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How visual experience impacts 
the internal and external spatial 
mapping of sensorimotor functions
Virginie Crollen1,2,3, Geneviève Albouy4, Franco Lepore3 & Olivier Collignon2

Tactile perception and motor production share the use of internally- and externally-defined coordinates. 
In order to examine how visual experience affects the internal/external coding of space for touch and 
movement, early blind (EB) and sighted controls (SC) took part in two experiments. In experiment 1, 
participants were required to perform a Temporal Order Judgment task (TOJ), either with their hands in 
parallel or crossed over the body midline. Confirming previous demonstration, crossing the hands led to 
a significant decrement in performance in SC but did not affect EB. In experiment 2, participants were 
trained to perform a sequence of five-finger movements. They were tested on their ability to produce, 
with the same hand but with the keypad turned upside down, the learned (internal) or the mirror 
(external) sequence. We observed significant transfer of motor sequence knowledge in both EB and SC 
irrespective of whether the representation of the sequence was internal or external. Together, these 
results demonstrate that visual experience differentially impacts the automatic weight attributed to 
internal versus external coordinates depending on task-specific spatial requirements.

Our ability to locate and act on objects in space is a fundamental requirement of our daily life activities. This 
function is generally achieved by monitoring the position and movement of the body in relation to events located 
in external space. In touch, spatial localization is initially defined by which receptors on the skin are active; that is, 
in a skin-based or internal reference frame. However, because the limbs move in the space surrounding the body, 
the spatial location of an object that enters in contact with the skin and/or on which an action is made requires 
the brain to integrate internal coordinates with information about current body posture. This process has been 
referred to as tactile remapping1, 2 and has been denoted as occurring in external coordinates. The external refer-
ence frame refers to a spatial coordinate system that abstracts from the original source but that can still be egocen-
tric – eye-centered, head-centered or trunk centered. “External” should therefore not be understood as implying 
independence of the body3, 4. Within this context, tactile localization has been recently defined as a two-step 
process, in which tactile information (internal coordinates) are first remapped into an external representation3. 
Then anatomical and external spatial information are integrated according to a specific weighting scheme.

The most widespread experimental paradigm that has been used to examine which weighting scheme is asso-
ciated to the spatial localization of touch is probably the temporal order judgment task (TOJ)5, 6. In this task, 
participants have to determine, with their hands uncrossed or crossed over the body midline, which of their two 
hands received a tactile stimulus first. Crossing the hands actually induces a conflict between the internal and 
external coordinate systems: with crossed hands, the right hand lies in the left hemispace while the reverse is true 
for the left hand5. Manipulations of posture should not affect performance if spatial localization relied exclusively 
on internal coordinates. In contrast, if a posture manipulation induces changes in task performance, this would 
be an indication that the external reference frame has been used to code tactile stimulus location. As sighted 
adults are strongly impaired in the TOJ task while responding with their hands crossed over the body midline5, 6,  
the weighting scheme of touch localization in this population seems to automatically favor, even when it is not 
necessary, an external reference frame.

In contrast to sighted and late blind individuals, congenitally blind people do not manifest any crossing effects 
in a static TOJ task7. The same observation has interestingly been made whenever congenitally or early blind had 
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to process tactile stimuli8, 9, the auditory Simon effect10, pointing movements toward memorized proprioceptive 
targets11 and even numerical spatial relation12. While these findings together suggest that vision drives the devel-
opment of the automatic integration of internal and external coordinates5–7, 13–16, recent results demonstrated that 
bimanual coordination in the congenitally blind was constrained by external-spatial factors, like in the sighted17 
and that external coordinates may affect tactile localization in congenitally blind in the context of an action that 
requires external spatial coding (i.e., bimanual arm movements with uncrossed and crossed start and end pos-
tures18). It is therefore conceivable that congenitally blind do integrate information from internally and externally 
defined reference frames, but that they do so according to another weighting scheme than the sighted. Integration 
in the congenitally blind could be restricted to situations in which the use of the non-preferred external reference 
frame is required by the task2, 18, 19. The experiments reported above suggest that movement is a good candidate 
to bias spatial localization towards an external coordinate system in sighted as well as in blind individuals. As 
movements are commonly used to interact with objects located in the external world (e.g., typing on a computer), 
relying on an external representation within a motor context would indeed seem more appropriate even in early 
blind individuals.

