
Cochis: Deterministic and Coherent

Implicits

Tom Schrijvers
Bruno C. d. S. Oliveira

Philip Wadler

Report CW705, May 2017

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Cochis: Deterministic and Coherent

Implicits

Tom Schrijvers
Bruno C. d. S. Oliveira

Philip Wadler

Report CW705, May 2017

Department of Computer Science, KU Leuven

Abstract
Implicit Progamming (IP) mechanisms infer values by a type-

directed resolution process, making programs more compact and
easier to read. Examples of IP mechanisms include Haskell’s type
classes, Scala’s implicits, Agda’s instance arguments, Coq’s type
classes, and Rust’s traits. The design of IP mechanisms has led
to heated debate: proponents of one school argue the desirability
of coherence, ensuring each implicit has a unique resolution; while
proponents of another school argue for the power and flexibility of
local scoping or overlapping instances. The current state-of-affairs
seems to indicate the two goals are at odds with one another, and
cannot easily be reconciled.

This paper presents Cochis, the Calculus Of CoHerent Implic-
itS, an improved variant of the implicit calculus that offers flexibility
while preserving coherence and avoiding ambiguity. Cochis sup-
ports local scoping, overlapping instances, first-class instances, and
higher-order rules, while remaining type safe and coherent.

Cochis has a compact formulation. We introduce a logical for-
mulation of how to resolve implicits, which is simple but ambiguous
and incoherent, and a second formulation, which is less simple but
unambiguous and coherent. Every resolution of the second formula-
tion is also a resolution of the first, but not conversely. Parts of the
second formulation bear a close resemblance to a standard technique
for proof search called focussing.

Keywords : Implicit parameters, type classes, C++ concepts, generic pro-
gramming, Haskell, Scala



1

Cochis: Deterministic and Coherent Implicits

TOM SCHRIJVERS, KU Leuven
BRUNO C.D.S. OLIVEIRA, �e University of Hong Kong
PHILIP WADLER, University of Edinburgh

Implicit Progamming (IP) mechanisms infer values by a type-directed resolution process, making programs more compact
and easier to read. Examples of IP mechanisms include Haskell’s type classes, Scala’s implicits, Agda’s instance arguments,
Coq’s type classes, and Rust’s traits. �e design of IP mechanisms has led to heated debate: proponents of one school argue
the desirability of coherence, ensuring each implicit has a unique resolution; while proponents of another school argue for
the power and �exibility of local scoping or overlapping instances. �e current state-of-a�airs seems to indicate the two goals
are at odds with one another, and cannot easily be reconciled.

�is paper presents Cochis, the Calculus Of CoHerent ImplicitS, an improved variant of the implicit calculus that o�ers
�exibility while preserving coherence and avoiding ambiguity. Cochis supports local scoping, overlapping instances, �rst-class
instances, and higher-order rules, while remaining type safe and coherent.

Cochis has a compact formulation. We introduce a logical formulation of how to resolve implicits, which is simple but
ambiguous and incoherent, and a second formulation, which is less simple but unambiguous and coherent. Every resolution
of the second formulation is also a resolution of the �rst, but not conversely. Parts of the second formulation bear a close
resemblance to a standard technique for proof search called focussing.

CCS Concepts: •�eory of computation →Type structures; •So�ware and its engineering →Functional languages;

ACM Reference format:
Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler. 2016. Cochis: Deterministic and Coherent Implicits. 1, 1, Article 1
(January 2016), 51 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Programming language design is usually guided by two, o�en con�icting, goals: �exibility and ease of reasoning.
Many programming languages aim at providing powerful, �exible language constructs that allow programmers to
achieve reuse, and develop programs rapidly and concisely. Other programming languages aim at easy reasoning
about programs, as well as to avoid programming pitfalls. Very o�en the two goals are at odds with each
other, since highly �exible programming mechanisms make reasoning harder. Arguably the art of programming
language design is to reconcile both goals.

A concrete case where this issue manifests itself is in the design of Implicit Programming (IP) mechanisms.
Implicit programming denotes a class of language mechanisms, which infer values by using type information.
Examples of IP mechanisms include Haskell’s type classes (Wadler and Blo� 1989), Scala’s implicits (Odersky
2010), JavaGI’s generalized interfaces (Wehr et al. 2007), C++’s concepts (Gregor et al. 2006), Agda’s instance argu-
ments (Devriese and Piessens 2011), Coq’s type classes (Sozeau and Oury 2008) and Rust’s traits (Mozilla Research
2017). IP can also be viewed as a form of (type-directed) program synthesis (Manna and Waldinger 1980). �e
programming is said to be implicit because expressions (e.g., those for function parameters) can be omi�ed by the
programmer. Instead the necessary values are provided automatically via a type-directed resolution process. �ese
implicit values are either fetched by type from the current (implicit) environment or constructed by type-directed
rules.
2016. XXXX-XXXX/2016/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:2 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Currently there are two main schools of thought regarding the design of IP mechanisms. Haskell’s type
classes (Wadler and Blo� 1989) embody the �rst school of thought, which is guided by the ease of reasoning
qualities of pure functional languages, and the predictability of programs. To ensure these goals the semantics of
the language should be coherent (Jones 1992; Reynolds 1991). Coherence means that any valid program must have
exactly one meaning (that is, the semantics is not ambiguous/non-deterministic). In fact Haskell type classes are
supposed to support an even stronger property, the so-called global uniqueness of instances (Zhang 2014). Global
uniqueness ensures that at any point in a program, and independently of the context the type-directed resolution
process always returns the same value for the same resolved type. �is is a consequence of Haskell having the
usual coherence property and a restriction of at most one instance of a type class per type in a program.

While both coherence and global uniqueness of instances are preserved in Haskell, this comes at a cost. Since
the �rst implementations of type classes, Haskell imposes several restrictions to guarantee coherence. Advanced
features of type classes, such as overlapping instances,1 pose severe problems for coherence. In purely functional
programming, “substituting equals by equals” is expected to hold. �at is, when given two equivalent expressions
replacing one by the other in any context always leads to two programs that yield the same result. Special care
(via restrictions) is needed to preserve coherence and the ability of substituting equals for equals in the presence
of overlapping instances.

Various past work has pointed out limitations of type classes (Camarão and Figueiredo 1999; Dijkstra and
Swierstra 2005; Dreyer et al. 2007; Garcia et al. 2007; Kahl and Sche�czyk 2001; Morris and Jones 2010; Oliveira
et al. 2010, 2012). In particular type classes allow at most one instance per type (or severely restrict overlapping
instances) to exist in a program. �is means that all instances must be visible globally, and local scoping of
instances is not allowed. �is form of global scoping goes against modularity. Other restrictions of type classes
are that they are second class interfaces and that the type-directed rules cannot be higher-order (Oliveira et al.
2012).

An alternative school of thought in the design of IP mechanisms favours �exibility. For instance, Scala implicits
and Agda’s instance arguments do not impose all of the type class restrictions. For example, Scala supports local
scoping of instances, which can be used to allow distinct “instances” to exists for the same type in di�erent
scopes in the same program. Scala also allows a powerful form of overlapping implicits (Oliveira et al. 2010).
�e essence of this style of implicit programming is modelled by the implicit calculus (Oliveira et al. 2012). �e
implicit calculus supports a number of features that are not supported by type classes. Besides local scoping,
in the implicit calculus any type can be an implicit value. In contrast Haskell’s type class model only allows
instances of classes (which can be viewed as a special kind of record) to be passed implicitly. Finally the implicit
calculus supports higher-order instances/rules: that is rules, where the rule requirements can themselves be
other rules. �e implicit calculus has been shown to be type-safe. Unfortunately, both the implicit calculus and
the various existing language mechanisms that embody �exibility do not preserve coherence and the ability to
substitute equals for equals.

�e design of IP mechanisms has led to heated debate (Hulley 2009; Kme� 2015; Zhang 2014) about the pros
and cons of each school of thought: ease of reasoning versus �exibility. Proponents of the Haskell school of
thought argue that having coherence is extremely desirable, and �exibility should not come at the cost of that
property. Proponents of �exible IP mechanisms argue that �exibility is more important and, in practice, problems
due to incoherence are rare. As far as we are aware only two designs preserve coherence, while allowing some
extra �exibility for local scoping (Dreyer et al. 2007; Siek and Lumsdaine 2005). However neither of those designs
supports overlapping instances and various other features, such as �rst-class and higher-order rules.

1h�ps://downloads.haskell.org/∼ghc/latest/docs/html/users guide/glasgow exts.html#overlapping-instances

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:3

�is paper presents Cochis2: the Calculus Of CoHerent ImplicitS. Cochis is an improved variant of the implicit
calculus that preserves coherence. Cochis supports local scoping, overlapping instances, �rst-class instances and
higher-order rules. Yet, in contrast to most previous work that supports such features, the calculus is not only
type-safe, but also coherent. Naturally, the unrestricted calculus does not support global uniqueness of instances,
since this property depends on the global scoping restriction. Nevertheless, if retaining global uniqueness is
desired, it is possible to model source languages on top of Cochis that support global scoping only. Global scoping
can be viewed as a particular case of local scoping where a single, global, implicit environment is assumed, and
no local scoping constructs are allowed.

Ensuring coherence in Cochis is challenging. �e overlapping and higher-order nature of rules poses signi�cant
challenges for the coherence and determinism of Cochis’s resolution. We introduce a logical formulation of
how to resolve implicits, which is simple but ambiguous and incoherent, and a second formulation, which is less
simple but unambiguous and coherent. Every resolution of the second formulation is also a resolution of the �rst,
but not conversely. Parts of the second formulation bear a close resemblance to a standard technique for proof
search in logic called focussing (Liang and Miller 2009; Miller et al. 1991; Pfenning 2010). However, unlike focused
proof search, which is still essentially non-deterministic, Cochis’s resolution employs additional techniques to
be entirely deterministic and coherent. In particular, unlike focused proof search, our resolution uses a stack
discipline to prioritize rules, and removes any recursive resolutions from matching decisions.

In summary, our contributions are as follows:
• We present Cochis, a coherent (and type-safe) minimal formal model for implicit programming that

supports local scoping, overlapping rules, �rst-class instances and higher-order rules.
• We signi�cantly improve the design of resolution over the existing work on the implicit calculus by

Oliveira et al. (2012). �e new design for resolution is more powerful and expressive; it is closely based
on principles of logic and the idea of propositions as types (Wadler 2015); and is related to the idea of
focussing in proof search.

• We provide a semantics in the form of a translation from Cochis to System F. We prove our translation
to be type-safe, and coherent. �e full proofs are available in the appendix of this paper.

Organization. Section 2 presents an informal overview of our calculus. Section 3 describes a polymorphic type
system that statically excludes ill-behaved programs. Section 4 provides the elaboration semantics of our calculus
into System F and correctness results. Section 5 discusses related work and Section 6 concludes.

2 OVERVIEW
�is section summarises the relevant background on type classes, IP and coherence, and introduces Cochis’s key
features for ensuring coherence. We �rst discuss Haskell type classes, the oldest and most well-established IP
mechanism, then compare them to Scala implicits, and �nally we introduce the coherence approach taken in
Cochis.

2.1 Type Classes and Implicit Programming
Type classes enable the declaration of overloaded functions like comparison, pre�y printing, or parsing.

class Ord α where
(6) :: α → α → Bool

class Show α where
show :: α → String

2Cochise, 1804–1874, was chief of the Chokonen band of the Chiricahua Apache.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:4 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

class Read α where
read :: String → α

A type class declaration consists of: a class name, such as Ord, Show or Read; a type parameter, such as α ; and a set
of method declarations, such as those for (6), show, and read. Each of the methods in the type class declaration
should have at least one occurrence of the type parameter α in their signature.

Instances and Type-Directed Rules. Instances implement type classes. For example, Ord instances for integers,
characters, and pairs can be de�ned as follows:

instance Ord Int where
x 6 y = primIntLe x y

instance Ord Char where
x 6 y = primCharLe x y

instance (Ord α ,Ord β ) ⇒ Ord (α , β ) where
(x, x ′) 6 (y, y′) = x < y ∨ (x ≡ y ∧ x ′ 6 y′)

�e �rst two instances provide the implementation of ordering for integers and characters, in terms of primitive
functions. �e third instance is more interesting, and provides the implementation of ordering for pairs. In
this case, the ordering instance itself requires an ordering instance for both components of the pair. �ese
requirements are resolved by the compiler using the existing set of instances in a process called resolution. Using
Ord we can de�ne a generic sorting function

sort :: Ord α ⇒ [α ]→ [α ]

that takes a list of elements of an arbitrary type α and returns a list of the same type, as long as ordering is
supported for type α . �e body of the function may refer to 6 on type α .

Implicit Programming. Type classes are an implicit programming mechanism because implementations of type
class operations are automatically computed from the set of instances during the resolution process. For instance,
a call to sort only type checks if a suitable type class instance can be found. Other than that, the caller does not
need to worry about the type class context, as shown in the following interaction with a Haskell interpreter:

Prelude > sort [ (3, ’a’), (2, ’c’), (3, ’b’) ]
[ (2, ’c’), (3, ’a’), (3, ’b’) ]

In this example, the resolution process combines the three Ord instances to �nd a suitable implementation for
Ord (Int,Char ). �e declarations given are su�cient to resolve an in�nite number of other instances, such as
Ord (Char, (Int, Int)) and the like.

One Instance Per Type. A characteristic of (Haskell) type classes is that only one instance is allowed for a given
type. For example, it is forbidden to include the alternative ordering model for pairs

instance (Ord α ,Ord β ) ⇒ Ord (α , β ) where
(xa, xb) 6 (ya, yb) = xa 6 ya ∧ xb 6 yb

in the same program as the previous instance because the compiler automatically picks the right type class
instance based on the type parameter of the type class. If there are two type class instances for the same type, the
compiler does not know which of the two to choose.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:5

2.2 Coherence in Type Classes
An IP design is coherent if any valid program has exactly one meaning (that is, the semantics is not ambiguous).
Haskell imposes restrictions to guarantee coherence. For example, the expression:

show (read "3") ≡ "3"

is rejected in Haskell due to ambiguity of type class resolution (Jones 1992). Functions show and read print and
parse values of any type α that implements the classes Show and Read. �e program is rejected because there is
more that one possible choice for α , for example it could be Int, Float, or Char . Choosing α = Float leads to False,
since showing the �oat 3 would result in "3.0", while choosing α = Int leads to True.

Overlapping and Incoherent Instances. Advanced features of type classes, such as overlapping instances, require
additional restrictions to ensure coherence. �e following program illustrates the issues:

class Trans α where trans :: α → α

instance Trans α where trans x = x
instance Trans Int where trans x = x + 1

�is program declares a type class Trans α for de�ning transformations on some type α . �e �rst instance
provides a default implementation for any type, the identity transformation. �e second instance de�nes a
transformation for integers only.

�e overlapping declarations are clearly incoherent, since it is unclear whether trans 3 should return 3 using
the �rst instance, or 4 using the second instance. Because the second instance is more speci�c, one might expect
that it supersedes the �rst one; and that is indeed how Haskell assigns a meaning to overlapping instances.

But now consider the following declaration.

bad :: α → α

bad x = trans x -- incoherent de�nition!

If Haskell were to accept this de�nition, it would have to implement trans using the �rst instance, since trans is
applied at the arbitrary type α . Now bad 3 returns 3 but trans 3 returns 4, even though bad and trans are de�ned
to be equal, a nasty impediment to equational reasoning!

For this reason Haskell rejects the program by default. A programmer who really wants such behaviour can
enable the IncoherentInstances compiler �ag, which allows the program to typecheck. But the use of incoherent
instances is greatly discouraged.

Global Uniqueness of Instances. A consequence of having both coherence and at most one instance of a type
class per type in a program is global uniqueness of instances (Zhang 2014). �at is, at any point in the program
type class resolution for a particular type always resolves to the same value. �e usefulness of this property is
illustrated by a library that provides a datatype for sets that is polymorphic in the elements along with a union
operation:

union :: Ord α ⇒ Set α → Set α → Set α

For e�ciency reasons the sets are represented by a datastructure that orders the elements in a particular way. It
is natural to rely on the Ord type class to deal with ordering for the particular type α . To preserve the correct
invariant, it is crucial that the ordering of elements in the set is always the same. �e global uniqueness property
guarantees this. If two distinct instances of Ord could be used in di�erent parts of the program for the same
type, then it would be possible to construct within the same program two sets using two di�erent orderings (say
ascending and descending order), and then break the ordering invariant by union-ing those two sets.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:6 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Although global uniqueness is, in principle, a property that should hold in Haskell programs, Haskell imple-
mentations actually violate this property in various circumstances 3. In fact it is acknowledged that providing a
global uniqueness check is quite challenging for Haskell implementations 4.

