Electronic Supporting Information

Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets

Sofía Riaño,^a Martina Petranikova,^b Bieke Onghena,^a Tom Vander Hoogerstraete,^a Dipanjan

Banerjee,^c Mark R.StJ. Foreman,^b Christian Ekberg,^b and Koen Binnemans^{*a}

^{a.} KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001 Heverlee (Belgium).*Corresponding author, email: Koen.Binnemans@kuleuven.be

^{b.} Chalmers University of Technology, Nuclear Chemistry and Industrial Materials Recycling, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg (Sweden)

^{c.} Dutch-Belgian Beamline (DUBBLE), ESRF - The European Synchrotron, CS 40220, F-38043 Grenoble Cedex 9 (France).

Chemicals

Tricaprylmethylammonium chloride (Aliquat® 336, 88.2-90.6%), nitric acid (\geq 65%, p.a.), bis(2-ethylhexyl) phosphate (D2EHPA, 97%) and KSCN (99%) were obtained from Sigma-Aldrich (Diegem, Belgium). Cyanex® 923 (93%) was obtained from Cytec Industries (Canada), tri-*n*-butyl phosphate (97%) from Chem-Lab Analytical (Zedelgem, Belgium), choline chloride (99%), L(+)-lactic acid (90%), iron(III) chloride (98%), citric acid (99.6%), disodium ethylenediaminetetraacetate dihydrate (99%), sulfuric acid (96%), CoCl₂·6H₂O (99.9%) and oxalic acid (99%) were purchased from Acros Oganics (Geel, Belgium). Toluene (99.8%, HPLC grade) and hydrochloric acid (37%, reagent grade) were obtained from Fischer Chemical (UK). Boric acid (99%) was obtained from VWR Chemicals (Leuven, Belgium). Solvent 70 was obtained from Statoil (Norway). NdCl₃·6H₂O (99.9%) and DyCl₃·6H₂O (99.9%) were obtained from Strem Chemicals (Newburyport, USA). Standard solutions of individual elements (1000 mg L⁻¹) for ICP analysis and CaCl₂·2H₂O were obtained from Merck (Overijse, Belgium). Pure water (MilliQ, Millipore, >18 MΩ cm⁻¹) was employed to make all the dilutions. All chemicals were used as received without further purification.

Equipment

A disc mill (Benelux Scientific) was used to ground the magnet pieces, which were later sieved to obtain <400 µm powders. A planetary ball mill (Retsch PM4000, 5 mm stainless steel balls) was used to further grind the samples to obtain a particle size below 100 μ m. The ball-milling conditions were: 30:1 ball-to-powder ratio (g/g), 2 h duration at 200 rpm. A muffle furnace was used for roasting (950 °C, 15 h). Leaching experiments were conducted in 4 mL vials, with magnetic stirring. After leaching, the samples were centrifuged in a Heraeus Megafuge 1.0 centrifuge at 5000 rpm during 3 min to separate the residue from the leachate. Solvent extraction experiments were carried out in temperature controllable Turbo Thermo Shakers (Model: TMS-200, Hangzhou Allsheng Instrument Co. Ltd, China). ¹H NMR spectra were recorded on a Bruker Avance 300 spectrometer, operating at a frequency of 300 MHz. Samples for ¹H NMR measurements were prepared in deuterated dimethyl sulfoxide (DMSO-d₆). UV-VIS absorption spectra were recorded with a Varian Cary 5000 spectrophotometer. The viscosity and density of the DES was measured using an automatic rolling-ball viscosity meter Lovis (Model 2000 M/ME, with a density measuring module MA 4500 ME, Anton Paar GmbH, Graz, Austria). A volumetric Karl Fischer titrator Mettler-Toledo DL39 with a Stromboli oven operating at 150 °C was used with HYDRANAL[®]-Composite 5 one-component reagent to

determine the water content of the DES. Analysis of the deep-eutectic solvent phase was performed using a Perkin Elmer Optima 8300 inductively coupled plasma optical emission spectrometer (ICP-OES) in dual view, with a GemTip CrossFlow II nebulizer, a Scott Spray Chamber Assembly, a sapphire injector and a Hybrid XLT ceramic torch. The calibration curve was constructed by fitting through the origin using standard solutions of Fe, Co, Nd and Dy prepared in a 1 M HNO₃ solution at four different concentrations: 2.5, 5, 10 and 20 mg L⁻¹. Samples of the deep-eutectic solvent phase were prepared by taking an aliquot of 300 μ L and diluting it to 10 mL with a 1 M HNO₃ solution. A sample of 1 mL of this solution was further diluted to 10 mL with a 1 M HNO₃ solution in case of more concentrated solutions. All measurements were performed in triplicate.

