1
ij exp(`)E

{
(b̃i + k)′(b̃i + k)

}

=
1

φ̃(yi)

∑
m

ni∏
j=1

(−1)mj

mj !
λmj+1ρy

(mj+1)ρ−1
ij exp(`)E

(
bi
′bi
)

= Var(bi). (S.6.12)

Plugging (S.6.12) into (S.6.8) and (S.6.7) yields:

∂`i(β, D)

∂djk
= −1

2
(2− δjk)(D−1)jk +

1

2
tr
{
D−1EjkD

−1Var(bi)
}

= −1

2
(2− δjk)

{
(D−1)jk − (D−1D−1)jkVar(bi)

}
, (S.6.13)

where δjk is as before.
The vector ∆i of first-order partial derivative of the contribution of the ith subject to

the log-likelihood is now given by:

∆i =



∑ni
j=1 xij − λ

∑ni
j=1 y

ρ
ijxij exp(µij)

−1
2(D−1)11 + 1

2(D−1D−1)11Var(bi)

−(D−1)12 + (D−1D−1)12Var(bi)

−1
2(D−1)22 + 1

2(D−1D−1)22Var(bi)

·
·
·

−(D−1)q−1,q + (D−1D−1)q−1,qVar(bi)

−1
2(D−1)qq + 1

2(D−1D−1)qqVar(bi)



.
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Rewriting ||∆i||2 as the sum of squares of the contributions for the ith individual yields:

||∆i||2 =


ni∑
j=1

xij −Qi


2

+

q∑
k=1

{
−1

2
(D−1)kk +

1

2
(D−1D−1)kkVar(bi)

}2

+
∑
k<l

{
−(D−1)kl + (D−1D−1)klVar(bi)

}2

=

 ni∑
j=1

xij

 ni∑
j=1

xij

′ − 2

ni∑
j=1

xijQ
′
i +QiQ

′
i

+
∑
k,l

{
−1

2
(D−1)kl +

1

2
(D−1D−1)klVar(bi)

}2

, (S.6.14)

where Qi = λ
∑ni

j=1 y
ρ
ijxij exp(µij). Write Ci = C1i + C2i, with:

C1i = 2||L̈−1||
{
||xi||2 − 2xiQi + ||Qi||2

}
cos(ϕi), (S.6.15)

C2i =
1

2
||L̈−1|| ||(D−1)kl − (D−1D−1)klVar(bi)||2 cos(ϕi), (S.6.16)

where xi =
∑ni

j=1 xij . Note that C1i and C2i are the contributions of the ith subject to
local influence contributions Ci from β and D, respectively. Rewriting the component of
C2i leads to:

||(D−1)kl − (D−1D−1)klVar(bi)||2

= tr
[{

(D−1)kl − (D−1D−1)klVar(bi)
}2
]

= tr
{

(D−1)2
kl

}
− tr

{
2(D−1)kl(D

−1D−1)klVar(bi)
}

+ tr
{

(D−1D−1)2
klVar(bi)

2
}
. (S.6.17)

It then follows that:

C1i = 2||L̈−1||
(
||xi||2 − 2xiQi + ||Qi||2

)
cos(ϕi), (S.6.18)

C2i =
1

2
||L̈−1|| cos(ϕi)

×
[
tr
{

(D−1)2
kl

}
− tr

{
2(D−1)kl(D

−1D−1)klVar(bi)
}

+tr
{

(D−1D−1)2
klVar(bi)

2
}]
. (S.6.19)

Hence, the interpretable components of Ci for the Weibull normal model can be described
using the length of fixed effect (||xi||2) and the squared of random effect variability
(Var(bi)

2), in analogy with the Poisson-normal model.
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Figure S.4. Headache Data. Individual profiles.

