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Abstract

The aim of this paper is the development of a general class of input shapers with
distributed time delay which leads to retarded spectral properties. The design
of the shaper is formulated as a multi-objective optimization problem, where
response time and robustness, expressed in terms of residual vibrations, are the
main objectives. As a part of the optimization formulation, common require-
ments for input shapers such as non-decreasing step response and unity steady
state gain are considered in the design. Moreover, additional optional require-
ments, such as smoothness of a step response, jerk and even jounce limits can
be added to optimization procedure. The resulting problem can be solved us-
ing convex optimization techniques. Several illustrative examples are presented
in comparison with classical input shaping techniques. Finally, implementa-
tion aspects are discussed. The paper is accompanied by an implementation in
MATLAB, including a user-friendly interface for the interactive shaper design.

Keywords: input shaping, time-delay, multi-objective, convex optimization,
Pólya’s relaxation, Pareto front

1. Introduction

Since the early results by Smith [1] achieved in 1950s, the input shaping
techniques have undergone an extensive development. The architecture of in-
put shapers is shown in Fig. 1. The scheme depicts a classical feedback scheme
with an input shaper S(s). The input shaper has reference signal w as an input
and the output goes through an intermediate feedback loop to the input of the
flexible structure. The goal of such a scheme is to control the plant without
exciting an oscillatory mode of the flexible structure F (s). The shaper S(s)
serves to compensate this mode. The most common types of shapers for pre-
compensating oscillatory modes of flexible mechanical systems involve lumped

∗Corresponding author
Email address: dan.pilbauer@cs.kulueven.be (Dan Pilbauer)

Preprint submitted to Elsevier May 10, 2017



delays in the structure. The most simple input shaper, known as the Posicast [1]
or zero-vibration (ZV) shaper [2, 3], contains a single lumped delay. Involving
more lumped delays in the shaper structure allows increasing the robustness
in the oscillatory mode suppression, as it as been done in the zero-vibration-
derivative (ZVD) shaper or extra insensitive (EI) shapers [4], see also the gener-
alized shaper design in [5]. Input shapers can also be targeted to suppress more
than one mode, as considered for example in [6, 7]. In the discrete time-domain,
the input shaping was addressed e.g. by, [7, 8, 9, 10]. Various robustness issues
concerning input shaping were targeted in [11, 12, 13, 14] and [15]. From a wide
range of application directions, let us mention flexible manipulators and cranes
[16] or a very flexible and high-friction flexible manipulator system [17]. Multi-
input multi-output systems using input shaping techniques were presented for
twin rotor in [18], as well as for industrial robots in [19, 20].
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Figure 1: The classical feedforward application of input shaper with the objective to compen-
sate the undesirable oscillatory modes of F(s).

Next to shapers with lumped delays, trapezoidal, S-curve and trigonometric
input smoothers can be used for the flexible mode compensation, see e.g. [21].
However, as shown in [22], the input shaping is considerably faster and more
efficient for reducing the vibrations compared to the command smoothing. As
also reported in [22], these methods usually fail to fully exploit the known prop-
erties of the system such as natural frequency and damping ratio and instead
simply provide a low pass filtering effect. In [23], it was demonstrated that these
smoothers can be represented using distributed time delays. An alternative so-
lution involving delays was considered by Singh in [24], where he proposed jerk
limited input shapers for both single and multi-mode cases. Compared to the
classical shapers, the output of the signal is smoothened by various types of
filters.

The presented work is a further step in a systematic research on involving
distributed delays in the structure of the shapers by the authors’ team. The
first results were presented in [25, 26], where the lumped delay in the ZV shaper
structure was substituted by an equally distributed delay. Subsequently, more
complex delay distributions were considered in [27]. Next to the smoothening
effect at the signal accommodation part, the retarded characteristics of the
shaper spectrum can be considered as an implementation benefit, particularly,
if the shaper is implemented within a closed loop system in the inverse form
[28, 29]. Namely, the spectrum of poles with high magnitudes tend to match
the spectrum of shaper zeros. The system dynamics are then described by a
delay system of retarded type, or a delay systems of neutral type if inverse shaper
with lumped delays is used. A retarded spectrum has a different distribution
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of eigenvalues, i.e., at the high magnitudes, the roots of a retarded system
follow the asymptotic exponential curves that depart of the imaginary axis to
the left with increasing moduli [30]. For neutral systems, the situation is more
complicated. At least a part of the infinite spectrum is located in a strip of
finite width that is parallel to the imaginary axis. Besides, the real upper
bound of the neutral spectrum can be very sensitive to small changes in the
delays. This leads to a requirement of so-called strong stability [31, 32], which
is very restrictive from an application point of view. In the recent work [23],
an optimization based technique, the constrained linear least squares method
in particular, was applied to the shaper design. The work was motivated by
design algorithms for digital signal shapers [33, 34], see also a recent work [35]
(Chapter 6) on optimization based design of multi-mode shapers with lumped
delay, and waveform command based shaping control of multi-mode systems
[36]. The delay distribution in [23] consisted of a discrete series of equally
distributed time delays and the optimization objective was to achieve enhanced
robustness of the shaper. In [37], zero phase tracking was performed by using an
input shaping technique, where the design of the shaper is defined as a minimax
problem. The application of a zero phase tracking input shaper on a medical
x-ray system was performed in [38]

The main objective of this paper is to propose novel class of shapers, char-
acterized by a distributed delay with a smooth kernel function, and to present
on optimization approach for the corresponding shapers tuning. This will be
done by optimizing the shape of a selected smooth polynomial kernel function.
Besides, compared to [23], additional options and constraints on the shaper
properties and robustness will be considered providing the end-user extensive
freedom in defining requirements on the optimized shaper performance.

