
COBRA: A Fast and Simple Method for
Active Clustering with Pairwise Constraints

Abstract
Clustering is inherently ill-posed: there often ex-
ist multiple valid clusterings of a single dataset,
and without any additional information a cluster-
ing system has no way of knowing which clustering
it should produce. This motivates the use of con-
straints in clustering, as they allow users to commu-
nicate their interests to the clustering system. Ac-
tive constraint-based clustering algorithms select
the most useful constraints to query, aiming to pro-
duce a good clustering using as few constraints as
possible. We propose COBRA, an active method
that first over-clusters the data by running K-means
with a K that is intended to be too large, and sub-
sequently merges the resulting small clusters into
larger ones based on pairwise constraints. In its
merging step, COBRA is able to keep the number
of pairwise queries low by maximally exploiting
constraint transitivity and entailment. We experi-
mentally show that COBRA outperforms the state
of the art in terms of clustering quality and runtime,
without requiring the number of clusters in advance.

1 Introduction
Clustering is inherently subjective [Caruana et al., 2006; von
Luxburg et al., 2014]: a single dataset can often be clustered in
multiple ways, and different users may prefer different cluster-
ings. This subjectivity is one of the motivations for constraint-
based (or semi-supervised) clustering [Wagstaff et al., 2001;
Bilenko et al., 2004]. Methods in this setting exploit back-
ground knowledge to obtain clusterings that are more aligned
with the user’s preferences. Often, this knowledge is given in
the form of pairwise constraints that indicate whether two in-
stances should be in the same cluster (a must-link constraint) or
not (a cannot-link constraint) [Wagstaff et al., 2001]. In tradi-
tional constraint-based clustering systems the set of constraints
is assumed to be given a priori, and in practice, the pairs that
are queried are often selected randomly. In contrast, in ac-
tive clustering [Basu et al., 2004a; Mallapragada et al., 2008;
Xiong et al., 2014] it is the method itself that decides which
pairs to query. Typically, active methods query pairs that are
more informative than random ones, which improves cluster-
ing quality.

This work introduces an active constraint-based clustering
method named Constraint-Based Repeated Aggregation (CO-
BRA). It differs from existing approaches in several ways.
First, it aims to maximally exploit constraint transitivity and
entailment [Wagstaff et al., 2001], two properties that allow
deriving additional constraints from a given set of constraints.
By doing this, the actual number of pairwise constraints that
COBRA works with is typically much larger than the number
of pairwise constraints that are queried from the user. Sec-
ondly, COBRA introduces the assumption that there exist
small local regions in the data that are grouped together in
all potential clusterings. To clarify this, consider the exam-
ple of clustering images of people taking different poses (e.g.
facing left or right). There are at least two natural cluster-
ing targets for this data: one might want to cluster based on
identity or pose. In an appropriate feature space, one expects
images that agree on both criteria (i.e. of a single person, tak-
ing a single pose) to be close. There is no need to consider
all of these instances individually, as they will end up in the
same cluster for each of the two targets that the user might
be interested in. COBRA aims to group such instances into
a super-instance, such that they can be treated jointly in the
clustering process. Doing so substantially reduces the number
of pairwise queries. Thirdly, COBRA is an inherently active
method: the constraints are selected during the execution of
the algorithm itself, as constraint selection and algorithm exe-
cution are intertwined. In contrast, existing approaches consist
of a component that selects constraints and another one that
uses them during clustering.

Our experiments show that COBRA outperforms state-of-
the-art active clustering methods in terms of both clustering
quality and runtime. Furthermore, it has the distinct advan-
tage that it does not require knowing the number of clusters
beforehand, as the competitors do. In many realistic clustering
scenarios this number is not known, and running an algorithm
with the wrong number of clusters often results in a significant
decrease in clustering quality.

We discuss related work on (active) constraint-based clus-
tering in section 2. In section 3 we elaborate the key ideas in
COBRA and describe the method in more detail. We present
our experimental evaluation in section 4, and conclude in
section 5.