2.3 Scala Implicits and Incoherence
Scala implicits (Oliveira et al. 2010) are an interesting alternative IP design. Unlike type classes, implicits have
locally scoped rules. Consequently Scala does not have the global uniqueness property, since di�erent “instances”
may exist for the same type in di�erent scopes. Another interesting di�erence between implicits and type classes
is that values of any type can be used as implicit parameters; there are no special constructs analogous to type
class or instance declarations. Instead, implicits are modelled with ordinary types. �ey can be abstracted over
and do not su�er from the second-class nature of type classes. Such features mean that Scala implicits have a
wider range of applications than type classes. For example, they can be used to solve the problem of implicit
con�gurations (Kiselyov and Shan 2004) naturally. �e following example, adapted from Kiselyov and Shan,
illustrates this:

def add (α : Int, β : Int) (implicit modulus : Int) = (α + β ) % modulus
def mul (α : Int, β : Int) (implicit modulus : Int) = (α ∗ β ) % modulus
implicit val defMod : Int = 4
def test = add (mul (3, 3),mul (5, 5)) // returns 2

Here the idea is to model modular arithmetic, where numbers that di�er by multiples of a given modulus are
treated as identical. For example 2 + 3 = 1 (mod 4) because 2 + 3 and 1 di�er by a multiple of 4. �e code shows the
de�nition of addition and multiplication in modular arithmetic. In Scala % is modulo division. Both addition and
multiplication include a third (implicit) parameter, which is the modulus of the division. Although the modulus
could be passed explicitly this would be extremely cumbersome. Instead it is desirable that the modulus is passed
implicitly. Scala implicits allow this, by simply marking the modulus parameter in add and mul with the implicit
keyword. �e third line shows how to set up an implicit value for the modulus. Adding implicit before val
signals that the value being de�ned is available for synthesising values of type Int. Finally, test illustrates how
expressions doing modular arithmetic can be de�ned using the implicit modulus. Because Scala also has local
scoping, di�erent modulus values can be used under di�erent scopes.

Incoherence in Scala. Although Scala allows nested local scoping and overlapping rules, coherence is not
guaranteed. Figure 1 illustrates the issue brie�y, based on the example from Section 2.2. Line (1) de�nes a function
id with type parameter α , which is simply the identity function of type α ⇒ α . �e implicit keyword in the
declaration speci�es that this value may be used to synthesise an implicit argument. Line (2) de�nes a function
trans with type parameter α , which takes an implicit argument f of type α ⇒ α and returns f (x). Here the
implicit keyword speci�es that the actual argument should not be given explicitly; instead argument of the
appropriate type will be synthesised from the available implicit declarations.

In the nested scope, line (3) de�nes function succ of type Int ⇒ Int that takes argument x and returns x + 1.
Again, the implicit keyword in the declaration speci�es that succ may be used to synthesise implicit arguments.
Line (4) de�nes a function bad with type parameter α which takes an argument x of type α and returns the value
of function trans applied at type α to argument x. Line (5) shows that, as in the earlier example and for the same
reason, bad (3) returns 3. As with the Haskell example, accepting this de�nition is an equally nasty impediment
to equational reasoning, since performing simple equational reasoning would lead to a di�erent result. However
unlike in Haskell, it is the intended behaviour: it is enabled by default and cannot be disabled. Interestingly
3h�p://stackover�ow.com/questions/12735274/breaking-data-set-integrity-without-generalizednewtypederiving
4h�ps://mail.haskell.org/pipermail/haskell-cafe/2012-October/103887.html

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:7

trait A {
implicit def id [α ] : α ⇒ α = x ⇒ x // (1)
def trans [α ] (x : α ) (implicit f : α ⇒ α ) = f (x) // (2)
}
object B extends A {
implicit def succ : Int ⇒ Int = x ⇒ x + 1 // (3)
def bad [α ] (x : α ) : α = trans [α ] (x) // (4) incoherent de�nition !
val v1 = bad [Int ] (3) // (5) evaluates to 3
// val v2 = trans [Int ] (3) // (6) substituting bad by trans is rejected
}

Fig. 1. Nested Scoping with Overlapping Rules in Scala

the expression in line (6), which is accepted in Haskell, is actually rejected in Scala.5 Here the Scala compiler
does detect two possible instances for Int ⇒ Int, but does not select the most speci�c one. Rejecting line (6) has
another unfortunate consequence: not only is the semantics not preserved under unfolding, but typing is not
preserved either! Clearly preserving desirable properties such as coherence and type preservation is a subtle
ma�er in the presence of implicits and deserves careful study.

2.4 An Overview of Cochis
Like Haskell Cochis requires coherence and like Scala it permits nested declarations, and does not guarantee
global uniqueness. Cochis improves upon the implicit calculus (Oliveira et al. 2012), which is an incoherent
calculus designed to model the essence of Scala implicits. Like the implicit calculus it combines standard scoping
mechanisms (abstractions and applications) and types à la System F, with a logic-programming-style query
language. We now present the key features of Cochis and how these features are used for IP.

Fetching Values by Type. A central construct in Cochis is a query. �eries allow values to be fetched by type,
not by name. For example, in the following function call
foo ?Int
the query ?Int looks up a value of type Int in the implicit environment, to serve as an actual argument.

Constructing Values with Type-Directed Rules. Cochis constructs values, using programmer-de�ned, type-
directed rules (similar to functions). A rule (or rule abstraction) de�nes how to compute, from implicit arguments,
a value of a particular type. For example, here is a rule that given an implicit Int value, adds one to that value:
λ?Int.?Int + 1
�e rule abstraction syntax resembles a traditional λ expression. However, instead of having a variable as
argument, a rule abstraction (λ?) has a type as argument. �e type argument denotes the availability of a value of
that type (in this case Int) in the implicit environment inside the body of the rule abstraction. �us, queries over
the rule abstraction type argument inside the rule body will succeed.

�e type of the rule above is Int ⇒ Int. �is type denotes that the rule has type Int provided a value of type Int
is available in the implicit environment. �e implicit environment is extended through rule application (analogous
to extending the environment with function applications). Rule application is expressed as, for example:
(λ?Int.?Int + 1) with 1
5We have observed this behavior for Scala 2.11; for lack of a speci�ation, it is not clear to us whether this behavior is intended.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:8 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

With syntactic sugar similar to a let-expression, a rule abstraction-application combination is more compactly
denoted as:

implicit 1 in (?Int + 1)

Both expressions return 2.

Higher-Order Rules. Cochis supports higher-order rules. For example, the rule

λ?Int.λ? (Int ⇒ Int×Int).?(Int×Int)
when applied, will compute an integer pair given an integer and a rule to compute an integer pair from an integer.
�is rule is higher-order because another rule (of type Int ⇒ Int×Int) is used as an argument. �e following
expression returns (3, 4):

implicit 3 in implicit (λ?Int.(?Int, ?Int + 1)) in ?(Int×Int)
Note that higher-order rules are a feature introduced by the implicit calculus and are neither supported in Haskell
nor Scala.

Recursive Resolution. Note that resolving the query ?(Int×Int) above involves applying multiple rules. �e
current environment does not contain the required integer pair. It does however contain the integer 3 and a rule
λ?Int ⇒ Int×Int.(?Int, ?Int + 1) to compute a pair from an integer. Hence, the query is resolved with (3, 4), the
result of applying the pair-producing rule to 3.

Polymorphic Rules and �eries. Cochis allows polymorphic rules. For example, the rule Λα .(λ?α .(?α , ?α ))
abstracts over a type using standard type abstraction and then uses a rule abstraction to provide a value of type α
in the implicit environment of the rule body. �is rule has type ∀α .α ⇒ α×α and can be instantiated to multiple
rules of monomorphic types Int ⇒ Int×Int,Bool ⇒ Bool×Bool, . . ..

Multiple monomorphic queries can be resolved by the same rule. �e following expression returns ((3, 3), (True, True)):

implicit 3 in implicit True in implicit (Λα .(λ?α .(?α , ?α ))) in (?(Int×Int), ?(Bool×Bool))

Combining Higher-Order and Polymorphic Rules. �e rule λ?Int.λ? (∀α .α ⇒ α×α ).(?((Int×Int)× (Int×Int)))
prescribes how to build a pair of integer pairs, inductively from an integer value, by consecutively applying the
rule of type ∀α .α ⇒ α×α twice: �rst to an integer, and again to the result (an integer pair). For example, the
following expression returns ((3, 3), (3, 3)):

implicit 3 in implicit (Λα .(λ?α .(?α , ?α ))) in ?((Int×Int)× (Int×Int))

Locally and Lexically Scoped Rules. Rules can be nested and resolution respects the lexical scope of rules.
Consider the following program:

implicit 1 in
implicit True in

implicit (λ?Bool. if ?Bool then 2 else 0) in
?Int

�e query ?Int is not resolved with the integer value 1. Instead the rule that returns an integer from a boolean is
applied to the boolean True, because that rule can provide an integer value and it is nearer to the query. So, the
program returns 2 and not 1.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:9

2.5 Overlapping Rules and Coherence in Cochis
As the previous example shows, the lexical scope imposes a natural precedence on rules. �is precedence means
that the lexically nearest rule is used to resolve a query, and not necessarily the most speci�c rule. For instance,
the following Cochis variation on the running trans example from Section 2.2
implicit (λn.n + 1 : Int → Int) in

implicit (λx .x : ∀α .α → α ) in
?(Int → Int) 3

yields the result 3 as the inner identity rule has precedence over the more speci�c incrementation rule in the
outer scope. Yet, this lexical precedence alone is insu�cient to guarantee coherence. Consider the program
let bad : ∀β .β → β =

implicit (λx .x : ∀α .α → α ) in
implicit (λn.n + 1 : Int → Int) in

?(β → β )

in bad Int 3
While the query ?(β → β ) always matches ∀α .α → α , that is not always the lexically nearest match. Indeed,
if β is instantiated to Int the rule Int → Int is a nearer match. However, if β is instantiated to any other type,
Int → Int is not a valid match. In summary, we cannot always statically determine the lexically nearest match.

One might consider to resolve the incoherence by picking the lexically nearest rule that matches all possible
instantiations of the query, e.g., ∀α .α → α in the example. While this poses no threat to type soundness, this
form of incoherence is nevertheless undesirable for two reasons. Firstly, it makes the behaviour of programs
harder to predict, and, secondly, the behaviour of programs is not stable under inlining. Indeed, if we inline the
function de�nition of bad at the call site and substitute the arguments, we obtain the specialised program
implicit (λx .x : ∀α .α → α ) in

implicit (λn.n + 1 : Int → Int) in
?(Int → Int) 3

�is program yields the result 4 while the original incoherent version would yield 3. To avoid this unpredictable
behaviour, Cochis rejects incoherent programs.

3 THE COCHIS CALCULUS
�is section formalizes the syntax and type system of Cochis, while Section 4 formalises the type-directed
translation to System F. To avoid duplication and ease reading, we present the type system and type-directed
translation together, using grey boxes to indicate which parts of the rules belong to the type-directed translation.
�ese greyed parts can be ignored in this section and will be explained in the next.

3.1 Syntax
Here is the syntax of the calculus:

Types ρ ::= α | ρ1 → ρ2 | ∀α .ρ | ρ1 ⇒ ρ2
Expressions e ::= x | λ(x : ρ).e | e1 e2 | Λα .e | e ρ |?ρ | λ?ρ.e | e1 with e2

Types ρ comprise four constructs: type variables α ; function types ρ1 → ρ2; universal types ∀α .ρ; and the novel
rule types ρ1 ⇒ ρ2. In a rule type ρ1 ⇒ ρ2, type ρ1 is called the context and type ρ2 the head.

Expressions e include three abstraction-elimination pairs. Binder λ(x : ρ).e abstracts expression e over values
of type ρ, is eliminated by application e1 e2, and refers to the bound value with variable x . Binder Λα .e abstracts

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:10 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

expression e over types, is eliminated by type application e ρ, and refers to the bound type with type variable
α (but α itself is not a valid expression). Binder λ?ρ .e abstracts expression e over implicit values of type ρ, is
eliminated by implicit application e1 with e2, and refers to the implicitly bound value with implicit query ?ρ.
For convenience we adopt the Barendregt convention (Barendregt 1981), that variables in binders are distinct,
throughout this article.

Using rule abstractions and applications we can build the implicit sugar used in Section 2.

implicit e : ρ in e1
def
= (λ?ρ.e1) with e

Here λ?ρ. is a shortform for λ?ρ1. . . . λ?ρn ., and with e is a shortform for with e1 . . . with en .
For brevity we have kept the Cochis calculus small. Examples may use additional syntax such as built-in

integers, integer operators, and boolean literals and types.

3.2 Type System
Figure 2 presents the static type system of Cochis. Our language is based on System F, which is included in our
system.

Well-Formed Types. As in System F, a type environment Γ records type variables α and variables x with
associated types ρ that are in scope. New here is that it also records instances of implicits ρ.

Type Environments Γ ::= ϵ | Γ,x : ρ | Γ,α | Γ, ρ ; x

Judgement Γ ` ρ holds if type ρ is well-formed with respect to type environment Γ, that is, if all free type variables
of ρ occur in Γ.

Well-Typed Expressions. Typing judgment Γ ` e : ρ holds if expression e has type ρ with respect to type
environment Γ. �e �rst �ve rules copy the corresponding System F rules; only the last three deserve special
a�ention. Firstly, rule (Ty-IAbs) extends the implicit environment with the type of an implicit instance. �e
side condition `unamb ρ1 states that the type ρ1 must be unambiguous; we explain this concept in Section 3.4.
Secondly, rule (Ty-IApp) eliminates an implicit abstraction by supplying an instance of the required type. Finally,
rule (Ty-�ery) resolves a given type ρ against the implicit environment. Again, a side-condition states that ρ
must be unambiguous. Resolution is de�ned in terms of the auxiliary judgement Γ `ar ρ, which is explained next.

3.3 Resolution
Figure 3 provides a �rst (ambiguous) de�nition of the resolution judgement. Its underlying principle is resolution
in logic. Intuitively, Γ `ar ρ holds if Γ entails ρ, where the types in Γ and ρ are read as propositions. Following
the “Propositions as Types” correspondence (Wadler 2015), we read α as a propositional variable and ∀α .ρ as
universal quanti�cation. Yet, unlike in the traditional interpretation of types as propositions, we have two forms
of arrow, functions ρ1 → ρ2 and rules ρ1 ⇒ ρ2, and the important twist is that we choose to treat only rules as
implications, leaving functions as uninterpreted predicates.

Unfortunately, the de�nition in Figure 3 su�ers from two problems. Firstly, the de�nition is not syntax-directed;
several of the inference rules have overlapping conclusions. Hence, a deterministic resolution algorithm is
non-obvious. Secondly and more importantly, the de�nition is ambiguous: a derivation can be shown by multiple
di�erent derivations. For instance, consider again the resolution in the last example of Section 2.4: in the
environment

Γ0 = (Int,Bool, (Bool ⇒ Int))

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:11

Γ ` ρ

(WF-VarTy)
α ∈ Γ
Γ ` α (WF-FunTy)

Γ ` ρ1 Γ ` ρ2

Γ ` ρ1 → ρ2

(WF-UnivTy)
Γ,α ` ρ
Γ ` ∀α .ρ (WF-RulTy)

Γ ` ρ1 Γ ` ρ2

Γ ` ρ1 ⇒ ρ2

Γ ` e : ρ ; E

(Ty-Var)
(x : ρ) ∈ Γ

Γ ` x : ρ ; x

(Ty-Abs)
Γ,x : ρ1 ` e : ρ2 ; E Γ ` ρ1

Γ ` λx : ρ1.e : ρ1 → ρ2 ; λx : |ρ1 |.E

(Ty-App)
Γ ` e1 : ρ1 → ρ2 ; E1 Γ ` e2 : ρ1 ; E2

Γ ` e1 e2 : ρ2 ; E1 E2

(Ty-TAbs)
Γ,α ` e : ρ ; E1

Γ ` Λα .e : ∀α .ρ ; Λα .E1

(Ty-TApp)
Γ ` e : ∀α .ρ2 ; E Γ ` ρ1

Γ ` e ρ1 : ρ2[ρ1/α] ; E |ρ1 |

(Ty-IAbs)
Γ, ρ1; x ` e : ρ2 ; E Γ ` ρ1 `unamb ρ1 x fresh

Γ ` λ?ρ1.e : ρ1 ⇒ ρ2 ; λx : |ρ1 |.E

(Ty-IApp)
Γ ` e1 : ρ2 ⇒ ρ1 ; E1 Γ ` e2 : ρ2 ; E2

Γ ` e1 with e2 : ρ1 ; E1 E2

(Ty-�ery)
Γ `ar ρ ; E Γ ` ρ `unamb ρ

Γ `?ρ : ρ ; E

Fig. 2. Type System and Type-directed Translation to System F

there are two di�erent derivations for Γ0 `ar Int:

(AR-IVar)
Int ∈ Γ0

Γ0 `ar Int
and

(AR-IApp)

(AR-IVar)
(Bool ⇒ Int) ∈ Γ0

Γ0 `ar (Bool ⇒ Int)
(AR-IVar)

Bool ∈ Γ0

Γ0 `ar Bool

Γ0 `ar Int

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:12 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Γ `ar ρ ; E (AR-IVar)
ρ ; x ∈ Γ
Γ `ar ρ ; x

(AR-TAbs)
Γ,α `ar ρ ; E

Γ `ar ∀α .ρ ; Λα .E
(AR-TApp)

Γ `ar ∀α .ρ ; E Γ ` ρ ′
Γ `ar ρ[ρ ′/α] ; E |ρ ′ |

(AR-IAbs)
Γ, ρ1 ; x `ar ρ2 ; E x fresh

Γ `ar ρ1 ⇒ ρ2 ; λx : |ρ1 |.E
(AR-IApp)

Γ `ar ρ1 ⇒ ρ2 ; E2 Γ `ar ρ1 ; E1

Γ `ar ρ2 ; E2 E1

Fig. 3. Ambiguous Resolution

While this may seem harmless at the type-level, at the value-level each derivation corresponds to a (possibly)
di�erent value. Hence, ambiguous resolution renders the meaning of a program ambiguous.