Interestingly, within the motor literature, a variety of different laboratory-based protocols demonstrated that 
motor sequence learning involves, like touch perception, the processing of internal and external spatial coordi-
nates. This procedural learning actually refers to the process by which simple, stereotyped movement elements 
come to be performed effortlessly as a unitary well- rehearsed sequence. In the most classical experiments inves-
tigating this process, participants are required to use the fingers of the right or left hand to either press buttons 
on a keyboard, or to lightly touch one’s own thumb in a precise and sequential order. The sequence of movements 
may be explicitly20, 21 or implicitly learned22, self-initiated20, cued by visual or acoustic stimuli23, or interleaved 
with random movements24. But, more importantly for our purposes, the sequence of movements can be learned 
as both a sequence of finger movements (coded in internal coordinates) and as a sequence of response buttons 
(coded in external coordinates). These two spatial coordinates can be distinguished by probing skill with the 
response box turned upside-down (for a review, see ref. 25). Internal representation of the sequence is assessed 
by changing the sequence of response locations but preserving the specific pattern of finger movements learned 
during training; external representation is assessed by changing the specific pattern of finger movements while 
preserving the sequence of response locations. Despite all the methodological differences of the various motor 
sequence learning tasks described above, participants typically increase the velocity of their finger movements 
and decrease the interval between successive key presses with practice, resulting in a decrease of the number of 
errors made (a measure of accuracy) and in a decrease of the duration necessary to complete the internal and 
external representations of the learned sequence (a measure of speed). While motor sequence learning has been 
extensively studied in the sighted population, we still don’t know whether blindness may affect this procedural 
learning as it affects touch perception.

In this paper, we therefore examined whether vision may differentially shape the use of internal versus exter-
nal spatial representations of touch and motor sequence learning. Early blind and sighted controls were required 
to perform 2 tasks. The first task was a tactile Temporal Order Judgment task (TOJ6) in which participants had 
to determine, with their hands uncrossed or crossed over the body midline, which of their two hands received a 
tactile stimulus first. The second task was a motor sequence learning task26. In this task, participants were trained 
to perform a sequence of five fingers movements. After the training session, participants were tested on their 
ability to produce, with the same hand but with the keypad turned upside down, the learned (internal condition) 
or the mirror sequence (external condition). While the TOJ task involves passive touch, action is required to per-
form the motor sequence learning task. Therefore, if visual deprivation prevents touch localization to be biased 
towards an external reference frame, but does not prevent the use of external coordinates in the motor sequence 
learning task, early blind should not manifest any crossing effects in the TOJ task but should be able to produce 
the internal and external configurations of the learned motor sequence. The use of these tasks on the same par-
ticipants represents a unique opportunity to test the idea that early blind do integrate information from different 
reference frames, but use the external coordinates with a higher selectivity according to the requirements of the 
task, therefore using another weighting scheme than the sighted17, 18.