2 Background and related work
Most existing constraint-based methods are extensions of well-
known unsupervised clustering algorithms. They use the con-
straints either in an adapted clustering procedure [Wagstaff et
al., 2001; Rangapuram and Hein, 2012; Wang et al., 2014], to
learn a similarity metric [Xing et al., 2003; Davis et al., 2007],
or both [Bilenko et al., 2004; Basu et al., 2004b]. Constraint-
based extensions have been developed for most clustering
algorithms, including K-means [Wagstaff et al., 2001; Bilenko
et al., 2004], spectral clustering [Rangapuram and Hein, 2012;
Wang et al., 2014], DBSCAN [Lelis and Sander, 2009;
Campello et al., 2013] and EM [Shental et al., 2004].

Basu et al. [2004a] introduce a strategy to select the
most informative constraints, prior to performing a sin-
gle run of a constraint-based clustering algorithm. They
show that active constraint selection can improve cluster-
ing performance. Several selection strategies have been pro-
posed since [Mallapragada et al., 2008; Xu et al., 2005;
Xiong et al., 2014]. As COBRA also chooses which pairs
to query, we consider it to be an active method, and in our ex-
periments we compare to other methods in this setting. Note,
however, that active selection is inherent to COBRA, whereas
for most other methods the selection strategy is optional.

In its core, COBRA is related to hierarchical clustering as it
follows the same procedure of sequentially trying to merge the
two closest clusters. Constraints have been used in hierarchical
clustering before but in different ways. Davidson et al. [2009],
for example, present an algorithm to find a clustering hierarchy
that is consistent with a given set of constraints. Nogueira
et al. [2012] propose an active semi-supervised hierarchical
clustering algorithm that is based on merge confidence. Also
related to ours is the work of Campello et al. [2013], who have
developed a framework to extract from a given hierarchy a flat
clustering that is consistent with a given set of constraints. The
key difference is that COBRA starts from super-instances, i.e.
small clusters produced by K-means, and that each merging
decision is settled by a pairwise constraint.

The idea of working with a small number of representatives
(in our case the super-instance medoids, as will be discussed
in section 3) instead of all individual instances has been used
before, but for very different purposes. For example, Yan et
al. [2009] use it to speed up unsupervised spectral clustering,
whereas we use it to reduce the number of pairwise queries.

3 Constraint-Based Repeated Aggregation
Constraint-based clustering algorithms aim to produce a clus-
tering of a dataset that resembles an unknown target clustering
Y as close as possible. The algorithm cannot query the cluster
labels in Y directly, but can query the relation between pairs of
instances. A must-link constraint is obtained if the instances
have the same cluster label in Y , a cannot-link constraint oth-
erwise. The aim is to produce a clustering that is close to the
target clustering Y , using as few pairwise queries as possible.

Several strategies can be used to exploit constraints in clus-
tering. Figure 1 illustrates some of them. The most naive
strategy one can use is to query all pairwise relations, and
construct clusters as sets of instances that are connected by a
must-link constraint (Figure 1a). Though this is clearly not a

good strategy in any scenario, it allows us to formulate a base-
line for further improvements. It always results in a perfect
clustering, but at a very high cost: for a dataset of N instances,(
N
2

)
questions are asked.

The previous strategy can be improved by exploiting con-
straint transitivity and entailment, two well known proper-
ties in constraint-based clustering [Wagstaff et al., 2001;
Bilenko et al., 2004]. Must-link constraints are known to
be transitive:

must-link(A,B) ∧ must-link(B,C)⇒
must-link(A,C),

whereas cannot-link constraints have an entailment property:

must-link(A,B) ∧ cannot-link(B,C)⇒
cannot-link(A,C).

Thus, every time a new constraint is queried and added to the
set of constraints, transitivity and entailment can be applied
to expand the set. This strategy is illustrated in Figure 1b.
Exploiting transitivity and entailment significantly reduces
the number of pairwise queries needed to obtain a clustering,
without a loss in clustering quality.

The order in which constraints are queried strongly influ-
ences the number of constraints that can be derived. In general,
it is better to obtain must-link constraints early on. That way,
any future query involving one of the instances connected by
a must-link constraint also applies to all others. This suggests
querying the closest pairs first, as they are more likely to be-
long to the same cluster and hence be connected by a must-link
constraint. This is strategy is illustrated in Figure 1c.

