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Abstract

When facing multivariate covariates, general semiparametric regression techniques come at
hand to propose flexible models that are unexposed to the curse of dimensionality. In this
work a semiparametric copula-based estimator for conditional quantiles is investigated for both
complete or right-censored data. In spirit, the methodology is extending the recent work of
Noh et al. (2013) and Noh et al. (2015), as the main idea consists in appropriately defining
the quantile regression in terms of a multivariate copula and marginal distributions. Prior es-
timation of the latter and simple plug-in lead to an easily implementable estimator expressed,
for both contexts with or without censoring, as a weighted quantile of the observed response
variable. In addition, and contrary to the initial suggestion in the literature, a semiparamet-
ric estimation scheme for the multivariate copula density is studied, motivated by the possible
shortcomings of a purely parametric approach and driven by the regression context. The result-
ing quantile regression estimator has the valuable property of being automatically monotonic
across quantile levels. Additionally, the copula-based approach allows the analyst to sponta-
neously take account of common regression concerns such as interactions between covariates
or possible transformations of the latter. From a theoretical prospect, asymptotic normality
for both complete and censored data is obtained under classical regularity conditions. Finally,
numerical examples as well as a real data application are used to illustrate the validity and
finite sample performance of the proposed procedure.
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1 Introduction
Quantile regression is a prevailing method when it comes to investigating the possible relationships
between a d-dimensional covariateX and a response variable T . Since the seminal work of Koenker
and Basset (1978), quantile regression has received notable interest in the literature on theoretical
and applied statistics as a very attractive alternative to the classical mean regression model based
on quadratic loss. As the latter only captures the central tendency of the data, there are many
cases and nice examples where mean regression is uninformative with respect to studying the
conditional upper or lower quantiles. For an interesting application, see for example Elsner et al.
(2008). A comprehensive review of quantile regression as a robust (to outliers) and flexible (to
error distribution) method can be found in Koenker (2005).

The first main concern of this paper is related to the estimation of a quantile regression function
where the response variable T is completely observed. A wide literature on the subject includes
fully parametric, semiparametric and nonparametric methodologies. When several covariates are to
be taken into account, fully parametric methodologies are known to be highly sensitive to model
misspecification and may lack the flexibility needed for an adequate modelling. On the other
hand, in spite of their great flexibility, fully nonparametric methods such local quantile regression
as proposed by Spokoiny et al. (2013) are typically affected by the curse of dimensionality. In light
of these restrictions, semiparametric estimation procedures such as a single-index regression (Wu
et al. (2010), Zhu et al. (2012)) come at hand when the dimension of the covariate is high.

In this context, Noh et al. (2013) and Noh et al. (2015) suggested to estimate a regression func-
tion based on the copula that defines the dependence structure between the variables of interest.
The central idea of the methodology is to express the conditional quantile function in terms of
a copula density and marginal distributions. Such an approach allows the analyst to take profit
of copula modelling and straightforwardly avoid common regression issues such as the consider-
ation of transformed covariates and the possible inclusion of interactions among the latter. In
their original paper, Noh et al. (2013) suggested subsequently to leave the marginal distributions
unspecified while assuming a parametric model for the copula. Overall, their suggested approach
results in a semiparametric regression estimator that is not exposed to the curse of dimensionality.
However, Dette et al. (2014) highlighted that this proposed methodology may suffer as such from
possible shortcomings that are induced by the misspecification of the parametric copula. The first
contribution of this paper is to circumvent such issues by proposing an alternative semiparametric
estimation strategy for the copula itself that is motivated by the regression context. The resulting
regression estimator is flexible for multidimensional data, easy to implement and does not require
any iterative procedure in opposition to existing semiparametric alternatives.

The second objective of this paper is to propose a copula-based methodology in the context
of survival analysis, where right censoring of T may arise. In this situation, instead of fully
observing the variable of interest, one only observes the minimum of it and a censoring variable.
For instance, in clinical studies, censoring may occur because of the withdrawal of patients from the
study, the end of the follow-up period, etc. In this context, quantile regression becomes attractive
as an alternative to popular regression techniques like the Cox proportional hazards model or the
accelerated failure time model, as is argued in Koenker and Bilias (2001), Koenker and Geling
(2001) and Portnoy (2003). Additional appealing properties of the method include the fact that it
allows for modelling heterogeneity of the variance and it does not necessarily impose a proportional
effect of the covariates on the hazard over the duration time as opposed to the popular Cox model.

As is the case for the uncensored situation, existing literature on censored quantile regression
includes fully parametric, semiparametric and nonparametric methodologies such as local linear
smoothing proposed by El Ghouch and Van Keilegom (2009). The introduction of censored quantile
regression goes back to Powell (1986) for linear models and fixed censoring, that is, presuming that
the censoring times are known for all observations. For random censoring, a wide literature may be
found, among others, in Ying et al. (1995), Portnoy (2003), Wang and Wang (2009) and Leng and
Tong (2013). Still, similarly to regression models with complete observations, a linear approach
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may be too restrictive for real data applications.
For semiparametric models in the context of censored quantile regression, an interesting ap-

proach was proposed by Bücher et al. (2014) where a single-index model for the conditional quantile
function is studied under the assumption of independence between the covariates and the censoring
variable. The single-index structure assumes that the objective function depends linearly on the
covariates through an unknown link function, making the proposed model (i.e. under the afore-
mentioned assumption) insensitive to the curse of dimensionality since the nonparametric part is
of dimension one. However, besides the latter single-index model, existing literature on flexible
multidimensional methodologies is rather sparse.

Hence, the second main contribution of this paper is to extend this literature on multivariate
quantile regression estimation in the possible presence of censored data by providing a rich, flexible
and robust alternative based on the copula function. In essence, the proposed methodology mimics
the work of Noh et al. (2013) and Noh et al. (2015), as the central idea is here again to rewrite
the conditional quantile function in terms of marginal distributions and an appropriate copula
density. Employing the proposed multivariate copula density estimation strategy, the resulting
regression estimator enjoys the same qualities as for complete observations. Consequently, by
taking advantage of copula modelling in regression models, the proposed methodology provides a
new class of estimators that allow practitioners to flexibly analyse multidimensional survival data.

The rest of this paper is organised as follows. Developing a semiparametric copula-based estima-
tion procedure for quantile regression with complete observations is the topic of Section 2. Section
3 develops the methodology for the copula-based quantile regression estimator when confronted
to possible censoring of the responses. The asymptotic properties of the proposed estimators for
both complete and censored data are obtained in Section 4 and the finite sample performance
is illustrated by means of Monte Carlo simulations in Section 5, where both the semiparametric
copula estimation strategy and the overall performance of our estimator for complete and censored
data are investigated. Section 6 provides a brief application to real censored data. Lastly, the
proofs of our asymptotic properties are deferred to the Appendix.

2 Copula-based estimator for complete data

2.1 Background for copula-based quantile regression

Let X = (X1, . . . , Xd)T be a covariate vector of dimension d ≥ 1 and T be a (time-to-event)
response variable with marginal continuous cumulative distribution functions (c.d.f.) F1, . . . , Fd
and FT , respectively. Throughout this paper, we denote by fj and fT the density ofXj , j = 1, . . . , d,
and T , respectively. From the pioneering work of Sklar (1959), for a given x = (x1, . . . , xd)T,
the c.d.f. of (T,X) evaluated at (t,x) can be expressed as CTX(FT (t),F (x)), where F (x) =
(F1(x1), . . . , Fd(xd))T and CTX is the unique copula distribution of (T,X) defined by CTX(u0, u1,
. . . , ud) = P(U0 ≤ u0, U1 ≤ u1, . . . , Ud ≤ ud), with U0 = FT (T ) and Uj = Fj(Xj), j = 1, . . . , d.
From Sklar’s theorem, it is clear that the copula CTX disjoints the marginal behaviors of T and X
from their dependence structure, hence allowing a great modelling flexibility. For a book length
treatment of copulas, see Nelsen (2006) and Joe (2014).

The object of interest of this paper, the τ -th conditional quantile function of the dependent
variable T given X = x, denoted by mτ (x), is defined for any τ ∈ (0, 1) as mτ (x) = inf{t :
FT |X(t|x) ≥ τ} where FT |X is the conditional c.d.f. of T given X, or, equivalently,

mτ (x) = arg min
a

Epρτ (T − a)|X = xq, (2.1)

where ρτ (u) = u(τ −1(u ≤ 0)) is the so-called “check” function, and 1(·) is the indicator function.
To motivate our approach, we suppose in this section that there is no censoring and that

we observe an i.i.d. sample (Ti,Xi), i = 1, . . . , n, from (T,X). In this context, following the
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definition of a copula function, Noh et al. (2015) noted that the conditional quantile function of T
given X = x may be expressed as

mτ (x) = arg min
a

E
”

ρτ (T − a) cTX(FT (T ),F (x))
ı

, (2.2)

where cTX(u0,u) ≡ cTX(u0, u1, . . . , ud) = ∂d+1CTX(u0, u1, . . . , ud)/∂u0∂u1 . . . ∂ud is the copula
density corresponding to CTX . Consequently, any given estimators pcTX , pFT and pFj of cTX , FT
and Fj , j = 1, . . . , d, respectively, automatically yield an estimator of mτ (x) given by

pmτ (x) = arg min
a

n∑
i=1

ρτ (Ti − a)pcTX( pFT (Ti), pF (x)), (2.3)

with pF (x) = ( pF1(x1), . . . , pFd(xd))T. As indicated earlier, Noh et al. suggest to estimate the
marginals nonparametrically and to consider a parametrization of the copula density, that is, as-
sume that the latter belongs to a certain parametric family of copula densities C = {c(u0,u;θ),θ ∈
Θ ⊂ Rp}.

2.2 A motivational one-dimensional example

In this paper however, we consider an alternative estimation approach for the copula density,
motivated by the issues related to the possible misspecification of the parametric approach. To
highlight this shortcoming and illustrate how one may circumvent it, we consider in this section
the simplistic example reported by Dette et al. (2014) with a single covariate, where (Ti, X1i), i =
1, . . . , n, are i.i.d. random variables with Ti = (X1i − 0.5)2 + σεi, X1i ∼ U [0, 1], σ = 0.025
and εi, i = 1, . . . , n, are i.i.d. standard normal random variables. In this situation, where the
true quantile regression function is non-monotonic in the covariate, it is found that most of the
common parametric copula families still yield a monotone estimation of the regression function,
thereby providing a rather poor fit of the latter. This is illustrated in Figure 1a, where the
estimation is carried out for τ = 0.5, n = 500 and using three common parametric copulas.

As the roots of the above-mentioned limitation are not intrinsic to a copula-based approach,
but rather to be attributed to the limited set of parametric copula families existing in the literature,
a natural alternative for low dimensional covariates would be to consider a fully nonparametric
estimation of the copula density itself. The resulting, and adequate, quantile regression estimation
is depicted in Figure 1b.