Method
Participants. Eleven blind participants and 11 sighted controls (SC) took part in the study. The SC and blind 
groups were matched in terms of age, sex and musical knowledge (i.e., number of practices a week). The blind 
group was composed of 3 females and 8 males ranging in age from 21 to 61 years old with a mean age of 42 years 
(SD = 13.74). Nine participants were right handed, 2 were ambidextrous. Causes of blindness included detach-
ment of the retina, congenital cataract, optic nerve burned, retinitis pigmentosa, congenital malformation, ret-
inoblastoma, medical accident, thalidomide, retinopathy of prematurity and Leber’s congenital amaurosis. Nine 
participants were congenitally blind (CB), two were early blind (EB). One lost his sight at 2 months, and one lost 
vision in the left eye at 10 months and vision in the right eye at 3 years. In this group (that we will call thereafter 
the EB group), 7 participants had musical training. Blind individuals were totally blind or had only rudimentary 
sensitivity for brightness differences but never experienced patterned vision. The SC group was composed of 4 
females and 7 males ranging in age from 21 to 68 years old with a mean age of 43 years (SD = 14.13). As in the EB 
group, 7 participants of the SC group were trained musicians (4 of them were professional musicians). Musical 
abilities of both groups were matched as it has already been demonstrated that musicians show greater efficiency 
than non-musicians in motor sequence learning task27. Sighted participants were blindfolded when performing 
the tasks. The samples size was determined by the number of blind participants we were able to recruit on a 6 
months period. A minimal number of 10 participants was used as a cut-off since previous studies7 have shown 
reliable results with such a number. All the procedures were approved by the Research Ethics Boards of the 
University of Montreal. All experiments were performed in accordance with relevant guidelines and regulations 
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and informed consent was obtained from all participants. Below, we report all experimental manipulations, all 
exclusions of data (if any), and all evaluated measures of the study.

Tasks. Temporal order judgment task. In this task, we used a similar procedure as the one applied by Röder 
and collaborators7. Two successive tactile stimuli were presented for 10 ms to the distal phalanxes of the left and 
right middle fingers at 10 different stimulus onset asynchronies (SOAs): −200, −90, −55, −30, −15, 15, 30, 55, 
90, 200. Negative values indicated that the first stimulus was presented to the participant’s left hand; positive val-
ues indicated that the first stimulus was presented to the participant’s right hand. Tactile stimuli were delivered 
using a pneumatic tactile stimulator (Institute for Biomagnetism and Biosignal Analysis, University of Muenster, 
Germany). A plastic membrane (1 cm in diameter) was attached to the distal phalanxes of the left and right 
middle fingers and was inflated by a pulse of air pressure delivered through a rigid plastic tube. The plastic tube 
connecting the stimulator to the participants’ finger tips were inserted into the testing room through a hole pad-
ded with sound attenuating foam to ensure that tactile stimulations were completely silent from the inside of the 
room. Participants had to press a response button placed below the index finger of the hand that they perceived 
to have been stimulated first. Participants were asked to perform the task either with their hands in a parallel 
posture (i.e., uncrossed posture) or with their arms crossed over the body midline. The order of posture condi-
tions was counterbalanced across participants. Hand posture was altered every two blocks. Participants had to 
respond within a random interval ranging from 3000 to 4000 ms (from the onset of the target) otherwise the trial 
was terminated. Each SOA was presented 32 times in both hand postures, giving rise to 640 trials in total. These 
640 trials were presented through 8 blocks of 80 stimuli. Prior to the experiment, participants had to complete 
two blocks of 16 practice trials (one block in the uncrossed posture followed by one block in the crossed posture). 
Stimuli were delivered and reaction times were recorded using Presentation software (Neurobehavioral Systems 
Inc.) running on a Dell XPS computer using a Windows XP operating system. The two response keys were placed 
40 cm in front of the participant’s body and 50 cm away from each other. During testing, participants sat in a silent 
room with the head restrained by a chin rest. Participants also wore earplugs to mask any sounds made by the 
operation of the tactile stimulators.

Motor sequence learning task. This task involved 2 separate practice sessions referred to as the train-
ing and the representation test sessions. On each period, participants had to tap on a keyboard, with their 
non-dominant hand, a five-element finger sequence as rapidly and as accurately as possible. The sequence to 
perform was explicitly told to the participants before training. The sequence was performed in 14 successive 
practice blocks during the training session and 4 successive blocks during the representation test session, each 
practice block (composed of 60 key presses, a maximum of 12 repetitions of the same sequence) being separated 
by 15-second rest intervals (Fig. 1). During the training period, participants had to perform the sequence in a 
usual set-up (i.e., with the non-dominant hand on the keyboard and the keyboard upside-up). Two different 

