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Abstract. Detecting small sets of relevant patterns from a given dataset is a
central challenge in data mining. The relevance of a pattern is based on user-
provided criteria; typically, all patterns that satisfy certain criteria are considered
relevant. Rule-based languages like Answer Set Programming (ASP) seem well-
suited for specifying such criteria in a form of constraints. Although progress has
been made, on the one hand, on solving individual mining problems and, on the
other hand, developing generic mining systems, the existing methods either focus
on scalability or on generality. In this paper we make steps towards combining
local (frequency, size, cost) and global (various condensed representations like
maximal, closed, skyline) constraints in a generic and efficient way. We present a
hybrid approach for itemset and sequence mining which exploits dedicated highly
optimized mining systems to detect frequent patterns and then filters the results
using declarative ASP. Experiments on real-world datasets show the effectiveness
of the proposed method and computational gains both for itemset and sequence
mining.

Keywords: answer set programming, pattern mining, structured mining, sequence min-
ing, itemset mining

1 Introduction

Motivation. Availability of vast amounts of data from different domains has led to an
increasing interest in the development of scalable and flexible methods for data analysis.
A key feature of flexible data analysis methods is their ability to incorporate users’
background knowledge and different interestingness criteria. They are often provided
in the form of constraints to the valid set of answers, the most common of which is the
frequency threshold: a pattern is only considered interesting if it appears often enough.
Mining all frequent (and otherwise interesting) patterns is a very general problem in
data analysis, with applications in medical treatments, customer shopping sequences,
Weblog click streams and text analysis, to name but a few examples.

Most data analysis methods consider only one (or few) types of constraints, lim-
iting their applicability. Constraint Programming (CP) has been proposed as a general
approach for (sequential) mining of frequent patterns [1], and Answer Set Programming
(ASP) [6] has been proved to be well-suited for defining the constraints conveniently
thanks to its expressive and intuitive modelling language and the availability of opti-
mized ASP solvers (see e.g., [13,5,9] for existing approaches).



In general, all constraints can be classified into local constraints, that can be val-
idated by the pattern candidate alone, and global constraints, that can only be vali-
dated via an exhaustive comparison of the pattern candidate against all other candidates.
Combining local and global constraints in a generic way is an important and challeng-
ing problem, which has been widely acknowledged in the constrained-based mining
community. Although progress has been made, on the one hand, on solving individual
mining problems and, on the other hand, on developing generic mining systems, the
existing methods either focus on scalability or on generality, but rarely address both of
these aspects. This naturally limits the practical applicability of the existing approaches.

State of the art and its limitations. Purely declarative ASP encodings for frequent and
maximal itemset mining was proposed in [13]. In this approach, first every item’s inclu-
sion into the candidate itemset is guessed, and the guessed candidate pattern is checked
against frequency and maximality constraints. While natural, this encoding is not truly
generic, as adding extra local constraints requires significant changes in it. Indeed, for
a database, where all available items form a frequent (and hence maximal) itemset, the
maximal ASP encoding has a single model. The latter is, however, eliminated once re-
striction on the length of allowed itemsets is added to the program. This is undesired, as
being maximal is not a property of an itemset on its own, but rather its property in the
context of a collection of other itemsets [3]. Thus, ideally one would be willing to first
apply all local constraints and only afterwards construct a condensed representation of
them, which is not possible in [13].

This shortcoming has been addressed in the recent work [5] on ASP-based sequen-
tial pattern mining, which exploits ASP preference-handling capacities to extract pat-
terns of interest and supports the combination of local and global constraints. However,
both [5] and [13] present purely declarative encodings, which suffer from scalability
issues caused by the exhaustive exploration of the huge search space of candidate pat-
terns. The subsequence check amounts to testing whether an embedding exists (match-
ing of the individual symbols) between sequences. In sequence mining, a pattern of
size m can be embedded into a sequence of size n in O(nm) different ways, therefore,
clearly a direct pattern enumeration is unfeasible in practice.

While a number of individual methods tackling selective constraint-based mining
tasks exist (see Tab. 1 for comparison) there is no uniform ASP-based framework that
is capable of effectively combining constraints both on the global and local level and is
suitable for itemsets and sequences alike.