3.4 Deterministic Resolution
Figure 4 de�nes judgement Γ `r ρ, which is a syntax-directed deterministic variant of Γ `ar ρ. �is deterministic
variant is sound with respect to the ambiguous de�nition. In other words, Γ `ar ρ holds if Γ `r ρ holds. Yet,
the opposite is not true. �e deterministic judgement sacri�ces some expressive power in exchange for be�er
behavedness.

Revised Syntax. To facilitate the de�nition of the deterministic resolution judgement we split the syntax of
types into three di�erent sorts: context types, simple types and monotypes.

Context Types ρ ::= ∀α .ρ | ρ1 ⇒ ρ2 | τ
Simple Types τ ::= α | ρ1 → ρ2
Monotypes σ ::= α | σ → σ

Context types ρ correspond to the original types ρ. Simple types τ are a restricted form of context types without
toplevel quanti�ers and toplevel implicit arrows. Singling out this restricted form turns out to be convenient for
the type-directed formulation of the judgement.
Monotypes σ are a further re�nement of simple types without universal quanti�ers and implicit arrows

anywhere. �ey help us to address a form of ambiguity due to the impredicativity of Rule (AR-TApp). For instance,
if we de�ne Γ1 = ∀α .α ⇒ α , then there are two ways to resolve Γ1 ` Int ⇒ Int:

(AR-TApp)

(AR-IVar)
(∀α .α ⇒ α ) ∈ Γ1

Γ1 `ar ∀α .α ⇒ α

Γ `ar Int ⇒ Int
(AR-TApp)

(AR-IApp)

(AR-TApp)

(AR-IVar)
(∀α .α ⇒ α ) ∈ Γ1

Γ1 `ar (∀α .α ⇒ α )

Γ1 `ar (∀β .β ⇒ β ) ⇒ (∀β .β ⇒ β )
(AR-IVar)

(∀β .β ⇒ β ) ∈ Γ1

Γ1 `ar (∀β .β ⇒ β )

Γ1 `ar ∀β .β ⇒ β

Γ `ar Int ⇒ Int

�e proof on the le� only involves the predicative generalisation from Int to α . Yet, the second proof contains
an impredicative generalisation from ∀β .β ⇒ β to α . Impredicativity is a well-known source of such problems
in other se�ings, such as in type inference for the polymorphic λ-calculus (Boehm 1985; Pfenning 1993). �e

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:13

established solution also works here: restrict to predicativity. �is is where the monotype sort σ comes in: we
only allow generalisation over (or dually, instantiation with) monotypes σ .

Revised Resolution Rules. Figure 4 de�nes the main judgement Γ `r ρ in terms of three interdependent auxiliary
judgements. �e �rst of these auxiliary judgements is ᾱ ; Γ `r ρ, where the type variables ᾱ are the free type
variables in the original environment at the point of the query. Recall the bad example from Section 2.5 where
there is only one such free type variable: β . Tracking these free variables plays a crucial role in guaranteeing
coherence and ensuring that resolution is stable under all type substitutions that instantiate these variables,
like [β 7→ Int]; how we prevent these substitutions is explained below. �e main judgement retains these free
variables in rule (R-Main) with the function tyvars:

tyvars(ϵ ) = ϵ tyvars(Γ,α ) = tyvars(Γ),α
tyvars(Γ,x : ρ) = tyvars(Γ) tyvars(Γ, ρ ; x) = tyvars(Γ)

While the auxiliary judgement ᾱ ; Γ `r ρ extends the type environment Γ, it does not update the type variables
ᾱ . �is judgement is syntax-directed on the query type ρ. Its job is to strip ρ down to a simple type τ using
literal copies of the ambiguous rules (AR-TAbs) and (AR-IAbs), and then to hand it o� to the second auxiliary
judgement in rule (R-Simp).

�e second auxiliary judgement, ᾱ ; Γ; Γ′ `r τ , is syntax-directed on Γ′: it traverses Γ′ from right to le� until
it �nds a rule type ρ that matches the simple type τ . Rules (L-Var) and (L-TyVar) skip the irrelevant entries
in the environment. Rule (L-RuleMatch) identi�es a matching rule type ρ – where matching is determined
by with the third auxiliary judgement – and takes care of recursively resolving its context types; details follow
below. Finally, rule (L-RuleNoMatch) skips a rule type in the environment if it does not match. Its condition
stable(ᾱ , Γ, ρ,τ ) entails the opposite of rule (L-RuleMatch)’s �rst condition: @Σ : Γ; ρ `r τ ; Σ. (We come back to
the reason why the condition is stronger than this in Section 3.4.) As a consequence, rules (L-RuleMatch) and
(L-RuleNoMatch) are mutually excluse and the judgement e�ectively commits to the right-most matching rule in
Γ′. We maintain the invariant that Γ′ is a pre�x of Γ; rule (R-Simp) provides Γ as the initial value for Γ′. Hence,
if a matching rule type ρ is found, we have that ρ ∈ Γ. Hence, the second auxiliary judgement plays much the
same role as rule (AR-IVar) in Figure 3, which also selects a rule type ρ ∈ Γ. �e di�erence is that rule (AR-IVar)
makes a non-deterministic choice, while the second auxiliary judgement makes deterministic commi�ed choice
that prioritises rule types more to the right in the environment. For instance, Int, Int `ar Int has two ways to
resolve, while Int, Int `r Int has only one because the second Int in the environment shadows the �rst.

Finally, the third auxiliary judgement, Γ; ρ `r τ ; Σ, determines whether the rule type ρ matches the simple
type τ . �e judgement is de�ned by structural induction on ρ, which is step by step instantiated to τ . Any
recursive resolutions are deferred in this process – the postponed resolvents are captured in the Σ argument. �is
way they do not in�uence the matching decision and backtracking is avoided. Instead, the recursive resolutions
are executed, as part of rule (L-RuleMatch), a�er the rule has been commi�ed to. Rule (M-Simp) constitutes
the base case where the rule type equals the target type. Rule (M-IApp) is the counterpart of the original rule
(R-IApp) where the implication arrow ρ1 ⇒ ρ2 is instantiated to ρ2; the resolution of ρ1 is deferred. Lastly, rule
(M-TApp) is the counterpart of the original rule (R-TApp). �e main di�erence is that it only uses monotypes σ
to substitute the type variable; this implements the predicativity restriction explained above.

�e relation to the ambiguous de�nition of resolution can be summarized as follows: if Γ; ρ `r τ ; ρ̄ with Γ `ar ρ
and Γ `ar ρ̄, then Γ `ar τ .

Non-Ambiguity Constraints. �e rule (M-TApp) does not explain how the substitution [σ/α] for the rule type
∀α .ρ should be obtained. At �rst sight it seems that the choice of σ is free and thus a source of non-determinism.
However, in many cases the choice is not free at all, but is instead determined fully by the simple type τ that we
want to match. However, the choice is not always forced by the matching. Take for instance the context type

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:14 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Σ ::= ϵ | Σ, ρ ; x

Γ `r ρ ; E (R-Main)
tyvars(Γ); Γ `r ρ ; E

Γ `r ρ ; E

ᾱ ; Γ `r ρ ; E

(R-IAbs)
ᾱ ; Γ, ρ1 ; x `r ρ2 ; E x fresh

ᾱ ; Γ `r ρ1 ⇒ ρ2 ; λx : |ρ1 |.E
(R-TAbs)

ᾱ ; Γ,α `r ρ ; E

ᾱ ; Γ `r ∀α .ρ ; Λα .E

(R-Simp)
ᾱ ; Γ; Γ `r τ ; E

ᾱ ; Γ `r τ ; E

ᾱ ; Γ; Γ′ `r τ ; E

(L-RuleMatch)
Γ; ρ ; x `r τ ; E; ρ ; x

ᾱ ; Γ `r ρ̄ ; Ē

ᾱ ; Γ; Γ′, ρ ; x `r τ ; E[Ē/x̄]
(L-RuleNoMatch)

stable(ᾱ , Γ, ρ,τ )
ᾱ ; Γ; Γ′ `r τ ; E ′

ᾱ ; Γ; Γ′, ρ ; x `r τ ; E ′

(L-Var)
ᾱ ; Γ; Γ′ `r τ ; E

ᾱ ; Γ; Γ′,x : ρ `r τ ; E
(L-TyVar)

ᾱ ; Γ; Γ′ `r τ ; E

ᾱ ; Γ; Γ′,α `r τ ; E

Γ; ρ ; E `r τ ; E ′; Σ

(M-Simp) Γ;τ ; E `r τ ; E; ϵ

(M-IApp)
Γ, ρ1; x; ρ2 ; E x `r τ ; E ′; Σ x fresh

Γ; ρ1 ⇒ ρ2 ; E `r τ ; E ′; Σ, ρ1 ; x

(M-TApp)
Γ; ρ[σ/α] ; E |σ | `r τ ; E ′; Σ Γ ` σ

Γ;∀α .ρ ; E `r τ ; E ′; Σ

stable(ᾱ , Γ, ρ,τ ) (Stable)
@θ ,E, Σ, dom(θ ) ⊆ ᾱ : θ (Γ);θ (ρ) ; x `r θ (τ ) ; E; Σ

stable(ᾱ , Γ, ρ,τ )

Fig. 4. Deterministic Resolution and Translation to System F

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:15

`unamb ρ (UA-Main)
ϵ `unamb ρ

`unamb ρ

ᾱ `unamb ρ (UA-Simp)
ᾱ ⊆ �v (τ )
ᾱ `unamb τ

(UA-TAbs)
ᾱ ,α `unamb ρ

ᾱ `unamb ∀α .ρ
(UA-IAbs)

`unamb ρ1 ᾱ `unamb ρ2

ᾱ `unamb ρ1 ⇒ ρ2

Fig. 5. Unambiguous context types

∀α .(α → String) ⇒ (String → α ) ⇒ (String → String). �is type encodes the well-known ambiguous Haskell
type ∀α .(Show α , Read α ) ⇒ String → String of the expression read ◦ show. �e choice of α is ambiguous
when matching against the simple type String → String. Yet, the choice is critical for two reasons. Firstly, if we
guess the wrong instantiation σ for α , then it may not be possible to recursively resolve (String → α )[σ/α] or
(α → String)[σ/α], while with a lucky guess both can be resolved. Secondly, for di�erent choices of σ the types
(String → α )[σ/α] and (α → String)[σ/α] can be resolved in completely di�erent ways.

In order to avoid any problems, we conservatively forbid all ambiguous context types in the implicit environment
with the `unamb ρ1 side-condition in rule (Ty-IAbs) of Figure 2.6 �is judgement is de�ned in Figure 5 in terms of
the auxiliary judgement ᾱ `unamb ρ which takes an additional sequence of type variables α that is initially empty.

�e auxiliary judgement expresses that all type variables ᾱ are resolved when matching against ρ. Its base case,
rule (UA-Simp), expresses that �xing the simple type τ also �xes the type variables ᾱ . Inductive rule (UA-TAbs)
accumulates the bound type variables ᾱ before the head. Rule (UA-IAbs) skips over any contexts on the way to
the head, but also recursively requires that these contexts are unambiguous.

Finally, the unambiguity condition is also imposed on the queried type ρ in rule (Ty-�ery) because this type
too may extend the implicit environment in rule (R-IAbs).

Note that the de�nition rules out harmless ambiguity, such as that in the type ∀α .Int. When we match the
head of this type Int with the simple type Int, the matching succeeds without actually determining how the type
variable α should be instantiated. Here the ambiguity is harmless, because it does not a�ect the semantics. Yet,
for the sake of simplicity, we have opted to not di�erentiate between harmless and harmful ambiguity.

Coherence Enforcement. In order to enforce coherence, rule (L-RuleNoMatch) makes sure that the decision
to not select a context type is stable under all possible substitutions θ . Consider for instance the bad example
from Section 2.5: when looking up β → β , the rule Int → Int does not match and is otherwise skipped. Yet,
under the substitution θ = [β 7→ Int] the rule would match a�er all. In order to avoid this unstable situation, rule
(L-RuleNoMatch) only skips a context type in the implicit environment, if there is no substitution θ for which
the type would match the context type.

�is approach is similar to the treatment of overlapping type class instances or overlapping type family
instances in Haskell. However, there is one important complicating factor here: the query type may contain
universal quanti�ers. Consider a query for ∀α .α → α . In this case we wish to rule out entirely the context type

6An alternative design to avoid such ambiguity would instantiate unused type variables to a dummy type, like GHC’s GHC.Prim.Any, which
is only used for this purpose.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:16 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Int → Int as a potential match. Even though it matches under the substitution θ = [α 7→ Int], that covers only
one instantiation while the query clearly requires a resolvent that covers all possible instantiations.

We clearly identify which type variables ᾱ are to be considered for substitution by rule (L-RuleNoMatch)
by parametrising the judgements by this set. �ese are the type variables that occur in the environment Γ at
the point of the query. �e main resolution judgement `r ρ grabs them and passes them on to all uses of rule
(L-RuleNoMatch).

3.5 Algorithm
Figure 6 contains an algorithm that implements the non-algorithmic deterministic resolution rules of Figure 4. It
di�ers from the la�er in two important ways: �rstly, it replaces explicit quanti�cation over all substitutions θ in
rule (L-RuleNoMatch) with a tractable approach to coherence checking; and, secondly, it computes rather than
guesses type substitutions in rule (M-TApp).

�e de�nition of the algorithm is structured in much the same way as the declarative speci�cation: with one
main judgement and three auxiliary ones that have similar roles. In fact, since the di�erences are not situated in
the main and �rst auxiliary judgement, these are actually identical.

Algorithmic No-Match Check. �e �rst di�erence is situated in rule (Alg-L-RuleNoMatch) of the second
judgement. Instead of an explicit quanti�cation over all possible substitutions, this rule uses the more algorithmic
judgement ᾱ ; Γ; ρ `coh τ . �is auxiliary judgement checks algorithmically whether there context type ρ matches
τ under any possible instantiation of the type variables ᾱ .

�e de�nition of ᾱ ; Γ; ρ `coh τ is a variation on that of the declarative judgement Γ; ρ `r τ ; Σ. �ere are three
di�erences. Firstly, since the judgement is only concerned with matchability, no recursive resolvents Σ are
collected. Secondly, instead of guessing the type instantiation ahead of time in rule (M-TApp), rule (Coh-TApp)
defers the instantiation to the base case, rule (Coh-Simp). �is last rule performs the deferred instantiation of
type variables ᾱ by computing the most general domain-restricted uni�er θ = mguΓ;ᾱ (τ

′,τ ). A substitution θ is
a uni�er of two types ρ1 and ρ2 i� θ (ρ1) = θ (ρ2). A uni�er θ is restricted to domain ᾱ if dom(θ ) ⊆ ᾱ . A most
general domain-restricted uni�er θ subsumes any other uni�er restricted to the same domain ᾱ :

∀η : dom(η) ⊆ ᾱ ∧ η(ρ1) = η(ρ2) ⇒ ∃ι : dom(ι) ⊆ ᾱ ∧ ι (θ (ρ1)) = ι (θ (ρ2))

If this most-general uni�er exists, a match has been established. If no uni�er exists, then rule COH-Simp does
not apply. �irdly, since the coherence check considers the substitution of the type variables ᾱ that occur in the
environment at the point of the query, rule (Alg-L-RuleNoMatch) pre-populates the substitutable variables of
the `coh judgement with them.