For this approach to be appropriate, a suitable nonparametric estimation of the copula density
is required. In the literature, several specific kernel-based methodologies have been proposed in
order to correct for well-known bias issues at the boundaries, as the density of interest is only
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Figure 1: Copula-based quantile regression estimates of the one-dimensional minimalistic example. The
Gaussian, Gumbel and Frank copulas are used for parametric copula estimation in (a), while (b) depicts
the regression fit resulting from a nonparametric estimation of the copula density using the procedure of
Geenens et al. (2014) (more details given below).
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supported on the unit square. These include for instance the mirror reflection method (Gijbels
and Mielniczuk (1990)) or the boundary kernel method (Chen and Huang (2007)). In this paper
however, we will adopt the technique proposed by Charpentier et al. (2006) and Geenens et al.
(2014) which is summarized as follows: to estimate for instance the copula density cTX1 in our
motivational example, given a bivariate sample (U0i, U1i), i = 1, . . . , n, from (FT (T ), F1(X1)), the
main idea is to appropriately project the initial data on an unbounded support with the purpose
of then estimating the obtained bivariate transformed density by means of standard techniques
(standard kernel (Charpentier et al.) or polynomial local-likelihood (Geenens et al.)). Using the
invariance property of copulas to increasing transformations of their margins, the estimation of
the copula density is then obtained by back-transformation on the unit square. That is, using the
example of a probit transformation, one may estimate the copula density cTX1 at (u0, u1) ∈ [0, 1]2
by

pf01pΦ−1(u0),Φ−1(u1)q

φpΦ−1(u0)qφpΦ−1(u1)q
,

where φ and Φ stand for the standard normal density and c.d.f., respectively, and where pf01
is a bivariate density estimator of the projected data (Φ−1(U0i),Φ−1(U1i)), i = 1, . . . , n. This
transformation technique, coupled with polynomial local-likelihood estimation for f01 in order to
allow for possible unbounded copula density estimates, is shown to outperform its competitors in
most scenarios in a detailed simulation study in Geenens et al.. An interested reader may find an
exhaustive comparison of existing methodologies for bivariate copula density estimation may be
found in Nagler (2014). Furthermore, fully nonparametric multidimensional copulas are studied
in Hobæk Haff and Segers (2015) and Nagler and Czado (2016).

2.3 A semiparametric copula estimator for multivariate covariates

Recalling that we intend to handle multivariate covariates in this paper, we will not adopt a
purely nonparametric approach as in the previously-described motivational example. Instead, we
will prefer a copula estimation strategy that provides sufficient flexibility to the multidimensional
estimator while avoiding dimension related constraints. More specifically, we note that any multi-
variate copula density can be decomposed into two parts as follows:

cTXpFT (t),F (x)q = cTX1pFT (t), F1(x1)q× . . .× cTXdpFT (t), Fd(xd)q (2.4)
×cX1...Xd|T pF1|T (x1|t), . . . , Fd|T (xd|t)|tq, (2.5)

where Fj|T , j = 1, . . . , d, denotes the conditional c.d.f. of Xj given T . The first part of the decom-
position contains the product of d bivariate copula densities related to the dependence of T with
every covariate, whereas the second part captures the conditional dependence of X given T = t.
In the general regression context, part (2.4) may then be interpreted as the dependence of actual
interest since it focuses on the relationship between the response variable with every covariate.
On the contrary, part (2.5) may be viewed in such framework as a ‘noisy’ dependence, or, more
precisely, a correction parameter for possible (conditional) dependence among covariates. Conse-
quently, a natural reasoning suggests to provide as much flexibility as possible to the modelling
of part (2.4), while keeping the estimation of part (2.5) uncomplicated. We therefore advocate to
estimate nonparametrically the d bivariate copulas of interest and, subsequently, exploit standard
parametric techniques for the second part of the multivariate copula density. The latter involve,
among others, nested Archimedean copulas (see e.g. Hofert and Pham (2013) and Joe (2014)),
factor copulas (see e.g. Oh and Patton (2012)) and, arguably the most popular, vine copulas (see
e.g. Czado (2010), Joe (2014) and references therein). Note however that, for the estimation of
(2.5) in practice, one is first advised to adopt the so-called simplifying assumption which stipulates
that the conditioning on T = t is fully captured by the conditional marginals. In other words,
in (2.5), the conditional copula itself is not affected by the conditioning on T . This assumption
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turns out to be the cornerstone of vine copula models as it keeps them tractable for inference and
model selection. For more details about this and its implications, see Hobæk Haff et al. (2010)
and Stöber et al. (2013).

Conclusively, in this article we propose to adopt the following detailed procedure for the mod-
elling and estimation of the multivariate copula density:

(1) Based on original observations (Ti, X1i, . . . , Xdi), i = 1, . . . , n, construct ‘pseudo-observations’,
needed for the estimation of (2.4), using rescaled versions of empirical distributions:

pU0i = 1
n+ 1

n∑
k=1

1(Tk ≤ Ti) pUji = 1
n+ 1

n∑
k=1

1(Xjk ≤ Xji), i = 1, . . . , n, j = 1, . . . , d,

where the factor 1/(n+ 1), commonly adopted in the copula literature, aims at keeping the
constructed observations in the interior of [0, 1].

(2) Based on (pU0i, pUji), i = 1, . . . , n, estimate each bivariate copula density cTXj , j = 1, . . . , d, in
(2.4) using a bivariate kernel density estimator. This can be achieved via the local-polynomial
probit methodology of Geenens et al., or any other estimator satisfying assumption (C7) given
below.

(3) Compute the pseudo-observations needed for the estimation of (2.5) as:

pFj|T (Xji|Ti) =
∫

pUji

0
pcTXj (pU0i, s) ds.

This relationship is at the origin of the sequential nature of the vine copula estimation scheme
(see e.g. Czado (2010)).

(4) Lastly, for the estimation of cX1...Xd|T , adopt the simplifying assumption and use standard
parametric vine techniques on the dataset ( pF1|T (X1i|Ti), . . . , pFd|T (Xdi|Ti)), i = 1, . . . , n.

Finally, to graphically illustrate this procedure in a multivariate example, we consider a simple
extension to the previously-described setting with two independent covariates, where (Ti, X1i, X2i),
i = 1, . . . , n, are i.i.d. random variables with Ti = (X1i − 0.5)2 + (X2i − 0.5)2 + σεi, X1i ∼ U [0, 1],
X2i ∼ U [0, 1], σ = 0.025 and εi, i = 1, . . . , n, are i.i.d. standard normal random variables. In
this situation, a fully parametric vine copula estimation again yields an inappropriate quantile
regression estimation, as depicted in Figure 2a for τ = 0.5 and n = 500. In opposition, the
proposed semiparametric copula density estimation allows the regression estimator to suitably
capture the non-monotonic features of both covariates. This can be observed in Figure 2b. A
more exhaustive analysis of the performance of the proposed estimator with respect to existing
competitors will be provided in Section 5.

3 Copula-based estimator for censored data
In the presence of censoring, the estimation equation (2.3) becomes inappropriate as we do not fully
observe the response variables Ti. Instead, we only observe a sequence of i.i.d. triplets (Yi,∆i,Xi),
i = 1, . . . , n, from (Y,∆,X), where Y = min(T,C), ∆ = 1(T ≤ C) and C denotes the censoring
variable, assumed to be independent of T given X. In order to take censoring into account in the
estimation procedure, the first step is to note that, for any measurable function ϕ : R→ R,

Epϕ(T )|X = xq = E
ˆ

ϕ(Y ) ∆
1−GC(Y − |x)

ˇ

ˇ

ˇ
X = x

˙

, (3.1)

where GC(c|x) = P(C ≤ c|X = x) denotes the conditional distribution of C given X = x. This,
along with (2.1), suggests a natural way to handle censoring for quantile regression by replacing
the function ϕ with the check function.
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Semiparametric Copula

(b)

Figure 2: Copula-based quantile regression estimates of the two-dimensional minimalistic example. A
parametric vine copula estimation is at the basis of the quantile estimation in (a), while (b) illustrates the
semiparametric copula estimation approach proposed in this paper.

At this stage, in the objective of proposing a similar methodology to the one developed in
Section 2, we propose to work on the obtained conditional expectation in (3.1) before considering
the introduction of copulas. The underlying rationale is that the latter conditional expectation is
in fact the joint conditional expectation of (Y,∆) given X = x. Adopting an analogous reasoning
as the one presented by Noh et al. for the uncensored case at this point would therefore result in
the insertion of the joint copula of (Y,∆,X), hence exposing the estimation procedure to the lack
of uniqueness of the copula given that ∆ is a discrete (binary) variable. An interesting opinion
on several pitfalls appearing for copulas with discrete variables can be found in Embrechts (2009).
Additional details may also be found in Genest and Nešlehová (2007).

Instead, the idea is to work on the joint conditional expectation so as to bypass the issues related
to the copula of (Y,∆,X). In short, our intention is to discard the problem by obtaining the copula
of (Y,X) conditionally on ∆ = 1, for which no specific technical difficulties are involved. To that
end, using the notations Hu (resp. hu) as a shorthand for a given distribution (resp. density)
conditionally on ∆ = 1, first note that

E
ˆ

ρτ (Y − a) ∆
1−GC(Y − |x)

ˇ

ˇ

ˇ
X = x

˙

=
∫
R+
ρτ (y − a) 1

1−GC(y − |x) dFY,∆|X(y, 1|x), (3.2)

where FY,∆|X(y, 1|x) = P(Y ≤ y,∆ = 1|X = x) = p(x)
∫ y
−∞ f

u
YX(z,x)/fu(x) dz, with p(x) =

P(∆ = 1|X = x) and where fuYX and fu denote the conditional densities of (Y,X) and X given
∆ = 1, respectively. Hence, using the definition of a copula function in a similar spirit as Noh
et al., one obtains

dFY,∆|X(y, 1|x) = p(x) c
u
YXpF uY (y),F u(x)q

cuXpF u(x)q
fuY (y) dy,

where cuYX(u0,u) = ∂d+1CuYX(u0, u1, . . . , ud)/∂u0∂u1 . . . ∂ud is the copula density corresponding
to the copula CuYX of (Y,X|∆ = 1), cuX(u) = ∂dCuX(u1, . . . , ud)/∂u1 . . . ∂ud is the copula density
of (X|∆ = 1), and F u(x) = (F u1 (x1), . . . , F ud (xd))T. Inserting this last expression in (3.2), we may
write

E rρτ (T − a)|X = xs = E
„

ρτ (Y − a) ∆
1−GC(Y − |x)

p(x)
P(∆ = 1)

cuYXpF uY (Y ),F u(x)q

cuXpF u(x)q



.

Applying this equality in the context of quantile regression, interestingly, one eventually retrieves
an expression analogous to (2.2):

mτ (x) = arg min
a

E rρτ (Y − a)W (x) cuYXpF uY (Y ),F u(x)qs , (3.3)
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where W (x) ≡ ∆/(1 − GC(Y − |x)). Note that the copula in question in (3.3) is determined by
strictly fully observed data. Hence, standard literature on copulas can be manipulated without
any censoring related constraints. Given estimators pGC(·|x), pF uY and pF uj of GC(·|x), F uY and F uj ,
j = 1, . . . , d, satisfying certain high-level conditions which will be given in Section 4, this suggests
to estimate the quantile regression in the presence of censoring by the empirical analogue of (3.3),
that is

pmτ (x) = arg min
a

n∑
i=1

”

ρτ (Yi − a) xWi(x)pcuYXp pF uY (Yi), pF u(x)q

ı

, (3.4)

where xWi(x) = ∆i/(1 − pGC(Yi − |x)), and where pcuYX denotes an estimator of cuYX based on the
four-step procedure described in Section 2.3. Explicitly,

pcuYXp pF uY (y), pF u(x)q = pcuY X1p pF uY (y), pF u1 (x1)q× . . .× pcuY Xdp pF uY (y), pF ud (xd)q

×pcuX1...Xd|Y p pF u1|Y (x1|y), . . . , pF ud|Y (xd|y)q,

where any two-dimensional kernel density estimator may be used for each bivariate copula density
pcuY Xj , j = 1, . . . , d, such that condition (C7) of Section 4 holds, and where pcuX1...Xd|Y is estimated
by standard parametric vine procedures.