Contributions. The goal of our work is to make steps towards building a generic
framework that supports mining of condensed (sequential) patterns, which (1) effec-
tively combines dedicated algorithms and declarative means for pattern mining and (2)
is easily extendible to incorporation of various constraints. More specifically, the salient
contributions of our work can be summarized as follows:

– We present a general extensible pattern mining framework for mining patterns of
different types using ASP.

– We introduce a feature comparison, such as closedness under solutions, between
different ASP mining models and dominance programming, which is a generic
itemset mining language and solver.



Datatype Task [13] [5] [16] Our work

Itemset
frequent pattern mining X – X X

condensed (closed, max, etc) X∗ – X X
condensed under constraints – – X X

Sequence
frequent pattern mining – X – X

condensed (closed, max, etc) – X – X
condensed under constraints – X – X

Table 1: Feature comparison between various ASP mining models and dominance pro-
gramming (“–” : “not designed for this datatype”, X∗ : only maximal is supported)

– We demonstrate the feasibility of our approach with an experimental evaluation
across multiple itemset and sequence datasets.

2 Preliminaries

*** DS: to be contracted to 3 p. max ***
Let D be a dataset, L a language for expressing pattern properties or defining sub-

groups of the data, and q a selection predicate. The task of pattern mining is to find
Th(L, r, q) = {φ ∈ L | q(r, φ) is true} (see the seminal work [14]).

Pattern mining has been mainly studied in three settings: itemsets, sequences and
graphs. These settings are determined by the language of L. We focus on the first two
categories. In this section we briefly recap the necessary background both from the
fields of pattern mining and Answer Set Programming (ASP).

2.1 Patterns

Sergey: relative frequency should be defined somewhere in this section Itemsets. Item-

sets represent the most simple setting of frequent pattern mining. Let I be a set of
items {o1, o2, . . . , on}. Then a nonempty subset of I is called an itemset. A transaction
dataset D is a collection of itemsets, D = t1, . . . , tm, where ti ⊆ I . For any itemset α,
we denote the set of transactions that contain α as Dα = {i | α ⊆ ti, ti ∈ D} and we
refer to |Dα| as the support of α in D, written s(α). The cardinality (or length) of an
itemset α is the number of items contained in it, i.e., |α| = |{oi | oi ∈ α}|.

Definition 1 (Frequent Itemset). For a transaction dataset D and a frequency thresh-
old σ ≥ 0, an itemset α is frequent in D if s(α) ≥ σ.

Example 1. Consider a transaction dataset D from Tab. 2. We have I = {a, b, c, d, e}
and |D| = 3. For σ = 2, the following itemsets are frequent: α1={a}, α2={b},
α3={e}, α4={a, b}, α5={a, e} and α6={b, e}. ut



ID a b c d e

1 X X X X
2 X X X
3 X X

Table 2: Transaction database

ID Sequence
1 〈a b c d a e b〉
2 〈b c e b〉
3 〈a a e〉

Table 3: Sequence database

Sequences. A sequence is an ordered set of items 〈s1, . . . , sn〉. The setting of sequence
mining includes two related yet different cases: frequent substrings and frequent subse-
quences. In this work we focus on the latter.

Definition 2 (Embedding in a Sequence). Let S = 〈s1, . . . , sm〉 and S′ = 〈s′1, . . . , s′n〉
be two sequences of size m and n respectively with m ≤ n. The tuple of integers
e = (e1, . . . , em) is an embedding of S in S′ (denoted S ve S′) if and only if
e1 < . . . < em and for any i ∈ 1..m it holds that si = sei .

Example 2. For a dataset in Tab. 3 we have that 〈b c e b〉 @e1 〈a b c d a e b〉 for e1 =
(2, 3, 6, 7) and analogousy, 〈a a e〉 @e2 〈a b c d a e b〉 with e2 = (1, 5, 6).

We are now ready to define inclusion relation for sequences.

Definition 3 (Sequence Inclusion). Given two sequences S = 〈s1, . . . , sn〉 and S′ =
〈s′1, . . . , s′m〉, of length m and n resp. with n ≤ m, we say that S is included in S′ or S
is a subsequence of S′ denoted by S v S′ iff an embedding e of S in S′ exists, i.e.

S v S′ ↔ e1 < . . . < em and ∀i ∈ 1 . . .m : si = s′ei . (1)

Example 3. In Ex. 2 we have 〈b c e b〉 @ 〈a b c d a e b〉 but 〈a a e〉 6@ 〈b c e b〉. ut

Let DS be the subset of D such that S v S′ for all S′ ∈ DS for a given sequential
dataset D = {S1, . . . , Sn} and a sequence S.