The previous strategies all obtain a perfect clustering, but re-
quire a high number of queries which makes them inapplicable
for reasonably sized datasets. To further reduce the number of
queries, COBRA groups similar instances into super-instances
and only clusters their representatives, i.e. medoids. It as-
sumes that all instances within a super-instance are connected
by a must-link constraint. While clustering the medoids, CO-
BRA uses both previously discussed strategies of querying the
closest pairs and exploiting transitivity and entailment. This
strategy, illustrated in Figure 1d, results in a substantial reduc-
tion of the number of queries. It does not always result in a
perfect clustering as it is possible that the instances within a
particular super-instance should not be grouped together w.r.t.
the target clustering.

Table 1 illustrates to what extent each of the improvements
described above reduces the number of queries. We perform
an extensive evaluation of the quality of the clusterings that
COBRA produces in section 4.

3.1 Algorithmic description
After presenting the main motivations for each step of CO-

BRA, we now give a more detailed description in Algorithm 1.
Let X = {xi}Ni=1, xi ∈ Rm the instances to be clustered. The
set of instances X is first over-clustered into NS disjoint sub-
sets, namely super-instances {Si}NS

i=1 , such that
⋃

i Si = X .
This over-clustering is obtained by running K-means with
a K that may be significantly larger than the actual num-
ber of clusters. Each super-instance Si is represented by its
medoid si, forming a set of super-instance representatives

(a) (b) (c) (d)

Figure 1: An illustration of different querying strategies. Colors indicate the desired clustering. Solid green lines indicate
must-link, while red ones indicate cannot-link constraints. Dashed line indicate derived constraints with the same color code. The
number next to the solid line indicates the ordering of queried constraints, whereas the number next to the dashed line indicates
the constraint number from which the constraint was derived. (a) Querying all 10 constraints (b) Exploiting entailment and
transitivity results in querying only 6 constraints. (c) Querying the closest pairs first results in 4 constraints. (d) Introducing
super-instances (dashed ellipses) results in only 2 queries.

dataset # instances total # pairs

iris 147 10731
wine 178 15753

dermatology 358 63903
hepatitis 112 6216

glass 213 22578
ecoli 336 56280

transitivity−−−−−→
entailment

queries

409
457

1660
173
854

1343

closest pairs−−−−−−→
first

queries

155
187
379
140
334
440

super−−−−→
instances

queries

34
35
42
39
70
51

Table 1: This table shows the total number of pairwise relations in several datasets (column 3), as well the number of pairwise
queries that is required when exploiting transitivity and entailment (column 4, these numbers are averages of runs for 5 random
orderings of pairwise queries), and additionally querying the closest pairs first (column 5). The last column shows the number of
pairwise queries (averaged over 5 runs) when COBRA is run with 25 super-instances.

S = {s1, . . . , sNS
}. All pairwise queries that are performed

are between these super-instance representatives. The goal of
COBRA is now to cluster these representatives into disjoint
subsets {C1, . . . , CNC

} of S (
⋃

i Ci = S).
Each cluster Ci is a set of super-instance representatives,

but conceptually contains all the points in the corresponding
super-instances. The number of clusters NC is unknown a
priori and will be determined during the clustering procedure.
Initially, there are NS clusters, each containing a single super-
instance representative, as shown on line 2 in Algorithm 1.
These clusters are merged (if necessary) in the subsequent
while loop.

In each iteration, COBRA first sorts all pairs of clusters
between which there is no cannot-link constraint (line 6). The
distance between clusters, by which the pairs are sorted, is
defined as follows (as in single-linkage clustering):

d(C1, C2) = min
s1∈C1,s2∈C2

‖s1 − s2‖2 (1)

Next, COBRA loops over the pairs of clusters and checks
whether they should be merged. It starts by selecting the
closest pair of super-instance representatives of the clusters
(line 9), and asks whether they should be in the same cluster
(line 10). If this is the case, the clusters are merged (lines 11
and 12), and the while-loop is restarted (as the set of clusters
is changed). If that is not the case, the pair of representatives
is added to the set of cannot-link constraints (line 16), and the
inner loop continues by inspecting the next pair of clusters.

The execution stops when all clusters are complete and no
merge is to be done anymore.

