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Multi scale models couple a global macroscopic equation
with a local microscopic equation via averaging



D u

D t
= F(τ, u) Macroscale

τ(t) = Eg(Xt) Coupling

dXt = a(t,Xt ,∇u) dt + b(t,Xt) dWt Microscale

Problem: the simulation is very expensive when scale separation is
large (dt � D t)

Goal: accelerate the simulation of coupling variable



Closure approximation reduces a diffusion in configuration
space to moment equations

dXt = a(Xt) dt + b(Xt) dWt
Restriction−−−−−−−−→ M(t) = E

[
R(Xt)

]
Using Itô formula find equation for M:

dM = H(M) dt + G(M̃) dt

more complicated
moments appear

and express coupling as algebraic function of this set of moments

τ = T (M, M̃)

To avoid infinite hierarchies, approximate the more complicated
moments in terms of the simpler ones.

Problem: closure is model dependent; we ”forget” about
microscopic model



Overview

I On-the-fly numerical closure and matching operator

I Minimum relative entropy moment matching

I Convergence of acceleration scheme with relative entropy

I Numerical example with polymeric fluids



Use Coarse Projective Integration to obtain closure on
demand and accelerate macroscopic evolution

Long Projective Step ∆t

Macro evolution
3. Extrapolation

1. Simulation

2. Restriction
???

1. simulate ensemble of particles for short macro time

2. evaluate the values of coarse variables (by averaging)

3. extrapolate macro states forward in time

4. how to initiate the new microscopic state?



Matching – alternative for Lifting

Lifting

I Choses a distribution
uniquely determined by
current moments

I Introduces the modelling
error

Matching

I Perturbes the prior
distribution in a unique way
to match current moments

I Follows the microscopic
model
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Minimise a ”distance” to match

M(m, π) = argmin
φ∈Prob

dist(φ|π) : EφR = m︸ ︷︷ ︸
extrapolated

moments
prior
distribution

finite set of
linear constraints

I dist introduces geometry
on the space of all
distributions

I matching is a projection
in this geometry

I it may not be a metric
(no symmetry, no
triangle inequality)

E•R = m

M
π

a b

c

Level sets of relative entropy
distance from prior π on the

three element alphabet {a, b, c}.
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Principle of minimum relative entropy

For φ absolutely continuous w.r.t. π

distRE (φ|π) = Eφ

[φ
π

ln
(φ
π

)
︸ ︷︷ ︸

]
convex function
bounded below

1

x
ln
x

XMRE (m, π) is a convex minimisation problem.

I We have the uniqueness of solutions.

I The existence of solutions is related to the moment problem:

When a given vector m corresponds to the average 〈R〉
w.r.t. some probability distribution?



Computing the matching: dual formulation leads to a finite
dimensional set of nonlinear equations

MRE (m, π) =
1

Z (λ∗, π)
exp
(
λ∗TR

)
π exponential family

where Z (λ, π) = Eπ

[
exp
(
λTR

)]
and λ∗ satisfies

partition
function

∇λ lnZ (λ∗, π) = m. dual problem

Computation with system of replicas {X j
π} ∼ π

obtained from
stochastic
simulation

I MC estimates Z (λ, π) ≈ 1
J

∑
j λ

TR(Xj)

I Newton-Raphson iteration to approximate λ∗

I re-weighting
{(

w j ,X j
π

)}
∼MRE (m, π)

w j =
1

Z (λ∗, π)
exp

(
λ∗TR(X j)

)
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We are interested in approximating averages, thus we
consider the weak error

Err(L,∆t, δt) =
∣∣Ef (XT )− Ef (YN(∆t))

∣∣
Parameters

I ∆τ (→ 0) – microscopic time step

I ∆t (→ 0) – macroscopic time step

I L = dimR (→ +∞) – number of moments for extrapolation

One-step increment operator

F∆t(Y ) =
{

Match ◦ Extr(∆t) ◦ Res(L) ◦ Sim(∆τ)
}

(Y )

depends only on
the law of Y

Iteration
YN(∆t) =

(
F∆t

)N(∆t)
X0



Local errors do not vanish as ∆t goes to zero

LocErr(R,∆t) = ‖S∆tπ −F∆t(π)‖TV /∆t

diffusion
semigroup

From Pinsker’s inequality:

‖S∆tπ −F∆t(π)‖TV ≤
√

2I
(
M(mS∆tπ, π)‖S∆tπ

)
+Oπ

(
(∆t)2

)︸ ︷︷ ︸
error due to

extrapolation
moments of
evolved prior

Relative entropy is a ”square distance”:

I
(
M(mS∆tπ, π)‖S∆tπ

)
= (∆t)2C

(
mLπ,Vπ(R),Eπ|Lπ/π|2

)
+

+Oπ

(
(∆t)3

)semigroup
generator



Propagation of local errors is controlled by norms of
Lagrange multipliers

Lipschitz estimate for
F∆t with constant

1 + L∆t

Uniform constant L
⇓

Uniform boundedness of

‖(F∆t)
N(∆t)(·)‖TV

0

exact solution

numerical solution

local errors

Ef (XT )

∆t 2∆t . . . N(∆t)∆t

Ef (YN)

EN

...

E2

E1

Matching M(m, ·) is TV-TV and weak*-weak* continuous.

We have bound: L ≤ F
(
‖λ(m, π)‖, ‖∇λA(λ(m, π), π)‖

)
.

Uniform bounds follow from compactness (Prokhorov’s theorem).
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FENE dumbbells – the simplest non-linear kinetic model of
dilute polymeric solutions

dX =
[
κ · X − 1

2
· X

1− |X |2/b

]
dt +

1√
2

dW , |X |2 < b

velocity
gradient

maximal polymer
length

connector
vector

The most important observable is
polymeric stress given by:

τp = E
[ |X |2

1− |X |2/b

]
.

polymer

model



MRE (mS∆tπ, π) vs S∆tπ – error in stress
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Relative entropy matching – long time evolution of stress

Time-dependent velocity field:

κ(t) = 2 · (1.1 + sin(πt)).
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Extrapolation covers ∼ 70% – 75% of total time domain.



In a nutshell

Summary

I New micro-macro acceleration method to simulate
expectations

I Distance minimisation to match the prior with extrapolated
moments

I Proof of convergence and numerical results for nontrivial case
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