
Noname manuscript No.
(will be inserted by the editor)

Optimizing agents with genetic programming

An evaluation of hyper-heuristics in dynamic real-time logistics

Rinde R.S. van Lon · Juergen Branke ·
Tom Holvoet

Received: October, 15, 2016 / Revised: January 27, 2017 / Accepted: February, 27, 2017?

Abstract Dynamic pickup and delivery problems (PDPs) require online algo-
rithms for managing a fleet of vehicles. Generally, vehicles can be managed either
centrally or decentrally. A common way to coordinate agents decentrally is to
use the contract-net protocol (CNET) that uses auctions to allocate tasks among
agents. To participate in an auction, agents require a method that estimates the
value of a task. Typically, this method involves an optimization algorithm, e.g.
to calculate the cost to insert a customer. Recently, hyper-heuristics have been
proposed for automated design of heuristics. Two properties of automatically de-
signed heuristics are particularly promising: 1) a generated heuristic computes
quickly, it is expected therefore that hyper-heuristics perform especially well for
urgent problems, and 2) by using simulation-based evaluation, hyper-heuristics can
create a ‘rule of thumb’ that anticipates situations in the future. In the present
paper we empirically evaluate whether hyper-heuristics, more specifically genetic
programming (GP), can be used to improve agents decentrally coordinated via
CNET. We compare several GP settings and compare the resulting heuristic with
existing centralized and decentralized algorithms based on the OptaPlanner opti-
mization library. The tests are conducted in real-time on a dynamic PDP dataset
with varying levels of dynamism, urgency, and scale. The results indicate that
the evolved heuristic always outperforms the optimization algorithm in the de-
centralized multi-agent system (MAS) and often outperforms the centralized op-
timization algorithm. Our paper demonstrates that designing MASs using genetic
programming is an effective way to obtain competitive performance compared to

? The final publication is available at Springer via doi:10.1007/s10710-017-9300-5

Rinde R.S. van Lon · Tom Holvoet
imec-DistriNet, dept. of Computer Science, KU Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: Rinde.vanLon@cs.kuleuven.be,Tom.Holvoet@cs.kuleuven.be

Juergen Branke
Warwick Business School, University of Warwick
CV4 7AL Coventry, United Kingdom
E-mail: Juergen.Branke@wbs.ac.uk

http://dx.doi.org/10.1007/s10710-017-9300-5

2 Rinde R.S. van Lon et al.

traditional operational research approaches. These results strengthen the relevance
of decentralized agent based approaches in dynamic logistics.

Keywords Hyper-heuristics · Genetic programming · Multi-agent systems · Logistics ·
Decentralized · Centralized · Operational research · Optimization · Real-time

1 Introduction

The pickup and delivery problem (PDP) is a logistics problem where a fleet of
vehicles transports customers or goods from origin to destination [1]. The dynamic
pickup and delivery problem with time windows (PDPTW) is an online variant
where some or all customers’ orders arrive during the operating hours and where
customers impose time window constraints on pickups and deliveries [2]. Typically,
the objective in PDPTW is to serve all customers while minimizing fuel costs and
time window violations. In a purely dynamic PDPTW, no order is known before
the operating hours. When a new order is announced, the available computation
time for an algorithm is limited by the order’s urgency, the amount of available
time until the order needs to be serviced [3]. Together, the dynamism, urgency,
and scale of a problem, directly affect the amount of computations that need to
be done as well as how much time is available for performing them [4].

Decentralized multi-agent systems (MASs) are commonly considered to be a
good fit for large scale and dynamic problems because of their ability to make quick
local decisions [5–8]. Together, the local decisions made by all agents aim to solve
the global optimization problem. There are two different approaches for making
these decisions: 1) explicitly searching through the space of possible schedules
using an (exact or heuristic) optimization procedure, or, 2) using a heuristic, a
rule of thumb, that guides the agent by assigning priorities to actions without
explicitly searching the space of schedules. The aim of the present paper is to
compare the performance of these two different approaches. For the first approach
we use a tabu search algorithm from the OptaPlanner [9] optimization library.
For the second approach we use genetic programming to automatically design an
agent-based heuristic.

1.1 Related work

A recent empirical study by van Lon and Holvoet [8] employs a MAS with an auc-
tion based contract-net protocol (CNET). The agents place bids to the customer
indicating the estimated additional cost to perform the transportation task. Each
agent computes this bid value by running an optimization procedure for a limited
time. The experiments indicate that the MAS only outperforms a reference cen-
tralized algorithm in case the problem is medium to very dynamic, very urgent,
and medium to large scale. A problem instance with these properties is changing
continuously (medium to very dynamic), vehicles have a short amount of time to
respond to incoming requests (very urgent), and there are relatively many vehicles
and orders (medium to large scale). In this situation the computational demands
are very high, limiting the viability of searching the solution space centrally. The
CNET approach, however, uses implicit partitioning of the search space, appar-
ently this helps in these circumstances to find a good solution in a short period.

Optimizing agents with genetic programming 3

Since the paper by van Lon and Holvoet [8] considers purely dynamic PDPTWs,
we know that the problem is likely to change soon after a bid value is computed.
A reasonable assumption is therefore that a good bid value should incorporate
expected future events that affect the transportation cost of an order. However, in
the setup of that paper, the optimization algorithm, OptaPlanner [9], only consid-
ers all information that is known up to the moment of computation. An alternative
for the optimization procedure is a heuristic that may include estimates of future
events. Designing such a heuristic is, however, a difficult task. A local decision
made by an agent can have far reaching global consequences. That is because
a collection of agents acting according to decentralized local rules constitutes a
complex system with emergent and difficult to predict behavior.

Research on dynamic optimization problems, such as dynamic PDPTWs, is
concerned with optimization in an environment that changes over time [10]. Dy-
namic optimization problems are often approached using metaheuristics [11, 12].
Metaheuristics, such as swarm intelligence and evolutionary computation, are a
good fit for these dynamic problems because they are inspired on natural processes,
which themselves are subject to a continuously changing environment. In present
paper, instead of using evolutionary algorithms to solve our problem directly, we
use genetic programming to generate a heuristic that solves our problem.

Hyper-heuristics is a branch of optimization literature concerned with the au-
tomatic design of heuristics [13]. Burke et al. [14] distinguishes two different cat-
egories of hyper-heuristics, heuristic selection and heuristic generation. Heuristic
selection comprises methodologies for choosing or selecting existing heuristics while
heuristic generation is concerned with generating new heuristics from components
of existing heuristics. Genetic programming (GP) is a subfield of evolutionary
computing [15], that works with variable size LISP-tree representations and thus
is able to evolve functions of arbitrary complexity, making it particularly suitable
for the design of heuristics. Hyper-heuristics and GP in particular, have been ap-
plied in a wide range of contexts, including production scheduling [16], traveling
salesman problems [17], bin packing [18], etc.

The combination of hyper-heuristics and MAS for dynamic PDPTW has been
explored before. To the best of our knowledge, Beham et al. [19] were the first to
apply hyper-heuristics to an agent-based algorithm for the PDPTW. In their MAS,
vehicle agents are governed by two separate heuristics, one heuristic determines
its next location to travel to and another heuristic determines the order(s) to pick
up at a pickup site. Both heuristics are weighted sums of hand-crafted heuristics,
the weights are set by an evolution strategy (ES). Determining the quality of the
heuristics during evolution is done with a simulation-based fitness function. Beham
et al. [19] did not compare their approach with alternative algorithms.

Similarly, van Lon et al. [20] used GP to evolve the guiding heuristic for a MAS
in a dynamic PDPTW context. Vehicles have a capacity of one order, implying that
a vehicle must immediately go to an order’s destination after pick up. The evolved
heuristic assigns priorities to all available orders. Each vehicle that is not currently
carrying an order executes its heuristic frequently, and travels to the order with the
highest priority. The agents do not communicate amongst each other, leading to
inefficiencies in case several vehicles have the same priority. Because the problem is
dynamic, priorities of vehicles change, causing vehicles to divert from their route.
In their paper, van Lon et al. show that their MAS approach with an evolved
heuristic outperforms a centralized meta-heuristic.

4 Rinde R.S. van Lon et al.

The work by Vonolfen et al. [21] extends [20]. Instead of using just three ter-
minals in GP as was done in [20], Vonolfen et al. use 18 different terminals. This
includes several terminals that incorporate information about other agents’ dis-
tances and destinations. The authors compare their approach with two algorithms,
a (centralized) tabu search algorithm and the evolution strategy presented in [19].
Vonolfen et al. report that the tabu search algorithm outperforms both the GP as
well as the ES approach, while GP outperforms ES.