Number of super-instances and number of queries
The exact number of queries COBRA will need is data-
dependent: it depends on the extent to which querying the
closest pairs first leads to must-link constraints and on the
actual number of clusters. It is thus difficult to determine it
before the execution. However, an estimate in terms of a lower
and upper bound can be posed:

NS −NC +
(
NC

2

)
. # queries ≤

(
NS

2

)
with NS the number of super-instances, and NC the number of
clusters in the target clustering. In the worst case, COBRA will
need to query all pairwise relations between super-instances,
which requires

(
NS

2

)
queries. In particular, this happens if

there is a cannot-link between each pair of super-instances. In
practice, COBRA typically needs much less than

(
NS

2

)
queries.

If (i) super-instances are perfectly homogeneous w.r.t. the tar-
get clustering and (ii) the distances between must-link pairs are
smaller than the distances between cannot-link pairs, COBRA
needs exactly NS −NC +

(
NC

2

)
queries. NS −NC must-link

constraints are needed to merge the NS super-instances into
the NC clusters, followed by an additional

(
NC

2

)
queries to

ensure nothing can be merged anymore. This formula is in-
applicable in practice as the number of clusters is not known
beforehand, and thus serves as a means to understand the num-
ber of queries that might be needed. Figure 2 compares this

Algorithm 1 COBRA

Require: X : a dataset,
NS : the number of super-instances,

Ensure: C, a clustering of D
1: {Si}NS

i=1 = K-means(X , NS)
2: ∀i = 1, . . . , NS : Ci = {si}
3: CL = ∅
4: mergeHappened = True
5: while mergeHappened do
6: P = {C1, C2 : @x ∈ C1,y ∈ C2 : (x,y) ∈ CL},

ordered by d(C1, C2)
7: mergeHappened = False
8: for C1, C2 in P do
9: sa, sb = argmins1∈C1,s2∈C2

‖s1 − s2‖2
10: if must-link(sa, sb) then
11: C1 = C1 ∪ C2
12: C = C \ {C2}
13: mergeHappened = True
14: break
15: else
16: CL = CL ∪ {(sa, sb})
17: end if
18: end for
19: end while
20: return C

lower bound to the actual number of queries that was needed
by COBRA for 21 clustering tasks (these will be described in
more detail in section 4). For most datasets, the actual number
of pairwise queries is relatively close to the lower bound. It is
possible to get a smaller number of queries than that suggested
by the lower bound: this happens if a single super-instance
contains the instances of two actual clusters, rendering the(
NC

2

)
factor inaccurate.

0 50 100 150 200 250 300

approximate lower bound on # queries

0

50

100

150

200

250

300

queries

25 super-instances

50 super-instances

100 super-instances

Figure 2: Plotting the estimated lower bound on the number
of queries, against the number of queries needed by COBRA
(averaged over 5 cross-validation folds). Each dot corresponds
to one of the 21 clustering tasks.

4 Experimental evaluation
In this section, we discuss the experimental evaluation of
COBRA.

Existing constraint-based algorithms
We compare COBRA to the following state-of-the-art
constraint-based clustering algorithms:

• MPCKMeans [Bilenko et al., 2004] is a hybrid constraint-
based extension of K-means: it uses metric learning, as
well as an adapted clustering procedure in which the ob-
jective combines the within-cluster sum of squares with
the cost of violating constraints. We use the implementa-
tion that is available in the WekaUT package1.

• Constrained Spectral Clustering (COSC) [Rangapuram
and Hein, 2012] is based on spectral clustering, but opti-
mizes for a modified objective that also takes constraint
violation into account. We use the code provided by the
authors on their web page2.

It is important to note that, in contrast to COBRA, COSC
and MPCKMeans require the number of clusters as an input
parameter. In our experiments, the true number of clusters is
provided to these algorithms. In many clustering applications,
however, this number is typically not known beforehand. Thus,
COSC and MPCKMeans are at an advantage.

Active selection strategies
Each of these algorithms is combined with the following two
active selection strategies:

• MinMax [Mallapragada et al., 2008] starts with an explo-
ration phase in which K (the number of clusters, which
is assumed to be known in advance) neighborhoods with
cannot-links between them are sought. In the subsequent
consolidation phase these neighborhoods are expanded
by selecting the most uncertain instances and determining
their neighborhood membership by means of pairwise
constraints. We set the width parameter of the Gaus-
sian kernel to the 20th percentile of the distribution of
pairwise Euclidean distances, as in [Mallapragada et al.,
2008].