The resulting quantile regression estimator in (3.4) may then be viewed as a simple weighted
quantile of the observed response variable, and is therefore easy to implement in practice using the
efficient quantile regression code developed by Portnoy and Koenker (1997) and Koenker (2005).
Nonetheless, in the context of multivariate covariates, the estimation of GC(·|x) requires further
assumptions to overcome dimension related issues. Popular choices in the literature include, among
others, independence between C and X, the Cox model or the single-index model on C|X = x.
Illustrations of such assumptions are treated in our simulation study.

As an interesting property, and similarly to the case without censoring, we note that the
obtained regression function estimator is automatically monotonic across quantile levels. Applying
analogous arguments to the ones adopted in the proof of Theorem 2.5 of Koenker (2005), one can
indeed determine that

(τ2 − τ1)(pmτ2(x)− pmτ1(x))
n∑
i=1

xWi(x)pcuYXp pF uY (Yi), pF u(x)q ≥ 0. (3.5)

Given that xWi(x)pcuYXp pF uY (Yi), pF u(x)q ≥ 0 for all i = 1, . . . , n, this signifies that pmτ2(x) ≥ pmτ1(x)
for τ2 ≥ τ1.

Conclusively, in parallel to what has been stated for the uncensored case, the resulting estimator
pmτ (x) defines a rich class of estimators built on the many different existing methods available in
the literature for estimating copula densities and marginal distributions of both complete and
censored data.

4 Asymptotic Properties
We establish in this section the asymptotic normality of the proposed estimator pmτ (x). To that
end, we first report the set of regularity conditions as well as the required high-level conditions on all
estimators involved in the expression of pmτ (x). We then develop an asymptotic representation of
our estimator for a general d-variate covariate. As the latter will result in a somewhat unpleasant
expression for the asymptotic bias and variance for a general multivariate covariate, and given
that the analytical reasoning is similar in spirit, we eventually restrict ourselves to the detailed
asymptotic expression for the case d = 2.

For a fixed but arbitrary point of interest x in the support of X, denoted by supp(X), let
us suppose that there exists a neighborhood VFu(x) of F u(x) such that the following regularity
conditions hold:
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(C1) The conditional distribution FT |X of T given X admits a conditional density fT |X that is
continuous, strictly positive and bounded uniformly on R× supp(X).

(C2) The point of interest x is such that F u(x) ∈ (0, 1)d and P(∆ = 1|x) > 0. Furthermore,
0 < cuX(F u(x)) <∞, supt∈R cuYX(F uY (t),F u(x)) <∞ and inft∈R cuYX(F uY (t),F u(x)) > 0.

(C3) The point mτ (x) ∈ R satisfies GC(mτ (x) + δ|x) < 1, for some δ > 0.

(C4) Denote ε ≡ ε(x, τ) = Y −mτ (x) and define ψτ (u) = τ − I(u ≤ 0). Then,

(i) E(|ψτ (ε)|W (x)) <∞.
(ii) E rψτ (ε)W (x) cuYXpF uY (Y ),F u(x)qs

2 <∞.

Concerning the high-level conditions, it is assumed that the multivariate copula density cuYX is
estimated using the proposed four-step strategy of Section 2.3, and that, for simplicity, the d
bivariate kernel copula estimators of step (2) are based on the same bandwidth H = h2I for a
certain h > 0. The following conditions are then assumed to hold:

(C5) The marginal c.d.f. estimators are such that:

(i) supt∈R
ˇ

ˇ

ˇ

pF uY (t)− F uY (t)
ˇ

ˇ

ˇ
= OP(n−1/2).

(ii) pF u(x) − F u(x) = OP(n−1/2), where pF u(x) = ( pF u1 (x1), . . . , pF ud (xd))T and pF uj is an
estimator of F uj .

(C6) sup
t≤τFY

| pGC(t|x)−GC(t|x)|= oP((nh2)−1/2), and τFY < τGC , where τFY = inf{t : FY (t) = 1}

and τGC = inf{t : GC(t) = 1}.

(C7) The multivariate copula estimator is such that:

(i) sup t∈R
ˇ

ˇ

ˇ
pcuY Xj pF

u
Y (t), F uj (xj)q− cuY Xj pF

u
Y (t), F uj (xj)q

ˇ

ˇ

ˇ
= oP(1), j = 1, . . . , d, where xj is

the j-th coordinate of x.
(ii) supu0 ∈ (0,1) supu∈VFu(x)

|∂j pc
u
YX(u0,u)| = OP(1), j = 1, . . . , d+ 1, where ∂j denotes the

partial derivative with respect to the j-th argument.

Assumption (C1) is standard in the context of quantile regression estimation. As for condition
(C2), this is similar to assumption (C3)-(i) in Noh et al. (2015) for the simplified case with no
censoring, with an additional requirement on the conditional censoring probability that is resulting
from the initial transformation of synthetic observations. Assumption (C3) is likewise emanating
from the handling of censoring through these observations, and is rather usual in survival analysis.
Note that, in the quantile regression framework, the latter assumption amounts to defining a
natural upper bound for the quantile of interest that can be studied. Assumption (C4) reports a
set of technical conditions to be met.

As regards conditions (C5)-(C7), (C5) is routinely made in the copula framework. For instance,
it is readily satisfied for the empirical distributions when only uncensored observations are taken
into account, and their rescaled versions which are prominent in the copula literature. Assumption
(C6) imposes restrictions on the estimator one may consider for the conditional distribution of the
censoring variable and is, for instance, fulfilled for a simple Kaplan-Meier estimator for GC (see e.g.
Theorem 2.1 in Chen and Lo (1997) for sufficient and necessary conditions for (C6)). Lastly, the
uniform consistency of the kernel density estimator required by assumption (C7) is, for instance,
alluded to in Geenens et al. (2014) for the probit-transformed copula estimator.

We now state the main result of this section that holds for a general d-dimensional covariate
vector and for all bivariate kernel copula estimators based on the same bandwidth h. In practice,
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however, it may be recommended to adopt an unconstrained and non-diagonal bandwidth matrix,
as is detailed in Section 4 of Geenens et al.. Nevertheless, when considering this general situation,
the theoretical results become less tractable while equivalent in nature to the simplified situation
considered here.

Theorem 4.1. Let h ≡ hn → 0 be the common bandwidth of the d bivariate kernel copula density
estimators. For h satisfying nh2 →∞ as n→∞, and under assumptions (C1)-(C7), we have

`

nh2˘1/2 (m̂τ (x)−mτ (x)) =

w(x)
fT |X(mτ (x)|x)

`

nh2˘1/2

n

n∑
i=1

ψτ (εi)Wi(x)rpcuYXpF uY (Yi),F u(x)q− cuYXpF uY (Yi),F u(x)qs + oP(1),

where fT |X is the conditional density of T given X and w(x) = p(x)/rP(∆ = 1)cuX(F u(x))s.

Theorem 4.1 implies, quite naturally, that the asymptotic behavior of m̂τ (x) will be charac-
terized by the properties of the copula estimator, specifically through its nonparametric feature,
provided that the estimation of pGC(·|x) is ‘reasonable’ when confronted to a multidimensional
covariate vector (assumption (C6)). In particular, this suggests that the detailed discussion of
Geenens et al. about the asymptotic bias and variance of their distinctive bivariate copula esti-
mators may be transcribed in our context.

Additionally, Theorem 4.1 also covers an asymptotic representation of the copula-based quantile
regression estimator when all responses are fully observed. In this situation, one would indeed
obtain a similar result for the proposed semiparametric procedure, with the removal of all censoring
related terms, that is w(x), Wi(x), i = 1, . . . , n, and the superfluous conditioning on ∆ = 1 for
the copula densities and marginal distributions. This results in the following:

`

nh2˘1/2 (m̂τ (x)−mτ (x)) =

1
fT |X(mτ (x)|x)

`

nh2˘1/2

n

n∑
i=1

ψτ (εi)rpcYXpFY (Yi),F (x)q− cYXpFY (Yi),F (x)qs + oP(1).

We now consider a detailed asymptotic representation of our estimator for the simplified case
where d = 2, and for a general nonparametric estimator of the bivariate copula densities. For
convenience, we use the notation cuk as a shorthand for cuY Xk , and similarly for other functions
depending on (Y,∆, Xk), k = 1, 2.

Corollary 4.2. Suppose that the assumptions of Theorem 4.1 hold for the case d = 2. Furthermore,
suppose that the bivariate nonparametric copula estimators of cu1 and cu2 are such that

`

nh2˘1/2
´

pcuk(u0, uk)− cuk(u0, uk)− h2bk(u0, uk)
¯

= 1
?
n

n∑
j=1

Znjk (u0, uk) + oP(1),

∀uk ∈ (0, 1), uniformly in u0 ∈ (0, 1), for k = 1, 2,

for some some deterministic function bk(u0, uk), and for some function Znjk (u0, uk) depending on
(Yj ,∆j , Xkj) and possibly on n, satisfying E

´

Znjk (u0, uk)
¯

= 0, for all u0, uk ∈ (0, 1).
Define

rZni(u0,u) =
”

Znj1 (u0, u1)cu2pu0, u2q + Znj2 (u0, u2)cu1pu0, u1q

ı

cuX1X2|Y (u1, u2|u0),

bYX(u0,u) = rb1(u0, u1)cu2pu0, u2q + b2(u0, u2)cu1pu0, u1qs cuX1X2|Y (u1, u2|u0),

λn pYi,∆i,Xi,xq = E
”

ψτ (ε)W (x) rZni pF u(Y ),F u(x)q |Yi,∆i,Xi

ı

, i = 1, . . . , n.
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Suppose furthermore that the following technical conditions hold:

(C8) E rψτ (ε)W (x)bYX pF u(Y ),F u(x)qs
2 <∞.

(C9) E
”

ψτ (εi)Wi(x) rZnj pF u(Yi),F u(x)q

ı2
= o(n) for all i, j = 1, . . . , n, where the expectation is

taken with respect to (Yi,∆i) and (Yj ,∆j ,Xj).

Then, the copula-based quantile regression estimator at any point of interest x satisfying (C1)-
(C9) is such that

`

nh2˘1/2
´

pmτ (x)−mτ (x)− h2B(x)
¯

L−→ N p0, σ2(x)q,

where

B(x) = w(x)
fT |X(mτ (x)|x)E

´

ψτ (ε)W (x)bYXpF u(Y ),F u(x)q

¯

and σ2(x) = w2(x)
f2
T |X(mτ (x)|x)

lim
n→∞

E (λn(Y,∆,X,x)2).

Corollary 4.2 reports the asymptotic normality of our estimator at the expected convergence
rate, implied by the nonparametric estimation of the bivariate copula densities. Depending on the
choice in step (2) of the kernel density estimator fulfilling the conditions of Corollary 4.2, simple
plug-in of the expression of Znjk , k = 1, 2, in all quantities built upon the latter may then lead to
the detailed, although arduous, expressions of the asymptotic bias and variance of the proposed
estimator.

Furthermore, as this had yet to be covered, it is worth stressing out that Corollary 4.2 also
encompasses the asymptotic normality of the suggested estimator based on semiparametric vine
copulas with strictly complete data. Similarly to what has been stated for Theorem 4.1, one is
indeed only required to withdraw all censoring related elements from Corollary 4.2 to obtain the
expressions of the asymptotic bias and variance of the proposed semiparametric quantile regression
estimator for complete observations.