Continuing in this line of research, Merlevede et al. [22] use neuroevolution of
augmenting topologies (NEAT) to evolve a neural network as a priority heuristic.
The authors use the same MAS approach as in [20] but they evaluate their perfor-
mance on an existing dynamic PDPTW benchmark. They are the first to report
negative results, the reference centralized algorithm always outperforms the NEAT
approach. These results are likely caused by the lack of a coordinating mechanism
for their MAS.

1.2 Contributions and overview

The papers described above that apply hyper-heuristics to MAS for dynamic
PDPTW have several drawbacks which we aim to overcome in present paper.
First, the discussed hyper-heuristics have not been evaluated in real-time. In a
dynamic logistics problem, algorithm computation time directly affects the per-
formance of the fleet of vehicles. Therefore, when comparing hyper-heuristics to
traditional optimization algorithms in dynamic PDPTW, a real-time simulator is
required. Second, for a fair comparison of two different algorithms, it is important
that both algorithms are subject to exactly the same constraints. When compar-
ing hyper-heuristics in a MAS setting, a fair comparison is to have a reference
algorithm that is also used in a MAS setting. Unfortunately, none of the above
described works evaluate their agent-based hyper-heuristic in this way. Third, to
understand the exact circumstances in which one algorithm outperforms another,
it is imperative to vary the problem properties on which they are evaluated. Fourth,
to allow reproducibility and extensibility, the algorithms, datasets, and software
that are used should be freely available.

The aim of present paper is to determine whether using hyper-heuristics can
improve the performance of an existing MAS for a real-time logistics problem.
More specifically, we are investigating two hypotheses comparing a hyper-heuristic
setup with the centralized OptaPlanner algorithm and the decentralized MAS both
from [8]:

– GP designed heuristic in a MAS can outperform OptaPlanner in a MAS.
– GP designed heuristic in a MAS can outperform centralized OptaPlanner.

If these hypotheses are true, it would demonstrate the relevance of decentralized
MASs in dynamic logistics and constitute an important first step towards their
automatic design. Since a heuristic typically requires only a fraction of the com-
putation time that a solver requires, we also investigate the following hypothesis:

– GP designed heuristic works especially well for more urgent problems because
of its minimal computational cost.

Using the dataset and dataset generator from [4] we can train and test the heuris-
tics on instances with different values of dynamism, urgency, and scale. We define

Optimizing agents with genetic programming 5

a specialized heuristic as a heuristic that is trained on one specific scenario setting
with specific properties, as opposed to a generalized heuristic that is trained on a
wide range of scenario settings. We expect that:

– Specialized heuristics outperform general heuristics on scenarios for which they
are specialized.

– Generalized heuristics outperform specialized heuristics on scenarios for which
they are not specialized.

The paper is organized as follows. A formal problem definition, including dy-
namism, urgency, and scale, and the real-time simulation platform are presented
(Section 2). The MAS that we start from is presented in Section 3. The paper
presents the following contributions:

– a new application of hyper-heuristics to decentralized MAS using GP is pre-
sented (Section 4);

– the performance of GP and the resulting heuristics are thoroughly evaluated us-
ing real-time simulation and compared to existing results obtained by a central-
ized and a decentralized OptaPlanner algorithm under varying circumstances
(Section 5);

– following [8], all code, data, and results needed to reproduce this work are
made available online.

Finally, we summarize the paper and discuss directions for future research (Sec-
tion 6).

2 Dynamic pickup-and-delivery problems

This section is adapted from [4, 8]. In PDPs there is a fleet of vehicles responsible
for the pickup-and-delivery of items. Dynamic PDP is an online problem. Customer
transportation requests are revealed over time, during the fleet’s operating hours.
It is further assumed that the fleet of vehicles has no prior knowledge about the
total number of requests nor about their locations or time windows. In this section,
we provide an overview of the work about dynamic PDP from [4, 8] as it serves
as a foundation of the evaluation in present paper.

2.1 Formal definition

In [4] a scenario, which describes the unfolding of a dynamic PDP, is defined as a
tuple:

〈T , E ,V〉 := scenario,

where

[0, T) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

6 Rinde R.S. van Lon et al.

[0, T) is the period in which the fleet of vehicles V has to respond to customer
requests. The events, E , represent customer transportation requests. Since we con-
sider the purely dynamic PDPTW, all events are revealed between time 0 and
time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pLi , p
R
i) = pickup time window, pLi < pRi

di := [dLi , d
R
i) = delivery time window, dLi < dRi

pst i := pickup service time span

dst i := delivery service time span

ploci := pickup location

dloci := delivery location

Reaction time is defined as:

ri := pRi − ai = reaction time (1)

The time window related variables of a transportation request are visualized in
Figure 1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Fig. 1: Visualization of the time related variables of a single order event ei ∈ E.

Furthermore it is assumed that:

– vehicles start at a depot and have to return after all orders are handled;
– the fleet of vehicles V is homogeneous;
– the cargo capacity of vehicles is infinite (e.g. courier service);
– the vehicle is either stationary or driving at a constant speed;
– vehicle diversion is allowed, this means that a vehicle is allowed to divert from

its destination at any time;
– vehicle fuel is infinite and driver fatigue is not an issue;
– the scenario is completed when all pickup and deliveries have been made and

all vehicles have returned to the depot; and,
– each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening
of time windows is a hard constraint, hence vehicles need to adhere to these:

spi ≥ pLi (2)

sdi ≥ dLi (3)

Optimizing agents with genetic programming 7

spi is the start of the pickup operation of order event ei by a vehicle; similarly,
sdi is the start of the delivery operation of order event ei by a vehicle. The time
window closing (pRi and dRi) is a soft constraint incorporated into the objective
function, it needs to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spi, p

R
i

}
+ td

{
sdi, d

R
i

})
(4)

where

td {α, β} := max {0, α− β} = tardiness (5)

vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle vj is
back at the depot. In summary, the objective function computes the total vehicle
travel time, the tardiness of vehicles returning to the depot and the total pickup
and delivery tardiness.

2.2 Dataset

Earlier work has argued for, and presented, a dataset characterized by three dif-
ferent properties of dynamic PDPs: dynamism, urgency, and scale [4].

2.2.1 Dynamism

Dynamism is defined in van Lon et al. [3]. Informally, a scenario that changes
continuously is said to be dynamic while a scenario that changes occasionally
is said to be less dynamic. In the context of PDPTWs a change is an event that
introduces additional information to the problem, such as the events in E . Formally,
the degree of dynamism, or the continuity of change, is defined as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(6)

∆ is the list of event interarrival times:

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (7)

For a scenario with 100% dynamism, the perfect interarrival time is defined as:

θ := perfect interarrival time =
T
|E| (8)

8 Rinde R.S. van Lon et al.

Based on this definition, the deviation and maximum possible deviation to the
perfect interarrival time can be computed:

σi :=

θ − δi if i = 0 and δi < θ

θ − δi +
θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(9)

σ̄i := θ +

θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(10)

Eq. 6 uses the proportion of the actual deviation and the maximum possible devia-
tion. Using this definition the degree of dynamism of any scenario can be computed.

2.2.2 Urgency

In [3] urgency is defined as the maximum reaction time available to the fleet of
vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pRi − ai = ri (11)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.

2.2.3 Scale

Scale is defined by van Lon and Holvoet [4] as maintaining a fixed objective value
per order while scaling the number of orders up in proportion to the number of
vehicles in the fleet. Scaling up a scenario 〈T , E ,V〉 with a factor α will create a
new scenario 〈T , E ′,V ′〉 where |V ′| = |V| · α and |E ′| = |E| · α.

2.3 Realistic simulation platform

The experiments performed in van Lon and Holvoet [8] use the RinSim real-time
logistics simulator [23]. For fair comparison we use the same simulator. RinSim
is a discrete-time logistics simulator that supports running both centralized algo-
rithms and decentralized multi-agent systems. RinSim is written in Java and has
a modular design (Figure 2), a Model encapsulates a part of a problem domain
or algorithm. The simulator can be customized by selecting the models that are
used, this allows simulating a wide variety of logistics problems while maximally
reusing existing code.

RinSim supports simulations using simulated time as well as real-time. The
standard Java virtual machine (JVM) has no built-in support for real-time exe-
cution. However, RinSim is designed such that it provides soft real-time behavior
using the standard JVM. Soft real-time, as opposed to hard real-time, allows oc-
casional deviations from the desired execution timing.