• NPU [Xiong et al., 2014] is also based on the concept
of neighborhoods, but in contrast to MinMax it is an
iterative method: the data is clustered multiple times,
and each clustering is used to determine the next set
of pairs to query. Xiong et al. [2014] show that NPU
typically outperforms MinMax, but given that it requires
repeated runs of the clustering algorithm this increased
performance comes at a computational cost.

Datasets
We perform experiments on the following 15 UCI datasets:
iris, wine, dermatology, hepatitis, glass, ionosphere, opt-
digits389, ecoli, breast-cancer-wisconsin, segmentation, col-
umn 2C, parkinsons, spambase, sonar and yeast. Most of these
datasets have been used in earlier work on constraint-based
clustering [Bilenko et al., 2004; Xiong et al., 2014]. Optdig-
its389 contains digits 3, 8 and 9 of the UCI handwritten digits

1http://www.cs.utexas.edu/users/ml/risc/
code/

2http://www.ml.uni-saarland.de/code/cosc/
cosc.htm

Table 2: Wins and losses aggregated over all 21 clustering tasks. After each win (loss) count, we report the average margin by
which COBRA wins (loses). For win counts marked with an asterisk, the differences are significant according to the Wilcoxon
test with p < 0.05.

25 super-instances 50 super-instances 100 super-instances
win loss win loss win loss

COBRA vs. MPCKM-MinMax 13 (0.14) 8 (0.12) 13 (0.16) 8 (0.09) 12 (0.19) 9 (0.05)
COBRA vs. MPCKM-NPU 11 (0.16) 10 (0.11) 17* (0.12) 4 (0.09) 12 (0.17) 9 (0.06)
COBRA vs. COSC-MinMax 15* (0.21) 6 (0.05) 16* (0.21) 5 (0.06) 14* (0.21) 7 (0.04)

COBRA vs. COSC-NPU 15* (0.20) 6 (0.04) 14* (0.23) 7 (0.04) 13* (0.23) 8 (0.03)

data [Bilenko et al., 2004; Mallapragada et al., 2008]. Du-
plicate instances were removed for all these datasets, and all
data was normalized between 0 and 1. We also perform exper-
iments on the CMU faces dataset, which contains 624 images
of 20 persons taking different poses, with different expressions,
with and without sunglasses. Hence, this dataset has 4 target
clusterings: identity, pose, expression and sunglasses. We ex-
tract a 2048-value feature vector for each image by running it
through the pre-trained Inception-V3 network [Szegedy et al.,
2015] and storing the output of the second last layer. Finally,
we also cluster the 20 newsgroups text data. For this dataset,
we consider two tasks: clustering documents from 3 news-
groups on related topics (the target clusters are comp.graphics,
comp.os.ms-windows and comp.windows.x, as in [Basu et
al., 2004a; Mallapragada et al., 2008]), and clustering docu-
ments from 3 newsgroups on very different topics (alt.atheism,
rec.sport.baseball and sci.space, as in [Basu et al., 2004a;
Mallapragada et al., 2008]). We first extract tf-idf features,
and next apply latent semantic indexing (as in [Mallapragada
et al., 2008]) to reduce the dimensionality to 10. This brings
the total to 17 datasets, for which 21 clustering tasks are de-
fined (15 UCI datasets with a single target, CMU faces with 4
targets, and 2 subsets of the 20 newsgroups data).

Experimental methodology
We use a cross-validation procedure that is highly similar to the
ones used in e.g. [Basu et al., 2004a] and [Mallapragada et al.,
2008]. In each of 5 folds, 20% of the instances are set aside as
the test set. The clustering algorithm is then run on the entire
dataset, but can only query pairwise constraints for which both
instances are in the training set. To evaluate the quality of
the resulting clustering, we compute the Adjusted Rand index
(ARI, [Hubert and Arabie, 1985]) only on the instances in
the test set. The ARI measures the similarity between two
clusterings, in this case between the one produced by the
constraint-based clustering algorithm and the one indicated by
the class labels. An ARI of 0 means that the clustering is not
better than random, 1 indicates a perfect clustering. The final
score for an algorithm for a particular dataset is computed as
the average ARI over the 5 folds.