Definition 4 (Frequent Sequence). For a sequential dataset D = {S1, . . . , Sn} and a
frequency threshold σ ≥ 0, a sequence S is frequent in D if |DS | ≥ σ.

Example 4. For a dataset in Tab. 3 and σ = 2, it holds that 〈b c e b〉 and 〈a a e〉 are
frequent, while 〈b d b〉 is not. ut

Note thatv and⊆ are incomparable relations. Indeed, consider two sequences s1 =
〈a b〉 and s2 = 〈b a a〉. While s1 ⊂ s2, we clearly have that s1 6@ s2.

2.2 Condensed Pattern Representations under Constraints

In data mining, constraints are typically specified by the user to encode domain back-
ground knowledge. In [17] four types of constraints are distinguished: constraints 1)
over the pattern (e.g., restriction on its length), 2) over the cover set (e.g., minimal fre-
quency), 3) over the inclusion relation (e.g., maximal allowed gap in sequential patterns)
and 4) over the solution set (e.g., condensed representations).



Orthogonally, constraints can be classified into local and global ones. A constraint
is local if deciding whether a given pattern satisfies it is possible without looking at
other patterns. For example, minimal frequency or maximal pattern length are local
constraints. On the contrary, deciding whether a pattern satisfies a global constraint
requires comparing it to other patterns. All constraints from the 4th group are global
ones. We are interested in global constraints related to condensed representations.

As argued in Sec. 1, the order in which constraints are applied influences the solu-
tion set [3]. In this work we take the same view as in [3] and aim at applying global
constraints only after the local ones.

We now present the notions required in our pattern mining framework. Here, the
definitions are given for itemsets; for sequences they are identical up to substitution of
⊂ with @ (subsequence relation). First, to rule out patterns that do not satisfy some of
the local constraints, we introduce the notion of valididy.

Definition 5 (Valid pattern under constraints). Let C be a constraint function from
L to {>,⊥} and p be a pattern in L, then a pattern is called valid iff C(p) = >,
otherwise it is referred as invalid.

Example 5. Let C be a constraint function checking whether a given pattern has length
at least 2. Then for Ex. 1, we have C(αi) = ⊥, i = 1..3 and C(αj) = >, j = 4..6. ut

For detecting patterns that satisfy a given global constraint, the notion of dominance
is of crucial importance.

Definition 6 (Dominated pattern under constraints). Let C be a constraint function,
and p be a pattern, then p is called dominated iff there exists a pattern p′ ∈ L such that
p <∗ p′ and p′ is valid under C.

Example 6. In Ex. 1 for the closedness constraints we have that α1 is dominated by α4

and α5. Analogously, α2 is dominated by α4 and α6, while α3 by α5 and α6. ut

Definition 7 (Condensed pattern under constraints). Let p be a pattern from L, and
let C be a constraint function, then a pattern p is called condensed under constraints
iff it is valid and not dominated under C.

In this work we primarily focus on the following condensed representations:

(i) Maximal. For itemsets p, q, p <∗ q holds iff p ⊂ q
(ii) Closed. For itemsets p, q, p <∗ q holds iff p ⊂ q ∧ support(p) = support(q)
(iii) Free. For itemsets p, q, p <∗ q holds iff q ⊂ p ∧ support(p) = support(q)
(iv) Skyline. For itemsets p, q, p <∗ q holds iff

(a) support(p) ≤ support(q) and size(p) < size(q) or
(b) support(p) < support(q) and size(p) ≤ size(q)

For brevity we refer to the above constraints as max , cl , sky , and free.



2.3 Answer Set Programming

Answer Set Programming (ASP) [6] is a declarative problem solving paradigm oriented
towards difficult search problems. ASP has its roots in Logic Programming and Non-
monotonic Reasoning. An ASP program Π is a set of rules of the form

a 0 :- b 1, ..., b k, not b k+1, ..., not b m, (2)

where 1 ≤ k ≤ m, a 0 is a classical literal, and not denotes default negation. A rule
r of the form (2) is called a fact if m = 0. We omit the symbol :- when referring to
facts. A rule without head literals is a constraint. A rule is positive if k = m.