RinSim discretizes time into intervals called ‘ticks’. The simulator is initialized
with a fixed tick length, for example a tick length of 250 milliseconds. When

Optimizing agents with genetic programming 9

TimeModel RoadModel

ScenarioController StatsTracker CommModel PDPModel

RinSim

MAS

Solver

GUI

Fig. 2: UML component diagram of RinSim. The simulator subsystem can be configured with
a variety of models that all provide some interface. MASs, solvers, and the graphical user
interface use these interfaces to interact with RinSim.

simulating without real-time constraints, the simulator computes all ticks as fast
as possible. In a real-time simulator the interval between the start of two ticks
should be the tick length (e.g. 250 ms). Since the JVM doesn’t allow precise
control over the timings of threads it is generally impossible to guarantee hard real-
time constraints. In real-time mode, RinSim uses a dedicated thread for executing
the ticks. If computations need to be done that are expected to last longer than
a tick, they must be done in a different thread. This minimizes interference of
computations with the advancing of time in the simulated world. Additionally,
the processor affinity of the threads are set at the operating system level. Setting
the processor affinity to a Java thread instructs the operating system to use one
processor exclusively for executing that thread. In practice, the actual scheduling
of threads on processors depends on the number of available processors and the
operating system.

Running a complete logistics simulation in real-time is time consuming, as it
will simulate every tick synchronized with real time. However, depending on the
specific simulation that is being run, there may be long intervals where no com-
putations are being done other than that of the simulator advancing time in the
simulated world. For this reason, RinSim employs a mechanism to dynamically
switch between real-time and simulated time. When the simulator is in simulated
time, ticks will be executed as fast as possible speeding up the simulation signifi-
cantly. As soon as a computation needs to be done, the simulator must first switch
back to real-time mode before this computation can be started.

3 Multi-agent systems for dynamic PDP

This section is adapted from [8]. The multi-agent system that is extended is an
implementation of the dynamic contract-net protocol (DynCNET) presented by
Weyns et al. [24]. DynCNET is a dynamic extension of the CNET first proposed
by Smith [25]. Inspired by how companies use subcontracting to collaboratively
solve problems, CNET uses contracting to approach the task assignment problem.
In CNET, the agent that tenders a task is called the manager and sends a task
announcement to potential contractors. Each potential contractor can either ignore
the announcement or send a bid to the manager. The manager then selects the best
bid and awards the task to the contractor. Figure 3 shows the UML interaction

10 Rinde R.S. van Lon et al.

diagram for the CNET auction process. Although an auction can be, and usually

Manager

New task

Task announcement

Potential contractor

Compute bid
Propose bid

Award task

Fig. 3: UML interaction diagram of a CNET auction.

is, used in a competitive setting, we use auctions in a purely cooperative setting.
We assume that both the contractors and the manager are working for the same
company. The dynamic extension of CNET provides flexibility to the assignment
until a contractor has to commit to the execution of the task. The same task can be
announced several times before its execution, its assignment changing after every
announcement.

In our MAS implementation for the dynamic PDPTW, both the vehicle as
well as the transportation requests are modeled as agents. In the remainder of
this text we will call the agent controlling a vehicle a VehicleAgent and the agent
responsible for a transportation request an OrderAgent. OrderAgents are playing
the role of the manager in DynCNET, VehicleAgents are the potential contrac-
tors. Figure 4 shows an interaction diagram of an auction using our DynCNET
implementation. At the end of an auction, each VehicleAgent is either awarded
the order or notified of the end of the auction. At this moment the VehicleAgents
have the possibility of starting a new auction by offering one of their previously
awarded orders. The VehicleAgent will inform the OrderAgent responsible for the
order that is to be offered to start a new auction, the OrderAgent will then perform
a new auction process similar to Figure 4. A possible outcome of this auction is
that the order is not awarded to another vehicle but stays assigned to the original
vehicle. Allowing the vehicles to start a new auction process enables the dynamic
(re)allocation of orders and makes the CNET implementation dynamic.

3.1 Order agent

The OrderAgent (the manager in CNET terminology) is responsible for the auction
process. It announces the start of the auction to all vehicles and waits until it
receives enough bids to make a decision. The stop criterion for the bidding process
is:

|bids| ≥ 2 ∧ (|bids| = |vehicles| ∨ auction duration ≥ 5000)

where, |bids| is the number of received bids, |vehicles| is the total number of
vehicles which equals the potential maximum number of bids and auction duration
is the duration of the auction in milliseconds.

When the stop criterion evaluates to true, the OrderAgent finalizes the auction
by selecting the best bid as the winner. The best bid is defined as the bid with the

Optimizing agents with genetic programming 11

New task

:OrderAgent

Announce

v2:VehicleAgent

Compute

:RinSim

Announce

v1:VehicleAgent

Compute

Several ticks Done
Propose bid

Several ticks Done
Propose bid

opt [Stop criterion]

Finalize auction

Award

End of auction

Fig. 4: UML interaction diagram of an auction of an order with two vehicles. Upon receiving
the auction announcement, both VehicleAgents start computing a bid. The computations
take several ticks. As soon as the OrderAgent has met the stop criterion, in this case receiving
two bids is enough, the auction is finalized and the order is awarded to v1. Vehicle v2 is
notified of the end of the auction. The RinSim lifeline is a simplified view of the multi-threaded
computation facilities provided by RinSim. Note that the filled arrows indicate synchronous
calls and the stick arrows indicate asynchronous calls.

lowest price (cost). The order is assigned to the winner, the winner must therefore
service that order, unless it decides to auction it and somebody else wins that
auction at a later time. All VehicleAgents are informed of the end of the auction.
This allows agents that are still computing their bids for this auction to cancel
their computations. Bids that are received after the finalization of the auction are
ignored.

3.2 Vehicle agent

A VehicleAgent needs to compute a bid value in order to propose a bid. In [8]
the bid value is computed using a solver. The cost of an order is defined as the
additional cost that including that order incurs to a vehicle’s current schedule:

cost(order) = cost(new schedule)− cost(current schedule) (12)

where, current schedule is the schedule of the vehicle including all previous order
assignments, and new schedule is the current schedule of the vehicle including the
proposed order. The task of the solver is finding the best new schedule in a relative
short amount of time to get a reliable estimate of the cost of the auctioned order.
The time for computing the new schedule is limited because the auction process
has a limited duration, the bid needs to be proposed before the end of this duration
in order to ensure that the OrderAgent will take the bid into account.

As soon as the assignment of orders to a vehicle has changed, the VehicleAgent
needs to update its schedule. The vehicle’s schedule is optimized by a solver (the
schedule solver), although it is imperative to generate a complete schedule quickly,
the solver can compute for a longer time as the solver can continuously notify

12 Rinde R.S. van Lon et al.

the VehicleAgent of improved schedules. This allows the optimization process to
continue for an extended period.

The VehicleAgent considers starting a new auction (a reauction) in the fol-
lowing two situations:

– when a vehicle has not won an auction for at least five minutes; or,
– when the vehicle’s current schedule has changed.

When starting a new auction the vehicle has to decide which of its previously
assigned orders it should auction. The order that when removed yields the greatest
schedule cost reduction, for that vehicle, is selected. Computing the cost reduction
of removing an order from the current route does not require an optimization
step (the route is not optimized again) and can therefore be computed quickly for
all orders assigned to a vehicle (similar to eq. 12). Orders for which the pickup
operation is in process or is already done are not considered for auctioning as they
can’t be reassigned. If the order with the greatest cost reduction is the last received
order, no auction is performed to avoid excessive auctioning. The VehicleAgent

itself has to propose a bid to its own auction, only when another agent proposes
a better bid will the order be reassigned.

In [8] computations by the agents are done using an optimization algorithm
from the OptaPlanner library [9]. OptaPlanner is an open source Java constraint
satisfaction engine that optimizes planning problems. The project is developed by
De Smet et al. and sponsored by RedHat. OptaPlanner provides a wide range of
optimization algorithms such as construction heuristics and metaheuristics. It has
support for various problem domains such as scheduling and vehicle routing. In
the experiments described in this paper we use version 6.4.0. In [8] it was estab-
lished that a first-fit decreasing construction heuristic followed by step counting
hill climbing with tabu search and strategic oscillation performs best on dynamic
PDPTWs. Therefore we use the same algorithm in this paper. In the remainder of
this paper, when we refer to OptaPlanner we refer to this specific algorithm unless
mentioned otherwise.

4 Genetic programming for enhancing agents

To enhance the MAS discussed in Section 3 using GP we replaced OptaPlanner
in the VehicleAgent with an evolved heuristic.

4.1 Heuristics in agents

As described in Section 3, the VehicleAgent has three different decisions to make:

1. Assigning a bid value to an auctioned parcel, currently being done using cheap-
est insertion cost with the insertion computed by OptaPlanner.

2. Deciding what parcel to reauction, currently taking the most expensive parcel.
3. Finding the cheapest route to all destinations, currently computed using Opta-

Planner.

Assigning a bid value to a parcel (1) and deciding which parcel to reauction (2)
can easily be done by a heuristic:

(vehicle,parcel) -> cost

Optimizing agents with genetic programming 13

The heuristic is executed by a vehicle, the output is an estimation of the cost
of adding the specified parcel into the route of the vehicle and possibly further
considerations.