Deferred Variable Instantiation. �e second main di�erence is situated in the third auxiliary judgement
ᾱ ; Γ; ρ; Σ `alg τ ; Σ′. �is judgement is in fact an extended version of ᾱ ; Γ; ρ `coh τ that does collect the re-
cursive resolution obligations in Σ′ just like the corresponding judgement in the declarative speci�cation. �e
main di�erence with the la�er is that it uses the deferred approach to instantiating type variables. In order to
subject the resolution obligations to this substitution, which is computed in rule (Alg-M-Simp), the judgement
makes use of an accumulating parameter Σ. �is accumulator Σ represents all the obligations collected so far in
which type variables have not been substituted yet. In contrast, Σ′ denotes all obligations with type variables
already substituted. Finally, note that rule (Alg-L-RuleMatch) does not pre-populate the type variables with
those of the environment: we only want to instantiate the type variables that appear in the context type ρ itself
for an actual match.

Domain-Restricted Uni�cation. �e algorithm for computing the most general domain-restricted uni�er θ =
mguΓ;ᾱ (ρ1, ρ2) is a key component of the two algorithmic changes explained above. Figure 7 provides its de�nition,
which is an extension of standard �rst-order uni�cation (Martelli and Montanari 1982). �e domain restriction ᾱ

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:17

denotes which type variables are to be treated as uni�cation variables; all other type variables are to be treated
as constants. �e di�erences with standard �rst-order uni�cation arise because the algorithm has to account
for type variable binders and the scope of type variables. For instance, using standard �rst-order uni�cation
for mguΓ;β (∀α .α → β,∀α .α → α ) would yield the substitution [β/α]. However, this solution is not acceptable
because α is not in scope in Γ.

Rule (U-InstL) implements the base case for scope-safe uni�cation. It only creates a substitution [σ/α] if α
is one of the uni�cation variables and if its instantiation does not refer to any type variables that have been
introduced in the environment a�er α . �e la�er relation is captured in the auxiliary judgement β >Γ α . (We
make an exception for uni�able type variables that have been introduced later: while the most general uni�er
itself may not yield a valid instantiation, it still signi�es the existence of an in�nite number of more speci�c valid
instantiations.) Rule (U-InstR) is the symmetric form of (U-InstR).

Rule (U-Var) is the standard re�exivity rule. Rules (U-Fun) and (U-Rul) are standard congruence rules that
combine the uni�cations derived for their subterms. Rule (U-Univ) is a congruence rule too, but additionally
extends the environment Γ in the recursive call with the new type variable β that is in scope in the subterms.

3.6 Termination of Resolution
If we are not careful about which rules are added to the implicit environment, then the resolution process
may not terminate. �is section describes how to impose a set of modular syntactic restrictions that prevents
non-termination. As an example of non-termination consider

Char ⇒ Int, Int ⇒ Char `ar Int

which loops, using alternatively the �rst and second rule in the environment. �e source of this non-termination
is the recursive nature of resolution: a simple type can be resolved in terms of a rule type whose head it matches,
but this requires further resolution of the rule type’s context.

Termination Condition. �e problem of non-termination has been widely studied in the context of Haskell’s
type classes, and a set of modular syntactic restrictions has been imposed on type class instances to avoid
non-termination (Sulzmann et al. 2007). Adapting these restrictions to our se�ing, we obtain the termination
judgement `term ρ de�ned in Figure 8.

�is judgement recursively constrains rule types ρ1 ⇒ ρ2 to guarantee that the recursive resolution process is
well-founded. In particular, it de�nes a size measure ‖ρ‖ for type terms ρ and makes sure that the size of the
resolved head type decreases steadily with each recursive resolution step.

�e size measure does not take universally quanti�ed type variables into account. It assigns them size 1
but ignores the fact that the size may increase dramatically when the type variable is instantiated with a large
type. �e rule (T-Rule) makes up for this by requiring a size decrease for all possible instantiations of free type
variables. However, rather than to specify this property non-constructively as

∀ρ̄ : ‖[ᾱ 7→ ρ̄]τ1‖ < ‖[ᾱ 7→ ρ̄]τ2‖

it provides a more practical means to verify this condition by way of free variable occurrences. �e number of
occurrences occα (τ1) of free variable α in type τ1 should be less than the number of occurrences occα (τ2) in τ2. It
is easy to see that the non-constructive property follows from this requirement.

Integration in the Type System. �ere are various ways to integrate the termination condition in the type system.
�e most generic approach is to require that all types satisfy the termination condition. �is can be done by
making the condition part of the well-formedness relation for types.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:18 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Γ `alg ρ ; E (Alg-R-Main)
tyvars(Γ); Γ `alg ρ ; E

Γ `alg ρ ; E

ᾱ ; Γ `alg ρ ; E (Alg-R-Simp)
ᾱ ; Γ; Γ `alg τ ; E

ᾱ ; Γ `alg τ ; E

(Alg-R-IAbs)
ᾱ ; Γ, ρ1 ; x `alg ρ2 ; E x fresh

ᾱ ; Γ `alg ρ1 ⇒ ρ2 ; λ(x : |ρ1 |).E
(Alg-R-TAbs)

ᾱ ; Γ,α `alg ρ ; E

ᾱ ; Γ `alg ∀α .ρ ; Λα .E

ᾱ ; Γ; Γ′ `alg τ ; E

(Alg-L-RuleMatch)
ϵ ; Γ; ρ ; x; ϵ `alg τ ; E; ρ̄ ; x̄ ᾱ ; Γ `alg ρ̄ ; Ē

ᾱ ; Γ; Γ′, ρ ; x `alg τ ; E[Ē/x̄]

(Alg-L-RuleNoMatch)
ᾱ ; Γ; ρ 6`coh τ ᾱ ; Γ; Γ′ `alg τ ; E ′

ᾱ ; Γ; Γ′, ρ ; x `alg τ ; E ′

(Alg-L-Var)
ᾱ ; Γ; Γ′ `alg τ ; E

ᾱ ; Γ; Γ′,x : ρ `alg τ ; E
(Alg-L-TyVar)

ᾱ ; Γ; Γ′ `alg τ ; E

ᾱ ; Γ; Γ′,α `alg τ ; E

ᾱ ; Γ; ρ ; E; Σ `alg τ ; E ′; Σ′

(Alg-M-Simp)
θ = mguΓ;ᾱ (τ ,τ

′)
ᾱ ; Γ;τ ′; E; Σ `alg τ ; |θ |(E);θ (Σ)

(Alg-M-IApp)
ᾱ ; Γ, ρ1 ; x; ρ2 ; E x; ρ1 ; x, Σ `alg τ ; E ′; Σ′ x fresh

ᾱ ; Γ; ρ1 ⇒ ρ2 ; E; Σ `alg τ ; E ′; Σ′

(Alg-M-TApp)
ᾱ ,α ; Γ,α ; ρ ; E α; Σ `alg τ ; E ′; Σ′

ᾱ ; Γ;∀α .ρ ; E; Σ `alg τ ; E ′; Σ′

ᾱ ; Γ; ρ `coh τ (COH-Simp)
θ = mguΓ;ᾱ (τ ,τ

′)
ᾱ ; Γ;τ ′ `coh τ

(Coh-TApp)
ᾱ ,α ; Γ,α ; ρ `coh τ
ᾱ ; Γ;∀α .ρ `coh τ

(Coh-IApp)
ᾱ ; Γ; ρ2 `coh τ

ᾱ ; Γ; ρ1 ⇒ ρ2 `coh τ

Fig. 6. Resolution Algorithm

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:19

θ = mguΓ;ᾱ (ρ1, ρ2) (U-InstL)
α ∈ ᾱ ∀β ∈ �v (σ ) : β ∈ ᾱ ∨ β >Γ α

[σ/α] = mguΓ;ᾱ (α ,σ )

(U-Var)
ϵ = mguΓ;ᾱ (β , β )

(U-InstR)
α ∈ ᾱ ∀β ∈ �v (σ ) : β ∈ ᾱ ∨ β >Γ α

[σ/α] = mguΓ;ᾱ (σ ,α )

(U-Fun)
θ1 = mguΓ;ᾱ (ρ1,1, ρ2,1) θ2 = mguΓ;ᾱ (θ1 (ρ1,2),θ1 (ρ2,2))

θ2 · θ1 = mguΓ;ᾱ (ρ1,1 → ρ1,2, ρ2,1 → ρ2,2)

(U-Rul)
θ1 = mguΓ;ᾱ (ρ1,1, ρ2,1) θ2 = mguΓ;ᾱ (θ1 (ρ1,2),θ1 (ρ2,2))

θ2 · θ1 = mguΓ;ᾱ (ρ1,1 ⇒ ρ1,2, ρ2,1 ⇒ ρ2,2)

(U-Univ)
θ = mguΓ,β ;ᾱ (ρ1, ρ2)

θ = mguΓ;ᾱ (∀β .ρ1,∀β .ρ2)

β >Γ α
β >Γ1,β,Γ2,α,Γ3 α

Fig. 7. Most General Unifier

`term ρ (T-Simp) `term τ
(T-Forall)

`term ρ

`term ∀α .ρ

(T-Rule)

`term ρ1 `term ρ2

τ1 = hd(ρ1) τ2 = hd(ρ2) ‖τ1‖ < ‖τ2‖
∀α ∈ �v (ρ1) ∪ �v (ρ2) : occα (τ1) 6 occα (τ2)

`term ρ1 ⇒ ρ2

hd(τ ) = τ hd(∀α .ρ) = hd(ρ) hd(ρ1 ⇒ ρ2) = hd(ρ2)

occα (β ) =
{

1 (α = β )
0 (α , β )

occα (∀β .ρ) = occα (ρ) (α , β )

occα (ρ1 → ρ2) = occα (ρ1) + occα (ρ2) occα (ρ1 ⇒ ρ2) = occα (ρ1) + occα (ρ2)

‖α ‖ = 1 ‖∀α .ρ‖ = ‖ρ‖
‖ρ1 → ρ2‖ = 1 + ‖ρ1‖ + ‖ρ2‖ ‖ρ1 ⇒ ρ2‖ = 1 + ‖ρ1‖ + ‖ρ2‖

Fig. 8. Termination Condition

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:20 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

4 TYPE-DIRECTED TRANSLATION TO SYSTEM F
In this section we explain the dynamic semantics of Cochis in terms of System F’s dynamic semantics, by means
of a type-directed translation. �is translation turns implicit contexts into explicit parameters and statically
resolves all queries, much like Wadler and Blo�’s dictionary passing translation for type classes (Wadler and
Blo� 1989). �e advantage of this approach is that we simultaneously provide a meaning to well-typed Cochis
programs and an e�ective implementation that resolves all queries statically.

�e translation follows the type system presented in Section 3. �e additional machinery that is necessary (on
top of the type system) corresponds to the grayed parts of Figures 2, 3 and 4.

4.1 Type-Directed Translation
Figure 2 presents the translation rules that convert Cochis expressions into ones of System F. �e gray parts of
the �gure extend the type system with the necessary information for the translation.

�e syntax of System F is as follows:
Types T ::= α | T → T | ∀α .T
Expressions E ::= x | λ(x : T ).E | E E | Λα .E | E T

�e gray extension to the syntax of type environments annotates every implicit rule type with explicit System
F evidence in the form of a term variable x .

Translation of Types. �e function | · | takes Cochis types ρ to System F types T:
|α | = α |∀α .ρ | = ∀α .|ρ |

|ρ1 → ρ2 | = |ρ1 | → |ρ2 | |ρ1 ⇒ ρ2 | = |ρ1 | → |ρ2 |
Its reveals that implicit Cochis arrows are translated to explicit System F function arrows.

Translation of Terms. �e type-directed translation judgment, which extends the typing judgment, is
Γ ` e : ρ ; E

�is judgment states that the translation of Cochis expression e with type ρ is System F expression E, with
respect to type environment Γ.

Variables, lambda abstractions and applications are translated straightforwardly. Perhaps the only noteworthy
rule is (Ty-IAbs). �is rule associates the type ρ1 with the fresh variable x in the type environment. �is creates
the necessary evidence that can be used by resolutions in the body of the rule abstraction to construct System F
terms of type |ρ1 |.

Resolution. �e more interesting part of the translation happens when resolving queries. �eries are translated
by rule (Ty-�ery) using the auxiliary resolution judgment `r :

Γ `r ρ ; E

which is shown, in deterministic form, in Figure 4. �e translation builds a System F term as evidence for the
resolution.

�e mechanism that builds evidence dualizes the process of peeling o� abstractions and universal quanti�ers:
Rule (R-IAbs) wraps a lambda binder with a fresh variable x around a System F expression E, which is generated
from the resolution for the head of the rule (ρ2). Similarly, rule (R-TAbs) wraps a type lambda binder around the
System F expression resulting from the resolution of ρ.

For simple types τ rule (R-Simp) delegates the work of building evidence, when a matching rule ρ type is found
in the environment, to rule (L-RuleMatch). �e evidence consists of two parts: E is the evidence of matching τ
against ρ. �is match contains placeholders x̄ for the contexts whose resolution is postponed by rule (M-IAbs).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:21

It falls to rule (L-RuleMatch) to perform these postponed resolutions, obtain their evidence Ē and �ll in the
placeholders.

Meta-�eory. �e type-directed translation of Cochis to System F exhibits a number of desirable properties.
Theorem 4.1 (Type-preserving translation). Let e be an Cochis expression, ρ be a type, Γ a type environment

and E be a System F expression. If Γ ` e : ρ ; E, then |Γ | ` E : |ρ |.
Here we de�ne the translation of the type environment form Cochis to System F as:

|ϵ | = ϵ |Γ,α | = |Γ |,α
|Γ,x : ρ | = |Γ |,x : |ρ | |Γ, ρ ; x | = |Γ |,x : |ρ |

An important lemma in the theorem’s proof is the type preservation of resolution.
Lemma 4.2 (Type-Preserving Resolution). Let Γ be a type environment, ρ be a type and E be a System F

expression. If Γ `ar ρ ; E, then |Γ | ` E : |ρ |.
Moreover, we can express three key properties of Figure 4’s de�nition of resolution in terms of the generated

evidence. Firstly, the deterministic version of resolution is a sound variation on the original ambiguous resolution.
Lemma 4.3 (Soundness). Figure 4’s de�nition of resolution is sound (but incomplete) with respect to Figure 3’s

de�nition.
∀Γ, ρ,E : Γ `r ρ ; E ⇒ Γ `ar ρ ; E

Secondly, the deterministic resolution guarantees a strong form of coherence:
Lemma 4.4 (Determinacy). �e generated evidence of resolution is uniquely determined.

∀Γ, ρ,E1,E2 : Γ `r ρ ; E1 ∧ Γ `r ρ ; E2 ⇒ E1 = E2

�irdly, on top of the immediate coherence of deterministic resolution, an additional coherence property holds.
Lemma 4.5 (Stability). Resolution is stable under substitution.

∀Γ,α , Γ′,σ , ρ,E : Γ,α , Γ′ `r ρ ; E ∧ Γ ` σ ⇒ Γ, Γ′[σ/α] `r ρ[σ/α] ; E[|σ |/α]

4.2 Evidence Generation in the Algorithm
�e evidence generation in Figure 6 is largely similar to that in the deterministic speci�cation of resolution in
Figure 4. With the evidence we can state the correctness of the algorithm.

Theorem 4.6 (Partial Correctness). Let Γ be a type environment, ρ be a type and E be a System F expression.
Assume that ϵ `unamb ρ and also ∀ρi ∈ Γ : ϵ `unamb ρi . �en Γ `r ρ ; E if and only if Γ `alg ρ ; E, provided that
the algorithm terminates.

4.3 Dynamic Semantics
Finally, we de�ne the dynamic semantics of Cochis as the composition of the type-directed translation and
System F’s dynamic semantics. Following Siek’s notation (Siek and Lumsdaine 2005), this dynamic semantics is:

eval (e ) = V where ϵ ` e : ρ ; E and E →∗ V
with→∗ the re�exive, transitive closure of System F’s standard single-step call-by-value reduction relation (see
(Pierce 2002, Chapter 23)).

Now we can state the conventional type safety theorem for Cochis:
Theorem 4.7 (Type Safety). If ϵ ` e : ρ, then eval (e ) = V for some System F value V .