An ASP program Π is ground if it consists of only ground rules, i.e. rules without
variables. Ground instantiation Gr(Π) of a nonground program Π is obtained by sub-
stituting variables with constants in all possible ways. The Herbrand universe HU (Π )
(resp. Herbrand base HB(Π )) of Π , is the set of all constants occurring in Π , (resp.
the set of all possible ground atoms that can be formed with predicates and constants
occurring in Π). Any subset of HB(P) is a Herbrand interpretation. MM (Π ) denotes
the set-inclusion minimal Herbrand interpretation of a ground positive program Π .

The semantics of ASP programs is given in terms of its answer sets. An interpre-
tation I of Π is an answer set (or stable model) of Π iff I ∈ MM (ΠI), where ΠI is
the Gelfond-Lifschitz (GL) reduct [6] of Π , obtained from Gr(Π) by removing (i) each
rule r such that Body−(r) ∩ I 6= ∅, and (ii) all the negative atoms from the remaining
rules. The set of answer sets of a program Π is denoted by AS(Π).

Other relevant language constructs include conditional literals and cardinality con-
straints [22]. The former are of the form a:b 1, ..., b m, the latter can be writ-
ten as s{c 1, ..., c n }t, where a and b i are possibly default negated literals
and each c j is a conditional literal; s and t provide lower and upper bounds on the
number of satisfied literals in a cardinality constraint. For instance, 1{a(X):b(X)}3
holds, whenever between 1 and 3 instance of a(X) (subject to b(X)) are true. Further-
more, aggregates are of the form #count{J: item(I,J)}<N. This atom is true,
whenever for every I, s.t. item(I,J) is true, the number of J does not exceed N.

Example 7. Consider the program Π given as follows:
(1) pattern(1); (2) pattern(2); (3) item(1,a);

(4) item(1,b); (5) item(2,a);

(6) not subset(J,I):-pattern(I), item(I,V), I != J,

pattern(J), not item(J,V).

The grounding Gr(Π ) of Π is obtained from Π by substituting I, J, V with 1,2
and b resp. The GL-reductΠI′(Π) for I ′ containing facts ofΠ and not subset(2,1)
differs from Gr(Π ) only in that notitem(2,b) is not in the body of the rule. Since
I ′ is a minimal model of ΠI′(Π), it is also an answer set of Π . ut

3 Hybrid ASP-based Mining Approach

In this section we present our hybrid method to frequent pattern mining. Unlike previ-
ous ASP-based mining methods, our approach combines highly optimized algorithms



for frequent pattern discovery with the declarative ASP means for their convenient post-
processing. In this work we focus on itemset and sequence mining; however our ap-
proach can be also applied to subgraph discovery (details are left for future work).

Given a frequency threshold σ, a (sequential) dataset D and a set of constraints
C = Cl ∪ Cg , where Cl and Cg are respectively local and global constraints, we proceed
in two steps as follows.

Step 1. First, we launch a dedicated optimized algorithm to extract all (sequential)
frequent patterns from a given dataset, satisfying the minimal frequency threshold σ.
Here, any frequent pattern mining algorithm can be invoked, the ones we used: Eclat
[24] for itemsets and PPIC [2] for sequences.

Step 2. Second, the computed patterns are postprocessed using the declarative means
to select a set of valid patterns (i.e., those satisfying constraints in Cl). For that the
frequent patterns obtained in Step 1 are encoded as facts item(i,j) for itemsets and
seq(i,j,p) for sequences where i is the pattern’s ID, j is an item contained in it and
p is its position. The local constraints in Cl are represented as ASP rules, which collect
IDs of patterns satisfying constraints from Cl into the dedicated predicate valid, while
the rest of the IDs into the not valid predicate.

Finally, from all valid patterns a desired condensed representation is constructed by
storing patterns i in the selected predicate if they are not dominated by other
valid patterns based on constraints from Cg . Following the principle of [13], in our
work every answer set represents a single desired pattern, which satisfies both local and
global constraints. The set of all such patterns forms a condensed representation. In
what follows we discuss our encodings of local and global constraints in details.

3.1 Encoding Local Constraints

In our declarative program we specify local constraints by the predicate valid, which
reflects the conditions stated in Def. 5. For every constraint in the given set Cl we have
a set of dedicated rules, stating when a pattern is not valid. For example, a constraint
checking whether the cost of items in a pattern exceeds a given threshold N is encoded
using the following rule:

not valid(I) :- #sum{C:item(I,J),cost(J,C)} > N,
pattern(I).