Poisson-normal Poisson-gamma normal model

full dataset without #4, #10 , #13 ,#25 full dataset without #4, #10 , #13 , #25

Total Local Influence (Ci)

Local Influence(ξ)

Local Influence (d)

Local Influence (α)

Figure S.5. Headache Data. Local influence plots.
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Poisson-Normal Combined model

full dataset without #4, #10 , #13 ,#25 full dataset without #4, #10 , #13 , #25

||xix
′
i||

||ri||2

Var(bi)
2

Figure S.6. Headache Data. Plot of interpretable components of local influence.
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Logit-normal Logit-beta-normal model

full dataset without #6, #30 and #53 full dataset without #6, #30 and #53

Total Local Influence (Ci)

Local Influence(ξ)

Local Influence (d)

Local Influence (α)

Figure S.7. Onychomycosis Data. Local influence plots.
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Logit-Normal Combined model

full dataset without #6, #30 and #53 full dataset without #6, #30 and #53

||xix
′
i||

Var(bi)
2

Figure S.8. Onychomycosis Data. Plot of interpretable components of local influence.
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Weibull-Normal Weibull-Gamma-Normal

Total Local Influence (Ci)

Local Influence(ξ)

Local Influence (d)

Local Influence (ρ)

Local Influence (α)

Figure S.9. Recurrent Muscle Soreness Data. Local influence plots.
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Weibull-Normal Weibull-Gamma-Normal

||xix
′
i||

Var(bi)
2

Figure S.10. Recurrent Muscle Soreness Data. Plot of interpretable components of local influence.
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S.7. Selected Software Code

S.7.1 Main Models Code

/**********************************************************************

Software: SAS 9.4

A Clinical Trial in Epileptic Patients (Molenberghs and Verbeke, 2005)

http://www.ibiostat.be/software/default.asp.

**********************************************************************/

***P-N model***;

proc nlmixed data=data2 qpoints=50 hess start;

title Poisson-normal Model;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1;

if (trt = 0) then eta = int0 + b + slope0*studyweek;

else if (trt = 1) then eta = int1 + b + slope1*studyweek;

lambda = exp(eta);

model nseizw ~ poisson(lambda);

random b ~ normal(0,sigma**2) subject = idnew ;

predict b out=bi;

predict lambda out=yhat;

estimate "diff in slope" slope1-slope0;

estimate " ratio of slope" slope1/slope0;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;run;

***PGN model***;

proc nlmixed data=data2 qpoints=50 hess start;

title ’Poisson-combined’;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1 alpha=5;

if (trt = 0) then eta = int0 + b + slope0*studyweek;

else if (trt = 1) then eta = int1 + b + slope1*studyweek;

lambda = exp(eta);

lambda = exp(eta);

beta=1/alpha; /*hier wordt beta vastgezet*/

loglik=lgamma(alpha+nseizw)-lgamma(alpha)+nseizw*log(beta)-(nseizw+alpha)

*log(1+beta*lambda) +nseizw*eta;

model nseizw ~ general(loglik);

random b ~ normal(0,sigma**2) subject = idnew ;

predict b out=bi;

predict lambda out=yhat;

estimate "diff in slope" slope1-slope0;

estimate " ratio of slope" slope1/slope0;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;run;
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/**********************************************************************

Headache Study (McKnight and Van Den Eeden, 1993)

*********************************************************************/

***P-N model***;

proc nlmixed data=data qpoints=50 hess start;

title Poisson-normal Model;

eta = beta0 + b + beta1*(trtn=1);

lambda = d*exp(eta);

model y ~ poisson(lambda);

random b ~ normal(0,sigma**2) subject = id ;

predict b out=bi;

predict lambda out=yhat;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

***PGN model***;

proc nlmixed data=data qpoints=50 hess start;

title ’Poisson-combined’;

parms beta0=-1.7154 beta1=0.2825 sigma=0.6954 alpha=1;

eta = beta0 + b + beta1*(trtn=1);

lambda = d*exp(eta);

beta=1/alpha; /*hier wordt beta vastgezet*/

loglik=lgamma(alpha+Y)-lgamma(alpha)+Y*log(beta)-(Y+alpha)*log(1+beta*lambda)