�e proof follows trivially from �eorem 4.1.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:22 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

5 RELATED WORK
�is section discusses related work. �e most closely related work can be divided into three strands: IP mechanisms
that support local scoping with coherence, but forbid overlapping rules and lack other types of �exibility; IP
mechanisms that have global scoping and preserve coherence; and IP mechanisms that are incoherent but o�er
greater �exibility in terms of local scoping and/or overlapping rules. Cochis is unique in o�ering �exibility (local
scoping with overlapping rules, �rst-class rules and higher-order rules), while preserving coherence.

5.1 Implicit Programming with Local Scoping, Coherence but no Overlapping Rules
Our work allows a very �exible model of implicits with �rst-class rules, higher-order rules and nested scoping
with overlapping rules while guaranteeing coherence. Closest to our work in terms of combining additional
�exibility with coherence are modular type classes (Dreyer et al. 2007) and System FG (Siek and Lumsdaine
2005). Both works preserve coherence in the presence of local scoping, but (unlike Cochis) the local scopes
forbid overlapping rules. �e restriction of no overlapping rules is an essential part of guaranteeing coherence.
Cochis also has several other fundamental di�erences to both modular type classes and System FG . Modular type
classes (Dreyer et al. 2007) are a language design that uses ML-modules to model type classes. �e main novelty of
this design is that, in addition to explicit instantiation of modules, implicit instantiation is also supported. System
FG (Siek and Lumsdaine 2005) also o�ers an implicit parameter passing mechanism with local scoping, which
is used for concept-based generic programming (Siek 2011). Both mechanisms are strongly in�uenced by type
classes, and they preserve some of the characteristics of type classes such as only allowing modules or concepts
to be implicitly passed. Moreover neither of those mechanisms support higher-order rules. In contrast Cochis
follows the Scala implicits philosophy and allows values of any type to be implicit, and additionally higher-order
rules are supported.

Implicit parameters (Lewis et al. 2000) are a proposal for a name-based implicit parameter passing mechanism
with local scoping. Implicit parameters allow named arguments to be passed implicitly, and these arguments
can be of any type. However, implicit parameters do not support recursive resolution, so for most use-cases of
type-classes, including the Ord instance for pairs in Section 2.1, implicit parameters would be very cumbersome.
�ey would require manual composition of rules instead of providing automatic recursive resolution. �is is in
stark contrast with most other IP mechanisms, including Cochis, where recursive resolution and the ability to
compose rules automatically is a key feature and source of convenience.

5.2 Implicit Programming with Coherence and Global Scoping
Several core calculi and re�nements have been proposed in the context of type classes. As already discussed in
detail in Section 1, there are a number of design choices that (Haskell-style) type classes take that are di�erent
from Cochis. Most prominently, type classes make a strong di�erentiation between types and type classes, and
they use global scoping instead of local scoping for instances/rules. �e design choice for global scoping can be
traced back to Wadler and Blo�’s (1989) original paper on type classes. �ey wanted to extend Hindley-Milner
type-inference (Damas and Milner 1982; Hindley 1969; Milner 1978) and discovered that local instances resulted
in the loss of principal types. For Haskell-like languages the preservation of principal types is very important, so
local instances were discarded. However, there are many languages with IP mechanisms (including Scala, Coq,
Agda, Idris or Isabelle) that have more modest goals in terms of type-inference. In these languages there are
usually enough type annotations such that ambiguity introduced by local instances is avoided.

�ere have been some proposals for addressing the limitations that arise from global scoping (Dijkstra and
Swierstra 2005; Kahl and Sche�czyk 2001) in the context of Haskell type classes. Both named instances (Kahl and
Sche�czyk 2001) and Explicit Haskell (Dijkstra and Swierstra 2005) preserve most design choices taken in type
clases (including global scoping), but allow instances that not participate in the automatic resolution process to

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:23

be named. �is enables the possibility of overriding the compiler’s default resolution result with a user-de�ned
choice.

Jones’s work on quali�ed types (Jones 1995b) provides a particularly elegant framework that captures type
classes and other forms of predicates on types. Like type classes, quali�ed types make a strong distinction
between types and predicates over types, and scoping is global. Jones (1995a) discusses the coherence of quali�ed
types. �e formal statement of determinacy in Cochis essentially guarantees a strong form of coherence similar
to the one used in quali�ed types.

�e GHC Haskell compiler supports overlapping instances (Peyton Jones et al. 1997) that live in the same
global scope. �is allows some relief for the lack of local scoping, but it still does not allow di�erent instances
for the same type to coexist in di�erent scopes of a program. Cochis has a di�erent approach to overlapping
compared to instance chains (Morris and Jones 2010). With instance chains the programmer imposes an order on
a set of overlapping type class instances. All instance chains for a type class have a global scope and are expected
not to overlap. �is makes the scope of overlapping closed within a chain. In our calculus, we make our local
scope closed, thus overlap only happens within one nested scope. More recently, there has been a proposal for
closed type families with overlapping equations (Eisenberg et al. 2014). �is proposal allows the declaration of a
type family and a (closed) set of instances. A�er this declaration no more instances can be added. In contrast our
notion of scoping is closed at a particular resolution point, but the scopes can still be extended at other resolution
points.

5.3 Implicit Programming without Coherence
Implicits. �e implicit calculus (Oliveira et al. 2012) is the main inspiration for the design of Cochis. �ere are

two major di�erences between Cochis and the implicit calculus. �e �rst di�erence is that the implicit calculus,
like Scala, does not enforce coherence. Programs similar to that in Figure 1 can be wri�en in the implicit calculus
and there is no way to detect incoherence. �e second di�erence is in the design of resolution. Rules in the
implicit calculus have n-ary arguments, whereas in Cochis rules have single arguments and n-ary arguments are
simulated via multiple single argument rules. �e resolution process with n-ary arguments in the implicit calculus
is simple, but quite ad-hoc and forbids certain types of resolution that are allowed in Cochis. For example, the
query:

Char ⇒ Bool,Bool ⇒ Int `ar Char ⇒ Int

does not resolve under the deterministic resolution rules of the implicit calculus, but it resolves in Cochis.
Essentially resolving such query requires adding the rule type’s context to the implicit environment in the course
of the resolution process. But in the implicit calculus the implicit environment never changes during resolution,
which signi�cantly weakens the power of resolution. Scala implicits (Odersky 2010; Oliveira et al. 2010) were
themselves the inspiration for the implicit calculus and, therefore, share various similarities with Cochis. In Scala
implicit arguments can be of any type, and local scoping (including overlapping rules) is supported. However
Scala implicits are incoherent and they do not allow higher-order rules either.

IP Mechanisms in Dependently Typed Programming. A number of dependently typed languages also have IP
mechanisms inspired by type classes. Coq’s type classes (Sozeau and Oury 2008) and canonical structures (Gonthier
et al. 2011), Agda’s instance arguments (Devriese and Piessens 2011) and Idris type classes (Brady 2015) all allow
multiple and/or highly overlapping rules/instances that can be incoherent. �e Coq theorem prover has two
mechanisms that allow modelling type-class like structures: canonical structures (Gonthier et al. 2011) and type
classes (Sozeau and Oury 2008). �e two mechanisms have quite a bit of overlap in terms of functionality. In
both mechanisms the idea is to use dependent records to model type-class-like structures, and pass instances of
such records implicitly, but they still follow Haskell’s global scoping approach. Nevertheless highly overlapping
instances, which can be incoherent, are allowed. Like implicits, the design of Idris type classes allows for any

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:24 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

type of value to be implicit. �us type classes in Idris are �rst-class, can be manipulated as any other value, an
also allow multiple (incoherent) instances of the same type. Instance arguments (Devriese and Piessens 2011) are
an Agda extension that is closely related to implicits. Like Cochis, instance arguments use a special arrow for
introducing implicit arguments. However, unlike most other mechanisms, implicit rules are not declared explicitly.
Instead rules are drawn directly from the regular type environment, and any previously de�ned declaration
can be used as a rule. �e original design of instance arguments severely restricted the power of resolution by
forbidding recursive resolution. Since then, recursive resolution has been enabled in Agda. Like Coq’s and Idris’s
type classes, instance arguments allow multiple incoherent rules.

5.4 Global Uniqueness and Same Instance Guarantee
Haskell type classes not only ensure coherence but also global uniqueness (Zhang 2014) (due to global scoping),
as discussed in Section 2.2. Unrestricted Cochis programs ensure coherence only, as multiple rules for the same
type can coexist in the same program. We agree that for programs such as the Set example, it is highly desirable
to ensure that the same ordering instance is used consistently. Cochis is a core calculus, meant to enable the
design of source languages that utilize its power. It should be easy enough to design source languages on top
of Cochis that forbid local scoping constructs and, instead, make all declared rules visible in a single global
environment. �is would retain several of bene�ts of Cochis (such as �rst-class, higher-order rules, and coherent
overlapping rules), while providing a form of global uniqueness. However this design would still be essentially
non-modular, which is a key motivation for many alternatives to type classes to provide local scoping instead.

Global uniqueness of instances is just a su�cient property to ensure consistent uses of the same instances
for examples like Set. However, the important point is not to have global uniqueness, but to consistently use
the same instance. Cochis admi�edly does not provide a solution to enforce such consistency, but there is
existing work with an alternative solution to deal with the problem. Genus (Zhang et al. 2015) tracks the types
of instances to enforce their consistent use. For instance, in Genus two sets that use di�erent orderings have
di�erent types that re�ect which Ord instance they use. As a consequence, taking the union of those two sets is
not possible. In contrast to Cochis Genus is focused on providing a robust source language implementation for
generic programming. Although the Genus authors have proved some meta-theoretic results, neither type-safety
nor coherence have been proved for Genus. In dependently typed languages such as Agda and Idris, it is possible
to parametrize types by the instances they use (Brady 2015). �is achieves a similar outcome to Genus’s approach
to consistent usage of instances. Investigating the applicability of a similar approach to Cochis is an interesting
line of future work.

5.5 Focused Proof Search
Part of the syntax-directedness of our deterministic resolution is very similar to that obtained by focusing in
proof search (Liang and Miller 2009; Miller et al. 1991; Pfenning 2010). Both approaches alternate a phase that is
syntax directed on a “query” formula (our �rst auxiliary judgement), with a phase that is syntax directed on a
given formula (our third auxiliary judgement). �is is as far as the correspondence goes though, as the choice of
given formula to focus on is typically not deterministic in focused proof search.

6 CONCLUSION
�is paper presented Cochis, the Calculus Of CoHerent ImplicitS, a new calculus for implicit programming that
improves upon the implicit calculus and strikes a good balance between �exibility and coherence. In particular,
Cochis supports local scoping, overlapping rules, �rst-class rules, and higher-order rules, while remaining
type safe, coherent and unambiguous. Interesting future work includes integrating Genus’s solution for the
instance coherence problem (Zhang et al. 2015) in Cochis; and adding more features that show up in various IP
mechanisms, such as associated types (Chakravarty et al. 2005a,b) and type families (Schrijvers et al. 2008).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:25

ACKNOWLEDGMENTS
We are grateful to Ben Delaware, Derek Dreyer, Jeremy Gibbons, Sco� Kilpatrick, eta Ziliani, the members of
ROPAS and the anonymous reviewers for their comments and suggestions. �is work was partially supported by
Korea Ministry of Education, Science and Technology/Korea Science and Enginering Foundation’s ERC grant
R11-2008-007-01002-0, Brain Korea 21, Mid-career Research Program 2010-0022061, and by Singapore Ministry of
Education research grant MOE2010-T2-2-073.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:26 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

REFERENCES
H. Barendregt. 1981. �e Lambda Calculus: its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics.

North-Holland.
Hans-J. Boehm. 1985. Partial polymorphic type inference is undecidable. In 26th Annual Symposium on Foundations of Computer Science. IEEE,

339–345.
Edwin Brady. 2015. Type Classes in Idris. h�ps://groups.google.com/forum/#!topic/idris-lang/OQQ3oc6zBaM. (2015).
C. Camarão and L. Figueiredo. 1999. Type Inference for Overloading without Restrictions, Declarations or Annotations. In FLOPS. Springer-

Verlag, London, UK, 37–52.
M. Chakravarty, G. Keller, and S. L. Peyton Jones. 2005a. Associated type synonyms. In ICFP. ACM, New York, NY, USA, 241–253.
M. Chakravarty, G. Keller, S. L. Peyton Jones, and S. Marlow. 2005b. Associated types with class. In POPL. ACM, New York, NY, USA, 1–13.
Luı́s Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In POPL. ACM, New York, NY, USA, 207–212.
D. Devriese and F. Piessens. 2011. On the Bright Side of Type Classes: Instance Arguments in Agda. In ICFP. ACM, New York, NY, USA,

143–155.
A. Dijkstra and S. D. Swierstra. 2005. Making Implicit Parameters Explicit. Technical Report. Utrecht University.
D. Dreyer, R. Harper, M. Chakravarty, and G. Keller. 2007. Modular type classes. In POPL. ACM, New York, NY, USA, 63–70.
Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed Type Families with Overlapping

Equations. In POPL. ACM, New York, NY, USA, 671–683.
Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock. 2007. An Extended Comparative Study of Language

Support for Generic Programming. J. Funct. Program. 17, 2 (March 2007).
Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. 2011. How to Make Ad Hoc Proof Automation Less Ad Hoc. In

Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11). ACM, New York, NY, USA, 163–175.
D. Gregor, J. Järvi, J. G. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine. 2006. Concepts: linguistic support for generic programming in

C++. In OOPSLA. ACM, New York, NY, USA, 291–310.
J. Roger Hindley. 1969. �e Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969), 29–60.
Brian Hulley. 2009. A show-stopping problem for modular type classes? h�p://lists.seas.upenn.edu/pipermail/types-list/2009/001405.html.

(2009).
M. P. Jones. 1992. A �eory of �ali�ed Types. In ESOP.
M. P. Jones. 1995a. �ali�ed types: theory and practice. Cambridge University Press.
M. P. Jones. 1995b. Simplifying and improving quali�ed types. In FPCA.
W. Kahl and J. Sche�czyk. 2001. Named Instances for Haskell Type Classes. In Haskell Workshop.
Oleg Kiselyov and Chung-chieh Shan. 2004. Functional Pearl: Implicit Con�gurations–or, Type Classes Re�ect the Values of Types. In

Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell (Haskell ’04).
Edward Kme�. 2015. Type Classes vs the World. h�ps://www.youtube.com/watch?v=hIZxTQP1ifo. (2015).
J. Lewis, J. Launchbury, E. Meijer, and M. Shields. 2000. Implicit parameters: dynamic scoping with static types. In POPL. ACM, New York, NY,

USA, 108–118.
Chuck Liang and Dale Miller. 2009. Focusing and Polarization in Linear, Intuitionistic, and Classical Logics. �eor. Comput. Sci. 410, 46 (2009),

4747–4768.
Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to Program Synthesis. ACM Trans. Program. Lang. Syst. 2, 1 (1980),

90–121.
Alberto Martelli and Ugo Montanari. 1982. An E�cient Uni�cation Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (1982), 258–282.
Dale Miller, Gopalan Nadathur, Frank Pfenning, , and Andre Scedrov. 1991. Uniform proofs as a foundation for logic programming. Annals of

Pure and Applied Logic 51, 1–2 (1991), 125–157.
Robin Milner. 1978. A �eory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, 3 (1978), 348–375.
J. G. Morris and M. P. Jones. 2010. Instance chains: type class programming without overlapping instances. In ICFP. ACM, New York, NY,

USA, 375–386.
Team Mozilla Research. 2017. �e Rust Programming Language. h�ps://www.rust-lang.org/en-US/.
M. Odersky. 2010. �e Scala Language Speci�cation, Version 2.8. (2010). h�p://www.scala-lang.org/docu/�les/ScalaReference.pdf
B. C. d. S. Oliveira, A. Moors, and M. Odersky. 2010. Type classes as objects and implicits. In OOPSLA. ACM, New York, NY, USA.
B. C. d. S. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi. 2012. �e Implicit Calculus: A New Foundation for Generic Programming. In

PLDI ’12. ACM, New York, NY, USA.
S. L. Peyton Jones, M. P. Jones, and E. Meijer. 1997. Type classes: exploring the design space. In Haskell Workshop.
Frank Pfenning. 1993. On the Undecidability of Partial Polymorphic Type Reconstruction. Fundam. Inform. 19, 1/2 (1993), 185–199.
Frank Pfenning. 2010. Lecture Notes on Focusing, Oregon Summer School 2010, Proof �eory Foundations. (2010). h�ps://www.cs.cmu.edu/
∼fp/courses/oregon-m10/04-focusing.pdf.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:27

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press, Cambridge, MA, USA.
John C. Reynolds. 1991. �e Coherence of Languages with Intersection Types. In Proceedings of the International Conference on �eoretical

Aspects of Computer So�ware (TACS ’91). Springer-Verlag, London, UK, UK, 675–700. h�p://dl.acm.org/citation.cfm?id=645867.670915
T. Schrijvers, S. L. Peyton Jones, M. Chakravarty, and M. Sulzmann. 2008. Type checking with open type functions. In ICFP. ACM, New York,

NY, USA.
J. G. Siek. 2011. �e C++0x �Concepts� E�ort. h�p://ecee.colorado.edu/∼siek/concepts e�ort.pdf. (2011).
J. G. Siek and A. Lumsdaine. 2005. Essential language support for generic programming. In PLDI. ACM, New York, NY, USA.
M. Sozeau and N. Oury. 2008. First-Class Type Classes. In TPHOLs.
M. Sulzmann, G. Duck, S. L. Peyton Jones, and P. J. Stuckey. 2007. Understanding functional dependencies via Constraint Handling Rules.