A similar rule for sequences will be as follows:

not valid(I) :- #sum{C:seq(I,J,P),cost(P,C)} > N,
pattern(I).

Similarly, one can define arbitrary domain constraints on patterns.

Example 8. Consider a dataset storing moving habits of young people during their stud-
ies. Let the dedicated frequent sequence mining algorithm return the following pat-
terns: s1 = 〈bG mF ba mG ma〉; s2 = 〈bF mG ba mF ma〉; s3 = 〈bA ba ma〉, where



� �
1 % people born in Germany or France are Europeans
2 seq(X,e,P) :- seq(I,bG,P)
3 seq(X,e,P) :- seq(I,bF,P)
4 % collect moving actions regardless of a European country
5 seq(I,m,P) :- seq(I,mG,P)
6 seq(I,m,P) :- seq(I,mF,P)
7 % keep patterns about Europeans who finished masters in Germany
8 keep(X) :- pattern(X), seq(X,ma,P’+1), seq(X,mG,P’), seq(X,e,P)
9 keep(X) :- pattern(X), seq(X,bG,P’), not seq(X,m,P), P>P’

10 % if a pattern should not be kept, it is not valid
11 not_valid(X) :- pattern(X), not keep(X)� �

Listing 1.1: Moving Habits of People during Studies

bG , bF , bA stand for born in Germany, France and America, ba,ma stand for bachelors
and masters and the predicates mG ,mF reflect that a person moved to Germany and
France resp. Suppose, we are only interested in moving habits of those Europeans, who
got masters degree from a German university. The local domain constraint expressing
this would state that (1) bA should not be in the pattern, while (2) either both bG and
ma should be in it without any m in between or mG should preceed ma . These con-
straints are encoded in the program in List. 1.1. From the answer set of this program we
get that both s2 and s3 are not valid, while s1 is. ut

To combine all local constraints from Cl we add to our program a generic rule spec-
ifying that a pattern I is valid whenever not valid(I) cannot be inferred.

valid(I) :- pattern(I), not not valid(I)

Patterns i, for which valid(i) is deduced are then further analysed to construct
a condensed representation based on global constraints from Cg .

3.2 Encoding Global Constraints

The key for encoding global constraints is the declarative formalization of the domi-
nance relation (Def. 6). For example, for itemsets the maximality constraint boils down
to pairwise checking of subset inclusion between patterns. For sequences this requires
a check of embedding existence between sequences.

Regardless of a pattern type from L and a constraint from Cg every encoding pre-
sented in this section is supplied with a rule, which guesses (selected/1 predicate)
a single valid pattern to be a candidate for inclusion in the condensed representation,
and a constraint that rules out dominated patterns thus enforcing a different guess.

1 {selected(I) : valid(I)} 1.

:- dominated.



� �
1 % I is not a subset of J if I has items that are not in J
2 not_subset(J) :- selected(I), item(I,V), not item(J,V),
3 valid(J), I != J.
4 % derive dominated whenever I is subset of J
5 dominated :- selected(I), valid(J),
6 not not_subset(J), I != J.� �

Listing 1.2: Maximal Itemsets Encoding

� �
1 % support and size comparison among patterns
2 g_in_size_and_geq_in_freq(J) :- selected(I), support(I,X),
3 support(J,Y), size(I,Si),
4 size(J, Sj), Si < Sj, X <= Y.
5 geq_in_size_and_g_in_freq(J) :- selected(I), support(I,X),
6 support(J,Y), size(I,Si),
7 size(J, Sj), Si <= Sj, X < Y.
8 % derivation of the domination condition
9 dominated :- valid(J), g_in_size_and_geq_in_freq(J).

10 dominated :- valid(J), geq_in_size_and_g_in_freq(J).� �
Listing 1.3: Skyline Itemsets Encoding

In what follows, we discuss concrete realizations of the dominance relation both
for itemsets and sequences for various global constraints, i.e., we present specific rules
related to the derivation of dominated/0 predicate.
Itemset Mining. We first provide an enoding for maximal itemset mining in List 1.2.
To recall, a pattern is maximal if none of its supersets is frequent. An itemset I is
included in J iff for every item i ∈ I we have i ∈ J . We encode the violation of this
condition in lines (1)-(3). The second rule presents the dominance criteria.