Let us remark that the presented work is also related to work by Cole, et al.
[39, 40, 41], where the shaper was considered and designed as a general finite
impulse response (FIR) filter. The FIR filters are designed to operate on an ar-
bitrary command input signal to ensure a finite settling time, prescribed roll-off
rate and the filter frequency response. Analogously to the proposed shapers with
distributed delays, the designed FIR filters produce an input smoothing effect.
Next to the fact that a completely different methodology has been involved in
this work, utilizing time delay system theory in combination with optimization
methods, the main contribution of this paper with respect to the work by Cole,
et al., consists of taking into account robustness criteria in terms of residual
vibrations as well as further structural issues on the shaper design. Besides, the
implementation by a time delay system with discrete delay is considered, next
to the implementation by the convolution integral discretization, often applied
for FIR filters.

The paper is structured as follows. A review of delay based shapers is given
in Sec. 2, followed by a proposition of the novel form of input shapers. Sec. 3
describes requirements necessary for an appropriate functionality of the input
shapers. In Sec. 4, an optimization problem is defined for the shaper design with
constraints from Sec. 3, and solved by using standard optimization techniques.
Sec. 5 shows numerous results of the proposed method. In Sec. 6 implemen-
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tation aspects are discussed and the paper concludes with final remarks in Sec.
7.

2. Preliminaries

2.1. Review of delay based shapers

The objective of applying input shapers in a serial interconnection with a
system is to fully or partially compensate its oscillatory mode, which is deter-
mined by a couple of poles ŝz = −β ± jΩ, β = ωζ,Ω = ω

√
1− ζ2, where ζ, ω

are the damping and natural frequency of the mode to be compensated.
The general form of input shapers involving lumped delays is given as follows

u(t) = A0w(t) +

N∑
k=1

Akw(t− τk), (1)

with the input w ∈ R and the output u ∈ R, Ak ∈ R are the gains satisfying∑N
k=0Ak = 1 and τk ∈ R+ are the delays. Considering τ1 < τ2 < ... < τN−1 <

τN , the common requirement on nondecreasing step response results in the
condition

∑m−1
k=1 Ak ≤

∑m
k=1Ak, for m = 1, 2, ..N . The transfer function of the

shaper is given by

S(s) = A0 +

N∑
k=1

Ake
−sτk . (2)

The shaper in the form (2) has no poles, but it has infinitely many zeros forming
a neutral chain in the complex plane [30], [23]. In the spectral domain based
synthesis of the shaper, its dominant zeros are distributed in such a way so
that the undesirable oscillatory poles of the system are fully (e.g. ZV, DZV)
or even robustly (e.g. EI, EEI shapers [42]) compensated. The simplest ZV

shaper is characterized with N = 1 and the parameters A0 =
exp β

Ωπ

1+exp β
Ωπ

, τ1 = π
Ω

and A1 = 1 − A0. A series of two ZV shapers then provides the zero vibration
derivative (ZVD) shaper [42] with N = 2 and maximum delay τ2 = 2τ1. A
general form of a shaper with distributed delay can be described as

u(t) = Aw(t) + (1−A)

∫ T

0

w(t− η)dh(η). (3)

with the parameter A ∈ [0, 1] and the delay distribution h(η) over the finite
length segment η ∈ [0, T ], satisfying h(η) = 1, η ≥ T . A common requirement on
the delay distribution is the nondecreasing step response shape over η ∈ [0, T ].
The transfer function of the distributed delay (3) is given by

S(s) = A+ (1−A)F (s, T ), (4)

where F (s, T ) = L
{∫ T

0
w(t− η)dh(η)

}
is the Laplace transform of the delay.

In [25, 26], a zero vibration shaper with equally distributed delay (ZVD) was
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proposed, considering F (s) = 1−e−sT
sT . The main benefits compared to the clas-

sical shaper was the retarded spectrum of shaper zeros, which proved useful in
feedback applications of the shaper [28], [29], and the smoother accommodation
and filtering effect. A negative aspect compared to the classical ZV shaper was
the increased response time length. This inefficiency can partly be overcome by

combining the lumped and equally distributed delay F (s, T, α) = e−αTs−e−Ts

(1−α)s

[27], where the parameter α determines the ratio between the lengths of the
lumped part and the overall delay length T . An extension towards more general

delay distributions, e.g. with S-shape F (s) = 4(1−2e−s
T
2 +e−sT )

T 2s2 or trigonometric

delay F (s, T ) =
4π2(1−e−Ts)
Ts(T 2s2+4π2) was proposed in [23], along with a fully analyt-

ical parameterization procedure. In order to increase robustness, i.e. provide
distributed delay alternatives to the classical EI, ZVD shapers, a least squares

approach was proposed in [23], considering F (s) =
∑N
k=0 ake−sτk

s . In the pro-
cedure, the delays τk, k = 0..N covering equidistantly the interval the delay
length interval [0, T ] are fixed and the parameters A and ak, k = 0..N are free
parameters to optimize a residual vibration characteristic.