Journal of Functional Programming 17 (2007), 83–129.
Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12 (2015), 75–84.
P. L. Wadler and S. Blo�. 1989. How to make ad-hoc polymorphism less ad hoc. In POPL. ACM, New York, NY, USA.
S. Wehr, R. Lämmel, and P. �iemann. 2007. JavaGI: Generalized interfaces for java. In ECOOP.
Edward Zhang. 2014. Type classes: con�uence, coherence and global uniqueness. h�p://blog.ezyang.com/2014/07/

type-classes-con�uence-coherence-global-uniqueness/. (2014).
Yizhou Zhang, Ma�hew C. Loring, Guido Salvaneschi, Barbara Liskov, and Andrew C. Myers. 2015. Lightweight, Flexible Object-oriented

Generics. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:28 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Γ ` T

(F-WF-VarTy)
α ∈ Γ
Γ ` α

(F-WF-FunTy)
Γ ` T1 Γ ` T2

Γ ` T1 → T2

(F-WF-UnivTy)
Γ,α ` T
Γ ` ∀α .T

Γ ` E : T

(F-Var)
(x : T ) ∈ Γ
Γ ` x : T

(F-Abs)
Γ,x : T1 ` E : T2 Γ ` T1

Γ ` λx : T1.E : T1 → T2

(F-App)
Γ ` E1 : T2 → T1 Γ ` E2 : T2

Γ ` E1 E2 : T1

(F-TApp)
Γ ` E : ∀α .T2 Γ ` T1

Γ ` ET1 : T2[T1/α]

(F-TAbs)
Γ,α ` E : T

Γ ` Λα .E : ∀α .T

Fig. 9. System F Type System

APPENDIX

B PROOFS
�roughout the proofs we refer to the type system rules of System F listed in Figure 9.

B.1 Type Preservation
Lemma B.1 states that the translation preserves the well-formedness of types.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:29

Lemma B.1. If
Γ ` ρ

then
|Γ | ` |ρ |

Proof. By structural induction on the expression and corresponding inference rule.
(WF-VarTy) Γ ` α

It follows from the rule that α ∈ Γ. Hence, obviously α ∈ |Γ |. Finally, by rule (F-WF-VarTy), and taking
into account that |α | = α , we conclude

|Γ | ` α

(WF-FunTy) Γ ` ρ1 → ρ2
It follows from the induction hypotheses and the hypotheses of the rule that

|Γ | ` |ρ1 | ∧ |Γ | ` |ρ2 |
Hence, by rule (F-WF-FunTy), and taking into account that |ρ1 | → |ρ2 | = |ρ1 → ρ2 |, we conclude that

|Γ | ` |ρ1 → ρ2 |

(WF-RulTy) Γ ` ρ1 ⇒ ρ2
It follows from the induction hypotheses and the hypotheses of the rule that

|Γ | ` |ρ1 | ∧ |Γ | ` |ρ2 |
Hence, by rule (F-WF-FunTy), and taking into account that |ρ1 | → |ρ2 | = |ρ1 ⇒ ρ2 |, we conclude that

|Γ | ` |ρ1 ⇒ ρ2 |

(WF-UnivTy) Γ ` ∀α .ρ
It follows from the induction hypothesis and the hypothesis of the rule that

|Γ,α | ` |ρ |
As |Γ,α | = |Γ |,α , we can simplify this to

|Γ |,α ` |ρ |
Hence, by rule (F-WF-UnivTy), and taking into account that ∀α .|ρ | = |∀α .ρ |, we conclude that

|Γ | ` |∀α .ρ |
�

Lemma B.2 states that the translation of expressions to System F preserves types. Its proof relies on Lemma B.3,
which states that the translation of resolution preserves types.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:30 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Lemma B.2. If
Γ ` e : ρ ; E

then
|Γ | ` E : |ρ |

Proof. By structural induction on the expression and corresponding inference rule.
(Ty-Var) Γ ` x : ρ ; x

It follows from (Ty-Var) that
(x : ρ) ∈ Γ

Based on the de�nition of | · | it follows

(x : |ρ |) ∈ |Γ |
�us we have by (F-Var) that

|Γ | ` x : |ρ |

(Ty-Abs) Γ ` λx : ρ1.e : ρ1 → ρ2 ; λx : |ρ1 |.E

�e �rst hypothesis of (Ty-Abs) is that

Γ,x : ρ1 ` e : ρ2 ; E

and thus by the induction hypothesis we have that

|Γ |,x : |ρ1 | ` E : |ρ2 |
�e second hypothesis of (Ty-Abs) is that

Γ ` |ρ1 |
and thus by Lemma B.1 we have that

|Γ | ` |ρ1 |
Hence, by (F-Abs) we conclude

|Γ | ` λx : |ρ1 |.E : |ρ1 → ρ2 |

(Ty-App) Γ ` e1 e2 : ρ1 ; E1 E2

By the induction hypothesis, we have:

|Γ | ` E1 : |ρ2 → ρ1 | ∧ |Γ | ` E2 : |ρ2 |
and, because |ρ2 → ρ1 | = |ρ2 | → |ρ1 |, we can write the former as

|Γ | ` E1 : |ρ2 | → |ρ1 |
�en it follows by (F-App) that

|Γ | ` E1 E2 : |ρ1 |

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:31

(Ty-TAbs) Γ ` Λα .e : ∀α .ρ ; Λα .E

Based on (Ty-TAbs) and the induction hypothesis, we have
|Γ,α | ` E : |ρ |

�us, based on (F-TAbs) and because |Γ,α | = |Γ |,α , we have
|Γ | ` Λα .E : ∀α .|ρ |

or, because |∀α .ρ | = ∀α .|ρ |, we conclude
|Γ | ` Λα .E : |∀α .ρ |

(Ty-TApp) Γ ` e ρ1 : ρ2[ρ1/α] ; E |ρ1 |

By the �rst hypothesis of the rule and the induction hypothesis of the lemma, it follows that
|Γ | ` E : |∀α .ρ2 |

From this we have by de�nition of | · |
|Γ | ` E : ∀α .|ρ2 |

By the second hypothesis of the rule and Lemma B.1 we also have
|Γ | ` |ρ1 |

It then follows from (F-TApp) that
|Γ | ` E |ρ1 | : |ρ2 |[|ρ1 |/α]

�is is easily seen to be equivalent to
|Γ | ` E |ρ1 | : |ρ2[ρ1/α]|

(Ty-IAbs) Γ ` λ?ρ1.e : ρ1 ⇒ ρ2 ; λx : |ρ1 |.E

Based on the �rst hypothesis of the rule and the induction hypothesis, we have
|Γ, ρ1 ; x | ` E : |ρ2 |

or, using the de�nition of | · |,
|Γ |,x : |ρ1 | ` E : |ρ2 |

Based on the second hypothesis of the rule and Lemma B.1 we have
|Γ | ` |ρ1 |

�us, based on (F-Abs) we have
|Γ | ` λx : |ρ1 |.E : |ρ1 | → |ρ2 |

or, using the de�nition of | · | again,
|Γ | ` λx : |ρ1 |.E : |ρ1 ⇒ ρ2 |

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:32 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

(Ty-IApp) Γ ` e1 with e2 : ρ1 ; E1 E2

From the hypotheses of the rule and the induction hypothesis we have:

|Γ | ` E1 : |ρ2 ⇒ ρ1 | ∧ |Γ | ` E2 : |ρ2 |
Based on the de�nition of | · |, the �rst of these means

|Γ | ` E1 : |ρ2 | → |ρ1 |
Finally, based on (F-App), we know

|Γ | ` E1 E2 : |ρ1 |

(Ty-Query) Γ `?ρ : ρ ; E

Based on the �rst hypothesis of the rule and Lemma B.3 we know

|Γ | ` E : |ρ |
�

Lemma B.3. If
Γ `ar ρ ; E

and
Γ ` ρ

then
|Γ | ` E : |ρ |

Proof. By induction on the derivation.
(AR-TAbs) Γ `ar ∀α .ρ ; Λα .E

From the hypothesis of the rule and the induction hypothesis, we have

|Γ,α | ` E : |ρ |
or alternatively, based on the de�nition of | · |,

|Γ |,α ` E : |ρ |
�en, rule (F-TAbs) allows us to conclude

|Γ | ` Λα .E : ∀α .|ρ |
or, again based on the de�nition of | · |,

|Γ | ` Λα .E : |∀α .ρ |
(AR-TApp) Γ `ar ρ[σ/α] ; E |σ |

From the �rst hypothesis of the rule and the induction hypothesis, we have

|Γ | ` E : |∀α .ρ |

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:33

or alternatively, based on the de�nition of | · |,
|Γ | ` E : ∀α .|ρ |

From the second hypothesis of the rule and Lemma B.1, we have

|Γ | ` |σ |
�en, rule (F-TApp) allows us to conclude

|Γ | ` E |σ | : |ρ |[|σ |/α]

or, again based on the de�nition of | · |,
|Γ | ` E |σ | : |ρ[σ/α]|

(AR-IVar) Γ `ar ρ ; x

From the hypothesis of the rule and the de�nition of | · |, we have

(x : |ρ |) ∈ |Γ |
�us, using rule (F-Var), we can conclude

|Γ | ` x : |ρ |
(AR-IAbs) Γ `ar ρ1 ⇒ ρ2 ; λx : |ρ1 |.E

From the �rst hypothesis of the rule and the induction hypothesis, we have

|Γ, ρ1 ; x | ` E : |ρ2 |
or alternatively, based on the de�nition of | · |,

|Γ |,x : |ρ1 | ` E : |ρ2 |
�en, rule (F-Abs) allows us to conclude

|Γ | ` λx : |ρ1 |.E : |ρ1 | → |ρ2 |
or, again based on the de�nition of | · |,

|Γ | ` λx : |ρ1 |.E : |ρ1 ⇒ ρ2 |
(AR-IApp) Γ `ar ρ2 ; E2 E1

From the hypotheses of the rule and the induction hypothesis, we have

|Γ | ` E1 : |ρ1 | ∧ |Γ | ` E2 : |ρ1 ⇒ ρ2 |
�e second conjunct can be reformulated, based on the de�nition of | · |, to

|Γ | ` E2 : |ρ1 | → |ρ2 |
�en, rule (F-App) allows us to conclude

|Γ | ` E2 E1 : |ρ2 |
�

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:34 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

B.2 Auxiliary Lemmas About Non-Determistic Resolution
�e non-deterministic resolution judgement enjoys a number of typical binder-related properties.

�e �rst lemma is the weakening lemma: that states that an extended context preserves all the derivations of
the original context.
Lemma B.4 (Weakening). If

Γ, Γ′ `ar ρ ; E

then
Γ, Γ′′, Γ′ `ar ρ ; E

Proof. �e proof proceeds by straightfoward induction on the derivation of the hypothesis. �

�e second lemma is the substitution lemma which states that we can drop an axiom from the context if it is
already implied by the remainder of the context.
Lemma B.5 (Substitution). If

Γ, ρ ; x , Γ′ `ar ρ ′ ; E ′

and
Γ `ar ρ ; E

then
Γ, Γ′ `ar ρ ′ ; E ′[E/x]

Proof. �e proof proceeds by straightfoward induction on the derivation of the �rst hypothesis.
�e key case is the one for rule (AR-IVar) where ρ ′ = ρ and E ′ = x . In this case the second hypothesis gives us

Γ `ar ρ ; E

As E = x[E/x], this also means
Γ `ar ρ ; x[E/x]

Finally, we can apply the Weakening Lemma B.4 to obtain the desired result.
Γ, Γ′ `ar ρ ; x[E/x]

All other cases are straightforward. �

B.3 Soundness of Deterministic Resolution
Lemma B.6 states that deterministic resolution is sound with respect to non-deterministic resolution.
Lemma B.6. If

Γ `r ρ ; E

then
Γ `ar ρ ; E

Proof. �e lemma immediately follows from Lemma B.7. �

Lemma B.7. If
ᾱ ; Γ `r ρ ; E

then
Γ `ar ρ ; E

Proof. �e proof proceeds by induction on the derivation.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:35

(R-IAbs) ᾱ ; Γ `r ρ1 ⇒ ρ2 ; λx : |ρ1 |.E
From the �rst assumption of rule (R-IAbs) and the induction hypothesis, we have

Γ,x : ρ1 `ar ρ2 ; E

Hence, from rule (AR-IAbs) and the freshness condition on x in rule (R-IAbs) it follows that
Γ `ar ρ1 ⇒ ρ2 ; λx : |ρ1 |.E

(R-TAbs) ᾱ ; Γ `r ∀α .ρ ; Λα .E

From the precondition of rule (R-TAbs) and the induction hypothesis, we have
Γ,α `ar ρ ; E

Hence, from rule (AR-TAbs) it follows that
Γ `ar ∀α .ρ ; Λα .E

(R-Simp) ᾱ ; Γ `r τ ; E

From the precondition of the rule, Lemma B.8 and the simple fact that Γ ⊆ Γ, it follows that
Γ `ar τ ; E

�

�e above proof relies on the following auxiliary lemma for the resolution of simple types. �e proof of this
auxiliary lemma proceeds by mutual induction with the proof of the main lemma.
Lemma B.8. If

ᾱ ; Γ; Γ′ `r τ ; E

and
Γ′ ⊆ Γ

then
Γ `ar τ ; E

Proof. �e proof proceeds by induction on the derivation, mutually with the previous proof.
(L-RuleMatch) ᾱ ; Γ; Γ′, ρ ; x `r τ ; E[Ē/x̄]

�e �rst assumption of the rule is
Γ; ρ ; x `r τ ; E; Ē ; x̄

From the lemma’s assumption (Γ′, ρ ; x ) ⊆ Γ we conclude (ρ ; x ) ∈ Γ. Hence, by rule (AR-Simp)
we have

Γ `ar ρ ; x

From the second precondition of the rule and the (mutual) induction hypothesis, we also have
Γ `ar ρ̄ ; Ē

�e above three observations allow us to invoke the auxiliary Lemma B.9 and conclude
Γ `ar τ ; E[Ē/x̄]

(L-Var), (L-TyVar), (L-RuleNoMatch)

Trivially by applying the induction hypothesis on the precondition of the rule.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:36 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

�

�e above proof relies on the following auxiliary lemma.
Lemma B.9. If

Γ; ρ ; E `r τ ; E ′; ρ̄ ; x̄

and
Γ `ar ρ ; E

and
Γ `ar ρ̄ ; Ē

then
Γ `ar τ ; E ′[Ē/x̄]

Proof. �e proof proceeds by induction on the derivation of the �rst assumption.
(M-Simp) Γ;τ ; E `r τ ; E; ϵ

�e �rst assumption of the lemma is the desired conclusion

Γ `ar τ ; E

(M-IApp) Γ; ρ1 ⇒ ρ2 ; E `r τ ; E ′; ρ̄ ; x̄ , ρ1 ; x

�e third hypothesis of the lemma then is

Γ `ar ρ̄ ; Ē ∧ Γ `ar ρ1 ; E1

�e Weakening Lemma B.4 turns the �rst conjunct into

Γ, ρ1 ; x `ar ρ̄ ; Ē

�e second hypothesis of the lemma then is

Γ `ar ρ1 ⇒ ρ2 ; E

By applying the Weakening Lemma B.4 we get

Γ, ρ1 ; x `ar ρ1 ⇒ ρ2 ; E

From rule (AR-IVar) we can also conclude

Γ, ρ1 ; x `ar ρ1 ; x

�ese two facts allow us to derive from rule (AR-IApp)

Γ, ρ1 ; x `ar ρ2 ; E x

We now have the necessary ingredients to invoke the induction hypothesis on the hypothesis of the
rule and obtain

Γ, ρ1 ; x `ar τ ; E ′[Ē/x̄]
Finally, we use the second conjunct of the third hypothesis to invoke the Substitution Lemma B.5 on

the above and reach our desired conclusion

Γ `ar τ ; E ′[Ē/x̄][E1/x]