5 Simulation Study
In this section, we assess the practical finite-sample performance of the proposed methodology by
means of Monte Carlo simulations. For this purpose, we first present a brief numerical study to
further motivate the semiparametric copula strategy we intend to adopt for multivariate problems
for both complete and censored observations. Secondly, we assess the numerical performance of the
copula-based regression estimator for complete observations using the developed copula estimation
strategy and compare it with established semiparametric and nonparametric techniques in the
literature. Lastly, focusing on survival data, we illustrate the performance of our estimator in
(3.4) by also showing promising results with respect to competitors in the domain, including when
the generated scenario is to the advantage of the latter. All the simulations are carried out using
the statistical computing environment R (R Core Team (2014)) and its freely accessible packages.

5.1 Assessing the semiparametric copula estimation

This first section aims at numerically illustrating the choice of our semiparametric copula estima-
tion strategy. For this purpose, we will consider here both complete and censored responses as
this will result in an interesting analysis of our proposed strategy resulting from the fact that the
censoring percentage will have an influence on the number of observations actually entering the
copula estimation process. Overall, we consider two distinctive data generating processes (DGP)
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and compare our methodology with fully parametric and nonparametric procedures one might con-
sider for the estimation of a multivariate copula density. For the general simulation settings, we
consider B = 500 repetitions of each DGP; three (average) levels of censoring (0%, 30% and 50%),
three sample sizes (n ∈ {100, 200, 400}) and the quantile level of interest τ = 0.3. As the object
of interest here is the copula modelling, when censoring is introduced, we only consider the simple
case of independence between the censoring variable and the covariate vector in order to keep the
estimation of pGC needed for (3.4) uncomplicated, that is, using the Kaplan-Meier estimator. The
detailed DGPs are as follows:

• DGP A: (FT (T ), F1(X1), F2(X2)) ∼ Gaussian copula with parameters (ρT1, ρT2, ρ12) =
(0.3, 0.9, 0.5). Given standard uniform marginal distributions for all three variables, the
resulting true quantile regression may be calculated as mτ (x) = Φp−0.2Φ−1(x1)+Φ−1(x2)+
0.4Φ−1(τ)q (see Noh et al. (2015)). To include censoring, we introduce the variable C ∼
U [0,M ], where the parameterM is computed in order to obtain the desired average censoring
proportion (M = 5/3 for 30% and M = 1 for 50%).

• DGP B: (FT (T ), F1(X1), F2(X2), F3(X3)) ∼Gaussian copula with parameters (ρT1, ρT2, ρT3,
ρ12, ρ13, ρ23) = (0.3, 0.9, 0.7, 0.5, 0.25, 0.5). The resulting true quantile regression for standard
uniform marginal distributions is determined as mτ (x) = Φp− 0.2Φ−1(x1) + 0.83Φ−1(x2) +
0.33Φ−1(x2) + 0.27Φ−1(τ)q. The censoring variable is C ∼ U [0,M ] (M = 5/3 for 30% and
M = 1 for 50% censoring).

For any general copula-based regression estimator, the marginal distribution estimations are per-
formed, as suggested in Section 2.3, using rescaled versions of the empirical distributions:

pF uY (y) = 1
nu + 1

n∑
i=1

∆i1(Yi ≤ y) pF uj (xj) = 1
nu + 1

n∑
i=1

∆i1(Xij ≤ xj), j = 1, . . . , d,

where nu =
∑n
i=1 ∆i is the number of uncensored observations.

For the distinctive copula-based estimators, we consider the following procedures:

pmSP
cop, τ : semiparametric estimation strategy detailed in Section 2.3. That is, we first estimate the d

bivariate copulas of interest employing the probit transformation technique of Geenens et al.
(2014) coupled with local likelihood estimation based on quadratic polynomials. To that
end, we follow their proposed nearest-neighbor bandwidth selection procedure. Concerning
the estimation of the d-dimensional ‘noisy’ copula density (2.5), as mentioned above, we
apply standard vine techniques using the R package VineCopula. Specifically, we adopt one
automatically selected tree structure for the simplified decomposition of the copula density
among many R-vine candidate structures (see Dißmann et al. (2013)), and subsequently
determine the appropriate pair-copula family to be selected and parametrically estimated.
The selection criterion for bivariate copulas is chosen to be the Akaike information criterion
(AIC), which revealed to be adequate in the R-vine context (see Brechmann (2010), chap.
5), and ten potential family candidates, together with their rotations, are considered: eight
of them are Archimedian (Clayton, Gumbel, Frank, Joe, Clayton-Gumbel, Joe-Gumbel, Joe-
Clayton and Joe-Frank), and the last two are elliptical (Gaussian and Student t).

pmNP
cop, τ : fully nonparametric estimation of the d-dimensional copula using vine techniques. Specifi-

cally, while the vine structure is kept identical, here all bivariate building blocks are estimated
using the local likelihood technique based on probit-projected data with the bandwidth se-
lection procedure of Geenens et al. (as is studied in Nagler and Czado (2016)). Given its
fully nonparametric nature, it should be mentioned that this estimator is not covered by the
theoretical results of Section 4.
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DGP n pc pmP
cop, τ pmSP

cop, τ pmNP
cop, τ

A

100
0 1.442 1.486 2.369
0.3 2.203 2.173 3.167
0.5 3.537 3.548 4.135

200
0 0.689 0.737 1.462
0.3 0.990 1.016 1.905
0.5 1.887 1.664 2.581

400
0 0.337 0.371 0.987
0.3 0.503 0.525 1.243
0.5 0.915 0.863 1.600

DGP n pc pmP
cop, τ pmSP

cop, τ pmNP
cop, τ

B

100
0 1.192 1.416 3.307
0.3 2.036 2.459 3.972
0.5 5.055 6.552 7.038

200
0 0.560 0.658 2.609
0.3 0.850 0.945 2.857
0.5 1.686 2.108 3.647

400
0 0.259 0.354 2.140
0.3 0.403 0.487 2.266
0.5 0.738 0.916 2.497

Table 1: Simulation results expressed in terms of IMSE×1000 for the estimation of mτ (x) in DGP A and
B. The number of repetitions operated is B = 500 for sample sizes n ∈ {100, 200, 400}, average censoring
proportions pc ∈ {0, 0.3, 0.5} and quantile level τ = 0.3.

pmP
cop, τ : fully parametric estimation of the d-dimensional copula density, where all bivariate copulas

are estimated using the previously mentioned candidate families and selection criteria. How-
ever, unlike the above-mentioned estimators, we do not force here any structure for the vine
decomposition. As a consequence, no explicit distinction is imposed between dependence
of interest and noisy dependence. Instead, one data-driven selected structure is adopted,
regardless of the arguments of Section 2.3. This will allow us to analyse the impact of such
dependence distinction in our regression context, as is discussed below. Finally, as it is the
case for pmNP

cop, τ , this estimator is not covered by the asymptotic theory of Section 4.

Both DGPs concentrate on the situation where the dependence structure between the response
variable and the covariate vector is characterized by a parametric copula. In such circumstances,
pmP
cop, τ will have a critical advantage and may serve in order to evaluate the impact of the non-

parametric part of the estimation scheme, especially when the dimension of the covariate vector
increases. As a performance criterion, we consider here the empirical integrated mean squared
error (IMSE), defined as

IMSE(pmτ (x)) = 1
N

N∑
i=1

˜

1
B

B∑
b=1

ppm(b)
τ (xi)−mτ (xi)q

2

¸

,

where {xi, i = 1, . . . , N} is a generated random sample of size N = 10 serving as an evaluation set
spread on the domain of X, and pm

(b)
τ (·) denotes the regression estimation for the b-th simulated

sample.
The results of our simulation study are summarized in Table 1. Based on these, we detail our

analysis in two parts, as the outcomes of our study offer relevant information on both the copula
decomposition choice and the type of bivariate estimators one may adopt in the multivariate
setting. Note that, for both DGPs, as the dependence structure is specified by a Gaussian copula,
the simplifying assumption intrinsic to the vine decomposition is here applicable (see Theorem 4
in Stöber et al. (2013)). In our context, this means that any observed difference between copula
strategies is not to be attributed to a possible violation of the underlying simplifying assumption.

Focusing first on our decomposition strategy, we note as expected that pmP
cop, τ globally out-

performs pmSP
cop, τ and pmNP

cop, τ . However, strikingly enough, this is not observed for DGP A for
different censoring proportions where pmSP

cop, τ details better results. This is interpreted here as
evidence for the validity of our arguments regarding the decomposition choice: as the censoring
proportion grows, the number of observations actually entering the copula estimation becomes
more moderate, hereby implying two opposite effects in this context. First, the propagation of
estimation approximations tends to be more important, signifying that the further we decompose,
the more sensitive becomes the estimation of the involved bivariate copulas as these are tributary
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of the quality of previously estimated bivariate blocks. Using a purely data-driven decomposition
may then result in a poor fit of the (conditional) copula of the response variable with one of the
covariates, as it is not required that the latter would be primarily treated. This is interpreted as
the reason why pmSP

cop, τ is able to outperform pmP
cop, τ , admittedly by a small amount, when censoring

increases for a fixed sample size n ∈ {200, 400}, even though the simulated scenario is issued from
a purely parametric copula. However, on the other hand, when observations are more scarce, it is
well-known that nonparametric estimations become more sensitive than parametric counterparts.
This explains why the estimation results for pmSP

cop, τ are not superior to those of pmP
cop, τ for n = 100

with 50% censoring, as the former requires the nonparametric estimation of two bivariate copulas,
whose complexity compared to pmP

cop, τ seems to override the positive effects of our decomposition
choice. Overall, these noteworthy results for DGP A illustrate the effectiveness of our proposed
copula decomposition in the regression context. When augmenting the covariate vector dimen-
sion, the price of estimating now three nonparametric bivariate copulas quite logically exceeds the
potential gain of concentrating efforts on the dependence of interest. This is identified in DGP B.

Concentrating now on the modelling choice for the noisy dependence, the comparison between
pmSP
cop, τ and pmNP

cop, τ offers valuable information, particularly in DGP A, as the only distinctness here
is the estimation of a unique bivariate copula density cuX1X2|Y . Visibly, the implication of keeping
a nonparametric approach for this part seems to be rather severe. This finding clearly also applies
when the dimension of the covariate grows.

Conclusively, the recommended copula modelling strategy seems to propose an adequate trade-
off between preventing the serious effects of a purely nonparametric estimation and providing the
flexibility needed to overcome possible shortcomings associated to a purely parametric alternative.

5.2 Comparison with other estimation methods for complete responses

In this section, we briefly assess the global performance of the semiparametric copula-based regres-
sion estimator for complete observations with several established methodologies in the literature.
To that end, we consider the following competing methodologies:

pmLL, τ : Locally polynomial quantile regression estimator studied in Chaudhuri (1991). In this
paper, we consider a local linear estimator which is implemented with Gaussian kernels in
the function lpqr of the R package quantreg. The bandwidth is selected via leave-one-out
cross validation in a set of candidates ranging from 0.05 to 2 by 0.05 increments.

pminv, τ : Nonparametric regression estimator studied in Li et al. (2013) where the idea is to numer-
ically invert a kernel estimated conditional distribution function. This procedure is imple-
mented in the R package np via the function npreg. The bandwidth selection is automatically
implemented in the function npcdistbw of the same library.

pmsi, τ : Single-index regression estimator based on a two stage estimation method as proposed by
Zhu et al. (2012). The univariate nonparametric part of the methodology is estimated with
a Gaussian kernel and the bandwidth is selected by leave-one-out cross validation in a set of
candidates ranging from 0.05 to 0.5 by 0.05 increments.

pmP
cop, τ : Semiparametric copula quantile regression estimator of Noh et al. (2015) where the copula

density is estimated with purely parametric vine techniques as in Section 5.1.

pmcop, τ : Proposed semiparametric copula quantile regression estimator with the same implementa-
tion as in Section 5.1.