2.2. Proposed novel class of input shapers

We consider a class of input shapers, of the form (3), described by

u(t) = Aw(t) +

∫ T

0

g(θ)w(t− θ)dθ, (5)

where w(t) ∈ R, u(t) ∈ R are input and output, respectively, the smooth
function g is the general kernel function of the distributed delay, T > 0 is the
maximum time-delay and A ∈ [0, 1] is the static gain. The transfer function of
the shaper is given by

G(s) = A+

∫ T

0

g(θ)e−sθdθ. (6)

The kernel function can be expressed as a combination of various types of basis
functions (e.g. splines, exponentials, polynomials,...). Since implementation
and realization constraints need to be taken into an account when designing
the kernel function, this work is based on the kernel function g chosen as the
polynomial

g(θ) =

Np∑
i=0

aiθ
i, (7)

where ai ∈ R, i = 0, 1, ..., Np, are the coefficients and Np is the selected degree
of the polynomial. Thus, the transfer function (6) can be rewritten into a form

G(s) = A+

Np∑
i=0

aigi(s), (8)
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where the functions gi(s) are given by

gi(s) =

∫ T

0

θie−sθdθ =
i!−

∑i
j=0

i!
(i−j)! (Ts)

i−je−Ts

si+1
, (9)

and can be interpreted as so called “moments” of e−sθ.
The impulse response of the input shaper (5) and (7) is given by

h(t) =

{
Aδ(t) + g(t), t ∈ [0, T ],
0, t ≥ T,

with δ denoting the Dirac impulse, and the step response by

s(t) =

{
A+

∫ t
0
g(θ)dθ, t ∈ [0, T ],

1, t ≥ T.

The spectrum of zeros is given as the solution of the equation G(s) = 0. Mul-
tiplying both sides of the equation by sNp+1, we obtain the following equation

AsNp+1 +

Np∑
i=0

ai

i!sNp−i − i∑
j=0

i!

(i− j)!
T i−jsNp−je−Ts

 = 0, (10)

which has the same distribution of zeros as G(s), except for additional zeros in
the s-plane origin.

The inverse application of the shaper in a feedback interconnection requires
A > 0. It is easy to see that for A > 0, the quasi-polynomial at the left-hand
side of (10) is retarded, because of the fact that the s power corresponding to
the exponential terms ranges from 0 (for i = Np) to Np (for i = 0), i.e. it
is lower than the quasi-polynomial order Np + 1. This is a desirable property
since in such a feedback configuration the shaper zeros are turned into poles,
see [28, 29].

For A = 0, which is the case considered as well in what follows, the spectrum
can be either retarded or neutral, depending on the values of the parameters
ai, i = 1..Np and T . It needs to be stressed that in the feed-forward shaper-
system interconnection the retarded character of the spectrum is not required
and shapers with neutral spectrum of zeros can be applied too.

3. Requirements on the shaper functionality

In this section we outline various design requirements for input shapers that
can be taken into account in their design by optimization methods. Most of them
will be directly expressed in terms of linear equality or inequality constraints
on the shaper parameters A, a0, . . . , aNp . Others will be expressed by the non-
negativity of the polynomial on an interval.
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3.1. Linear equality constraints

The first linear constraint stems from placing zeros of the shaper at the
expected position of the oscillatory mode to be compensated,

ŝn = −ζnom ωnom ± j
√

1− ζ2
nom ωnom,

where ωnom and ζnom are the nominal frequency and damping. By placing zeros
of the shaper, we achieve zero-pole cancellation, which removes entirely the
undesired oscillatory modes. These requirements corresponds to

G(ŝn) = 0⇒ A+

Np∑
i=0

aigi(ŝz) = 0, (11)

which can be turned into two real equations for the case of a complex zero,

<{G(ŝz)} = 0, (12)

={G(ŝz)} = 0. (13)

It is also possible to place more zeros. However, each additional zero decreases
the number of degrees of freedom. In order to arrive at a feasible solution, this
may lead to a significant increase of the time delay of the shaper.

The second equality constraint comes from the basic requirement on input
shaping to have a static gain equal to one, which leads to

G(0) = 1⇒ A+

Np∑
i=0

aigi(0) = 1. (14)

The additional linear equality constraint that might be required corresponds
to the requirement of continuity of both the step response and its derivatives at
times t = 0 or (and) t = T . At t = 0 it is expressed by

A = 0, g(0) = a0 = 0, (15)

and for t = T by

g(T ) =

Np∑
i=0

aiT
i = 0. (16)

3.2. Linear inequality constraints

The first constraints come from the basic requirement on the delay free part
of the shaper 0 ≤ A ≤ 1.