	Main composition (wt%)		
Element	Magnet 1	Magnet 2	
Fe	58.52 ± 6.22	56.62 ± 5.67	
Nd	22.96 ± 3.45	21.38 ± 4.96	
Со	2.66 ± 0.10	2.76 ± 0.17	
Dy	5.06 ± 0.56	0.26 ± 0.05	
В	1.26 ± 0.09	1.30 ± 0.08	
Nb	n.d.ª	0.09 ± 0.04	
Gd	1.86 ± 0.19	5.5 ± 0.9	
Al	1.39 ± 0.05	4.00 ± 0.23	
Pr	3.87 ± 0.07	5.47 ± 0.28	
Si	0.05 ± 0.01	0.10 ± 0.05	
Cu	n.d.ª	0.10 ± 0.06	
Ni	n.d.ª	0.44 ± 0.09	
Ga	0.22 ± 0.03	0.09 ± 0.01	
Total	97.85	98.11	

Table S1. Composition (wt%) of three different NdFeB magnets determined with ICP-OES.

^a n.d. = not detected (below detection limit)

Fig. S1 Precipitation stripping of Nd from the eutectic mixture of choline chloride and lactic acid (molar ratio 1:2). Equilibration time 40 min, 25 °C and 2000 rpm.

Fig. S2. McCabe-Thiele diagram for Fe from a mixture of Fe, Co, B, Nd and Dy in the DES choline chloride: lactic acid (molar ratio 1:2) with 0.9 M [A336][SCN] in toluene (phase contact time 20 min, LP:HP phase ratios between 0.05:1 and 10:1).

Fig. S3. McCabe-Thiele diagram for B from a mixture of Fe, Co, B, Nd and Dy in the DES choline chloride: lactic acid (molar ratio 1:2) with [A336][SCN] 0.9 M in toluene (phase contact time 20 min, LP:HP phase ratios between 0.25:1 and 10:1).

Fig. S4. McCabe-Thiele diagram for Co from a mixture of Fe, Co, B, Nd and Dy in the DES choline chloride : lactic acid (molar ratio 1:2) with 0.9 M [A336][SCN] in toluene (phase contact time 20 min, LP:HP phase ratios between 0.05:1 and 10:1).

Fig. S5. McCabe-Thiele diagram for Dy from a mixture of Nd and Dy in the DES of choline chloride and lactic acid (molar ratio 1:2) with 0.9 M Cyanex[®] 923 in toluene (phase contact time 20 min, LP:HP phase ratios between 0.25:1 and 10:1).

Table S2. Fitting results of the EXAFS data for the $[Fe(SCN)_6]^{3-}$ complex in [A336][SCN], extracted from an aqueous phase^{*}

Scattering path	N	R (Å)	σ² (Ų)
Fe-N	6	2.076(3)	0.010(1)
Fe-C	6	3.085(46)	0.015(2)
Fe-S	6	4.503(29)	0.009(2)
Fe-N-C	12	3.254(13)	0.009(1)
Fe-S-C	12	4.614(19)	0.008(1)
Fe-S-N	12	4.937(11)	0.008(2)

*The data were Fourier-transformed between k = 3.0 and 12.9 Å⁻¹ with a Gaussian rounded ends function and fitted to the model between R = 0 and 4.92 Å.

Fig. S6. EXAFS function $\chi(k)^*k^4$ and model of the [Fe(SCN)₆]³⁻ complex.

Fig. S7. Fourier transform and model of the $[Fe(SCN)_6]^{3-}$ complex. The data were Fourier -transformed between k = 3.0 and 12.9 Å⁻¹ with a Gaussian rounded ends function and fitted to the model between R = 0 and 4.92 Å.

Fig. S8. X-ray absorption spectrum around the Fe K-edge of the less polar phase (0.9 M [A336][SCN] in toluene 0.9 M) of the extraction from the DES.

Scattering path	Ν	<i>R</i> (Å)	σ² (Ų)
Co-N	4	1.962(4)	0.005(1)
Co-C	4	3.992(12)	0.004(1)
Co-S	4	4.606(9)	0.005(1)
Co-C-N	8	3.128(4)	0.004(1)
Co-S-C	8	4.776(15)	0.005(1)
Co-S-N	8	4.909(60)	0.005(1)

Table S3. Fitting results of the EXAFS function of cobalt extracted from aqueous solution to [A336][SCN].*

*The data were Fourier transformed between k = 4.0 and 13.0 Å⁻¹ without any window function and fitted to the model between R = 0 and 5 Å.

Fig. S9. EXAFS function $\chi(k)^*k^4$ of the $[Co(SCN)_4]^{2-}$ complex in the ionic liquid [A336][SCN] as extracted from water (black), 5 M CaCl₂ (green) and DES (blue).