These methodologies are compared in the following two DGPs:

• DGP C: (FT (T ), F1(X1), F2(X2)) ∼ Gaussian copula with parameters (ρT1, ρT2, ρ12) =
(0.9, 0.8,−0.8). The marginal distributions are chosen to be standard exponential for T and

14



DGP n τ pmLL, τ pminv, τ pmsi, τ pmP
cop, τ pmcop, τ

C

100
0.3 0.121 0.122 0.104 0.096 0.090
0.5 0.152 0.157 0.126 0.126 0.121
0.7 0.212 0.241 0.193 0.180 0.176

200
0.3 0.070 0.068 0.058 0.041 0.043
0.5 0.090 0.083 0.073 0.053 0.057
0.7 0.128 0.128 0.108 0.074 0.082

D

100
0.3 1.507 1.599 6.227 3.207 1.264
0.5 1.482 1.506 2.587 2.074 0.983
0.7 1.887 1.676 2.624 2.261 1.198

400
0.3 0.822 0.674 2.020 3.110 0.852
0.5 0.726 0.626 1.624 1.890 0.631
0.7 1.187 0.765 2.170 1.986 0.830

Table 2: Simulation results expressed in terms of IMSE × 10 for the estimation of mτ (x) in DGPs C and
D with respectively two and five covariates. The number of repetitions operated is B = 500 for sample sizes
n ∈ {100, 200, 400} and with quantiles of interest τ ∈ {0.3, 0.5, 0.7}.

standard normal for the covariates. The resulting quantile regression may be determined as
mτ (x) = F−1

T

“

Φ
`

βTx+ 0.41Φ−1(τ)
˘‰

, where β = (−13/18, 2/9)T.

• DGP D: Data simulated from the model T = |2X1 −X2
2 + 0.5|0.5+0.1X3

4X5(0.5|X3|+1) +
0.1ε, where ε ∼ N (0, 1) and the five-dimensional covariate (X1, . . . , X5) is simulated from a
Gaussian distribution with correlations (ρ12, ρ13, . . . , ρ45) = (0.3, 0.4, 0.5, 0.6, 0.7, 0.3, 0.4, 0.5,
0.6, 0.7) and standard marginals.

The first DGP is a low-dimensional setting where we expect the single-index and both copula-based
estimators to perform well given that the true quantile regression is in fact a single-index model
and that the data is simulated from a known copula. In opposition, the second DGP explores
a higher dimension of the covariates and considers a setting with non-monotonic dependencies
between the response and the covariates, for which no parametric copula in the literature is suited
as illustrated in Section 2. Hence, in this setting pmP

cop, τ is expected to perform poorly and both
pmcop, τ and pmsi, τ are a priori no longer favored above the other methodologies.

To compare the performance of the different procedures, we consider 500 repetitions of each
DGP, quantile levels τ ∈ {0.3, 0.5, 0.7} and sample sizes n ∈ {100, 200, 400}. Similarly to the
previous section, we then consider the IMSE as a performance criterion calculated on a testing
sample of 20 evaluation points {x1, . . . ,x20}.

The simulation results of this brief comparative study are presented in Table 2. As expected,
for the two-dimensional setting we observe the copula-based and the single-index estimators to
perform better than the remaining methodologies as the latter do not take profit of any underlying
model assumption here. Furthermore, both copula-based estimators tend to outperform in this
setting the single-index estimator for all considered sample sizes and quantile levels. Similarly to
Section 5.1, we also note that pmcop, τ is here again able to outperform by a slight margin pmP

cop, τ for
small sample sizes by focusing primarily on the estimation of the dependence of interest. Overall,
this suggests that an appropriate semiparametric estimation of the copula density results in a
performance of the regression estimator relatively similar to the estimator of Noh et al. when the
latter is considered in its most advantageous situation.

Next, the results of DGP D numerically illustrate the gain in flexibility of the proposed method-
ology over pmP

cop, τ . In this situation, the latter evidently misspecifies the regression model as can be
observed from the fact that the IMSE does not tend to diminish much with an increasing sample
size. In opposition, pmcop, τ still performs very competitively with respect to the literature, espe-
cially for smaller samples. This suggests here again that the copula estimation strategy proposed
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in this paper offers the required flexibility to a copula-based approach for quantile regression. To
conclude, this results in a very competitive estimation procedure with respect to the established
semiparametric and nonparametric literature.

5.3 Comparison with other estimation methods for censored responses

The objective of this last section is to provide a comparison study between the proposed copula-
based methodology and existing competitors for survival data. On a general note, given that for
multidimensional covariates an appropriate estimation of the conditional distribution GC(·|x) for
the weightsW (x) in (3.4) may be of crucial influence, we consider distinctive scenarios contrasting
in the impact on pGC(·|x) in order to provide a sufficiently broad view on the performance of our
methodology.

We examine three general simulation models, with B = 500 repetitions of each; two (average)
levels of censoring (30% and 50%), two sample sizes (n = 200 and n = 400) and four values for
the quantile level of interest (τ ∈ {0.1, 0.3, 0.5, 0.7}). Specifically, we consider general data arising
from a Cox regression model. Based on the hazard function (defined as h(t) = fT (t)/(1−FT (t))),
this prominent model for analysing survival times specifies that h(t|Xi) = h0(t) exp(βTXi), i =
1, . . . , n, where h0(t) is the so-called baseline hazard function. In this instance, given a nonnegative
time-to-event variable, simple algebraic manipulations show that the general conditional quantile
regression can be written asmτ (x) = H−1

0 p−log(1−τ) exp(−βTx)q, whereH0(t) ≡
∫ t

0 h0(s)ds. For
every proposed setting, the baseline distribution is set to be standard exponential and consequently,
for a given vector x the τ−th conditional quantile function is given by

mτ (x) = − log(1− τ) exp(−βTx).

The distinction between our simulation scenarios is to be found in the three covariate vectors
and the dimension of the latter that are taken into account. The first two settings are cho-
sen to be of moderate dimension with d = 5 while the third setting exhibits an example with
d = 8. Focusing first on the case d = 5, we consider β = (1,−3/4, 1/2, 1/4,−3/5)T and 5
covariates (X1, . . . , X5) simulated form a Gaussian copula with parameters (ρ12, ρ13, . . . , ρ45) =
(0.3, 0.4, 0.5, 0.6, 0.7, 0.3, 0.4, 0.5, 0.6, 0.7). To distinguish our scenarios when d = 5, we consider
two covariate vectors given by X(1) = (X1, X2, . . . , X5) and X(2) = (X1, exp(X2), X3, X4, X5), for
which the resulting quantile regressions are both single-index models in X(1) and X(2), respec-
tively. This will allow to highlight the performance of our procedure when its competing estimators
are both in an ideal situation and a slightly altered version of it.

Lastly, for d = 8 we consider again a Gaussian copula for the initial covariate vector with
parameters ρij = (−0.8)|i−j|, i, j = 1, . . . , 8. The parameter vector of the Cox regression is β =
(1,−3/4, 1/2, 1/4,−3/5, 4/5, 3/5,−2/5)T and the covariate vector is X(3) = (X1, exp(X2), X3, . . . ,
X7, X

2
8 ). The resulting model is hence a single-index and a Cox regression with respect to X(3).

Model 1: Cox model and single-index model with d = 5

We first consider the simple case of data following a Cox regression model issued from covariate
vectorX(1). The distributions and parameter values of the censoring variables define the following
scenarios:

• DGP E: C ∼ Exp(λC), with λC independent ofX(1). To attain the desired average censoring
proportions, we fix λC = 0.464 and λC = 1.083 (corresponding to approximately 30% and
50% censoring in average, respectively). The exact conditional censoring probability given
X(1) = x is calculated as λC/(λC + exp(βTx)) and is hence a decreasing function of βTx,
making us conjecture better results for higher values of βTx. Note that in this scenario,
GC(·|x) boils down to GC(·), for which the Kaplan-Meier estimator is suited.
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• DGP F: C ∼ Exp(λC(x)), with λC(x) = 3/7 × exp(βTx) and λC(x) = exp(βTx) corre-
sponding to 30% and 50% censoring, respectively. In this scenario, the conditional censoring
probability is independent of x, and an adequate estimation of GC(·|x) is fulfilled with a Cox
model hypothesis for the relationship between the covariates and the censoring variable.

For comparison purposes, we consider the four following estimators:

pmcox, τ : parametric estimator exploiting the information related to the parametric Cox model set-
ting. This estimator will serve as a reference for the ideal, yet unknown in practice, situation.
Specifically, pmcox, τ (x) = − log(1 − τ) exp(−pβTx)/pλT0 , where pβ is estimated by maximum
partial likelihood, and pλT0 is the maximum likelihood estimator of the exponential baseline
distribution.

pmsi, τ : Single-index regression estimator studied in Bücher et al. (2014), where the censoring
distribution is supposed to be independent of x. For the univariate nonparametric part of
the estimation process, 10 different bandwidths are selected (h ∈ {0.05, 0.1, . . . , 0.5}), and
the optimal choice is performed using the described leave-one-out cross-validation procedure.
Note that the quantile regression of interest mτ (x) here is indeed a single-index model in
(X1, X2, . . . , X5). This should provide a critical advantage to the performance of pmsi, τ .

pm
(⊥⊥)
cop, τ : our copula-based estimator from estimation equation (3.4), where the conditional distri-

bution GC(·|x) is supposed to be independent of x and thereby estimated by the classical
(unconditional) Kaplan-Meier estimator.

pm
(cox)
cop, τ : our copula-based estimator, where the relationship between the covariates and the censoring

variable is supposed to follow a Cox regression model. Namely, pGC(c|x) is estimated by
1− exp

´

−c exp(pβT
C x)/pλC0

¯

.

Following the arguments of Section 2.3 and the results of the previous sections, both copula-
based procedures are implemented employing a semiparametric estimation for the d-variate copula
built on the aforementioned candidate families and selection criterions.

In order to compare the studied estimators’ performance, we consider in this section an inte-
grated version of the median absolute estimation error, that is

IMAE(pmτ (x)) = 1
N

N∑
i=1

med(B)p|pmτ (xi)−mτ (xi)|q,

where pmτ is a generic estimator of mτ , {xi, i = 1, . . . , N} is an evaluation set corresponding to
a generated random sample of size N = 10, spread on the domain of X(1), and med(B) denotes
the median taken over all B = 500 simulations. The choice for this robust L1-type of measure is
motivated by the fact that the optimization routines involved in the single-index procedure may
yield very unlikely results with a small probability, hereby strongly disadvantaging the estimator
when considering a L2-type of error measure. The same reasoning is underlying the determination
of a robust dispersion measure on estimation errors, taken as the averaged interquartile range. More
precisely, we chooseN−1 ∑N

i=1

´

Q
(B)
3 p|pmτ (xi)−mτ (xi)|q−Q(B)

1 p|pmτ (xi)−mτ (xi)|q
¯

, whereQ(B)
3

and Q(B)
1 stand, respectively, for the third and first quartiles taken over all simulations.