For closed itemset mining a simple modification of List 1.2 is required. An itemset
is closed if none of its supersets has the same support. Thus to both of the rules from
List. 1.2 we need to add atoms support(I,X), support(J,X), which store the
support sets of I and J (output by the dedicated algorithms).

For free itemset mining the rules of the maximal encoding are changed as follows:� �
4 not_superset(J) :- selected(I), item(J,V), not item(I,V),
5 valid(J), I != J.
6 dominated :- selected(I), valid(J), support(I,X),
7 I != J, not not_superset(J), support(J,X).� �

Finally, the skyline itemset encoding is given in List 1.3, where the first two rules
specify the conditions (a) and (b) for skyline itemsets from Sec. 2.
Sequence Mining. The subpattern relation for sequences is slightly more involved,
than for itemsets, as it preserves the order of elements in a pattern. To recall, a sequence
S is included in S′ iff an embeding e exists, such that S ve S′.



� �
1 % if V appears in a valid pattern I, derive in(V,I)
2 in(V,I) :- seq(I,V,P), valid(I).
3 % I is not a subset of J if I has V that J does not have
4 not_subset(J) :- selected(I), valid(J), I != J,
5 seq(I,V,P), not in(V,J).
6 % if for a subseq <V,W> in I there is V followed
7 % by W in J then deduce domcand(V,J)
8 domcand(V,J,P) :- selected(I), seq(I,V,P), seq(I,W,P+1), I != J
9 valid(J), seq(J,V,Q), seq(J,W,Q’), Q’>Q.

10 % if domcand(V,J) does not hold for some V in I
11 % and a pattern J then derive not dominated by(J)
12 not_dominated_by(J) :- selected(I), seq(I,V,P), seq(I,W,P+1),
13 I != J, valid(J), not domcand(V,P,J).
14 % if neither not dominated by(J) nor not subset of(J)
15 % are derived for some J, then I is dominated
16 dominated :- selected(I), valid(J), I != J,
17 not not_subset_of(J), not not_dominated_by(J).� �

Listing 1.4: Maximal Sequence Encoding

In List. 1.4 we present the encoding for maximal sequence mining. A selected pat-
tern is not maximal if it has at least one valid superpattern. We rule out patterns that are
for sure not superpatterns of a selected sequence. First, obviously J is not a superpattern
of I if it is not its superset (lines (4)-(5)), i.e., if not subset(J) is derived, then J
does not dominate I. If J is a superset of I then to ensure that I is not dominated by J,
the embedding existence has to be checked (lines (6)-(9)). I is not dominated by J if an
item exists in I, which together with its sequential neibourgh cannot be embedded in
J. This condition is checked in lines (10)-(13), where domcand(V,J,P) is derived
if for an item V at position P and its follower, embedding in J can be found.

The encoding for closed sequence mining is obtained from the maximal sequence
encoding analogously as it is done for itemsets. The rules for free sequence mining are
constructed by substituting lines (4)-(13) of List. 1.4 with the following ones:� �

4 not_superset(J) :- selected(I), in(V,J),
5 not in(V,I), I != J.
6 domcand(V,J) :- selected(I), seq(J,V,P), item(J,P+1,W),
7 item(I,V,Q), seq(I,W,Q’),Q’>Q, I != J.
8 not_dominated_by(J) :- selected(I), valid(J), I != J,
9 seq(J,V,P), seq(J,W,P+1),

10 not domcand(V,J).� �
Finally, the encoding for mining skyline sequences is given in List. 1.5. The condi-

tions (a) and (b) from Sec. 2 are tested in lines (9)-(12), ensuring that neither (a) nor (b)
hold for any valid pattern J.



� �
1 % (1) sup(I) <= sup(J) and size(I) < size(J)
2 geq_sup_g_size(J) :- selected(I), valid(J), I != J,
3 support(I,X), support(J,Y), X<=Y,
4 size(I,X’), size(J,Y’), X’<Y’.
5 % (2) sup(I) < support(J) and size(I) <= size(J)
6 g_sup_geq_size(J) :- selected(I), valid(J), I != J,
7 sup(I,X), support(J,Y), X<Y,
8 size(I,X’), size(J,Y’), X’<=Y’.
9 % if neither (1) nor (2) holds for J, I is not dom. by J

10 not_dominated_by(J) :- selected(I), I != J, valid(J),
11 not geq_sup_g_size(J),
12 not g_sup_geq_size(J)
13 % otherwise it is
14 dominated :- selected(I), valid(J), I != J,
15 not not_dominated_by(J).� �

Listing 1.5: Sky Sequence Encoding

4 Evaluation

In this section we evaluate the proposed hybrid approach. More specifically, we inves-
tigate the following experimental questions.