The next fundamental requirement that need to be considered is the non-
decreasing step response, or equivalently, the non-negative impulse response,
which can be formulated as

g(α) ≥ 0, ∀α ∈ [0, T ]. (17)
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Condition (17) is a semi-infinite polynomial inequality (requirement to be sat-
isfied for a continuum of α values). The problem can be solved via Pólya’s
relaxations, which will be addressed in the following subsection.

As demonstrated and motivated by Singh [24], limiting the jerk, defined as
the 1st derivative of impulse response, can help to increase durability of actua-
tors in the control systems. Analogously, limiting the jounce - the 2nd derivative
of the impulse signal can also be imposed. For example as demonstrated in [43],
[44], limiting jerk and jounce reduces CNC machining vibrations and increases
product quality. These quantities have also been taken into account in planning
a trajectory of a manipulating robot in [45] or [46]. The constraints on the jerk
and jounce are described by{

|ġ(α)| ≤ J1

|g̈(α)| ≤ J2
,∀α ∈ [0, T ], (18)

where J1,2 are chosen limits on jerk and jounce, respectively. The inequality
constraints (18) are also semi-infinite. They can be transformed to the following
polynomial inequalities, 

ġ(α) + J1 ≥ 0
J1 − ġ(α) ≥ 0
g̈(α) + J1 ≥ 0
J1 − g̈(α) ≥ 0

,∀α ∈ [0, T ], (19)

and included via Pólya’s relaxation technique, which is addressed next.

3.3. Pólya’s relaxation

When applying Pólya’s relaxation to the polynomial inequality

p(α) ≥ 0, ∀α ∈ [0, T ], (20)

with p denoting a polynomial of degree Np, the following steps need to be
followed [47], where the first two reformulate the polynomial p to a homogeneous
polynomial over a unit simplex:

1. Rescale the interval for α to [0, 1] by introducing a new variable θ = α
T ⇒

θ ∈ [0, 1].

2. Set θ = θ1, introduce the additional variable θ2 ∈ R, and homogenize
the polynomial p(Tθ1) by multiplying single monomials with powers of
(θ1 + θ2), until all monomials have the same degree N (larger than or
equal to Np). The non-negativity requirement (20) on p is now equivalent
with the non-negativity requirement of the corresponding homogeneous
multivariate polynomial pN (θ1, θ2) for all θ1 and θ2 satisfying

θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 = 1, (21)

i.e., for all (θ1θ2) belonging to the unit simplex in R2.
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3. Compute the coefficients of the multi-variate polynomial pN (θ1, θ2).

4. Sufficient conditions for (20) are obtained by requiring that all coefficients
of pN be non-negative.

5. If necessary, increase Pólya’s relaxation degree N and repeat from step
(2) on. It can be shown that the gap between sufficient and necessary
conditions tends to zero by increasing Pólya’s relaxation degree, see, e.g.,
[48].

Example. We consider requirement (17) of a non-decreasing step response on
interval [0, T ], for the case where Np = 2, i.e.,

g(α) := a0 + a1α+ a2α
2 ≥ 0,∀α ∈ [0, T ]. (22)

With θ = α
T , condition (22) is equivalent to

a0 + a1Tθ + a2T
2θ2 ≥ 0, ∀θ ∈ [0, 1]. (23)

This in turn is equivalent to

a0(θ1 + θ2)2 + a1T (θ1 + θ2)θ1 + a2T
2θ2

1 ≥ 0,
∀θ1 ≥ 0, θ2 ≥ 0 : θ1 + θ2 = 1,

i.e., a positivity constraint of a homogeneous multivariate polynomial over the
unit simplex. Working out this expression in monomials gives

θ2
1(a0 + a1T + a2T

2) + (2a0 + a1T )θ1θ2 + a0θ
2
2 ≥ 0,

∀θ1 ≥ 0, θ2 ≥ 0 : θ1 + θ2 = 1.

Hence, sufficient conditions for (22) are given by the linear inequalities

a0 + a1T + a2T
2 ≥ 0, 2a0 + a1T ≥ 0, a0 ≥ 0.

This is called Pólya’s relaxation of degree 2. Tighter conditions can be obtained
by increasing the degree of the relaxation, at the price of an increase in the num-
ber of inequalities. For Pólya’s relaxation of order 3, one writes the constraint
as

a0(θ1 + θ2)3 + a1T (θ1 + θ2)2θ1 + a2T
2(θ1 + θ2)θ2

1 ≥ 0,
∀θ1 ≥, θ2 ≥ 0 : θ1 + θ2 = 1.

Working out this expressions and requiring the coefficients of all (third-order)
monomials to be non-negative results in

a0 + a1T + a2T ≥ 0, 3a0 + 2a1T + 3a2T
2 ≥ 0,

3a0 + a1T ≥ 0, a0 ≥ 0.

4. Optimization problem formulation

We present a procedure for the design of the shaper parametersA, a0, · · · , aNp
and T . The procedure is based on a multi-objective optimization problem yield-
ing a trade-off between a fast response time of the shaper and a robustness re-
quirement, expressed in terms of residual vibrations. The optimization problem
is constrained by selected requirements specified in Section 3.
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4.1. Residual vibrations

The design procedure takes into account robustness of the shaper, in the
sense that it is less insensitive with respect to changes of the suppressed sys-
tem’s parameters. Our robustness criterion is expressed in terms of the residual
vibrations introduced by [49], which can be expressed in terms of the transfer
function (6), as shown in [23]

V (ζ, ω) =
∣∣∣G(−ωζ − jω√1− ζ2

)∣∣∣ eζωT , (24)

and which takes into account uncertainty not only in the nominal frequency (as
it is usual), but also in the damping of the vibration to be suppressed. Formula
(24) expresses the amplitude of the residual vibration at time t = T .