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:37

(M-TApp) Γ;∀α .ρ ; E `r τ ; E ′; ρ̄ ; x̄

�en the second hypothesis of the lemma is

Γ `ar ∀α .ρ ; E

�is allows us to conclude by rule (AR-TApp) that

Γ `ar ρ[σ/α] ; E |σ |
�e third hypothesis of the lemma is

Γ `ar ρ̄ ; Ē

We now have the necessary ingredients to invoke the induction hypothesis on the hypothesis of the
rule and obtain the desired conclusion

Γ `ar τ ; E ′[Ē/x̄]

�

B.4 Deterministic Resolution is Deterministic
Lemma B.10. If

`unamb Γ

and
`unamb ρ

and
Γ `r ρ ; E1

and
Γ `r ρ ; E2

then
E1 = E2

Proof. From the third and fourth hypotheses of the lemma, the hypothesis of rule (R-Main) and Lemma B.11
the desired result follows

E1 = E2

�

Lemma B.11. If
`unamb Γ

and
`unamb ρ

and
ᾱ ; Γ `r ρ ; E1

and
ᾱ ; Γ `r ρ ; E2

then
E1 = E2

Proof. �e proof proceeds by induction on the derivation of the third hypothesis.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:38 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

(R-IAbs) ᾱ ; Γ `r ρ1 ⇒ ρ2 ; λx : | |ρ1 | |.E1

It follows that the lemma’s fourth hypothesis is also derived by rule (R-IAbs). It follows from the
lemma’s second hypothesis that

`unamb ρ1 ∧ `unamb ρ2

From this and lemma’s �rst hypothesis, it follows that
`unamb Γ, ρ1 ; x

From the rule’s hypothesis and the induction hypothesis, it follows that
E1 = E2

Hence, we may conclude
λx : |ρ1 |.E1 = λx : |ρ1 |.E2

(R-TAbs) ᾱ ; Γ `r ∀α .ρ ; Λα .E1

It follows that the lemma’s fourth hypothesis is also derived by rule (R-TAbs). It follows from the
lemma’s second hypothesis that

`unamb ρ

From the lemma’s �rst hypothesis, it follows that
`unamb Γ,α

From the rule’s hypothesis and the induction hypothesis, it follows that
E1 = E2

Hence, we may conclude
Λα .E1 = Λα .E2

(R-Simp) ᾱ ; Γ `r τ ; E1

It follows that the lemma’s fourth hypothesis is also derived by rule (R-Simp). We obtain the desired
result from Lemma B.12

E1 = E2

�

Lemma B.12. If
`unamb Γ

and
`unamb Γ

′

and
ᾱ ; Γ; Γ′ `r τ ; E1

and
ᾱ ; Γ; Γ′ `r τ ; E2

then
E1 = E2

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:39

Proof. �e proof proceeds by induction on the derivation of the third hypothesis.

(L-RuleMatch) ᾱ ; Γ; Γ′, ρ ; x `r τ ; E1[Ē1/x̄]
�en the fourth hypothesis was either derived from rule (L-RuleMatch), or from rule (L-RuleNoMatch).
However, the hypothesis of the la�er is not satis�ed: ϵ ;E1; Σ1 forms a counter-example. Hence, the fourth
hypothesis is also formed by rule (L-RuleMatch).

�en it follows from the �rst hypothesis of the rule and Lemma B.13 that

E1 = E2 ∧ Σ1 = Σ2

From the second hypothesis of the rule and Lemma B.11 it also follows that

Ē1 = Ē2

Hence, we may conclude

E1[Ē1/x̄] = E2[Ē2/x̄]

(L-RuleNoMatch) ᾱ ; Γ; Γ′, ρ ; x `r τ ; E ′1
�en the fourth hypothesis was either derived from rule (L-RuleMatch), or from rule (L-RuleNoMatch).
However, the hypothesis of the former is not satis�ed, as it would be a counter-example for the �rst
hypothesis of the assumed rule of the third hypothesis. Hence, the fourth hypothesis is also formed by
rule (L-RuleNoMatch).

From the second hypothesis of the lemma we derive `unamb Γ
′. �en from the second hypothesis of

the rule and the induction hypothesis we conclude the desired result

E ′1 = E ′2

(L-Var) ᾱ ; Γ; Γ′,x : ρ `r τ ; E1
Clearly the fourth hypothesis is also derived by rule (L-Var). Moreover, from the second hypothesis it
follows that `unamb Γ

′. Hence, from the induction hypothesis we conclude that

E1 = E2

(L-TyVar) ᾱ ; Γ; Γ′,α `r τ ; E1
Clearly the fourth hypothesis is also derived by rule (L-TyVar). Moreover, from the second hypothesis it
follows that `unamb Γ

′. Hence, from the induction hypothesis we conclude that

E1 = E2

�

We annotated the judgement with the sequence of substitution types σ̄ used to instantiate the universal
quanti�ers.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:40 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

σ̄ ; Γ; ρ ; E `r τ ; E ′; Σ

(M-Simp) ϵ ; Γ;τ ; E `r τ ; E; ϵ

(M-IApp)
σ̄ ; Γ, ρ1; x; ρ2 ; E x `r τ ; E ′; Σ x fresh

σ̄ ; Γ; ρ1 ⇒ ρ2 ; E `r τ ; E ′; Σ, ρ1 ; x

(M-TApp)
σ̄ ; Γ; ρ[σ/α] ; E |σ | `r τ ; E ′; Σ Γ ` σ

σ̄ ,σ ; Γ;∀α .ρ ; E `r τ ; E ′; Σ
It is not di�cult to see that any derivation of the annotated judgement is in one to one correspondence with a

derivation of the unannotated judgement.
�e judgement is deterministic.
Lemma B.13. If

ᾱ `unamb ρ

and
σ̄1; Γ; ρ[σ̄2/ᾱ] ; E[|σ̄2 |/ᾱ] `r τ ; E1; Σ1

and
σ̄ ′1; Γ; ρ[σ̄ ′2/ᾱ] ; E[|σ̄ ′2 |/ᾱ] `r τ ; E2; Σ2

then
σ̄1 = σ̄ ′1 ∧ σ̄2 = σ̄ ′2 ∧ E1 = E2 ∧ Σ1 = Σ2 ∧ `unamb Σ1

Proof. �e proof proceeds by induction on the derivation of the �rst hypothesis.
(UA-Simp) ᾱ `unamb τ

′

�en the second and third hypothesis of the lemma must have been formed by rule (M-Simp) and hence
σ̄1 = ϵ = σ̄ ′1

For the same reason we have that τ ′[σ̄2/ᾱ] = τ = τ ′[σ̄ ′2/ᾱ]. Since we know that ᾱ ⊆ �v (τ ), it must
follow also that

σ̄2 = σ̄ ′2
As a consequence, we also have that

E1 = E[|σ̄2 |/ᾱ] = E[|σ̄ ′2 |/ᾱ] = E2

Finally, it also follows from rule (M-Simp) that
Σ1 = ϵ = Σ2

and trivially
`unamb ϵ

(UA-IAbs) ᾱ `unamb ρ1 ⇒ ρ2
�en the second and third hypothesis of the lemma must have been formed by rule (M-IApp). From their
two hypotheses and from the hypothesis of the rule and the induction hypothesis, we obtain the desired
results

σ̄1 = σ̄ ′1 ∧ σ̄2 = σ̄ ′2 ∧ E1 = E2 ∧ Σ1, ρ1[|σ̄2 |/ᾱ] ; x = Σ2, ρ1[|σ̄ ′2 |/ᾱ] ; x

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:41

We also derive from the induction hypothesis that `unamb Σ1. Since ᾱ `unamb ρ1 ⇒ ρ2, we also have
`unamb ρ1. Hence we also conclude

`unamb Σ1, ρ1 ; x

(UA-TAbs) ᾱ `unamb ∀α .ρ
�en the second and third hypothesis of the lemma must have been formed by rule (M-TApp), with
σ̄1 = σ̄1,1,σ1,2 and σ̄ ′1 = σ̄ ′1,1,σ

′
2,2. From their two hypotheses and from the hypothesis of the rule and the

induction hypothesis, we obtain

σ̄2,σ1,2 = σ̄ ′2,σ
′
1,2 ∧ σ̄1,1 = σ̄ ′1,1 ∧ E1 = E2 ∧ Σ1 = Σ2 ∧ `unamb Σ1

From this we conclude the desired result

σ̄1 = σ̄ ′1 ∧ σ̄2 = σ̄ ′2 ∧ E1 = E2 ∧ Σ1 = Σ2 ∧ `unamb Σ1

�

B.5 Resolution Coherence
Deterministic resolution is stable under substitution.
Lemma B.14. If

Γ,α , Γ′ `r ρ ; E

and
Γ ` σ

then
Γ, Γ′[σ/α] `r ρ[σ/α] ; E[|σ |/α]

Proof. �e hypothesis of rule then is

�v (Γ),α ,�v (Γ′); Γ,α , Γ′ `r ρ ; E

From Lemma B.15 it follows that

�v (Γ),�v (Γ′); Γ, Γ′[σ/α] `r ρ[σ/α] ; E[|σ |/α]

As �v (Γ′) = �v (Γ′[σ/α]), the desired result follows from rule (R-Main)

Γ, Γ′[σ/α] `r ρ[σ/α] ; E[|σ |/α]

�

Lemma B.15. If
ᾱ ,α , ᾱ ′; Γ,α , Γ′ `r ρ ; E

and
Γ ` σ

then
ᾱ , ᾱ ′; Γ, Γ′[σ/α] `r ρ[σ/α] ; E[|σ |/α]

Proof. (R-IAbs) ᾱ ,α , ᾱ ′; Γ,α , Γ′ `r ρ1 ⇒ ρ2 ; λx : |ρ1 |.E
From the rule’s hypothesis and the induction hypothesis we have

ᾱ , ᾱ ′; Γ, (Γ′, ρ1 ; x )[σ/α] `r ρ2[σ/α] ; E[|σ |/α]

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:42 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

From the de�nition of substitution and rule (R-IAbs) we then conclude

ᾱ , ᾱ ′; Γ, Γ′[σ/α] `r (ρ1 ⇒ ρ2)[σ/α] ; (λx : |ρ1 |.E)[|σ |/α]

(R-TAbs) ᾱ ,α , ᾱ ′; Γ,α , Γ′ `r ∀β .ρ ; Λβ .E

From the rule’s hypothesis and the induction hypothesis we have

ᾱ , ᾱ ′; Γ, (Γ′, β )[σ/α] `r ρ[σ/α] ; E[|σ |/α]

From the de�nition of substitution and rule (R-TAbs) we then conclude

ᾱ , ᾱ ′; Γ, Γ′[σ/α] `r (∀β .ρ)[σ/α] ; (Λβ .E)[|σ |/α]

(R-Simp) ᾱ ,α , ᾱ ′; Γ,α , Γ′ `r τ ; E

From the rule’s hypothesis and Lemma B.16 we conclude

ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′ `r τ [σ/α] ; E[|σ |/α]

and
R (Γ;α ; Γ′; Γ,α , Γ′; Γ′′′;σ )

�e la�er could only have been obtained by ryle (R-2). Hence, we know that Γ′′′ = Γ, Γ′[σ/α] and the
former is equivalent to

ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ, Γ′[σ/α] `r τ [σ/α] ; E[|σ |/α]

With this fact we can conclude by rule (R-Simp)

ᾱ , ᾱ ′; Γ, Γ′[σ/α] `r τ [σ/α] ; E[|σ |/α]

�

Lemma B.16. If
ᾱ ,α , ᾱ ′; Γ,α , Γ′; Γ′′ `r τ ; E

and
Γ′′ ⊆ Γ,α , Γ′

and
Γ ` σ

then
ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′ `r τ [σ/α] ; E[|σ |/α]

and
R (Γ;α ; Γ′; Γ′′; Γ′′′;σ )

where
R (Γ;α ; Γ′; Γ′′; Γ′′′;σ )

(R-1)
R (Γ1, Γ2;α ; Γ′; Γ1; Γ1;σ )

(R-2)
R (Γ;α ; Γ′1 , Γ′2 ; Γ,α , Γ′1 ; Γ, Γ′1 [σ/α];σ )

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:43

Proof. (L-RuleMatch) ᾱ ,α , ᾱ ′; Γ,α , Γ′; Γ′′, ρ ; x `r τ ; E

�en it follows from the �rst hypothesis of the rule and of Lemma B.17 that

Γ, Γ′[σ/α]; ρ[σ/α] ; E[|σ |/α] `r τ [σ/α] ; E ′[|σ |/α]; ρ̄[σ/α] ; x̄

Also it follows from the second hypothesis of the rule and of Lemma B.15 that

ᾱ , ᾱ ′; Γ, Γ′[σ/α] `r ρ̄[σ/α] ; Ē[|σ |/α]

By combining these two observations with rule (L-RuleMatch) we obtain the �rst desired result

ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′, ρ[σ/α] ; x `r τ [σ/α] ; E[|σ |/α]

We obtain the second desired result by case analysis on Γ′′ ⊆ Γ,α , Γ′:
(1) Γ = Γ1, ρ ; x , Γ2 ∧ Γ′′ = Γ1:

In this case we can use rule (R-1) to establish:

R ((Γ1, ρ ; x ), Γ2;α ; Γ′; Γ1, ρ ; x ; Γ1, ρ ; x ;σ )

which is equivalent to

R (Γ;α ; Γ′; Γ′′, ρ ; x ; Γ′′, ρ ; x ;σ )

(2) Γ′ = Γ′1 , ρ ; x , Γ′2 ∧ Γ′′ = Γ,α , Γ′1 :
In this case we can use rule (R-2) to establish:

R (Γ;α ; (Γ′1 , ρ ; x ), Γ′2 ; Γ,α , (Γ′1 , ρ ; x ); Γ, (Γ′1 , ρ ; x )[σ/α];σ )

which is equivalent to

R (Γ;α ; Γ′; Γ′′, ρ ; x ; Γ, (Γ′1 , ρ ; x )[σ/α];σ )

(L-RuleNoMatch) ᾱ ,α , ᾱ ′; Γ,α , Γ′; Γ′′, ρ ; x `r τ ; E ′

�e rule’s �rst hypothesis states that

@θ ,E, Σ, dom(θ ) ⊆ (ᾱ ,α , ᾱ ′) : θ (Γ,α , Γ′);θ (ρ) ; x `r θ (τ ) ; E; Σ

Hence, the above also holds when we restrict θ to be of the form θ ′ · [σ/α]. In this case, the above
simpli�es to

@θ ′,E, Σ, dom(θ ) ⊆ (ᾱ , ᾱ ′) : θ ′(Γ, Γ′[σ/α]);θ ′(ρ[σ/α]) ; x `r θ ′(τ [σ/α]) ; E; Σ

From the rule’s second hypothesis and the induction hypothesis we have

ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′ `r τ [σ/α] ; E ′[|σ |/α]

With rule (L-RuleNoMatch) we combine these two observations into the desired �rst result

ᾱ , ᾱ ′; Γ, (Γ′, ρ ; x )[σ/α]; Γ′′′ `r τ [σ/α] ; E ′[|σ |/α]

Similarly, following the rule’s second hypothesis and the induction hypothesis we have:

R (Γ;α ; Γ′; Γ′′; Γ′′′;σ )

We do a case analysis on the derivation of this judgement.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:44 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

(1) (R-1):
�en we have

Γ = Γ1,x : ρ, Γ2 ∧ Γ′′ = Γ1 ∧ Γ′′′ = Γ1

By rule (R-2) we then have
R ((Γ1,x : ρ), Γ2;α ; Γ′; Γ1, ρ ; x ; Γ1, ρ ; x ;σ )

which, given all the equations we have, is equivalent to
R (Γ;α ; Γ′; Γ′′, ρ ; x ; Γ′′, ρ ; x ;σ )

(2) (R-2):
�en we have

Γ′ = Γ′1 , Γ
′
2 ∧ Γ′′ = Γ,α , Γ′1 ∧ Γ′′′ = Γ, Γ′1 [σ/α]

Since Γ′′, ρ ; x ⊆ Γ,α , Γ′, it follows that Γ′2 = ρ ; x , Γ′2,2. Hence, by rule (R-2) we can establish
R (Γ;α ; (Γ′1 , ρ ; x ), Γ′2 ; Γ,α , (Γ′1 , ρ ; x ); Γ, (Γ′1 , ρ ; x )[σ/α];σ )

which, given all the equations we have, is equivalent to
R (Γ;α ; Γ′; Γ′′, ρ ; x ; Γ, (Γ′1 , ρ ; x )[σ/α];σ )

(L-Var) ᾱ ,α , ᾱ ′; Γ,α , Γ′; Γ′′,x : ρ `r τ ; E

�en following the rule’s hypothesis and the induction hypothesis we have:
ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′ `r τ [σ/α] ; E[|σ |/α]