– Q1: how does the runtime of our method compare to the existing ASP-based se-
quence mining models?

– Q2: what is the runtime gap between the specialized mining languages such as
dominance programming and our method?

– Q3: what is the influence of local constraints on the runtime of our method?

In Q1 we compare with the ASP-based model from [5], in Q2 we investigate how
big is the runtime difference between specialized mining languages for itemset mining
and our ASP-based model. We do not compare our method with the existing ASP model
[13] for itemset mining, since the latter focuses only on frequent itemset mining and is
not applicable to the construction of condensed representations under constraints as in
[16]. Finally, in Q3 we look at the effect on runtime caused by the addition of local
constraints.

We evaluated our hybrid mining approach on various standard itemset and sequence
datasets including Mushrooms, Vote1, JMLR, Unix Users and iPRG2

All experiments have been performed on a desktop with Ubuntu 14.04 64-bit en-
vironment, Intel Core i5-3570 4xCPU 3.40GHz and 8GB memory using clingo 4.5.4 3

and C++14 for the wrapper. The timeout is set to one hour. Free pattern mining demon-
strates the same runtime patterns as closed, due to the symmetric encoding, and is omit-
ted here. We do not perform comparison with algorithms dedicated to only one type

1 https://dtai.cs.kuleuven.be/CP4IM/datasets/
2 https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
3 http://potassco.sourceforge.net



(a) Comparing with ASP sequence model [5]
on the 200 generated sample (closed)

(b) Maximal sequence patterns

(c) Closed sequence patterns (d) Skyline sequence patterns

Fig. 1: Investigating Q1: comparison with pure ASP model (1a) and maximal (1b),
closed (1c), skyline (1d) sequence mining evaluation on datasets: JMLR, Unix Users,
iPRG

of problems, since they are known to be more efficient than general declarative mining
approaches [17].

To investigate Q1, in Figure 1a, we compare the ASP model [5] with our method
on the default 200 sequence sample, generated by the tool4 from [5]. We performed the
comparison on the synthetic data, as the sequence-mining model [5] failed to compute
condensed representations on any of the standard sequence datasets for any support
threshold value. One can observe that our method consistently outperforms the purely
declarative approach from [5] and the advantage naturally becomes more apparent for
smaller threshold values.

In Fig. 1b, 1c and 1d we present the runtimes of our method for maximal, closed
and skyline pattern mining settings resp. on JMRL, Unix Users and iPRG datasets.
In contrast to [5] our method managed to produce results on all of these datasets for
reasonable threshold values within a couple of minutes (the runtime on Unix Users
shows slight fluctuations within a couple of seconds Sergey: it is just runtime is low on
that dataset, so 2 second fluctuations occur).

To investigate Q2, we compare out-of-the-box performance of Dominance Program-
ming (DP) with our approach on closed, maximal and skyline itemset mining problems
using standard datasets Vote and Mushrooms. As we see in Fig. 2a and 2b, on aver-
age, DP is one-two orders of magnitude faster, this gap is, however, diminishing with

4 https://sites.google.com/site/aspseqmining



(a) Closed Itemset Mining: comparing with DP
on Vote, Mushrooms datasets

(b) Maximal Itemset Mining: comparing with
DP on Vote, Mushrooms datasets

(c) Skyline Itemset Mining: comparing on Vote
dataset with out-of-the box and fine-tune DP

(d) Closed Itemset Mining: local constraint en-
able faster propagation and speedup the search

Fig. 2: Investigating Q2: comparison with Dominance Programming (2a, 2b, 2c); and
Q3: the effect of local constraints on runtime (2d)

the growth of the frequency. Surprisingly, our approach is significantly faster than DP
out-of-the-box for skyline patterns (see Fig. 2c). This holds also for other datasets, not
depicted in the figure. It is possible to fine-tune DP to change its behaviour to close this
gap, namely we analyzed all options of DP and found that besides of the default flag
skyline for skyline patterns, it has the option skyline+, which computes the same pat-
terns but applies operators in a different order. Then DP demonstrates one-two orders
of magnitude better performance, as can be seen in Fig. 2c. However, fine-tuning such
a system requires either understanding of the inner mechanisms of the system or trying
all available options.