The results of our simulation study for this model are reported in Tables 3 and 4 for 30%
and 50% of censoring, respectively. As expected, the Cox regression estimator pmcox, τ , serving
as a reference case here, outperforms the other estimators for both scenarios and every sample
size, quantile level and censoring percentage. More interestingly, while the single-index estimator
pmsi, τ quite logically displays better overall results than our copula-based estimators, it is worth
noticing that the difference seems to fade away when moving to higher quantile levels, especially
for higher levels of censoring percentage. This is considered as a first encouraging result for the
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Censoring = 30%
DGP n τ pmcox, τ pmsi, τ pm

(⊥⊥)
cop, τ pm

(cox)
cop, τ

E

200

0.1 0.016 (0.019) 0.039 (0.053) 0.043 (0.059) 0.043 (0.057)
0.3 0.054 (0.063) 0.083 (0.103) 0.101 (0.124) 0.102 (0.123)
0.5 0.105 (0.123) 0.149 (0.185) 0.174 (0.199) 0.175 (0.194)
0.7 0.183 (0.213) 0.280 (0.373) 0.273 (0.299) 0.279 (0.305)

400

0.1 0.011 (0.013) 0.030 (0.038) 0.033 (0.044) 0.033 (0.043)
0.3 0.036 (0.043) 0.070 (0.078) 0.079 (0.097) 0.081 (0.098)
0.5 0.069 (0.084) 0.115 (0.140) 0.130 (0.160) 0.133 (0.159)
0.7 0.120 (0.146) 0.221 (0.273) 0.212 (0.251) 0.212 (0.244)

F

200

0.1 0.016 (0.019) 0.037 (0.052) 0.043 (0.059) 0.043 (0.059)
0.3 0.055 (0.064) 0.082 (0.105) 0.102 (0.129) 0.103 (0.124)
0.5 0.108 (0.125) 0.152 (0.190) 0.174 (0.197) 0.174 (0.191)
0.7 0.187 (0.218) 0.301 (0.474) 0.283 (0.310) 0.278 (0.298)

400

0.1 0.011 (0.014) 0.029 (0.037) 0.035 (0.044) 0.034 (0.045)
0.3 0.036 (0.046) 0.066 (0.077) 0.082 (0.102) 0.083 (0.098)
0.5 0.071 (0.089) 0.118 (0.141) 0.138 (0.165) 0.135 (0.159)
0.7 0.123 (0.155) 0.233 (0.287) 0.222 (0.259) 0.218 (0.241)

Table 3: Simulation results expressed in terms of IMAE and the dispersion measure in brackets for the
estimation of mτ (x) with 30% of censoring where the true model is a Cox and single-index model. The
number of repetitions operated is B = 500 for sample sizes n ∈ {200, 400} and with quantiles of interest
τ ∈ {0.1, 0.3, 0.5, 0.7}.

Censoring = 50%
DGP n τ pmcox, τ pmsi, τ pm

(⊥⊥)
cop, τ pm

(cox)
cop, τ

E

200

0.1 0.019 (0.022) 0.040 (0.056) 0.044 (0.056) 0.044 (0.054)
0.3 0.063 (0.074) 0.089 (0.111) 0.113 (0.127) 0.115 (0.127)
0.5 0.123 (0.144) 0.176 (0.242) 0.201 (0.209) 0.205 (0.213)
0.7 0.213 (0.251) 0.411 (0.402) 0.354 (0.326) 0.362 (0.326)

400

0.1 0.012 (0.015) 0.031 (0.040) 0.035 (0.042) 0.035 (0.042)
0.3 0.042 (0.051) 0.071 (0.082) 0.089 (0.106) 0.089 (0.106)
0.5 0.081 (0.099) 0.136 (0.170) 0.161 (0.179) 0.163 (0.178)
0.7 0.140 (0.171) 0.299 (0.315) 0.284 (0.290) 0.281 (0.279)

F

200

0.1 0.019 (0.022) 0.040 (0.061) 0.046 (0.059) 0.044 (0.053)
0.3 0.064 (0.074) 0.090 (0.106) 0.117 (0.129) 0.115 (0.123)
0.5 0.125 (0.143) 0.202 (0.374) 0.212 (0.218) 0.210 (0.206)
0.7 0.217 (0.249) 0.526 (0.854) 0.380 (0.341) 0.380 (0.324)

400

0.1 0.013 (0.015) 0.029 (0.038) 0.038 (0.048) 0.036 (0.045)
0.3 0.043 (0.052) 0.069 (0.082) 0.099 (0.113) 0.095 (0.105)
0.5 0.084 (0.102) 0.140 (0.173) 0.177 (0.201) 0.172 (0.174)
0.7 0.145 (0.176) 0.346 (0.632) 0.306 (0.322) 0.298 (0.283)

Table 4: Simulation results expressed in terms of IMAE and the dispersion measure in brackets for the
estimation of mτ (x) with 50% of censoring where the true model is a Cox and single-index model. The
number of repetitions operated is B = 500 for sample sizes n ∈ {200, 400} and with quantiles of interest
τ ∈ {0.1, 0.3, 0.5, 0.7}.

copula-based estimators as the simulated model is very strongly to the advantage of pmsi, τ . This
indicates that our proposed procedure is flexible enough to compete with pmsi, τ in its ideal setup
when the number of observations actually entering the estimation scheme becomes moderate, that
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τ = 0.5
(a) pmsi, τ
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τ = 0.7
(d) pmsi, τ
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Figure 3: Boxplots corresponding to the results in Tables 3 and 4 of three estimators considered for mτ (x)
for N = 10 points spread on the domain of βTX(1) in DGP E, and for τ ∈ {0.5, 0.7}. In this setting, the
true model is a single-index model and hence favors pmsi, τ over both copula-based estimators. All pictures
are based on 500 repetitions for n = 400 and 30% censoring. The red lines represent the true value of
m0.5(x) and m0.7(x).

is when censoring percentage is important and the quantile level of interest is high. Of course, if
this is not the case, there is no a priori reason to believe that the copula-based estimators could
outperform pmsi, τ when the latter is considered in its optimal setting.

Figure 3 serves to illustrate these results for the particular case of DGP E with n = 400 and
for high quantile levels (τ ∈ {0.5, 0.7}). For the sake of brevity, we only report here a graphical
comparison between the copula-based estimators and the single-index estimator, as pmcox, τ clearly
outperforms the latter. As can be observed from Figure 3, the difference between pmsi, τ and
both copula-based estimators is graphically modest, especially for the highest quantile of interest
τ = 0.7, hereby reinforcing the previously discussed results of Tables 3 and 4. Furthermore, note
that all estimators tend to present worse performances for low levels of βTx. This is expected in
this simulation setting as these levels correspond to the region of βTx where the exact conditional
censoring probability is the highest.

Focusing again on Tables 3 and 4, we further note that, while there is logically a difference
between the performances of pm

(⊥⊥)
cop, τ and pm

(cox)
cop, τ depending on the simulated scenario, the effect

of an appropriate modelling of pGC(·|x) seems to be rather limited in this simulation setup for
our estimators. Additionally, while both pmsi, τ and pm

(⊥⊥)
cop, τ rely here on the assumption of inde-

pendence between the censoring variable and the covariate vector, the latter seems to numerically
behave better when confronted to the violation of this hypothesis. This can be observed from
the comparison between DGP E and F of the dispersion measures of both estimators, once again
especially for high levels of quantile values and censoring percentages. Of course, one could argue
that, given the results for the dispersion measure of pmsi, τ for high quantiles, this can partly be due
to a poor smoothing parameter choice. However, the latter was implemented using the proposed
methodology of Bücher et al. (2014), just as a practitioner would have resolved to act.
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Model 2
n pc τ pmcox, τ pmsi, τ pm

(⊥⊥)
cop, τ pm

(cox)
cop, τ

200

0.3

0.1 0.115 (0.046) 0.105 (0.142) 0.115 (0.160) 0.115 (0.159)
0.3 0.391 (0.156) 0.279 (0.273) 0.249 (0.285) 0.250 (0.286)
0.5 0.760 (0.302) 0.489 (0.538) 0.452 (0.532) 0.454 (0.538)
0.7 1.319 (0.525) 0.988 (1.023) 0.781 (0.828) 0.783 (0.842)

0.5

0.1 0.116 (0.054) 0.107 (0.156) 0.115 (0.139) 0.116 (0.143)
0.3 0.391 (0.182) 0.334 (0.324) 0.303 (0.335) 0.311 (0.338)
0.5 0.760 (0.359) 0.611 (0.742) 0.574 (0.552) 0.583 (0.558)
0.7 1.321 (0.615) 1.441 (1.142) 1.053 (0.845) 1.074 (0.865)

400

0.3

0.1 0.115 (0.029) 0.084 (0.101) 0.092 (0.118) 0.092 (0.120)
0.3 0.388 (0.099) 0.219 (0.222) 0.211 (0.264) 0.212 (0.265)
0.5 0.753 (0.192) 0.372 (0.401) 0.358 (0.427) 0.359 (0.430)
0.7 1.308 (0.333) 0.685 (0.844) 0.598 (0.682) 0.604 (0.683)

0.5

0.1 0.114 (0.035) 0.084 (0.105) 0.096 (0.109) 0.096 (0.112)
0.3 0.387 (0.118) 0.254 (0.231) 0.221 (0.283) 0.226 (0.285)
0.5 0.751 (0.228) 0.479 (0.490) 0.431 (0.486) 0.438 (0.488)
0.7 1.305 (0.397) 0.933 (0.878) 0.850 (0.781) 0.857 (0.793)

Table 5: Simulation results expressed in terms of IMAE and the dispersion measure in brackets for the esti-
mation ofmτ (x) for model 2. The number of repetitions operated is B = 500 for sample sizes n ∈ {200, 400},
censoring proportion pc ∈ {0.3, 0.5} and with four levels of quantile of interest τ ∈ {0.1, 0.3, 0.5, 0.7}.

Models 2 & 3: Alteration of a Cox model and single-index model with d = 5 and d = 8

To pursue our simulation study, we now consider in this section the second and third models
where the time-to-event data is simulated using covariate vectors X(2) and X(3), respectively.
Consequently, the resulting quantile regressions are no longer a single-index nor a Cox regression
model in (X1, X2, . . . , X5) for model 2 and (X1, X2, . . . , X8) for model 3. For comparison pur-
poses, we consider the four estimation procedures described in model 1, given covariate vectors
(X1, X2, . . . , X5) and (X1, X2, . . . , X5), respectively, hereby implying a slight model bias for both
pmsi, τ and pmcox, τ as the latter would require transformations of the covariates. In opposition,
both copula-based procedures, which are here constructed using the same previously-described
semiparametric modelling strategy, automatically take account of such concerns.

For the sake of brevity, we only consider here the situation where the censoring variable is
independent from the covariate vector, as the impact of a dependent scheme has been treated
in model 1. Specifically, for model 2 we simulate the censoring variable from an exponential
distribution with parameter values 0.208 and 0.486 for approximately 30% and 50% censoring.
Concerning model 3, we only report the results for 30% censoring which are attained by simulating
here a censoring variable following an exponential distribution with parameter 0.903.

The resulting performance of the considered estimators are depicted in Tables 5 and 6, once
again in terms of IMAE. In Table 5 reporting the case d = 5, we observe that both copula-based
estimators tend to outperform their competitors, with the exception of very low quantiles of interest
where the effect of a (‘small’) misspecification of the underlying model seems to be moderate for
both pmcox, τ and pmsi, τ . As we move away from these low quantile levels, the consequences of
misspecifying the model become more severe for the competing estimators, notably for a purely
parametric approach (pmcox, τ ). In contrast, the copula-based approach presents satisfactory results
for varying censoring proportions and sample sizes, especially when keeping in mind that the
simulated scenario is ‘only’ a slightly altered version of the ideal scenario for its competitors.