By rule (L-Var) and the de�nition of substitution we then have
ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′,x : ρ[σ/α] `r τ [σ/α] ; E[|σ |/α]

Similarly, following the rule’s hypothesis and the induction hypothesis we have:
R (Γ;α ; Γ′; Γ′′; Γ′′′;σ )

We do a case analysis on the derivation of this judgement.
(1) (R-1):

�en we have
Γ = Γ1,x : ρ, Γ2 ∧ Γ′′ = Γ1 ∧ Γ′′′ = Γ1

By rule (R-2) we then have
R ((Γ1,x : ρ), Γ2;α ; Γ′; Γ1,x : ρ; Γ1,x : ρ;σ )

which, given all the equations we have, is equivalent to
R (Γ;α ; Γ′; Γ′′,x : ρ; Γ′′,x : ρ;σ )

(2) (R-2):
�en we have

Γ′ = Γ′1 , Γ
′
2 ∧ Γ′′ = Γ,α , Γ′1 ∧ Γ′′′ = Γ, Γ′1 [σ/α]

Since Γ′′,x : ρ ⊆ Γ,α , Γ′, it follows that Γ′2 = x : ρ, Γ′2,2. Hence, by rule (R-2) we can establish
R (Γ;α ; (Γ′1 ,x : ρ), Γ′2 ; Γ,α , (Γ′1 ,x : ρ); Γ, (Γ′1 ,x : ρ)[σ/α];σ )

which, given all the equations we have, is equivalent to
R (Γ;α ; Γ′; Γ′′,x : ρ; Γ, (Γ′1 ,x : ρ)[σ/α];σ )

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:45

(L-TyVar) ᾱ ,α , ᾱ ′; Γ,α , Γ′; Γ′′, β `r τ ; E

�en following the rule’s hypothesis and the induction hypothesis we have:
ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′ `r τ [σ/α] ; E[|σ |/α]

By rule (L-TyVar) and the de�nition of substitution we then have
ᾱ , ᾱ ′; Γ, Γ′[σ/α]; Γ′′′, β `r τ [σ/α] ; E[|σ |/α]

Similarly, following the rule’s hypothesis and the induction hypothesis we have:
R (Γ;α ; Γ′; Γ′′; Γ′′′;σ )

We do a case analysis on the derivation of this judgement.
(1) (R-1):

�en we have
Γ = Γ1, Γ2 ∧ Γ′′ = Γ1 ∧ Γ′′′ = Γ1

We further distinguish between two mutually exclusive cases:
(a) Γ2 = ϵ

It follows that α = β and we can establish by means of (R-2) that
R (Γ1, Γ2;α ; ϵ, Γ′; Γ1, Γ2,α ; Γ1, Γ2, ϵ[σ/α];σ )

which, given all the equations we have, is equivalent to
R (Γ;α ; Γ′; Γ′′, β ; Γ;σ )

(b) Γ2 , ϵ
�en it follows that Γ2 = β, Γ2,2 and by rule (R-2) we have

R ((Γ1, β ), Γ2,2;α ; Γ′; Γ1, β ; Γ1, β ;σ )
which, given all the equations we have, is equivalent to

R (Γ;α ; Γ′; Γ′′, β ; Γ1, β ;σ )
(2) (R-2):

�en we have
Γ′ = Γ′1 , Γ

′
2 ∧ Γ′′ = Γ,α , Γ′1 ∧ Γ′′′ = Γ, Γ′1 [σ/α]

Since Γ′′, β ⊆ Γ,α , Γ′, it follows that Γ′2 = β , Γ′2,2. Hence, by rule (R-2) we can establish

R (Γ;α ; (Γ′1 , β ), Γ′2 ; Γ,α , (Γ′1 , β ); Γ, (Γ′1 , β )[σ/α];σ )
which, given all the equations we have, is equivalent to

R (Γ;α ; Γ′; Γ′′, β ; Γ, (Γ′1 , β )[σ/α];σ )
�

Lemma B.17. If
Γ,α , Γ′; ρ ; E `r τ ; E ′; ρ̄ ; x̄

and
Γ ` σ

then
Γ, Γ′[σ/α]; ρ[σ/α] ; E[|σ |/α] `r τ [σ/α] ; E ′[|σ |/α]; ρ̄[σ/α] ; x̄

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:46 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

Proof. (M-Simp) Γ,α , Γ′;τ ; E `r τ ; E; ϵ
�e desired conclusion follows directly from rule (M-Simp)

Γ, Γ′[σ/α];τ [σ/α] ; E[|σ/α |] `r τ [σ/α] ; E[|σ/α |]; ϵ

(M-IApp) Γ,α , Γ′; ρ1 ⇒ ρ2 ; E `r τ ; E ′; Σ, ρ1 ; x

From the rule’s hypothesis and the induction hypothesis we have

Γ, (Γ′, ρ1 ; x )[σ/α]; ρ2[σ/α] ; (Ex )[|σ |/α] `r τ [σ/α] ; E ′[|σ |/α]; Σ[σ/α]

�en from the de�nition of substutition and rule (M-IApp) we conclude

Γ, Γ′[σ/α]; (ρ1 ⇒ ρ2)[σ/α] ; E[|σ |/α] `r τ [σ/α] ; E ′[|σ |/α]; (Σ, ρ1 ; x )[σ/α]

(M-TApp) Γ,α , Γ′;∀β .ρ ; E `r τ ; E ′; Σ
From the rule’s �rst hypothesis and the induction hypothesis we have

Γ, Γ′[σ/α]; ρ[σ ′/β][σ/α] ; (E |σ ′ |)[|σ |/α] `r τ [σ/α] ; E ′[|σ |/α]; Σ[σ/α]

From the rule’s second hypothesis (and the preservation of well-typing under type-susbstitution) we
have

Γ, Γ′[σ/α] ` σ ′[σ ′/α]
From these two facts we conclude by rule (M-TApp), reasoning modulo the de�nition of substitution

Γ, Γ′[σ/α]; (∀β .ρ)[σ/α] ; E[|σ |/α] `r τ [σ/α] ; E ′[|σ |/α]; Σ[σ/α]

�

B.6 Soundness of the Algorithm wrt Deterministic Resolution

Lemma B.18. If
Γ `alg ρ ; E

then
Γ `r ρ ; E

Proof. From the hypothesis it follows that

tyvars(Γ); Γ `alg ρ ; E

Hence, by Lemma B.19 and rule (R-Main) the desired conclusion follows

Γ `r ρ ; E

�

Lemma B.19. If
ᾱ ; Γ `alg ρ ; E

then
ᾱ ; Γ `r ρ ; E

Proof. �e lemma follows from the isomorphism between the rule sets of the two judgements and from
Lemma B.20. �

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:47

Lemma B.20. If
ᾱ ; Γ; Γ′ `alg ρ ; E

then
ᾱ ; Γ; Γ′ `r ρ ; E

Proof. �e proof proceeds by induction on the derivation of the hypothesis.

(Alg-L-RuleMatch) ᾱ ; Γ; Γ′, ρ ; x `alg τ ; E[Ē/x̄]
From the rule’s �rst hypothesis and Lemma B.21 we have

Γ; ρ ; E `r τ ; E ′; ρ̄ ; x̄

�en, using Lemma B.19 and rule (L-RuleMatch) we conclude

ᾱ ; Γ; Γ′, ρ ; x `r τ ; E[Ē/x̄]

(Alg-L-RuleNoMatch) ᾱ ; Γ; Γ′, ρ ; x `alg τ ; E ′

From the rule’s second hypothesis and the induction hypothesis we have

ᾱ ; Γ; Γ′ `r τ ; E ′

�en from the rule’s �rst hypothesis and the negation of Lemma B.22, we have:

@E, Σ : ᾱ ; Γ; ρ ; x ; ϵ `alg τ ; E; Σ

By Lemma B.21 we thus have

@θ ,E, Σ, dom(θ ) ⊆ ᾱ : θ (Γ);θ (ρ) ; x `r τ ; E; Σ

Hence with rule (L-RuleNoMatch) we conclude

ᾱ ; Γ; Γ′, ρ ; x `r τ ; E ′

(Alg-L-Var) ᾱ ; Γ; Γ′,x : ρ `alg τ ; E

From the rule’s hypothesis and the induction hypothesis we obtain

ᾱ ; Γ; Γ′ `r τ ; E

By rule (L-Var) we conclude
ᾱ ; Γ; Γ′,x : ρ `r τ ; E

(Alg-L-TyVar) ᾱ ; Γ; Γ′,α `alg τ ; E

From the rule’s hypothesis and the induction hypothesis we obtain

ᾱ ; Γ; Γ′ `r τ ; E

By rule (L-TyVar) we conclude
ᾱ ; Γ; Γ′,α `r τ ; E

�

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:48 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

We assume that the judgement is decorated with an additional argument, the substitution for the ᾱ type variables.
Lemma B.21. If

ᾱ ; Γ; ρ ; E; Σ `alg τ ; E ′; Σ′,θ (Σ);θ
and

dom(θ ) ⊆ ᾱ

then
θ (Γ);θ (ρ) ; |θ |(E) `r θ (τ ) ; E ′; Σ′

Proof. �e proof proceeds by induction on the derivation of the �rst hypothesis.
(Alg-M-Simp) ᾱ ; Γ;τ ′ ; E; Σ `alg τ ; |θ |(E); ϵ,θ (Σ);θ

From the hypothesis of the rule and Lemma B.23 it follows that θ (τ ′) = θ (τ ). Hence, the target judgement
can be rewri�en as

θ (Γ);θ (τ ′) ; |θ |(E) `r θ (τ ′) ; |θ |(E); ϵ
�is follows from rule (M-Simp).

(Alg-M-IApp) ᾱ ; Γ; ρ1 ⇒ ρ2 ; E; Σ `alg τ ; E ′; Σ′,θ (ρ1) ; x ,θ (Σ);θ
From the hypothesis of the rule and the induction hypothesis, we have that

θ (Γ, ρ1 ; x );θ (ρ2) ; |θ |(E x ) `r θ (τ ) ; E ′; Σ′

By rule (M-IApp) we may then conclude
θ (Γ);θ (ρ1 ⇒ ρ2) ; |θ |(E) `r θ (τ ) ; E ′; Σ′,θ (ρ1) ; x

(Alg-M-TApp) ᾱ ; Γ;∀α .ρ ; E; Σ `alg τ ; E ′; Σ′,θ (Σ);θ
�en it follows from the rule’s hypothesis and from the induction hypothesis that

θ (Γ);θ (ρ) ; |θ |(E α ) `r θ (τ ) ; E ′; Σ′

Hence, it follows from rule (M-TApp) that
θ (Γ);θ (∀α .ρ) ; |θ |(E) `r θ (τ ) ; E ′; Σ′

�

Lemma B.22. If
ᾱ ; Γ; ρ ; E; Σ `alg τ ; E ′; Σ′

then
ᾱ ; ρ `coh τ

Proof. �e derivation of the conclusion is obtained by erasing the irrelevant arguments from the derivation
of the hypothesis. �

Lemma B.23. If
θ = mguᾱ (τ ,τ

′)
then

θ (τ ) = θ (τ ′)
and

dom(θ ) ⊆ ᾱ

Proof. Straightforward induction on the derivation. �

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:49

B.7 Completeness of the Algorithm wrt Deterministic Resolution

Lemma B.24. If
Γ `r ρ ; E

then
Γ `alg ρ ; E

Proof. From the hypothesis it follows that

tyvars(Γ); Γ `r ρ ; E

Hence, by Lemma B.25 and rule (Alg-R-Main) the desired conclusion follows

Γ `alg ρ ; E

�

Lemma B.25. If
ᾱ ; Γ `r ρ ; E

then
ᾱ ; Γ `alg ρ ; E

Proof. �e lemma follows from the isomorphism between the rule sets of the two judgements and from
Lemma B.26. �

Lemma B.26. If
ᾱ ; Γ; Γ′ `r ρ ; E

then
ᾱ ; Γ; Γ′ `alg ρ ; E

Proof. �e proof proceeds by induction on the derivation of the hypothesis.
(L-RuleMatch) ᾱ ; Γ; Γ′, ρ ; x `r τ ; E[Ē/x̄]

From the rule’s �rst hypothesis and Lemma B.27 we have

ϵ ; Γ; ρ ; x ; ϵ `alg τ ; E ′; ρ̄ ; x̄

�en, using Lemma B.25 and rule (Alg-L-RuleMatch) we conclude

ᾱ ; Γ; Γ′, ρ ; x `alg τ ; E[Ē/x̄]

(L-RuleNoMatch) ᾱ ; Γ; Γ′, ρ ; x `r τ ; E ′

From the rule’s second hypothesis and the induction hypothesis we have

ᾱ ; Γ; Γ′ `alg τ ; E ′

From the rule’s �rst hypothesis and the negation of Lemma B.28, we have:

ᾱ ; ρ 6`coh τ
Hence with rule (Alg-L-RuleNoMatch) we conclude

ᾱ ; Γ; Γ′, ρ ; x `alg τ ; E ′

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:50 • Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler

(L-Var) ᾱ ; Γ; Γ′,x : ρ `r τ ; E

From the rule’s hypothesis and the induction hypothesis we obtain

ᾱ ; Γ; Γ′ `alg τ ; E

By rule (Alg-L-Var) we conclude

ᾱ ; Γ; Γ′,x : ρ `alg τ ; E

(L-TyVar) ᾱ ; Γ; Γ′,α `r τ ; E

From the rule’s hypothesis and the induction hypothesis we obtain

ᾱ ; Γ; Γ′ `alg τ ; E

By rule (Alg-L-TyVar) we conclude

ᾱ ; Γ; Γ′,α `alg τ ; E

�

Lemma B.27. If
θ1 (Γ);θ1 (ρ) ; |θ1 |(E) `r θ1 (τ ) ; |θ1 |(E ′);θ1 (Σ

′)
and

dom(θ1) ⊆ ᾱ

then
ᾱ ; Γ; ρ ; E; Σ `alg τ ; |θ2 |(E ′);θ2 (Σ

′, Σ)
and

dom(θ2) ⊆ ᾱ

and
θ1 v θ2

Proof. �e proof proceeds by induction on the derivation of the �rst hypothesis.
(M-Simp) θ1 (Γ);θ1 (τ

′) ; |θ1 |(E) `r θ1 (τ ) ; |θ1 |(E);θ1 (ϵ ) where θ1 (Γ) = θ1 (τ
′).

From Lemma B.29 and rule (Alg-M-Simp) we then have

ᾱ ; Γ;τ ′ ; E; Σ `alg τ ; θ2 (E);θ2 (Σ)

(M-IApp) θ1 (Γ);θ1 (ρ1 ⇒ ρ2) ; |θ1 |(E) `r θ1 (τ ) ; |θ1 |(E ′);θ1 (Σ
′, ρ1 ; x )

From the hypothesis of the rule and the induction hypothesis, we have that

ᾱ ; Γ, ρ1 ; x ; ρ2 ; E x ; ρ1 ; x , Σ `alg τ ; |θ2 |(E ′);θ2 (Σ
′, ρ1 ; x , Σ)

By rule (Alg-M-IApp) we may then conclude

ᾱ ; Γ; ρ1 ⇒ ρ2 ; E; Σ `alg τ ; |θ2 |(E ′);θ2 (Σ
′, ρ1 ; x , Σ)

(M-TApp) θ1 (Γ);θ1 (∀α .ρ) ; |θ1 |(E) `r θ1 (τ ) ; |θ1 |(E ′);θ1 (Σ
′)

From the hypothesis of the rule and the induction hypothesis, we have that

ᾱ ,α ; Γ; ρ ; E α ; Σ `alg τ ; |θ2 |(E ′);θ2 (Σ
′, Σ)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Cochis: Deterministic and Coherent Implicits • 1:51

Hence, it follows from rule (Alg-M-TApp) that
ᾱ ; Γ;∀α .ρ ; E; Σ `alg τ ; |θ2 |(E ′);θ2 (Σ

′, Σ)

�

Lemma B.28. If
ᾱ ; ρ `coh τ

then for all E, Γ, Σ there exist E ′, Σ′ such that

ᾱ ; Γ; ρ ; E; Σ `alg τ ; E ′; Σ′

Proof. �e proof is straightforward induction on the derivation. �e conclusion’s judgement is an annotated
version of the hypothesis’ judgement. �

Lemma B.29. If
θ (τ ) = θ (τ ′)

and
dom(θ ) ⊆ ᾱ

then
θ ′ = mguᾱ (τ ,τ

′)
and

dom(θ ′) ⊆ ᾱ

and
θ v θ ′

, Vol. 1, No. 1, Article 1. Publication date: January 2016.