4.2 Genetic programming setup

Since the quality of a heuristic cannot be deduced analytically, we are using
simulation-based fitness evaluation. Since real-time simulation is very time con-
suming, we are using RinSim (Section 2.3) with simulated time during evolution.
Additionally, to also save computation time, we use the cheapest insertion cost
heuristic instead of OptaPlanner for computing the cheapest route to all destina-
tions. To avoid spending too much time on simulating inferior individuals we use
RinSim with a custom stop condition:

stop(t) :=

{
∃vi ∈ V route length(vi) > max (40, |Et| − |Dt|) if t ≤ 8 hours

true otherwise

where t is the current time, |Et| is the number of parcel announce events up to
time t, and |Dt| is the number of delivered parcels up to time t. The stop condition
is designed to stop the simulation if it takes too long to deliver all parcels or if
there is a single vehicle that is hoarding parcels. Hoarding is defined as a vehicle
that has more than about 50% of all possible visits in its route. The theoretical
maximum number of visits is indicated by 2 · |Et| − |Dt|. A vehicle route may
contain each parcel at most twice (once for pickup, once for delivery), if the route
length is larger than the number of undelivered parcels this means that about 50%
of the parcels are in that route. The stop condition only applies when the total
route length is more than 40. The stop condition halts simulations of bad quality
individuals, saving computation time for individuals of higher quality.

The fitness function, that needs to be minimized, is:

fitness :=

{
fitnessmax − t if simulation terminated early

cost (eq. 4) otherwise

The fitness of individuals that are stopped by the stop condition is the maximum
fitness value subtracted with the time of the simulator at which it was stopped.
This adds some differentiation to low quality individuals.

The GP settings that we use are listed in Table 1. The best number of eval-
uations is highly problem specific [16]. The choice of number of evaluations per
individual needs to be high enough to avoid over specialization within a single
generation while it needs to be low enough to keep the experiments computa-
tionally feasible. Preliminary experiments showed that 50 evaluations produces
convergence graphs that are considerably smoother compared to lower number of
evaluations, while still being computationally feasible. Similar to [20], we choose a
large number of evaluations in the last generation since this is the most important
generation as it chooses the champion heuristic. The maximum tree depth of 17
is also used by Koza [26, p. 265] and is the default of ECJ, the evolution software
framework [27] that we use.

Table 2 lists the functions, and Table 3 lists the terminals that are used.

14 Rinde R.S. van Lon et al.

Table 1: Genetic programming settings.

Parameter Value
Population size 500
Generations 100
Number of evaluations per individual 50
Num evals in last generation 250
Crossover proportion 90%
Mutation proportion 10%
Elitism 1
Selection method Tournament selection (size 7)
Maximum tree depth 17

Table 2: Functions used in GP.

Function name Arity Description
if4 4 if arg0 < arg1 then arg2 else arg3
+, -, /, x 2 Mathematical operators
pow 2 arg0arg1, raises arg0 to the power of arg1
neg 1 Negates arg0
min, max 2 Takes the minimum or maximum, respectively, of the pro-

vided arguments.

Table 3: Terminals used in GP. The terminals have a context of a vehicle (the vehicle that
executes the heuristic) and a parcel of interest.

Function name Description
insertion cost

Computes the difference between the current and a possible new
tour of a vehicle, as computed by the cheapest insertion heuristic.
Cost is the sum of travel time, tardiness, and over time (as in
eq. 4). Flexibility is defined in eq. 13.

insertion travel time
insertion tardiness
insertion over time
insertion flexibility
ado Average, minimum, or maximum travel time, respectively, from

the pickup and delivery location of the parcel of interest to all
locations in the vehicle’s route. These heuristics are inspired by
the heuristics of the same name by Beham et al. [19].

mido
mado

pickup urgency The time left until the end of the pickup/delivery time window of
the parcel of interest (in minutes).delivery urgency

time left The time left in minutes until the end of the day.
slack The amount of idle time, in minutes, that the current vehicle has.
route length The current size of the vehicle’s route.
0,1,2,10 Constants, to limit the search space we only use the four most

relevant constants.

One of the terminals is based on the concept of flexibility in a route. Flexibility
is the degree to which arrival times in a vehicle’s route can be changed without
introducing time window violations. This is calculated as follows:

flexibility(route) :=

|route|∑
ri∈route

lpa(ri)− epa(ri) (13)

where, lpa(ri) is the last possible arrival time without time window violations and
epa(ri) is the earliest possible arrival time without time window violations.

Optimizing agents with genetic programming 15

Listing 1: Simple heuristic example code.

(x (max (− (+ i n s e r t i o n overt ime d e l i v e r y urgency)
i n s e r t i o n f l e x i b i l i t y)

(pow i n s e r t i o n t a r d i n e s s 2 . 0))
(pow 10 .0 i n s e r t i o n co s t))

We use the standard tree-based representation of GP. A simple example of a
heuristic composed of an arbitrary set of functions and terminals is shown as a
Lisp expression (Listing 1) and as a tree (Figure 5).

x

max

insertion flexibility pow

insertion tardiness 2

pow

10 insertion cost

Fig. 5: Simple heuristic example visualized as a tree.

We simulate each individual on 50 different scenarios. Each scenario describes
a period of four hours in which 120 orders (in the small scale variant) are an-
nounced. Since a scenario is the product of a stochastic process, the difficulty of
scenarios varies. Within a generation this is not a problem because fitness indi-
cates an algorithm’s quality on a set of scenarios. Consequently, when comparing
two algorithms within a generation, the fitness values can be compared directly.
However, a convergence graph that shows absolute values will show a lot of noise
because the values between generations can not be compared directly. Therefore,
we normalize the fitness values relative to the cost of the decentralized cheapest
insertion cost heuristic.

4.3 Tuning

For investigating the performance of GP we ran some experiments with a smaller
number of generations. Figure 6 shows a breakdown of the convergence graph of
three such runs. The figure shows that most of the improvement during evolution
is caused by a reduction of tardiness and over time while travel time remains rela-
tively constant. This suggests that it may be worthwhile to emphasize the tardiness
in the objective function during evolution. We experimented with two weighted
versions of decentralized GP (DGP). DGP-1:1 uses the objective function as de-
fined in eq. 4. DGP-1:2 replaces the insertion based GP terminals with weighted
versions in favor of tardiness and over time. Figure 7 compares the GP runs with
two weighted decentralized insertion cost heuristics, DIC-1:2 and DIC-1:4. From
Figure 7 it can be concluded that DIC-1:2 performs better than the 1:1 objective
function while DIC-1:4 performs worse than 1:1. However, replacing the insertion
based GP terminals with weighted versions does not benefit evolution, DGP-1:1

16 Rinde R.S. van Lon et al.

2.5

5.0

7.5

10.0

0 10 20 30 40 50

Generation

M
e
a
n

c
o
st

p
e
r
p
a
rc
e
l

Data

mean travel time

mean tardiness

mean over time

Algorithm

Run-1

Run-2

Run-3

Fig. 6: Breakdown of cost per generation of three evolutionary runs on a scenario with 50%
dynamism, 20 minutes urgency, and scale 1.

DIC-1:2

DIC-1:4

DGP-1:1

DGP-1:2

0.85

0.90

0.95

1.00

0 20 40

Generation

C
o
st

re
la
ti
v
e
to

ch
e
a
p
e
st

in
se
rt
io
n

Data

measured

exponential fit

Algorithm

DIC-1:2

DIC-1:4

DGP-1:1

DGP-1:2

Fig. 7: Comparison of two evolutionary settings (average of three repetitions each), DGP-1:1
with standard objective function weights of its terminals defined in Table 2 and DGP-1:2 with
objective functions weights in favor of tardiness and over time. DIC-1:2 and DIC-1:4 are using
weighted insertion cost (without evolution) on the same set of scenarios as are used in every
generation of the GP.

outperforms DGP-1:2. This is presumably because evolution already favors heuris-
tics that emphasize reducing tardiness and over time as this yields the greatest
performance increase.

5 Evaluation

To compare the agent-based hyper-heuristic approach (DGP, Section 4) with
the MAS using OptaPlanner (DOP, Section 3) and the centralized OptaPlanner
(COP, [8]) we first need to generate (train) the heuristics that can be used in
real-time.

Optimizing agents with genetic programming 17

5.1 Training

For training we have generated a separate dataset using the same settings (but
different random seeds) as used in [8]. During training we use small scale scenarios
to save computation time.

5.1.1 Experiment setup

We have opted for four different GP setups (Table 4). Three setups are meant
to specialize on one specific scenario class, while the DGP-mixed setup aims to
generate generalized heuristics that are equally adapted to all scenarios. Because
there are nine small scale scenario classes, we use 54, a multiple of nine, evaluations
every generation. This ensures that each generation each individual is evaluated
on exactly six scenarios of every scenario class.