More precisely, let s = −ωζ − jω
√

1− ζ2 be the pole to be compensated by
a shaper zero and assume that ω ∈ I, ζ ∈ I2, where

I1 = [ωmin, ωmax], I2 = [ζmin, ζmax], (25)

with a nominal frequency ωnom and a nominal damping ζnom assumed to be the
midpoints of these intervals.

To handle the uncertainty in ω and ζ, we define a grid of Nω and Nζ Cheby-
shev points, which are more efficient for polynomial approximation [50], on I1
and I2

ωk =

(
ωmax + ωmin

2

)
−
(
ωmax − ωmin

2

)
cos

(
(k − 1)π

Nω − 1

)
; k = 1, ..., Nω, (26)

ζl =

(
ζmax + ζmin

2

)
−
(
ζmax − ζmin

2

)
cos

(
(k − 1)π

Nζ − 1

)
; l = 1, ..., Nζ . (27)

Define the vector of gains to be assessed x =
[
A a0 a1 · · · aNp

]ᵀ
, the

robustness criterion can be expressed by

f(x, T ) =
1

NωNζ

Nω∑
k=1

Nζ∑
l=1

V (ζl, ωk)2.

The shaper transfer function (6) can be expressed as

G
(
−ωζ − jω

√
1− ζ2

)
= L(ζ, ω, T )x

with

L(ζ, ω, T ) =
[
1 g0

(
−ωζ − jω

√
1− ζ2

)
· · · gNp

(
−ωζ − jω

√
1− ζ2

)]
.

Consequently we have

V (ζ, ω)2 = xᵀ L(ζ, ω, T )L(ζ, ω, T ) xe2ζωT

= xᵀ <(L(ζ, ω, T )L(ζ, ω, T )) xe2ζωT
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and the robustness measure takes the quadratic form

f(x, T ) = xᵀH(T )x, (28)

where

H(T ) =
1

NωNζ

Nω∑
k=0

Nζ∑
l=0

e2ζlωkT< (L(ζl, ωk, T )L(ζl, ωk, T )) . (29)

Note that matrix H(T ) is postive semi-definite for every T , hence, the quadratic
form (28) is a convex function.

4.2. A multi-objective optimization problem for the shaper design

Recall that the shaper requirements in Section 3 are all expressed in, or
transformed to, linear equality and inequality constraints in the coefficients
(A, a0, ...aNp). Hence, the selected constraints can be compactly written as{

A1(T )x ≥ b1,
A2(T )x = b2,

(30)

with the notation A1(T ), A2(T ) the dependence of the selected (in)equality con-
straints on T is stressed (in fact, the dependence on T is polynomial).

A practical shaper design is characterized by a compromise between two
main conflicting requirements: a fast response time T on the one hand, and a
small size of the residual vibrations close to the targeted mode, on the other
hand. For a given parameter α ∈ [0, 1] this brings us the optimization problem

minT,x α
(

T
Tnom

)2

+ (1− α)xᵀH(T )x
R2

nom
,

subject to{
A1(T )x ≥ b1(T ),
A2(T )x = b2(T ).

(31)

The scale factor Tnom is included in the objective function since the response
time of the shaper should be considered in a relative sense, in comparison to
the nominal period time of the oscillation to be suppressed. The scale factor
Rnom is the reference for the residual vibrations. The scale factor is taken as
Rnom = 0.05 since 5% of the residual vibrations is considered as a limit for a
robustness.

The optimization problem (31) is a nonlinear programing problem and con-
vergence is not guaranteed. However, we can exploit that for a fixed T it can be
solved as a convex quadratic problem (QP) because of H(T ) ≥ 0 and the linear-
ity of the constraints, of which the global optimum can be found using standard
optimization method for convex optimization. Here, the optimization is solved
by the tailored interior-point algorithm implemented in the form of a MAT-
LAB function. In addition, for fixed T the optimal x does not depend on alpha.
Therefore, the solution of problem (31) can be obtained by one sweep over scalar
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parameter T , and solving the corresponding QPs. Note that the existence of the
solution is only limited by constraints (30), and if selected too restrictive the
solution might be infeasible. Finally, by varying parameter α from zero to one,
the full Pareto front is generated of the multi-objective optimization problem

minT,x {
(

T
Tnom

)2

, xᵀH(T )x
R2

nom
},

subject to (30).
(32)

As we shall see, generating a full Pareto front, which the accompanying software
does, is very helpful for the user to find an appropriate trade-off between the
two objective, in accordance with the application in hand.

4.3. Design procedure

The constraints for the optimization presented in the §4.2 can be divided
into two groups. The first group consists of conditions that always have to be
included in the optimization procedure. These constraints are:

• Non-decreasing step response imposed via Pólya’s relaxation;

• Steady state gain equal to one.