The exact number of pairwise queries is not known before-
hand for COBRA, but more super-instances generally results
in more queries. To evaluate COBRA with varying amounts
of user input, we run it with 25, 50 and 100 super-instances.
For each fold, we execute the following steps:
• Run COBRA and count how many constraints it needs.
• Run the competitors with the same number of constraints.

• Evaluate the resulting clusterings by computing the ARI
on the test set.

To make sure that COBRA only queries pairs of which both
instances are in the training set, the medoid of a super-instance
is calculated based on only the training instances in that super-
instance (and as such, test instances are never queried during
clustering). In the rare event that a super-instance contains
only test instances, it is merged with the nearest super-instance
that does contain training instances. For the MinMax and NPU
selection strategies, pairs involving an instance from the test
set are simply excluded from selection.

Results
The results over all 21 clustering tasks are summarized in
Tables 2 and 3. Table 2 reports the number of times COBRA
wins and loses against each of the 4 competitors. It shows
that COBRA tends to produce better clusterings than its com-
petitors. The difference with COSC is significant according
to the Wilcoxon test with p < 0.05, whereas the difference
with MPCKMeans is not. Table 3 shows the average ranks for
COBRA and its competitors. The Friedman aligned rank test
[Hodges and Lehmann, 1962], which has more power than the
Friedman test when the number of algorithms under compari-
son is low [Garca et al., 2010], indicates that for 50 and 100
super-instances, the differences in rank between COBRA and
all competitors are significant, using a posthoc Holm test with
p < 0.05.

Table 3: For each dataset, all algorithms are ranked from
1 (best) to 5 (worst). This table shows the average ranks
for 25, 50 and 100 super-instances. Algorithms for which
the difference with COBRA is significant according to the
Friedman aligned rank test and a post-hoc Holm test with
p < 0.05 are marked with an asterisk.

25 super-instances 50 super-instances 100 super-instances

COBRA 2.43 COBRA 2.14 COBRA 2.52
MPCK-NPU 3.00 MPCK-MM* 3.00 COSC-NPU* 2.98
MPCK-MM 3.07 COSC-NPU* 3.02 MPCK-NPU* 3.00
COSC-MM* 3.12 COSC-MM* 3.26 MPCK-MM* 3.19
COSC-NPU* 3.40 MPCK-NPU* 3.57 COSC-MM* 3.31

Running competitors with different numbers of queries
In the previous experiments, the competitors are run with the
same number of queries that COBRA required, as for COBRA
this cannot be fixed beforehand. One might wonder whether
this constitutes an advantage for COBRA, and whether the

100 200 300 400 500 600 700 800

queries
0.0

0.2

0.4

0.6

0.8

1.0

ARI

segmentation

MPCKMeans-MinMax

COSC-MinMax

COBRA

(a)

50 100 150 200 250 300 350 400

queries
0.0

0.2

0.4

0.6

0.8

1.0

ARI

glass
MPCKMeans-MinMax

COSC-MinMax

COBRA

(b)

50 100 150 200 250 300 350 400

queries
0.0

0.2

0.4

0.6

0.8

1.0

ARI

faces eyes

MPCKMeans-MinMax

COSC-MinMax

COBRA

(c)

50 100 150 200 250 300

queries
0.0

0.2

0.4

0.6

0.8

1.0

ARI

breast-cancer-wisconsin

MPCKMeans-MinMax

COSC-MinMax

COBRA

(d)

Figure 3: Comparing the clustering qualities for COBRA and its competitors for a wider range of numbers of constraints.
For COBRA, each black marker shows the average number of questions that COBRA required for a particular number of
super-instances, and its average ARI (over 5-fold cross-validation). We only show the results for the MinMax selection strategy,
but the conclusions that are drawn also hold for NPU.

above conclusions also hold when competitors can be run with
different numbers of constraints. To answer this question, we
run COBRA with a wider range of super-instances, and its
competitors with more numbers of constraints. Figure 3 shows
the results for 4 datasets, but the conclusions that are drawn
here also hold for the others. A first conclusion is that for the
datasets for which COBRA outperforms its competitors in the
experiments discussed above, it also does so for larger numbers
of constraints (e.g. in Figures 3a and 3b). As such, the results
discussed in the previous section are representative. Secondly,
clustering quality quickly plateaus for many datasets (e.g. in
Figure 3d) . This is especially true for MPCKMeans, which
can be explained by its strong spherical bias. In contrast, for
several datasets both COBRA and COSC produce increasingly
better clusterings as more constraints are given (e.g. in Figures
3a and 3c).