Table 4: The four different GP setups. The three specialized setups, DGP-20-35-1,
DGP-50-20-1, and DGP-80-5-1, are trained on one specific class of scenarios. DGP-mixed
is a setup that is trained on all small scale scenario classes simultaneously.

Dynamism Urgency Scale Num evals Num last evals Name
20% 35 1

50 250
DGP-20-35-1

50% 20 1 DGP-50-20-1
80% 5 1 DGP-80-5-1

20%/50%/80% 35/20/5 1 54 270 DGP-mixed

For the specialized GP runs we need to do 500 · (99 · 50 + 250) = 2,600,000
simulations and for the generalized GP run 500 · (99 · 54 + 270) = 2,808,000.
Since we repeat each setting ten times, the grand total of required simulations
is 106,080,000. A single simulation may take from about half a second to several
seconds each on a modern PC. If the average simulation time would be exactly
1 second, the expected total computation time is about 1227 days (3.3 years).
Clearly, it is not feasible to run such an experiment on a single computer, there-
fore we have pooled the resources of about 80 modern quad-core computers to run
our simulations. Theoretically, these 80 machines allow us to perform about 320
simulations in parallel. In practice, however, these are shared university machines
that may have other processes running or may simply be turned off during an
experiment. To utilize these machines we use a feature of RinSim that allows to
spread simulations over multiple machines (internally using JPPF [28]) and that
is resistant to single node failures.

5.1.2 Results and analysis

A total of 103,374,996 simulations were computed during the course of the 40
evolutionary runs. The cumulative computation time is 1295 days, using the dis-
tributed computing setup, it took slightly more than 10 days. The actual number
of simulations that were performed is slightly lower than computed in the previous
paragraph because when identical individuals are found within a generation they
are evaluated only once.

Figure 8 shows the average convergence graphs of each GP variant. For all

18 Rinde R.S. van Lon et al.

50-20-1

20-35-1

80-5-1

mixed

0.80

0.85

0.90

0.95

1.00

0 25 50 75 100

Generation

C
o
st

re
la
ti
v
e
to

ch
e
a
p
e
st

in
se
rt
io
n

Data measured exponential fit Algorithm 50-20-1 20-35-1 80-5-1 mixed

Fig. 8: Average convergence graphs based on ten repetitions for each of the four GP settings.

GP variants, the majority of the improvement occurs in the first 25 generations.
It is striking that 80-5-1 shows much less improvement compared to the other
variants. This may be explained by the fact that this is probably one of the hardest
problems for any algorithm. With 80% dynamism, the problem is changing nearly
continuously and with an urgency of 5 minutes, each new order needs to be dealt
with swiftly. Based on this graph, it appears that the insertion cost heuristic is
performing relatively well in these circumstances. For the 20-35-1 and 50-20-1
settings, GP seems to be able to find the largest improvement relative to the
insertion cost heuristic. GP-mixed uses all scenario classes and lies, as expected,
somewhere between the others.

5.2 Testing

In order to evaluate the effectiveness of our GP approach, we test the evolved
heuristics using real-time RinSim [23] on the same dataset as was used in [8].

5.2.1 Experiment setup

The test dataset has three levels of dynamism, urgency, and scale, resulting in
27 different scenarios classes. For each class, the dataset contains ten scenario
instances. The evolutionary runs (Section 5.1) produced 40 heuristics, additionally
we are also testing the insertion cost heuristic. This means we have 41 algorithms,

Optimizing agents with genetic programming 19

each of whom we need to test in real-time on the 270 different scenarios in the
dataset, resulting in a total of 11,070 real-time simulations. Unlike [8], we do not
repeat the execution of simulations with exactly the same settings. Instead, we
combine the results of the ten heuristics evolved with the same GP settings and
compare those with the results of [8].

To allow direct comparison of the results, we use the same hard- and software
as in [8]. The test computer has 24 logical cores (two six core Intel Xeon 2.6GHz
E5-2630 v2 processors with hyper threading). A single simulation requires two
logical cores, one for the simulator and one for the solver computations. At least
one core needs to be available for the operating system, resulting in a maximum
of 11 simulations that can be run in parallel. As in [8], we warm up the JVM for
30 seconds before starting the real-time experiment.

5.2.2 Results

Table 5 lists the algorithms that we compare. Similar to [8], we apply Welch’s

Table 5: Algorithm names with their meaning and number of simulations per class that were
performed. For COP and DOP, three repetitions were done for each of the ten scenarios in a
class. For the other algorithms, no repetitions were done. For the DGP variants, each of the
ten evolved heuristics were simulated on each scenario.

Algorithm Description Simulations per class
COP Centralized OptaPlanner (from [8]) 30
DOP Decentralized OptaPlanner (from [8]) 30
DIC Decentralized insertion cost 10
DGP-20-35-1 Decentralized GP trained on 20-35-1 class 100
DGP-50-20-1 Decentralized GP trained on 50-20-1 class 100
DGP-80-5-1 Decentralized GP trained on 80-5-1 class 100
DGP-mixed Decentralized GP trained on all small scale classes 100

t-test for testing the significance of the differences between the algorithms. In the
following analysis we refer to this test by mentioning the p-values (when relevant)
that were observed. The significance threshold was set at p = .01. For pairs of
algorithms that have the same number of simulations we perform a paired t-test
instead of an unpaired t-test. The total experiment computation time of the 11,070
real-time simulations was about 551.9 hours (≈ 23 days), during this time 11
simulations were run in parallel. Table 7 shows all simulation results.

5.3 Analysis

The first hypothesis (Section 1) states that hyper-heuristics (DGP) can outper-
form DOP. We can accept this hypothesis as the results indicate that there is
always at least one of the DGP variants that outperform DOP (Table 6). In fact,
DGP-mixed, DGP-80-5-1, and DGP-50-20-1 are better than DOP for all scenario
classes. Table 6 shows that DGP-20-35-1 also often outperforms DOP but not as
often. It’s also noteworthy that DIC outperforms DOP in several (mostly small
scale) classes, indicating that in some cases even a simple heuristic can be better
than OptaPlanner.

20 Rinde R.S. van Lon et al.

Table 6: Summary of relative performance of DGP variants to DOP. Each number indicates
the number of classes on which the algorithm is (significantly) better or worse compared to
DOP.

Algorithm sign. better better (not sign.) worse (not sign.) sign. worse
DIC 0 6 9 12
DGP-20-35-1 18 0 5 4
DGP-50-20-1 21 8 0 0
DGP-80-5-1 27 0 0 0
DGP-mixed 27 0 0 0

O
p

tim
izin

g
a
g
en

ts
w

ith
g
en

etic
p

ro
g
ra

m
m

in
g

2
1

Table 7: Average results for each setting. The ‘Best’ column indicates which algorithms has the best performance, the rank of each value is indicated
by the number in superscript, a † appended to a value with rank n indicates that the difference between the value of rank n and rank n + 1 is not
statistically significant (p < 0.01). The results of the four evolved algorithms also report their standard deviation as the numbers are the average of the
different heuristics produced by GP.

Class COP DOP DIC DGP-20-35-1 DGP-50-20-1 DGP-80-5-1 DGP-mixed Best

20-5-1 25.1001† 28.5506† 27.0425† 31.0257 ± 13.876 26.4804† ± 1.169 25.7543 ± 0.579 25.6112† ± 0.392 COP†

50-5-1 22.2763† 23.9026† 23.2185† 25.8357 ± 8.489 22.8984† ± 1.462 21.6651† ± 0.372 21.9122† ± 0.398 DGP-80-5-1†

80-5-1 21.4812† 23.5116† 22.7825† 25.9697 ± 10.079 22.6584† ± 1.259 21.2811† ± 0.380 21.7553 ± 0.334 DGP-80-5-1†

20-20-1 17.6921† 21.6617 20.7486† 18.9874† ± 0.363 18.7052† ± 0.300 19.1525† ± 0.330 18.8693† ± 0.306 COP†

50-20-1 14.8521† 17.5757 16.8786† 15.2674† ± 0.376 15.2233† ± 0.243 15.5075† ± 0.678 15.1812† ± 0.272 COP†

80-20-1 14.4381† 17.1686† 17.7507 15.0184 ± 0.338 14.8002† ± 0.155 15.3355 ± 0.491 14.8663† ± 0.296 COP†

20-35-1 14.5201 19.3967 18.7486† 16.4773† ± 0.340 16.3732† ± 0.277 17.0215† ± 0.818 16.5694 ± 0.278 COP
50-35-1 12.9211 17.3596† 17.6367 14.4362† ± 0.453 14.5433† ± 0.321 14.9635 ± 0.458 14.5984† ± 0.283 COP
80-35-1 12.3951 15.7436† 16.3037 13.7423† ± 0.239 13.6102† ± 0.181 14.1785 ± 0.547 13.7924 ± 0.342 COP
20-5-5 18.8093† 20.0685† 20.2296† 22.2177 ± 9.248 19.1014† ± 2.516 17.7811† ± 0.231 17.8832† ± 0.288 DGP-80-5-1†