+Y*eta;

model Y ~ general(loglik);

random b ~ normal(0,sigma**2) subject = id ;

predict b out=bi;

predict lambda out=yhat;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

/**********************************************************************

A Clinical Trial in Onychomycosis (Molenberghs and Verbeke, 2005)

http://www.ibiostat.be/software/default.asp

**********************************************************************/

***L-N model***;

proc nlmixed data=data2 qpoints=50 hess start;

title ’Logistic-Bernoulli GLMM’;

parms int0=-0.7 slope0=-0.22 int1=-0.7 slope1=-0.31 sigma=10;
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if (treatn = 0) then eta = int0 + b + slope0*time;

else if (treatn = 1) then eta = int1 + b + slope1*time;

expeta = exp(eta);

p = expeta /(1 + expeta);

model y ~ binary(p);

random b ~ normal(0,sigma**2) subject = idnew;

predict b out=bi;

estimate "diff in slope" slope1-slope0;

estimate " ratio of slope" slope1/slope0;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

***LBN model***;

proc nlmixed data=data2 qpoints=50 hess start;

title ’Overdispersed-Logistic-Bernoulli GLMM’ ;

title2 ’Random Effect b1 ~ Normal(0,sigma**2)’;

title3 ’Retriction beta/alpha = const’;

parms int0 =-1.54 slope0=-6.49 int1=-16.27 slope1=-8.11 sigma=61 const=0.3 ;

eta = int0*(treatn=0) + slope0*time*(treatn=0)

+ int1*(treatn=1) + slope1*time*(treatn=1) + b;

expeta = exp(eta);

ll = -log(1+const) + y*eta - y*log(1+expeta)

+ (1-y)*log((1-expeta/(1+expeta)) + const);

model y ~ general(ll);

random b ~ normal(0,sigma**2) subject = idnew;

predict b out=bi;

estimate "diff in slope" slope1-slope0;

estimate " ratio of slope" slope1/slope0;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

/**********************************************************************

Recurrent Muscle Soreness (Hosmer and Lemeshow, 1999)

ftp://ftp.wiley.com/public/sci_tech_med/survival/

**********************************************************************/

***W-N model***;

proc nlmixed data=data qpoints=50 hess start;

title ’Weibull model with random-effect’;

lambda=1;

eta = Beta0 + Beta1*(Drug=1) + b;

expeta = exp(eta);
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ll = log(lambda) + log(rho) + (rho-1)*log(Time) + eta - lambda*(Time**rho)*expeta;

model Time ~ general(ll);

random b ~ normal(0,sigma**2) subject=Patid;

predict b out=bi;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

***WGN model***;

proc nlmixed data=data tech=quanew qpoints=50 maxit=1000 hess start;

title ’Weibull model with gamma-normal effects’;

bounds alpha > 0;

parms Beta_0=-3 Beta_1=-0.2 rho=1 sigma=1 alpha=3.3

; /* Beta starting values from Weibull Model via LIFEREG */

lambda=1;

eta = Beta_0 + Beta_1*(treat=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=id;

ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

S.7.2 Local Influence Code

/**********************************************************************

Software: SAS 9.4

Local Influence for Poisson Normal Models and Extensions

OBJECTIVE: to analyse local influence using numerical approach

and derived the component of local influence.

DATASET: Epilepsi dataset Molenberghs and Verbeke (2005)

http://www.ibiostat.be/software/default.asp;

VARIABLE DESCRIPTION:

ID id: Patient ID;

study week : time of measurement (repeated)

nseizw: number of seizure per week;

trt: Treatment indicator (1=Drug, 0=Placebo).

DATE: 10/2013 - CENSTAT - Universiteit Hasselt, Diepenbeek, Belgi

AUTHOR : Trias W. Rakhmawati

***********************************************************************/
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options nocenter papersize=A4;

libname data "C:\Users\lucp7702\Documents\PhD\Research\Data\Project 1 -

LI GLMM\datasets2005";

data data;

set data.Epilepsy;

int=1;

placebo = (trt=0);

treatment = (trt=1);

ptime = placebo*studyweek;

ttime = treatment*studyweek;

run;

*get new id;

DATA data2;

SET data;

by id;

if first.id then idnew+1;

RUN;

/*calculate the number of repeated measures per subject and the time points*/

proc freq data=data2 noprint;

tables idnew /out=nfrec;

run;

proc sort data=data2;

by idnew;

run;