Selecting the right number of clusters
COBRA does not require specifying the number of clusters
K beforehand. Most often, it produces the correct K (i.e. the
one indicated by the class labels). When it does not, the K it
finds is very close to the correct one. In contrast, COSC and
MPCKMeans do require specifying K. In the experiments
discussed above, both of them were given the correct K. We
have found experimentally that, in the majority of cases, run-
ning them with a different K reduces clustering quality, and
often by a significant amount. Occasionally a different K also
improves results, but when this was the case it was typically
only by a small margin. These results are omitted from the
paper due to lack of space.

Runtime
Figure 4 compares the runtimes of COBRA to those of the
competitors. COBRA consists of two steps: constructing
super-instances, and grouping them together to form clusters.
Both steps are fast, as K-means is used for the first step and
the second step is only applied to the relatively small set of
super-instances. As can be seen in Figure 4, the runtimes of
MPCKMeans-MinMax are comparable to those of COBRA,
which is not surprising as it is built on K-means. In contrast,
COSC-MinMax is significantly more expensive, as it is built
on spectral clustering. When used with the NPU selection

strategy, both MPCKMeans and COSC become much slower,
as NPU requires several runs of the clustering algorithm.

datasets
10-1

100

101

102

103

104

105

ru
n
ti

m
e
 (

s)

MPCKMeans-MinMax

MPCKMeans-NPU

COSC-MinMax

COSC-NPU

COBRA

Figure 4: Each dot shows the runtime (averaged over 5 cross-
validation folds) of a particular method on one of the datasets.
This figure shows the results for running COBRA with 50
super-instances, the figures for 25 and 100 super-instances are
comparable. COBRA and MPCKMeans-MinMax are highly
scalable and always finish in under 10 seconds.

5 Conclusion

We have introduced COBRA, an active constraint-based clus-
tering method. Unlike other methods, it is not built as an
extension of an existing unsupervised algorithm. Instead, CO-
BRA is inherently constraint-based. With its selection strategy,
it aims to maximally exploit constraint transitivity and entail-
ment. Our experiments show that COBRA outperforms the
state of the art in terms of clustering quality and runtime, even
when the other methods have the advantage of being given the
right number of clusters. In future work, we will investigate
whether an appropriate number of super-instances can be de-
termined automatically, e.g. by incrementally refining them
when necessary.

Qcknowledgements
Toon Van Craenendonck is supported by the Agency for Inno-
vation by Science and Technology in Flanders (IWT).

References
[Basu et al., 2004a] Sugato Basu, Arindam Banerjee, and

Raymond J. Mooney. Active semi-supervision for pair-
wise constrained clustering. In Proceedings of the 2004
SIAM International Conference on Data Mining (SDM-04),
April 2004.

[Basu et al., 2004b] Sugato Basu, Misha Bilenko, and Ray-
mond J. Mooney. A probabilistic framework for semi-
supervised clustering. In Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD-2004), page 5968, January
2004.

[Bilenko et al., 2004] Mikhail Bilenko, Sugato Basu, and
Raymond J. Mooney. Integrating constraints and metric
learning in semi-supervised clustering. In Proc. of 21st In-
ternational Conference on Machine Learning, pages 81–88,
July 2004.

[Campello et al., 2013] Ricardo J. G. B. Campello, Davoud
Moulavi, Arthur Zimek, and Jörg Sander. A framework
for semi-supervised and unsupervised optimal extraction
of clusters from hierarchies. Data Mining and Knowledge
Discovery, 27(3):344–371, 2013.

[Caruana et al., 2006] Rich Caruana, Mohamed Elhawary,
and Nam Nguyen. Meta clustering. In Proc. of the In-
ternational Conference on Data Mining, 2006.