50-5-5 17.1315 16.5654 18.5906† 18.6167 ± 6.244 16.0053† ± 1.834 14.7621† ± 0.180 14.8842 ± 0.291 DGP-80-5-1†

80-5-5 17.2495† 16.4024 18.5497 18.4856† ± 6.164 15.9123† ± 1.723 14.6641† ± 0.160 14.7902 ± 0.231 DGP-80-5-1†

20-20-5 13.9873† 16.9046† 17.6567 13.9412† ± 0.303 13.8331† ± 0.139 14.6905 ± 0.730 14.0344 ± 0.263 DGP-50-20-1†

50-20-5 10.1984† 11.6156 14.1767 9.7563† ± 0.186 9.4971 ± 0.115 10.2975 ± 0.725 9.7492† ± 0.147 DGP-50-20-1
80-20-5 10.3294† 11.8376 14.8517 10.0823 ± 0.238 9.8231 ± 0.163 10.6135 ± 0.729 10.0442† ± 0.196 DGP-50-20-1
20-35-5 10.9671† 14.0976† 15.5557 11.0832 ± 0.184 11.2894 ± 0.188 11.9385 ± 0.660 11.2773† ± 0.220 COP†

50-35-5 8.6771† 11.3266 14.4437 8.8842† ± 0.203 8.9733† ± 0.246 9.7185 ± 0.674 9.0574 ± 0.201 COP†

80-35-5 8.8771 11.2066 14.8177 9.0992 ± 0.247 9.2514 ± 0.220 9.9225 ± 0.614 9.2473† ± 0.202 COP
20-5-10 17.5874 17.9295† 18.9266† 20.1667 ± 7.779 17.1563† ± 2.665 15.8581† ± 0.142 15.9292 ± 0.313 DGP-80-5-1†

50-5-10 15.6815† 14.5884 17.5177 16.8286† ± 6.557 13.9173 ± 1.828 12.8352 ± 0.181 12.8281† ± 0.328 DGP-mixed†

80-5-10 15.8985† 14.4464 17.7837 16.5186† ± 5.572 14.1003† ± 1.828 12.8951† ± 0.160 12.9352 ± 0.373 DGP-80-5-1†

20-20-10 11.5885 13.3206† 15.0437 10.7581† ± 0.221 10.7762 ± 0.116 11.5544† ± 0.717 10.9393 ± 0.198 DGP-20-35-1†

50-20-10 9.3294† 10.6496 14.2607 8.7992† ± 0.247 8.5851 ± 0.067 9.4785 ± 0.808 8.7993 ± 0.149 DGP-50-20-1
80-20-10 9.1674† 10.4696 14.1497 8.7102† ± 0.253 8.4891 ± 0.114 9.3475 ± 0.763 8.7273 ± 0.136 DGP-50-20-1
20-35-10 9.7874† 11.9906† 13.9837 9.1581 ± 0.186 9.4373† ± 0.313 10.0695 ± 0.641 9.4052† ± 0.234 DGP-20-35-1
50-35-10 7.8271† 10.0536 14.0047 7.8382 ± 0.203 8.0604 ± 0.409 8.7445 ± 0.695 8.0443† ± 0.212 COP†

80-35-10 7.8702† 9.8796 14.0787 7.7671† ± 0.187 7.9844 ± 0.389 8.5825 ± 0.683 7.9133† ± 0.196 DGP-20-35-1†

Average rank 2.7 5.74 6.56 3.81 2.74 3.74 2.7

22 Rinde R.S. van Lon et al.

The differences between DGP-mixed and DOP and between DGP-80-5-1 and
DOP are always significant, even for large scale scenarios. This is interesting be-
cause the heuristics were never trained on large scale scenarios. It appears that
the evolved heuristic has no problem scaling up to large problem instances. To
investigate whether the heuristic’s scalability can be explained by its supposed
computational efficiency, we have measured the computational runtimes within a
single simulation of both the DOP as well as the DGP-50-20-1 on a scenario with
class 50-20-10 (Figure 9). The big gap between DGP-50-20-1 and DOP is caused

0

10

20

30

0 5 10 15

Route length

B
id

c
o
m
p
u
ta

ti
o
n

d
u
ra

ti
o
n

(m
s)

Algorithm

DGP-50-20-1

DOP

Fig. 9: Average bid computation times for both the DGP-50-20-1 and DOP on a single scenario
of class 50-20-10. The error bars indicate the 95% confidence interval. There are no values for
route length 0 and 1 for DOP because it is unnecessary to let the OptaPlanner solver compute
an insertion in this case. Note that up until route length 7, the average computation time for
DGP-50-20-1 is below 1 ms.

by the unimproved time parameter of the OptaPlanner solver. This parameter de-
termines the period the solver keeps searching while it has not found an improving
solution. In [8], unimproved time is set to 20 ms, which explains why the fastest
computation time of DOP is always higher than 20 ms. Additionally, Figure 9
shows that the DGP heuristic is fast and growing at a low rate (averages range
from 0.074 to 5.827 milliseconds between route length 0 and 15).

To investigate the influence of the bid computation time on the performance of
the DGP approach, we conducted an additional experiment where we artificially
delayed the computation of the heuristic. This experiment was carried out with a
single DGP-50-20-1 heuristic and on all ten scenarios in the 50-20-10 class. Table 8
indicates that the computational efficiency of the DGP approach is a contribut-
ing factor for its relatively good performance. With a delay of 100 milliseconds,

Table 8: Average cost of DOP with a single heuristic from DGP-50-20-1 with and without an
artificial bid computation delay.

Class Algorithm Cost
50-20-10 DOP 10.649
50-20-10 DGP-50-20-1 no delay 8.634
50-20-10 DGP-50-20-1 100 ms delay 9.251
50-20-10 DGP-50-20-1 200 ms delay 11.102

Optimizing agents with genetic programming 23

DGP-50-20-1 still outperforms DOP. However, with a delay of 200 milliseconds,
DGP-50-20-1 performs worse compared to DOP. Based on this observation we
conclude that the quality of cost estimations made by the evolved heuristics must
be higher than the estimations made by DOP.

The second hypothesis states that DGP can outperform COP. This hypothesis
can be accepted since the evolved heuristics regularly outperform COP (Table 9).
However, COP still performs best in 11 of the 27 classes. The scale and urgency
of a problem seem to be good indicators of the relative performance of the DGP
approaches and COP. The more urgent and large scale a problem is, the better
the DGP approaches perform.

Table 9: Summary of relative performance of DGP variants to COP. Each number indicates
the number of classes on which the algorithm is (significantly) better or worse compared to
COP.

Algorithm sign. better better (not sign.) worse (not sign.) sign. worse
DIC 0 0 8 19
DGP-20-35-1 3 5 11 8
DGP-50-20-1 8 4 10 5
DGP-80-5-1 5 4 10 8
DGP-mixed 8 5 10 4

The third hypothesis states that the evolved heuristics perform especially well
in more urgent circumstances. Based on Table 7 it is clear that evolved heuris-
tics outperform COP in eight of the nine very urgent classes (urgency of five
minutes), we can therefore accept this hypothesis. The class where COP is bet-
ter than the evolved heuristics is 20-5-1. In this class, COP is not significantly
different from DGP-mixed (p ≈ .45), DGP-80-5-1 (p ≈ .34), and DGP-50-20-1
(p ≈ .05). Additionally, we expect that the fact that the heuristics have relatively
short computation times is a stronger factor in more urgent scenarios, because the
available computation time is shorter.

Hypothesis four states that specialized heuristics outperform general heuristics
on scenarios for which they are specialized. DGP-20-35-1 outperforms DGP-mixed
on class 20-35-1 (but not significantly, p ≈ .54), however, DGP-50-20-1 performs
best of the evolved heuristics on this class. Surprisingly, DGP-mixed outperforms
DGP-50-20-1 on its training class, 50-20-1, although not significantly (p ≈ .76). A
possible explanation for the good performance of DGP-mixed in this case is that
it is trained on all small scale scenarios and 50-20-1 is an ‘average’ scenario, it has
medium dynamism and medium urgency. DGP-80-5-1 performs best on its training
class 80-5-1, the difference with DGP-mixed is significant (p ≈ .004). So, for all
three classes on which was trained explicitly, the specialized heuristic significantly
outperforms the general heuristic only once. The difference is not significant in
two other cases, therefore we reject the hypothesis. We conclude that in some
situations a general heuristic can perform comparably to a specialized heuristic.
Our results seem to conform to the ‘no free lunch theorem’ [29]. The urgency on
which a heuristic was trained is a strong indicator of how well it will perform on
a scenario class. We created a summary of the relative performance of the DGP
variants, grouped by urgency (Table 10). The table shows that each specialized

24 Rinde R.S. van Lon et al.

Table 10: Summary of relative performance of DGP variants per urgency level. Each number
indicates the number of classes on which the algorithm is the best DGP approach for that
urgency level.