To address Q3 we introduced three simple local constraints for the itemset mining
setting from Q2: two size constraints size(I) > 2 and size(I) < 7 and a cost constraint:
each item gets weight equal to its value with the maximal budget of n, which is set to
20 in the experiments (Vote has 435 transactions and 48 binary items and Mushrooms
has 8124 and 119 respectively). In Figure 2d, we present the results for closed item-
set mining with and without local constraints (experiments with other local constraints
demonstrate a similar runtime pattern and are not depicted here for space reasons). As
we see local constraints do allow for better propagation and speedup the search. One of
the key design features of our encoding is the filtering technique used to select candi-
date patterns among only valid patterns. This effect can be clearly seen, e.g., on the Vote



dataset in Fig. 2d, where for certain frequencies the runtime gap is close to an order of
magnitude.

In all experiments, the first step of the method contributes to less than five percent
of runtime. Overall, our method can handle real world datasets for sequential pattern
mining as demonstrated in Q1. In many cases its performance is close to the special-
ized mining languages, as shown in Q2. Finally, as demonstrated in Q3 various local
constraints can be effectively incorporated into our encoding bringing additional per-
formance benefits.

5 Related Work

The problem of enhancing pattern mining by injecting various user-specified constraints
has recently gained increasing attention. On the one hand, optimized dedicated ap-
proaches exist, in which some of the constraints are deeply integrated into the mining
algorithm, e.g., [19]. On the other hand, purely declarative methods based on Constraint
Programming [21,17,15], SAT solving [12,11] and ASP [13,5,9] have been proposed.

Techniques from the last group are the closest to our work. However, unlike our
method, they typically focus only on one particular pattern type and consider local
constraints and condensed representations in isolation [20,23] (with exceptions [16,7]
for CP-based itemset mining, [5] for ASP-based sequence mining, and a theoretical
framework for structured pattern mining [8]).

In [13,5] in contrast to our work, purely declarative ASP methods have been pro-
posed, which do not admit the integration of highly-optimized mining algorithm, which
limits their practicability.

Paramonov et al. presents an initial formalization of graph mining using logic pro-
gramming in [18] and Van der Hallen et al. [10] cover theoretical and practical problems
of modeling graph mining using pure logical models indicating that higher order rea-
soning or a hybrid approach is needed to model complex structured mining problems in
general case.

6 Conclusion

We have presented a hybrid approach for condensed itemset and sequence mining,
which uses the optimized dedicated algorithms to determine the frequent patterns and
post-filters them using a declarative ASP program. The idea of exploiting ASP for pat-
tern mining is not new; it was studied for both itemsets and sequences. However, un-
like previous methods we made steps towards optimizing the declarative techniques by
making use of the existing highly optimized methods and also integrated the dominance
programming machinery in our implementation to allow for combining local and global
constraints on a generic level.

One of the possible future directions is to generalize the proposed approach into
an iterative algorithm, where dedicated data mining and declarative methods are inter-
linked and applied in an iterative fashion. Indeed, in principle a set of constraints can
be split into two parts: those that can be effectively applied using declarative means and
those for which dedicated algorithms are expected to be more effective.



Another promising research stream concerns a common decomposition technique
often exploited in databases. Here, one can decompose a given dataset into several parts,
such that the frequent patterns can be identified in these parts separately, and then the
results for each of the parts can be conveniently combined. Our hybrid constraint-based
mining approach can greatly benefit from such decomposition techniques. In fact de-
composition can be performed at different levels. First possibility is to split the original
dataset into components and then apply our hybrid approach on each component sepa-
rately. Second option would be perform data splitting on the pattern level, i.e., once the
frequent patterns are computed, we could come up with their splitting and then perform
post-processing on every pattern group considered individually. Yet combinations of
the two strategies are possible.

Orthogonal to this, one can exploit HEX-programs [4], which effectively combine
logic programming with external computations in the of hybrid mining.

Last but not least, materialization of the presented ideas on other pattern types in-
cluding graphs and sequences of itemsets instead of sequences of individual symbols is
a promising and interesting future direction.
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