[Davidson and Ravi, 2009] I Davidson and SS Ravi. Using
instance-level constraints in agglomerative hierarchical
clustering: theoretical and empirical results. Data min-
ing and knowledge discovery, pages 1–30, 2009.

[Davis et al., 2007] Jason V. Davis, Brian Kulis, Prateek Jain,
Suvrit Sra, and Inderjit S. Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pages 209–
216, New York, NY, USA, 2007. ACM.

[Garca et al., 2010] Salvador Garca, Alberto Fernndez, Julin
Luengo, and Francisco Herrera. Advanced nonparametric
tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimen-
tal analysis of power. Information Sciences, 180(10):2044 –
2064, 2010. Special Issue on Intelligent Distributed Infor-
mation Systems.

[Hodges and Lehmann, 1962] J. L. Hodges and E. L.
Lehmann. Rank methods for combination of independent
experiments in analysis of variance. The Annals of Mathe-
matical Statistics, 33(2):482–497, 1962.

[Hubert and Arabie, 1985] Lawrence Hubert and Phipps Ara-
bie. Comparing partitions. Journal of Classification,
2(1):193–218, 1985.

[Lelis and Sander, 2009] Levi Lelis and Jörg Sander. Semi-
supervised density-based clustering. In 2009 Ninth IEEE
International Conference on Data Mining, pages 842–847,
Dec 2009.

[Mallapragada et al., 2008] Pavan K. Mallapragada, Rong
Jin, and Anil K. Jain. Active query selection for semi-

supervised clustering. In Proc. of the 19th International
Conference on Pattern Recognition, 2008.

[Nogueira et al., 2012] Bruno M Nogueira, M Jorge, and
Solange O Rezende. HCAC : Semi-supervised Hierarchi-
cal Clustering Using Confidence-Based Active Learning.
(1):139–153, 2012.

[Rangapuram and Hein, 2012] Syama S. Rangapuram and
Matthias Hein. Constrained 1-spectral clustering. In Proc.
of the 15th International Conference on Artificial Intelli-
gence and Statistics, 2012.

[Shental et al., 2004] Noam Shental, Aharon Bar-Hillel,
Tomer Hertz, and Daphna Weinshall. Computing Gaussian
mixture models with EM using equivalence constraints. In
In Advances in Neural Information Processing Systems 16,
2004.

[Szegedy et al., 2015] Christian Szegedy, Vincent Van-
houcke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015.

[von Luxburg et al., 2014] Ulrike von Luxburg, Robert C.
Williamson, and Isabelle Guyon. Clustering: Science or
Art? In Workshop on Unsupervised Learning and Transfer
Learning, JMLR Workshop and Conference Proceedings
27, 2014.

[Wagstaff et al., 2001] Kiri Wagstaff, Claire Cardie, Seth
Rogers, and Stefan Schroedl. Constrained K-means Cluster-
ing with Background Knowledge. In Proc. of the Eighteenth
International Conference on Machine Learning, pages 577–
584, 2001.

[Wang et al., 2014] Xiang Wang, Buyue Qian, and Ian David-
son. On constrained spectral clustering and its applications.
Data Mining and Knowledge Discovery, 28(1):1–30, 2014.

[Xing et al., 2003] Eric P. Xing, Andrew Y. Ng, Michael I.
Jordan, and Stuart Russell. Distance metric learning, with
application to clustering with side-information. In Ad-
vances in Neural Information Processing Systems 15, pages
505–512, 2003.

[Xiong et al., 2014] Sicheng Xiong, Javad Azimi, and Xi-
aoli Z. Fern. Active learning of constraints for semi-
supervised clustering. IEEE Transactions on Knowledge
and Data Engineering, 26(1):43–54, 2014.

[Xu et al., 2005] Qianjun Xu, Marie desJardins, and Kiri L.
Wagstaff. Active Constrained Clustering by Examining
Spectral Eigenvectors, pages 294–307. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[Yan et al., 2009] Donghui Yan, Ling Huang, and Michael I.
Jordan. Fast approximate spectral clustering. In Proceed-
ings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’09, pages
907–916, New York, NY, USA, 2009. ACM.