Urgency DGP-20-35-1 DGP-50-20-1 DGP-80-5-1 DGP-mixed
5 0 0 7 2

20 1 7 0 1
35 7 2 0 0

heuristic performs best on seven out of nine classes that have the urgency level on
which the heuristic was trained.

The fifth hypothesis states that generalized heuristics outperform specialized
heuristics on scenarios for which they are not specialized. Based on Table 10 we can
reject this hypothesis. There are only three classes, 20-5-1, 50-20-1, and 50-5-10,
where DGP-mixed outperforms the other evolved heuristics. This result is some-
what surprising, especially since the number of evaluations for mixed is slightly
more than for the specialized heuristics (54 vs 50 evaluations). Nevertheless, the
DGP-mixed method produces heuristics of good quality as is demonstrated by its
average rank of 2.7 which is the best average rank shared by COP. However, when
computing the average ranks of only the four DGP heuristics, DGP-50-20-1 has
the same rank as DGP-mixed (average rank 2.19).

As expected, DIC is on average the worst performing algorithm. There are,
however, several cases where DGP-20-35-1 performs worse compared to DIC. The
data in Table 7 shows that DGP-20-35-1 performs among the worst in the most
urgent scenarios. This is expected considering that it was trained on the least
urgent scenarios. The results of this heuristic are made even worse by one instance
that performs especially bad (as can be seen by the larger than usual standard
deviations). When removing this badly performing heuristic from the analysis, the
ranks for the DGP-20-35-1 are still among the worst for the very urgent classes, but
the values are much closer to that of DIC. This indicates that the bad performance
is not just explained by this one outlier.

5.4 Reproducibility

Following the policy in [30] we open-sourced all software that was written for
the research described in this paper and made it available online. The scripts for
running each experiment described in this paper can be found in [31]. All resulting
data, including the scripts that we used for the analysis, as well as visualizations of
all heuristics, are available in [32]. This code depends on several other open source
projects that we developed. For all simulations we used RinSim version 4.3.0 [33].
The code for the OptaPlanner based algorithms is part of RinLog version 3.2.0 [34],
the evolutionary algorithms related code can be found in [35, 36]. The scenario files
that we generated for training were generated using our dataset generator [37].

6 Conclusion

Agents in a multi-agent system typically compute decisions using traditional op-
timization algorithms. We have investigated an alternative approach based on

Optimizing agents with genetic programming 25

hyper-heuristics. The present paper is the first to evaluate the performance of an
agent-based hyper-heuristic approach on a real-time logistics problem that sys-
tematically varies the dynamism, urgency, and scale of the problem. The results
show that our hyper-heuristic outperforms a reference algorithm, based on the
OptaPlanner optimization library, in all scenarios. In addition, the decentralized
hyper-heuristic approach even outperforms the centralized reference algorithm in
most situations. The hyper-heuristic approach performs relatively better on more
urgent and larger scale problems. The hyper-heuristic approach has the additional
advantage that it can specialize on certain problem characteristics, increasing its
performance even further.

We see three interesting directions for future work. The first direction is to
make the logistics simulator even more realistic. Examples that will improve re-
alism are, using a road layout of a city, using real-world customer data, having a
heterogeneous fleet of vehicles, or, imposing fuel constraints. The goal of increasing
realism is to evaluate whether the hyper-heuristic agent approach can outperform
traditional algorithms in real-world conditions, hopefully leading to their eventual
deployment. The second research direction is to investigate different team compo-
sitions and level of selection in the evolutionary process. The work done by Waibel
et al. [38] seems to be applicable to evolutionary designing multi-agent systems for
logistics problems. A possible hypothesis in a heterogeneous setup could be the
emergence of agent specializations. For example, agents could optimize towards
pickup and deliveries in a specific geographical area, such as inner city versus ru-
ral areas. Thirdly, in the current hyper-heuristic setup, the parts of agents that
are subject to evolution are relatively small. The agent behavior as well as the
contract-net coordination protocol are predetermined. A very interesting line of
work would be to give evolution more freedom. A challenge would be to determine
a set of basic coordination or communication building blocks. Using these building
blocks, evolution could start exploring in the space of possible coordination mech-
anisms. It would be interesting to see if evolution would create novel coordination
mechanisms or if it would reinvent existing coordination mechanisms. Since we
made all our algorithms and results freely available, we believe that the present
paper provides an ideal starting point for any of these future research directions.

Acknowledgements This research is partially funded by the Research Fund KU Leuven.

References

1. Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl. A survey on pickup
and delivery problems. Part II: Transportation between pickup and delivery
locations. 58(2):81–117, 2008.

2. Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. Dynamic
pickup and delivery problems. European Journal of Operational Research, 202
(1):8–15, 2010. ISSN 03772217. doi:10.1016/j.ejor.2009.04.024.

3. Rinde R. S. van Lon, Eliseo Ferrante, Ali E. Turgut, Tom Wenseleers,
Greet Vanden Berghe, and Tom Holvoet. Measures of dynamism and ur-
gency in logistics. European Journal of Operational Research, 253(3):614–624,
2016. ISSN 0377-2217. doi:10.1016/j.ejor.2016.03.021.

http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2016.03.021

26 Rinde R.S. van Lon et al.

4. Rinde R. S. van Lon and Tom Holvoet. Towards systematic evaluation of
multi-agent systems in large scale and dynamic logistics. In Qingliang Chen,
Paolo Torroni, Serena Villata, Jane Hsu, and Andrea Omicini, editors, PRIMA
2015: Principles and Practice of Multi-Agent Systems: 18th International Con-
ference, Bertinoro, Italy, October 26-30, 2015, Proceedings, pages 248–264.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-25524-8.
doi:10.1007/978-3-319-25524-8 16.

5. Klaus Fischer, Jörg P. Müller, and Markus Pischel. A model for cooperative
transportation scheduling. In Proc. of the 1st Int. Conf. on Multiagent Systems
(ICMAS’95), pages 109–116, San Francisco, 1995.

6. Andrey Glaschenko, Anton Ivaschenko, George Rzevski, and Petr Skobelev.
Multi-agent real time scheduling system for taxi companies. In Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS), pages
29–36, 2009.

7. Danny Weyns, Nelis Boucké, and Tom Holvoet. Gradient field-based task
assignment in an agv transportation system. In Proc. of 5th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS), pages 842–849, 2006.
ISBN 1-59593-303-4. doi:10.1145/1160633.1160785.

8. Rinde R. S. van Lon and Tom Holvoet. When do agents outperform centralized
algorithms? A systematic empirical evaluation in logistics. Autonomous Agents
and Multi-Agent Systems, 2016. Under review, also published as technical
report [39].

9. Geoffrey De Smet et al. OptaPlanner User Guide. Red Hat and the com-
munity. URL http://www.optaplanner.org. OptaPlanner is an open source
constraint satisfaction solver in Java.

10. Carlos Cruz, Juan R. González, and David A. Pelta. Optimization in dynamic
environments: a survey on problems, methods and measures. Soft Computing,
15(7):1427–1448, 2011. ISSN 1433-7479. doi:10.1007/s00500-010-0681-0.

11. Shengxiang Yang, Yong Jiang, and Trung Thanh Nguyen. Metaheuristics for
dynamic combinatorial optimization problems. IMA Journal of Management
Mathematics, 24(4):451, 2012. doi:10.1093/imaman/dps021.

12. Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. Evo-
lutionary dynamic optimization: A survey of the state of the art.
Swarm and Evolutionary Computation, 6:1 – 24, 2012. ISSN 2210-6502.
doi:10.1016/j.swevo.2012.05.001.

13. Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: a survey of
the state of the art. Journal of the Operational Research Society, 64(12):
1695–1724, jul 2013. ISSN 0160-5682. doi:10.1057/jors.2013.71.

14. Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, En-
der Özcan, and John R. Woodward. A Classification of Hyper-heuristic Ap-
proaches, pages 449–468. Springer US, Boston, MA, 2010. ISBN 978-1-4419-
1665-5. doi:10.1007/978-1-4419-1665-5 15.

15. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing (Natural
Computing Series). Springer-Verlag Berlin Heidelberg, corrected edition, 2007.
ISBN 3540401849. doi:10.1007/978-3-662-05094-1.