Similar findings apply when analyzing the results of Table 6 for d = 8. In this situation,
both copula-based estimator still globally outperform their competitors, although the margin of
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Model 3
pc n τ pmcox, τ pmsi, τ pm

(⊥⊥)
cop, τ pm

(cox)
cop, τ

0.3

200

0.1 0.031 (0.054) 0.037 (0.049) 0.029 (0.037) 0.031 (0.044)
0.3 0.084 (0.182) 0.124 (0.174) 0.075 (0.080) 0.078 (0.091)
0.5 0.149 (0.354) 0.241 (0.451) 0.139 (0.139) 0.142 (0.151)
0.7 0.273 (0.616) 0.419 (0.822) 0.240 (0.222) 0.247 (0.236)

400

0.1 0.116 (0.035) 0.028 (0.038) 0.023 (0.028) 0.024 (0.030)
0.3 0.067 (0.118) 0.094 (0.099) 0.062 (0.066) 0.062 (0.069)
0.5 0.104 (0.230) 0.183 (0.344) 0.114 (0.116) 0.115 (0.122)
0.7 0.220 (0.400) 0.317 (0.652) 0.194 (0.190) 0.194 (0.197)

Table 6: Simulation results expressed in terms of IMAE and the dispersion measure in brackets for the
estimation of mτ (x) for model 3. The number of repetitions operated is B = 500 for sample sizes n ∈
{200, 400}, censoring proportion pc = 0.3 and with four levels of quantile of interest τ ∈ {0.1, 0.3, 0.5, 0.7}.

improvement is relatively smaller than for d = 5. This results from the fact that we have here to
model a nine-dimensional copula density with no information on the underlying model, while both
pmsi, τ and pmsi, τ rely on model assumptions that are still relatively close to the simulated model.
Conclusively, this advocates, here again, for the flexibility of our procedure and its withstanding
to misspecification of the underlying model for multidimensional problems when comparing with
other semiparametric or fully parametric modelling techniques.

6 Real Data Application
We present in this section a brief application of our procedure for censored data by analysing
the Colorado Plateau uranium miners cohort data (see e.g. Lubin et al. (1995), Langholz and
Goldstein (1996)). The object of the study, for which 3347 Caucasian male miners having worked
at least a month in the uranium mines of the Colorado Plateau were followed, is to investigate the
risk of lung cancer related to smoking and radon exposure. Hence, the event of interest is defined
as the time till lung cancer death (expressed as the logarithm of number of years), which affected a
total of 258 miners. Besides failure time, the study also includes information about age at entry to
the study, cumulative smoking (in number of packs) and radon exposure (in working level month
(WLM)).

As the original data set is prone to heavy censoring (92.3%), and given the illustrative nature
of this section, we first define a subsample on which the analysis will be performed. To that end,
in order to preserve as best as possible the nature of the population at risk, we decide to define a
threshold on the radon exposure above which observations will enter the subsample. The value of
the threshold is practically chosen as a trade-off between censoring proportion and actual number
of observations that are to be selected. Specifically, we find that by defining a threshold of 2831
WLM on radon exposure, a subsample of 176 observations is constituted, 55 of which were subject
to the event of interest. Scatterplots of the selected data are represented in Figure 4, where X1
is the age at entry into the study, X2 is the cumulative radon exposure and X3 is the cumulative
smoking.

Regarding the data analysis, endorsing the role of a practitioner, we are faced with the choice
of an appropriate estimator for the application of quantile regression in this context. We therefore
consider the following distinctive candidates:

pm
(cox)
cop, τ : Copula-based quantile regression estimator, with Cox regression modelling for GC(·|·).

pmsi, τ : Single-Index methodology of Bücher et al. (2014).
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Figure 4: Colorado Plateau uranium miners cohort data. Scatter plots of the survival time versus each
covariate. Uncensored data points are given by ×, while censored observations are represented by 4.

pmcox, τ : Semiparametric estimator based on the Cox proportional hazards model. Specifically,
pmcox,τ (x) = pH−1

0 (− log(1− τ) exp(−pβTx)), where pβ is estimated by maximum partial likeli-
hood, and pH0 is the Nelson-Aalen-type estimator of the cumulative baseline hazard.

As a general evaluation measure to compare models for the present data set, we consider
the median quantile loss from predicting the τ -th conditional quantile of T for the uncensored
observations. In other words, we use the following cross-validated prediction error criterion:

PE ppmτ q = med1≤i≤n
∆i=1

ρτ
`

Yi − pm−iτ (Xi)
˘

,

where pm−iτ denotes any estimator of mτ based on all observations except the i-th one.
For the implementation of the copula-based regression estimator, we adopt the methodology

of Section 2.3 and our simulation study by opting for a semiparametric modelling of the four-
variate copula density, where the bivariate copulas of the response variable with each covariate
are estimated using the procedure of Geenens et al. (2014) with quadratic polynomials along with
the proposed data-driven bandwidth selection scheme. The remaining trivariate noisy copula is,
afterwards, estimated using vine techniques with the same candidate families and selection criterion
as in Section 5. Additionally, a general appropriate hypothesis has to be made for the modelling of
the conditional distribution GC(·|·). As it is shown in the literature that independence is unsuitable
for the data of the study (see e.g. Leng and Tong (2013)), we propose to model the conditional
distribution through a semiparametric Cox regression for the censoring time with respect to the
covariates. Therefore, as is common in practice, the parameter of the regression is estimated by
maximum partial likelihood while the Breslow estimator is used for computing the baseline survivor
function.

Concerning pmsi,τ , the bandwidth choice is performed using the proposed leave-one-out cross-
validation procedure on normalized covariates with 15 candidates (h ∈ {0.1, 0.2, . . . , 1.5}). Note
that, as the latter procedure is computationally costly, it is here assumed that the selected band-
width is constant for all datasets entering the estimation of PE(pmsi,τ ), which is of little impact in
this context given that only one observation at the time is to be removed from each dataset.

The results of the evaluation measure are reported in Table 7 for four quantile levels of interest
τ ∈ {0.1, 0.3, 0.5, 0.7}. It is observed that, in terms of cross-validated prediction error, our copula-
based approach depicts quite confidently the best performance for every considered quantile level
of interest. By comparison, the single-index structure seems to be inappropriate as such for
the studied data set, and should possibly require further work and attention on, for instance,
transformations of covariates. Furthermore, its sensitivity to higher quantile levels is, here again,
highlighted. Lastly, despite being part of every practitioner’s toolbox for survival analysis, the
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τ PE
´

pm
(cox)
cop, τ

¯

PE ppmsi, τ q PE ppmcox, τ q

0.1 0.348 0.848 0.946
0.3 0.774 1.471 1.180
0.5 0.785 1.901 1.169
0.7 0.470 2.838 0.967

Table 7: Colorado Plateau uranium miners cohort data. Prediction error multiplied by 10 for each censored
quantile regression estimator for quantile levels τ ∈ {0.1, 0.3, 0.5, 0.7}.

proportional hazards regression estimator is also relatively largely outperformed by the increased
flexibility of the copula-based approach. Hence, this example clearly illustrates the ability of our
estimator to adapt to the underlying regression structure of the data.

Conclusively, recalling that, from equation (3.5), our procedure enjoys the additional valuable
property of being automatically monotonic across quantile levels, this real data application plainly
highlights the relevance of our estimator for flexible analyses of multivariate censored data.

7 Conclusion
In this work we have proposed a semiparametric copula-based quantile regression estimator in
the context of potentially right-censored responses. On a general note, for data with or without
censoring, and motivated by the regression context, a novel semiparametric estimation approach
for the implied copula density was studied. Furthermore, in parallel to the procedure of Noh et al.
(2015), the proposed regression estimator in this work is obtained as a weighted quantile of the
observed response variable, hereby opening the door to the practical use of the quantile regression
code developed by Portnoy and Koenker (1997) and Koenker (2005). Asymptotic normality of
the resulting estimator for both complete and censored data was obtained with convergence rate
determined by the nonparametric estimation of bivariate copula densities. For inferential purposes
however, bootstrap procedures are to be preferred as the applicability of the obtained asymptotic
normality is restrained by numerous unknown quantities to be estimated in practice. This boot-
strap procedure could be inspired by the wild bootstrap procedure proposed by Feng et al. (2011).
Finally, supporting the objective of this work, an extensive simulation study and a real data appli-
cation have been carried out to illustrate both the validity of the semiparametric copula estimation
and the increased flexibility of our procedure in comparison with existing alternatives, especially
when no a priori knowledge about the functional form of the quantile regression is available in
practice.
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Appendix
We develop in this appendix the proofs of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1

Define
pAn(s) =

n∑
i=1

rρτ (εi − s/an)− ρτ (εi)s xWi(x)pcuYXp pF uY (Yi), pF u(x)q,

with εi ≡ εi(x, τ) = Yi −mτ (x), and an =
?
nh2. Observe first that, by definition of pmτ (x),

an(m̂τ (x)−mτ (x)) = arg min
s

pAn(s).

Furthermore, given that ρτ is a convex function and that xWi(x)pcuYXp pF uY (Yi), pF u(x)q ≥ 0 for
all i = 1, . . . , n, we have that s 7→ pAn(s) is convex. The idea is then to develop an expression of
pAn(s) leading to the application of the quadratic approximation Lemma of convex functions (Basic
Corollary in Hjort and Pollard (1993)). To that end, we have that (Knight’s (1998) identity)

ρτ (u− v)− ρτ (u) = −vψτ (u) +R(u, v),

with ψτ (u) = τ − 1(u ≤ 0),

R(u, v) =
∫ v

0
(1(u ≤ s)− 1(u ≤ 0))ds = (u− v)(1(u ≤ 0)− 1(u ≤ v)),

and 0 ≤ R(u, v) ≤ |v|. Hence, we may write

pAn(s) = −s pA1n + Â2n(s),

with
pA1n = a−1

n

n∑
i=1

ψτ (εi) xWi(x)pcuYXp pF uY (Yi), pF u(x)q,

and
pA2n(s) =

n∑
i=1

R(εi, s/an) xWi(x)pcuYXp pF uY (Yi), pF u(x)q.

Focusing first on pA2n(s), we will show that

pA2n(s) = s2

2 w
−1(x)fT |X(mτ (x)|x) n

a2
n

+ oP

ˆ

n

a2
n

˙

, (A.1)

where fT |X is the conditional density of T given X and w(x) = p(x)/rP(∆ = 1)cuX(F u(x))s. To
that end, we write

pA2n(s) = A2n(s) + ∆1n(s) + ∆2n(s),

where

A2n(s) =
n∑
i=1

R(εi, s/an)Wi(x) cuYXpF uY (Yi),F u(x)q

∆1n(s) =
n∑
i=1

R(εi, s/an) (xWi(x)−Wi(x)) cuYXpF uY (Yi),F u(x)q

∆2n(s) =
n∑
i=1

R(εi, s/an) xWi(x) rpcuYXp pF uY (Yi), pF u(x)q− cuYXpF uY (Yi),F u(x)qs.
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Concentrating on each term, we will show that

A2n(s) = s2

2 w
−1(x)fT |X(mτ (x)|x) n

a2
n

+ oP

ˆ

n

a2
n

˙

(A.2)

∆1n(s) = oP

ˆ

n

a2
n

˙

(A.3)

∆2n(s) = oP

ˆ

n

a2
n

˙

. (A.4)

For the proof of (A.2), we first establish that

E(A2n(s)) = nE pR(ε1, s/an)W1(x) cuYXpF uY (Y1),F u(x)qq

= nw−1(x)
∫ s/an

0
pFT |X(mτ (x) + t|x)− FT |X(mτ (x)|x)qdt,

where FT |X denotes, as in Section 2, the conditional c.d.f. of T givenX, and where, for the second
equality, we used (see Section 3) the fact that, for any measurable function ϕ : R → R, we have
E(∆ϕ(Y ) cuYXpF uY (Y ),F u(x)q) = w−1(x)E(∆ϕ(Y )|X = x). Next, we write

FT |X(mτ (x) + t|x)− FT |X(mτ (x)|x) = t fT |X(mτ (x) + θt|x)
= t fT |X(mτ (x)|x) + tR(t),

for some θ ∈ (0, 1), with R(t) = fT |X(mτ (x) + θt|x)− fT |X(mτ (x)|x). This yields

E(A2n(s)) = s2

2 w
−1(x)fT |X(mτ (x)|x) n

a2
n

+ nw−1(x)
∫ s/an

0
tR(t)dt.