*use nlmixed the same slope hessian matrix for overall subject;

proc nlmixed data=data2 qpoints=50 hess start;

title Poisson-normal Model;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1;

if (trt = 0) then eta = int0 + b + slope0*studyweek;

else if (trt = 1) then eta = int1 + b + slope1*studyweek;

lambda = exp(eta);

model nseizw ~ poisson(lambda);

random b ~ normal(0,sigma**2) subject = idnew ;

predict b out=bi;

predict lambda out=yhat;

estimate "diff in slope" slope1-slope0;

estimate " ratio of slope" slope1/slope0;
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ods output ParameterEstimates = fixedsol;

ods output hessian=hessian;

run;

proc sort data=data2;by idnew;run;

*use nlmixed for each subject;

proc nlmixed data=data2 qpoints=50 maxiter=0 start hess;

title Poisson-normal Model;

parms /data=fixedsol;

if (trt = 0) then eta = int0 + b + slope0*studyweek;

else if (trt = 1) then eta = int1 + b + slope1*studyweek;

lambda = exp(eta);

model nseizw ~ poisson(lambda);

random b ~ normal(0,sigma**2) subject = idnew;

by idnew;

ods output ParameterEstimates = gradientid;

ods output hessian=hessiaanid;

run;

*organizing yhat;

data yhat; set yhat;

keep idnew pred;

run;

/****calculate Local Influence****/

proc iml;

reset print;

/* Matrix with the data to obtain the design matrices for the fixed and

random effects */

use data2;

labelx = { placebo ptime treatment ttime};

labelz = {int};

labely = {nseizw};

read all var labelx into fixed;

read all var labelz into random;

read all var labely into resp;

p=ncol(fixed);

q=ncol(random);
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/* Matrix with residual */

use yhat;

read all into yhat;

yhat= yhat[,2];

/* Matrix with paramter estimate (fixed n random effect) */

use fixedsol;

read all into fixedsol;

fixedpar= fixedsol[,1];

/* Matrix with 2nd derivative - hessian matrix wtr to parms */

use hessian;

read all into L;

n_L = nrow(L);

L= L[,2:1+n_L];

L_inv=inv(L);

Lb= L[1:n_L-q,1:n_L-q];

Lb_inv=inv(Lb);

Ld= L[p+1:n_L,p+1:n_L];

Ld_inv=inv(Ld);

/* Matrix with individual - 1st derivative */

use gradientid;

read all into Delta;

delta_i= delta[,3];

/* Matrix with the frequencies for each of the subjects */

use nfrec;

read all into nfrec;

id = nfrec[,1];

n_id=nrow(nfrec);

/* Part to calculate the influence measures */

begin = 1;

begin_b = 1;

begin_d = p+1;

do s=1 to n_id ;

end=begin+p+q-1;
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end_b=begin_b+p-1;

end_d=begin_d;

Ci = 2#delta_i[begin:end, ]‘*L_inv*delta_i[begin:end, ];

Ci_b = 2#delta_i[begin_b:end_b, ]‘*Lb_inv*delta_i[begin_b:end_b, ];

Ci_d = 2#delta_i[begin_d:end_d, ]‘*Ld_inv*delta_i[begin_d:end_d, ];

begin=end+1;

begin_b=end_b+q+1;

begin_d=end_d+p++1;

C_i = C_i//Ci;

Cib = Cib//Ci_b;

Cid = Cid//Ci_d;

index=index//s;

end;

/* Part to calculate the component of influence measures */

begin = 1;

do s=1 to n_id ;

ni = nfrec[s,2];

end=begin+ni-1;

fixedi = fixed[begin:end,];

randomi = random[begin:end,];

respi = resp[begin:end];

yhati = yhat[begin:end];

residi = respi-yhati;

begin = end +1;

rri = sqrt(trace(residi*residi‘));

xxi = sqrt(trace(fixedi*fixedi‘));

probnorm_rri = probnorm_rri//rri;

probnorm_xxi = probnorm_xxi//xxi;

end;

/*Setting the output dataset with the diagnostic measures */
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out=index||C_i||Cib||Cid||probnorm_rri||probnorm_xxi;

varnames = {’index’ ’C_i’ ’Ci_b’ ’Ci_d’ ’||rri||’ ’||xxi||’};

create outdata from out [colname= varnames];

append from out;

close fixedsol;

close hessian;

close nfrec;

close data2;

close gradientid;

quit; /* End of the IML procedure */
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