16. J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang. Automated de-
sign of production scheduling heuristics: A review. IEEE Transactions
on Evolutionary Computation, 20(1):110–124, Feb 2016. ISSN 1089-778X.

http://dx.doi.org/10.1007/978-3-319-25524-8_16
http://dx.doi.org/10.1145/1160633.1160785
http://www.optaplanner.org
http://dx.doi.org/10.1007/s00500-010-0681-0
http://dx.doi.org/10.1093/imaman/dps021
http://dx.doi.org/10.1016/j.swevo.2012.05.001
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/978-3-662-05094-1

Optimizing agents with genetic programming 27

doi:10.1109/TEVC.2015.2429314.
17. Robert E. Keller and Riccardo Poli. Cost-Benefit Investigation of a Genetic-

Programming Hyperheuristic, pages 13–24. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. ISBN 978-3-540-79305-2. doi:10.1007/978-3-540-79305-2 2.

18. E. K. Burke, M. R. Hyde, and G. Kendall. Evolving Bin Packing Heuristics
with Genetic Programming, pages 860–869. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006. ISBN 978-3-540-38991-0. doi:10.1007/11844297 87.

19. Andreas Beham, Monika Kofler, Stefan Wagner, and Michael Affenzeller.
Agent-Based Simulation of Dispatching Rules in Dynamic Pickup and Deliv-
ery Problems. 2009 2nd International Symposium on Logistics and Industrial
Informatics, pages 1–6, sep 2009. doi:10.1109/LINDI.2009.5258763.

20. Rinde R. S. van Lon, Tom Holvoet, Greet Vanden Berghe, Tom Wenseleers,
and Juergen Branke. Evolutionary Synthesis of Multi-Agent Systems for
Dynamic Dial-a-Ride Problems. In GECCO Companion ’12 Proceedings of
the fourteenth international conference on Genetic and evolutionary compu-
tation conference companion, pages 331–336, Philadelphia, USA, 2012. ISBN
9781450311786. doi:10.1145/2330784.2330832.

21. Stefan Vonolfen, Andreas Beham, Michael Kommenda, and Michael Affen-
zeller. Structural Synthesis of Dispatching Rules for Dynamic Dial-a-Ride
Problems, pages 276–283. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
ISBN 978-3-642-53856-8. doi:10.1007/978-3-642-53856-8 35.

22. Jonathan Merlevede, Rinde R.S. van Lon, and Tom Holvoet. Neuroevolution
of a multi-agent system for the dynamic pickup and delivery problem. In
International Joint Workshop on Optimisation in Multi-Agent Systems and
Distributed Constraint Reasoning (OptMAS, co-located with AAMAS), 2014.

23. Rinde R. S. van Lon and Tom Holvoet. RinSim: A simulator for collective
adaptive systems in transportation and logistics. In Proceedings of the 6th
IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2012), pages 231–232, Lyon, France, 2012. doi:10.1109/SASO.2012.41.

24. Danny Weyns, Nelis Boucké, Tom Holvoet, and Bart Demarsin. DynCNET:
A protocol for dynamic task assignment in multiagent systems. First Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, SASO 2007,
pages 281–284, 2007. doi:10.1109/SASO.2007.20.

25. Reid G. Smith. The contract net protocol: High-level communication and con-
trol in a distributed problem solver. IEEE Transactions on Computers, 29(12):
1104–1113, December 1980. ISSN 0018-9340. doi:10.1109/TC.1980.1675516.

26. John R Koza. Genetic programming ii: Automatic discovery of reusable sub-
programs. Cambridge, MA, USA, 1994.

27. Gabriel Balan Sean Paus Zbigniew Skolicki Rafal Kicinger Elena Popovici
Keith Sullivan Joseph Harrison Jeff Bassett Robert Hubley Ankur Desai
Alexander Chircop Jack Compton William Haddon Stephen Donnelly Been-
ish Jamil Joseph Zelibor Eric Kangas Faisal Abidi Houston Mooers James
O’Beirne Khaled Ahsan Talukder Sam McKay Sean Luke, Liviu Panait and
James McDermott. ECJ 20: a java-based evolutionary computation and ge-
netic programming research system, June 2011. https://cs.gmu.edu/~eclab/
projects/ecj/.

28. Laurent Cohen. Jppf, the open source grid computing solution. URL http:

//jppf.org/.

http://dx.doi.org/10.1109/TEVC.2015.2429314
http://dx.doi.org/10.1007/978-3-540-79305-2_2
http://dx.doi.org/10.1007/11844297_87
http://dx.doi.org/10.1109/LINDI.2009.5258763
http://dx.doi.org/10.1145/2330784.2330832
http://dx.doi.org/10.1007/978-3-642-53856-8_35
http://dx.doi.org/10.1109/SASO.2012.41
http://dx.doi.org/10.1109/SASO.2007.20
http://dx.doi.org/10.1109/TC.1980.1675516
https://cs.gmu.edu/~eclab/projects/ecj/
https://cs.gmu.edu/~eclab/projects/ecj/
http://jppf.org/
http://jppf.org/

28 Rinde R.S. van Lon et al.

29. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr 1997. ISSN
1089-778X. doi:10.1109/4235.585893.

30. Rinde R. S. van Lon and Tom Holvoet. Evolved multi-agent systems and thor-
ough evaluation are necessary for scalable logistics. In 2013 IEEE Workshop
on Computational Intelligence In Production And Logistics Systems (CIPLS),
pages 48–53. 2013. doi:10.1109/CIPLS.2013.6595199.

31. Rinde R. S. van Lon. Optimizing agents with genetic programming - An
evaluation of hyper-heuristics in dynamic real- time logistics - code, January
2017. URL https://github.com/rinde/vanLon17-GPEM-code/tree/v1.0.0.
doi:10.5281/zenodo.260130.

32. Rinde R. S. van Lon. Optimizing agents with genetic programming - An
evaluation of hyper-heuristics in dynamic real- time logistics - datasets and
results, January 2017. doi:10.5281/zenodo.259774.

33. Rinde R. S. van Lon. RinSim v4.3.0, December 2016. URL https://github.

com/rinde/RinSim/tree/v4.3.0. doi:10.5281/zenodo.192106.
34. Rinde R. S. van Lon. RinLog v3.2.0, December 2016. URL https://github.

com/rinde/RinLog/tree/v3.2.0. doi:10.5281/zenodo.192111.
35. Rinde R. S. van Lon. RinECJ v4.3.0, January 2017. URL https://github.

com/rinde/RinECJ/tree/v0.3.0. doi:10.5281/zenodo.259718.
36. Rinde R. S. van Lon. evo4mas v0.3.0, January 2017. URL https://github.

com/rinde/evo4mas/tree/v0.3.0. doi:10.5281/zenodo.248966.
37. Rinde R. S. van Lon. PDPTW dataset dataset: v1.1.0, August 2016.

URL https://github.com/rinde/pdptw-dataset-generator/tree/v1.1.0.
doi:10.5281/zenodo.59259.

38. Markus Waibel, Laurent Keller, and Dario Floreano. Genetic team
composition and level of selection in the evolution of cooperation.
IEEE Transactions on Evolutionary Computation, 13(3):648–660, 2009.
doi:10.1109/TEVC.2008.2011741.

39. Rinde R. S. van Lon and Tom Holvoet. When do agents outperform centralized
algorithms? A systematic empirical evaluation in logistics. In CW Reports.
Department of Computer Science, KU Leuven, October 2016.

http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/CIPLS.2013.6595199
https://github.com/rinde/vanLon17-GPEM-code/tree/v1.0.0
http://dx.doi.org/10.5281/zenodo.260130
http://dx.doi.org/10.5281/zenodo.259774
https://github.com/rinde/RinSim/tree/v4.3.0
https://github.com/rinde/RinSim/tree/v4.3.0
http://dx.doi.org/10.5281/zenodo.192106
https://github.com/rinde/RinLog/tree/v3.2.0
https://github.com/rinde/RinLog/tree/v3.2.0
http://dx.doi.org/10.5281/zenodo.192111
https://github.com/rinde/RinECJ/tree/v0.3.0
https://github.com/rinde/RinECJ/tree/v0.3.0
http://dx.doi.org/10.5281/zenodo.259718
https://github.com/rinde/evo4mas/tree/v0.3.0
https://github.com/rinde/evo4mas/tree/v0.3.0
http://dx.doi.org/10.5281/zenodo.248966
https://github.com/rinde/pdptw-dataset-generator/tree/v1.1.0
http://dx.doi.org/10.5281/zenodo.59259
http://dx.doi.org/10.1109/TEVC.2008.2011741

	Introduction
	Dynamic pickup-and-delivery problems
	Multi-agent systems for dynamic PDP
	Genetic programming for enhancing agents
	Evaluation
	Conclusion