The second group consists of constraints that are not necessarily needed in the
optimization procedure. Including any of these constraints leads to additional
attributes of the shaper, at the price reducing the set of feasible solutions. The
optional constraints include:

• Initial step gain A;

• Placing zeros corresponding to poles of undesirable modes;

• Continuity of the step response and its derivative;

• Jerk and jounce limits via Pólya’s relaxation.

Consequently, for a given selection of constraints, a point on the Pareto front
of (32) is obtained as a result of solving the optimization problem (31), where
a selection of the parameter α results into a compromise between the response
time T and average residual vibrations on the domain (ω, ξ) ∈ I1 × I2.

We conclude the section by pointing out the following scaling property of
the optimization problem. Suppose optimization problem (31) has been solved
for system parameters

ζnom, ωnom, [ωmin, ωmax], [ζmin, ζmax], J1, J2,

yielding shaper parameters (A, a0, a1, a2, . . . , aNp , T ), then the solution of (31)
for system parameters

ζnom, ρ ωnom, [ρ ωmin, ρ ωmax], [ζmin, ζmax],
J1

ρ
,
J2

ρ2
,
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with ρ > 0 a scaling parameter, is given by(
A, a0ρ, a1ρ

2, a2ρ
3, . . . , aNpρ

Np+1,
T

ρ

)
.

A user-friendly, MATLAB based, interface for the shaper design is available
from
http://twr.cs.kuleuven.be/research/software/delay-control/shaper-design/

4.4. Note on the optimization problem

The goal of the problem (32) is to find a set of Pareto optimal solutions and
trade of between different objectives [51]. The underlying assumption is that one
solution from the set must be selected by the decision maker. A multi-objective
optimization problem is in general defined as

min
x
f1(x), f2(x), ..., fk(x) (33)

where k ≥ 2 and fk(x) is k-th objective function. The optimization problem (32)
is in our case bi-objective and can be translated to a single objective optimiza-
tion problem by scalarizing the problem as in (31), such that optimal solutions
to the single-objective optimization problem are Pareto optimal solutions to the
multi-objective optimization problem [52]. As mentioned before we can exploit
the convexity of (32) for a fixed value of T .

This guarantees that if a local minimum exists, then it is a global minimum
[53]. The existence of solution is only restricted to the set of constraints, here
(30). Obviously, if the constraints are too restrictive and mutually contradictory,
there might not be points that satisfy all the constraints and thus the feasible
set is empty. In such case the problem has no solution [53].

5. Results

This section provides six design examples of shaper (3). The shapers are
tuned for an oscillatory mode defined by the damping ratio ζnom = 0.01 and
natural frequency ωnom = 1. The uncertainty intervals are given by I1 =
[0.85, 1.15] ωnom and I2 = [0.85, 1.15] ζnom, and Nω = 10, Nζ = 10 number
of points are used in the discretization of the ω and ζ interval, respectively.

The first three examples illustrate the design of robust shapers with different
constraints. The next three examples show a comparison with the ZV shaper.
The selected constraints for the examples are indicated in Table 1. The param-
eters of the designed shapers are shown in Table 2, where the two objectives,
i.e., the response time and average residual vibrations, are shown as well.

Fig. 2 shows the complete Pareto front of multi-objective optimization prob-
lem (32) for example #2 with constraints listed in Table 1. As expected, a faster
response time (horizontal axis) is obtained by increasing α, at the price of an
increase of the average residual vibrations (vertical axis) on the given inter-
vals (25). To obtain comparable results, the parameter α for examples #1-3 is
selected as α = 0.0501.
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Figure 2: The Pareto front(green curve) of (32) for the first example in Section 5. The red
circles represent the solutions of (31) for certain values of α.

A comparison of step and impulse response is in Fig. 3. As expected,
a smoother response leads to a (slight) increase in the response time. Step
response of the interconnection with system with defined oscillatory mode is
depicted in Fig. 4. Figure has highlighted 5% range of oscillations with black
dotted lines. As can be seen, the example #3(yellowish) has no oscillations after
the shaper response time t > T , because one of the constraints is to place an
exact zero. Examples #1 and #2 have residual vibrations after the response
time, but in a very small range, which corresponds with Pareto front charts.
Next, Fig. 5 shows residual vibrations with respect to a frequency. The interval
of frequencies, where the shapers are optimized, is indicated with black dashed
lines around the nominal frequency ωnom. Shapers are also optimized in the
neighbourhood of the nominal damping ratio ζnom. Residual vibrations with
respect to ζ and ω around the nominal values are shown in Fig 6. Nominal
values are indicated with balck dashed lines. The dependency on ζ is much
small than the one on ω and almost not noticeable. A good conception about
the dynamics of the shaper is provided in Fig. 7. The spectra are computed
by the QPmR algorithm [54]. As can be seen, the spectrum of zeros with
A > 1 in #1 is truly retarded, as derived in the Subsection 2.2. Interestingly,
the spectrum corresponding to #3 is also retarded despite A = 0, whereas the
spectrum for the case #2 is neutral. In a detailed view, the distribution of
the zeros of the shapers corresponds to Fig. 5, where a decrease of residual
vibrations is seen on frequencies around the zeros in the complex plane.