From the fact that, under the required bandwidth condition and assumption (C1),
ˇ

ˇ

ˇ

ˇ

∫ s/an

0
tR(t)dt

ˇ

ˇ

ˇ

ˇ

≤ s2

2 a2
n

sup
|t|≤|s|/an

|R(t)|= o(1/a2
n),

we get that

E(A2n(s)) = s2

2 w
−1(x)fT |X(mτ (x)|x) n

a2
n

+ o

ˆ

n

a2
n

˙

,

provided assumption (C2) is satisfied. To conclude the proof of (A.2), it is then sufficient to show
that

Var(A2n(s)) = o

ˆ

n

a2
n

˙2
.

To that end, observe that, for n sufficiently large, and under assumptions (C1),(C2) and (C3),

Var(A2n(s)) ≤ nE pR(ε1, s/an)W1(x) cuYXpF uY (Y1),F u(x)qq
2

≤ nE pR(ε1, s/an)W1(x) cuYXpF uY (Y1),F u(x)qq
|s|
an

p1−GC(mτ (x) + δ)|xq
−1

× sup
t∈R

cuYXpF uY (t),F u(x)q, for some δ > 0

= O

ˆ

n

a3
n

˙

= o

ˆ

n

a2
n

˙2
,

as an/n converges to 0.
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Concentrating now on the proof of (A.3), observe that, for n sufficiently large

|∆1n(s)| =

ˇ

ˇ

ˇ

ˇ

ˇ

n∑
i=1

R(εi, s/an)Wi(x) cuYXpF uY (Yi),F u(x)q
pGC(Yi − |x)−GC(Yi − |x)

1− pGC(Yi − |x)

ˇ

ˇ

ˇ

ˇ

ˇ

≤ A2n(s) sup
t≤max1≤i≤n

∆i=1
Yi

| pGC(t|x)−GC(t|x)|
1− pGC(t|x)

= oP

ˆ

n

a2
n

˙

,

provided that pGC(·|x) satisfies assumption (C6).
Lastly, for the proof of (A.4), note that, for n sufficiently large,

|∆2n(s)| =

ˇ

ˇ

ˇ

ˇ

ˇ

n∑
i=1

R(εi, s/an) xWi(x) cuYXpF uY (Yi),F u(x)q
pcuYXp pF uY (Yi), pF u(x)q− cuYXpF uY (Yi),F u(x)q

cuYXpF uY (Yi),F u(x)q

ˇ

ˇ

ˇ

ˇ

ˇ

≤ (A2n(s) + ∆1n(s)) sup
t∈R

|pcuYXp pF uY (t), pF u(x)q− cuYXpF uY (t),F u(x)q|

cuYXpF uY (t),F u(x)q

= oP

ˆ

n

a2
n

˙

,

provided that assumption (C7)-(i) is satisfied.
Hence, reassembling (A.2), (A.3) and (A.4) yields

a2
n

n
pAn(s) = −sa

2
n

n
pA1n + s2

2 w
−1(x)fT |X(mτ (x)|x) + oP(1).

Therefore, by the quadratic approximation Lemma of a convex function, see e.g. Hjort and Pollard
(1993), if a

2
n
n Â1n = OP(1), then

an(pmτ (x)−mτ (x)) = arg min
s

a2
n

n
pAn(s) = w(x)

fT |X(mτ (x)|x)
a2
n

n
pA1n + oP(1). (A.5)

As a consequence, the asymptotic behavior of our estimator will be driven by the asymptotic
expression of a

2
n
n
pA1n. Developing the expression of the latter, we will show that

a2
n

n
pA1n = an

n

n∑
i=1

ψτ (εi)Wi(x)rpcuYXpF uY (Yi),F u(x)q− cuYXpF uY (Yi),F u(x)qs + oP p1q . (A.6)

To that end, note that a2
n
n
pA1n may be decomposed as

a2
n

n
Â1n = an

n

n∑
i=1

ψτ (εi)Wi(x)rpcuYXpF uY (Yi),F u(x)q−cuYXpF uY (Yi),F u(x)qs+∆3n+∆4n+∆5n+∆6n,

where

∆3n = an
n

n∑
i=1

ψτ (εi)(xWi(x)−Wi(x))pcuYXp pF uY (Yi), pF u(x)q (A.7)

∆4n = an
n

n∑
i=1

ψτ (εi)Wi(x)rpcuYXp pF uY (Yi), pF u(x)q− pcuYXpF uY (Yi), pF u(x)qs (A.8)

∆5n = an
n

n∑
i=1

ψτ (εi)Wi(x)rpcuYXpF uY (Yi), pF u(x)q− pcuYXpF uY (Yi),F u(x)qs (A.9)

∆6n = an
n

n∑
i=1

ψτ (εi)Wi(x)cuYXpF uY (Yi),F u(x)q. (A.10)
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We will show that all these quantities converge to 0 in probability. Starting with ∆3n, we have,
for a large n,

|∆3n| =

ˇ

ˇ

ˇ

ˇ

ˇ

an
n

n∑
i=1

ψτ (εi)Wi(x)pcuYXp pF uY (Yi), pF u(x)q
pGC(Yi − |x)−GC(Yi − |x)

1− pGC(Yi − |x)

ˇ

ˇ

ˇ

ˇ

ˇ

≤ an sup
t∈R

pcuYXp pF uY (t), pF u(x)q sup
t≤max1≤i≤n

∆i=1
Yi

ˇ

ˇ

ˇ

pGC(t|x)−GC(t|x)
ˇ

ˇ

ˇ

1− pGC(t|x)
1
n

n∑
i=1
|ψτ (εi)|Wi(x)

= OP(an) sup
t≤τFY

ˇ

ˇ

ˇ

pGC(t|x)−GC(t|x)
ˇ

ˇ

ˇ

1− pGC(t|x)
= oP(1),

under the condition that assumptions (C2), (C4)-(i), (C6) and (C7)-(i) are met.

The proofs of (A.8) and (A.9) are very similar in spirit. Hence, for the sake of brevity, we only
consider here (A.8). For any i = 1, . . . , n, there exists a θi ∈ (0, 1) such that,

pcuYXp pF uY (Yi), pF u(x)q− pcuYXpF uY (Yi), pF u(x)q = p pF uY (Yi)− F uY (Yi)q×

∂1pc
u
YX

´

F uY (Yi) + θip pF
u
Y (Yi)− F uY (Yi)q, pF u(x)

¯

,

where ∂j denotes the partial derivative with respect to the j-th argument. Therefore, for a large
n and under the bandwidth requirement,

|∆4n| ≤ an sup
t∈R
| pF uY (t)− F uY (t)| sup

u0 ∈ (0,1)
sup

u∈VFu(x)

|∂1 pc
u
YX(u0,u)|

1
n

n∑
i=1
|ψτ (εi)|Wi(x)

= oP(1),

provided assumptions (C4)-(i), (C5), and (C7)-(ii) are satisfied. Similarly, ∆5n = oP(1).
Lastly, ∆6n = oP(1), since

E(ψτ (ε)W (x) cuYXpF uY (Y ),F u(x)q) = 0,

and, by assumption (C4)-(ii),

1
n

n∑
i=1

ψτ (εi)Wi(x) cuYXpF uY (Yi),F u(x)q = OP(n−1/2).

Finally, inserting (A.6) in (A.5), we conclude that

an(pmτ (x)−mτ (x)) =
w(x)

fT |X(mτ (x)|x)
an
n

n∑
i=1

ψτ (εi)Wi(x)rpcuYXpF uY (Yi),F u(x)q− cuYXpF uY (Yi),F u(x)qs + oP(1),

which completes the proof.

Proof of Corollary 4.2

Given that, by the result of Theorem 4.1, the asymptotic behavior of pmτ (x) will be dictated by
the expression of the multivariate copula estimator, we will concentrate on the latter. Using the
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asymptotic expressions of both bivariate copulas along with the multivariate copula decomposition
of Section 2.3, under the required bandwidth conditions we have that,

an
`

pcuYXpu0,uq− cuYXpu0,uq− h2bYX(u0,u)
˘

= 1
?
n

n∑
j=1

rZnj(u0,u) + oP(1),

∀u ∈ (0, 1)2, uniformly in u0 ∈ (0, 1),

where

rZnj(u0,u) =
´

Znj1 (u0, u1)cu2pu0, u2q + Znj2 (u0, u2)cu1pu0, u1q

¯

cuX1X2|Y (u1, u2|u0)

bYX(u0,u) = rb1(u0, u1)cu2pu0, u2q + b2(u0, u2)cu1pu0, u1qs cuX1X2|Y (u1, u2|u0).

Therefore, using the result of Theorem 4.1, we may determine that

an

˜

pmτ (x)−mτ (x)− h2 w(x)
fT |X(mτ (x)|x)n

−1
n∑
i=1

ψτ (εi)Wi(x)bYX pF u(Yi),F u(x)q

¸

= w(x)
fT |X(mτ (x)|x)

?
n

1
n2

n∑
i=1

n∑
j=1

ψτ (εi)Wi(x) rZnj pF u(Yi),F u(x)q + oP(1).

Let us define
B(x) = w(x)

fT |X(mτ (x)|x)E pψτ (ε)W (x)bYX pF u(Y ),F u(x)qq .

Provided that assumption (C8) holds, we have

w(x)
fT |X(mτ (x)|x)n

−1
n∑
i=1

ψτ (εi)Wi(x)bYX pF u(Yi),F u(x)q = B(x) +OP(n−1/2),

from which it results that

an
`

pmτ (x)−mτ (x)− h2B(x)
˘

= w(x)
fT |X(mτ (x)|x)

?
n

1
n2

n∑
i=1

n∑
j=1

ψτ (εi)Wi(x) rZnj pF u(Yi),F u(x)q + oP(1). (A.11)

The last step of the proof is then to simplify the obtained expression on the right hand side of
the last equality. To that end, define Vn = n−2 ∑n

i=1
∑n
j=1 ψτ (εi)Wi(x) rZnj pF u(Yi),F u(x)q, and

observe that this is a V-statistic with the symmetric kernel

Ψn(Vi, Vj) = 1
2

”

ψτ (εi)Wi(x) rZnj pF u(Yi),F u(x)q + ψτ (εj)Wj(x) rZni pF u(Yj),F u(x)q

ı

,

where Vt = (Yt,Xt,∆t), t = i, j. As the statistic’s kernel depends on n, this suggests to apply
Corollary 1 in Martins-Filho and Yao (2006) which establishes the

?
n-equivalence between the

V-statistic and the Hájek-projection of its corresponding U-statistic (see e.g. Serfling (1980), page
189). Therefore, as E

´

Znjk (u0, uk)
¯

= 0 for all u0, uk, k = 1, 2, and E pΨn(Vi, Vj)q = 0, we have

Vn = n−1
n∑
i=1

λn pYi,∆i,Xi,xq + oP(n−1/2), (A.12)

where λn pYi,∆i,Xi,xq = E
”

ψτ (ε)W (x) rZni pF u(Y ),F u(x)q |Yi,∆i,Xi

ı

, provided that assump-
tion (C9) holds. Lastly, the result of Corollary 4.2 follows readily from the insertion of (A.12) in
(A.11) and the application of Lyapunov’s central limit theorem.
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