Examples #4-6 are shown to provide a comparison with the classical ZV
shaper, which is described by (3) for N = 1 and where the parameters (A0, A1
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Figure 3: Step and impulse responses of the shaper examples #1(red),#2(blue) and #3(yel-
lowish)

and τ1) are determined by placing a zero at the oscillatory mode (ζnom = 0.01,
ωnom = 1). To have comparative results, parameter α in (31) is selected
as α = 1, so the optimization objective insists on a response time as fast as
possible. The suppression of the undesired oscillation is then imposed by placing
an exact zero at ŝn. Example #4 shows only a 10% slower response time then
the ZV shaper and the responses are comparable. Hence, if the response time
is the main criterion, the proposed shaper mimics a ZV shaper. The next
two examples have more requirements on smoothness, and the response time
increases accordingly. As in the previous three examples, the step response is in
Fig. 8 with a comparison with the classical ZV shaper and the step response for
shaper interconnected with oscillatory system as shown in Fig. 9. The residual
vibrations in Fig. 10 have almost the same shape for ω < 1. Examples with
longer response time T have lower residual vibrations on higher frequencies.

#
placing a zero
on ωnom

constraint on initial
step at t = 0 (A = 0)

zero derivative of step
response at t = 0

zero derivative of step
response at t = T

α

1 0.680
2 × × × 0.680
3 × × × 0.680

4 × 1
5 × × 1
6 × × × × 1

Table 1: Optional constraints selected for every example are indicated by ×. In all cases
we use a polynomial of degree 7. All examples include constraints of a non-decreasing step
response imposed via a Pólya’s relaxation of degree 10, and of a steady state gain equal to
one

6. Implementation aspects

The proposed form of the input shapers (5)-(10) cannot be directly imple-
mented using standard block in a computer controlled system, hence this section
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Figure 4: Step response of the shaper interconnected with a second order oscillatory system
with output y for examples #1(red),#2(blue) and #3(yellowish). The dot-dashed line is a
system without shaper. The black dotted lines show 5% region around target value

# T
√
xᵀHx A a0 a1 a2 a3 a4 a5 a6 a7

1 2.65π 0.036 0.129 1.006e-7 -9.954e-8 7.898e-2 -4.245e-2 1.150e-2 -1.824e-3 1.515e-4 -4.881e-6
2 3.02π 0.051 0 0 0.173 -0.146 6.268e-2 -1.286 1.234e-3 -4.658e-5 1.850e-7
3 2.81π 0.048 0 0.175 -0.178 8.062e-2 3.668e-3 -6.623e-3 1.117e-3 -6.343e-5 7.584e-7

4 1.11π 0.18 0.489 3.039e-5 -4.788e-5 2.151e-5 4.822e-2 -7.648e-2 5.017e-2 -1.602e-2 2.169e-3
5 1.27π 0.17 0.455 6.709e-8 2.812e-6 0.181 -0.317 0.239 -9.702e-2 2.234e-2 -2.187e-3
6 1.67π 0.16 0 0 1.253 -1.624 0.893 -0.264 4.316e-2 -3.304e-3 5.908e-5

Table 2: The optimized coefficients of the polynomial (7). The numbers in the first column
correspond with example numbers. The second column is the response time of the shaper.
The third column is the average of the residual vibrations.

propose two ways how to implement the shaper (5). The first method is based
on an on-line computation of the integral. The second approach consists of real-
izing the shaper by a dynamic system. In order to avoid an unstable realization,
we propose a modification of the basis functions gi for the second case.

6.1. On-line computation of integral

This method doesn’t require further modifications of the shaper equation but
requires the on-line evaluation of the integral in every discrete step time, which
may lead to high memory and computation costs. This methods may also lead to
instability when the numerical integration method is not selected appropriately
(see [55] and the references therein). The shaper can be implemented as

y(t) ≈ Au(t) +
∑

wkg(θk)u(t− θk), (34)

where θk and wk are nodes and weights of the quadrature formula.
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Figure 5: Residual vibrations of the shaper examples #1(red),#2(blue) and #3(yellowish).
The graph is plotted for nominal damping ratio ζnom. The cropped zoom view shows details
around nominal frequency ωnom.

Figure 6: Contour plots of the residual vibrations of the shaper for examples #1-#3, with
respect to ζ and ω.
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Figure 7: The zeros of the shaper with parameters given in Table 2. The spectra correspond
to examples #1(red, circles), #2(blue, squares) and #3(yellowish, diamonds)
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Figure 8: Step response of input shaper examples #4(brown),#5(green) and #6(purple). For
comparison, the ZV shaper step response shown with black dashed line
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Figure 9: Step response of the shaper directly connected with a second order oscillatory system
with output y for examples #4(brown),#5(green) and #6(purple).
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Figure 10: Residual vibrations of the shaper examples #4(brown),#5(green) and #6(purple).
The black dashed line corresponds to the ZV shaper.

19



6.2. Exponentially decaying basis functions

The shaper described by (5) and (7) can be rewritten into the form

y(t) = Au(t) +

∫ T

0

CeAθBu(t− θ)dθ, (35)

where

A =



0 1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 1

0 · · · 0

 ∈ RNp+1×Np+1, (36)

and
B =

[
0!a0 1!a1 . . . N !aNp

]ᵀ
, C =

[
0 . . . 0 1

]
. (37)

The corresponding transfer function can then also be expressed as

G(s) = A+ C(sI − A)−1
(
I − e−T (sI−A)

)
B. (38)

This suggest a realization and implementation by the dynamic system{
ż(t) = Az(t) +Bu(t)− eTABu(t− T ),
y(t) = Cz(t) +Au(t).

(39)

Unfortunately, the system (39) is always unstable, because the matrix A has a
multiple non-semisimple eigenvalue at zero. In (38), however, the eigenvalues of
A are removable singularities. A general approach to approximate FIR filters
by stable LTI systems is described in [56] and the references therein. In what
follows we present a solution which does not involve an approximation.

The instability problem can be resolved by modifying the basis functions gi.
Given a number λ > 0, one can also consider a delay kernel of the form

g(θ) =

Np∑
i=0

aiθ
ie−λθ.

Note that the expression is still linear in ai so all results presented before regard-
ing the tuning of the parameters A, a0, . . . , aNp to compensate a zero, to have a
non-negative step response, etc., can be easily adapted. In the implementation
there is one difference. Namely, we still have

g(θ) = CeAθB

with B and C as before but with

A =



−λ 1 0 · · · 0

−λ
. . .

. . .
...

...
. . .

. . . 0
−λ 1

0 · · · −λ

 ∈ RNp+1×Np+1 (40)
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Figure 11: Step and impulse responses of the shaper examples with λ = 0 (red) and λ = 0.4
(blue)
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Figure 12: Residual vibrations of the shaper designed with λ = 0 (red) and λ = 0.4 (blue)

Now A is a Hurwitz matrix for λ > 0, thus, the implementation using differential
equation (39) is already stable.

The choice of λ, once again, induces a trade-off. For large λ, the additional
dynamics are very fast and do not affect the overall control system’s perfor-
mance, but since the kernel basis functions have a rapid decay, it might become
more difficult to find parameter values for the shaper satisfying the design re-
quirements, affecting the performance.
Example. We revisit Example #2 and compare the design for λ = 0 and λ = 0.4.
A comparison of step and impulse response is shown in Fig. 11, where imposing
λ > 0 introduces a longer response time and a slight modification of the shape
of the responses, see Fig. 12. The residual vibrations, see Fig. 12, are slightly
different in the optimized interval with lower average residual vibrations.
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7. Conclusions

As the main contributions, a novel class of input shapers is proposed, as
well as an integrated approach for designing its parameters. The main benefit
compared to the previous work consists of relaxing the delay distribution from
a fixed to a continuous (polynomial) shape along with a systematic design pro-
cedure grounded in convex optimization. Utilizing polynomial functions lead to
major advantages. Firstly, the polynomial functions allow continuous deriva-
tives of the step response which is not possible using discrete delays, see, e.g,
examples #2 and #6. In comparison with distributed delay shapers with piece-
wise constant distribution proposed in [23], a smoother response is guaranteed
at the starting and ending point of the response, and on top of that higher
derivatives can also be limited. Secondly, the distributed delay has a retarded
spectrum, which is an important requirement when the shapers are implemented
as inverse shapers in a feedback look, see the spectra in Fig. 7. Finally, the
input shapers with distributed delay mimic weighted moving averaging, which
is an important feature when they are used in feedback where the measurement
is under effect of noise.

The design of input shapers usually involves an important trade-off between
performance, in terms of response time, and robustness. Instead of moving
one of the objectives to a constraint, which is traditionally done and requires in
practise a lot of iterations to appropriately define constraint levels, we address in
this paper, for the first time, this trade-off by directly solving the design problem
as a multi-objective optimization problem. The design of the parameters is
based on convex optimization techniques, generating a set of Pareto optimal
solutions. The decision maker can subsequently select the best fitting solution
for his / her application. The degrees of freedom of the proposed method allow
to introduce number of additional design options, such as limitation of the jerk
(analogously to [24]) and jounce. Also continuity at the start and the end of the
action can be prescribed. We also show scaling properties of the optimization
problem. Let us remark that compared to the command smoothers considered
in [22], when utilizing this option, the designed shaper/smoother may provide
both command smoothing and full compensation of the mode. Additionally,
next to the possibility to assess the robustness with respect to the frequency
as it is common, the robustness with respect to the damping of the mode to
be suppressed can be included as a requirement in the shaper design. The
novelty is also in the option to include the overall action length of the shaper
in the optimization procedure, next to the robustness of the mode suppression.
The additional contributory aspect is the possible implementation of the shaper
(time delay FIR filter) as a dynamical system with a discrete delay (39).

With regard to the generalized FIR filter designs in [41], the design method
proposed in this paper utilize a different approach grounded in time delay sys-
tem’s theory and gives a more comprehensive design allowing to select parame-
ters of the shaper that fit the particular application. Apart of that, the problem
has not been solved in such complexity and variability of design options yet.

To facilitate the use of the approach, the paper is accompanied by a user-
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friendly publicly available design tool.
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