Figure 1. Motor sequence learning task. Training panel: All the participants were trained with the usual set-up 
(hand on the keypad). Representation test panel: immediately after initial training, switching the keypad and 
hand coordinates upside down allowed us to investigate the EXTERNAL (same spatial sequence but different 
finger movements) and INTERNAL (same finger movements but different spatial sequence) representations. 
Participants were tested on both representations with two different motor sequences: 41324 (left side of the 
figure) vs. 23142 (right side of the figure).
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sequences were used to allow the investigation of the internal and external representations within subject. As a 
within-subject design was used and in order to avoid between-sessions retention of motor performance, partic-
ipants were trained on a different sequence at each occasion (either 4 1 3 2 4 or 2 3 1 4 2, where 1 corresponds 
to the index finger and 4 to the little finger, see Fig. 1). These 2 sequences had the same level of complexity: the 
length of the 2 sequences (41324 vs. 223142) was the same (i.e., 5 elements) and the rule defining the architec-
ture of the sequences was identical (i.e., 3 fingers pressed once and one finger pressed twice in a sequence) (see 
also supplemental data). During the representation test session, participants had to perform the sequence with 
the hand and the keyboard turned upside-down. The presence of external and internal representations of the 
sequence was assessed in this session at an individual level. The external representation was assessed by changing 
the finger movements that participants needed to perform, while preserving the spatial locations of the response 
buttons on the reverted key-pad (from sequence 4 1 3 2 4/2 3 1 4 2 to their mirror configurations 1 4 2 3 1/3 2 4 
1 3, respectively). The internal representation of the sequence was in contrast assessed by changing the spatial 
locations of the response buttons while preserving the order of finger movements learned during training (i.e., 
sequence 4 1 3 2 4 or 2 3 1 4 2, see Fig. 1). All participants were tested on both representations in approximately 
one week of interval. The order of representation tested (external or internal) and the sequences used were coun-
terbalanced across participants. On session 1, each participant practiced one of the two sequences (41324 or 
23142) and was subsequently tested on one of the two transfer conditions (either external or internal). On session 
2, each participant practiced the other sequence and was tested on the other of the two transfer conditions. In 
both sessions, the transfer test took place immediately (i.e., less than 5 min) after initial training. Motor skill per-
formance was measured in terms of speed (block duration to perform the 60 key presses) and accuracy (number 
of accurate sequences by block). The task was implemented in MATLAB (Mathworks Inc., Sherbom, MA) using 
the Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent.php).

Procedure. Participants were tested in three different sessions: they performed the 2 conditions of the motor 
sequence learning task in the first 2 sessions (separated by approximately one week of interval), then they per-
formed a third session (one month later) during which the TOJ task was presented. The motor sequence learning 
task was split over two sessions to avoid any interfering effect between motor practice sessions. A window of  
⟪sensitivity⟫ to interference in the first 4–6 hours following initial training has indeed been described in the 
literature28, 29.

Data analysis. Temporal order judgment task. The mean percentages of “right hand first” responses were 
first calculated for each participant, SOA and posture. These raw proportions were transformed into their stand-
ardized z-score equivalents and then used to calculate the best-fitting linear regression lines of each participant5. 
Because the longest intervals showed evidence of a ceiling effect for the uncrossed posture, only the intermediate 
8 points (i.e., −90 to 90 ms) were included in the analysis. The slopes of each individual line were then submit-
ted to an ANOVA with posture (uncrossed vs. crossed) as the within-subject factor and group (EB, SC) as the 
between-subject variable.

The just noticeable difference (JND; the smallest interval needed to reliably indicate temporal order) was sec-
ondly calculated from the mean slope data by subtracting the SOA needed to achieve 75% performance from that 
needed to achieve 25% performance and dividing by two2. This value could not be determined independently for 
all observers because several of them obtained a slightly negative slope value for the crossed posture; indicating 
that these participants often responded with the opposite hand as the one that has been stimulated first5.

Motor sequence learning task. In the motor sequence learning task, we first evaluated whether practice of the 
sequence in the training session improves participants’ performance. A 14 (blocks of practice during the training 
session) × 2 (condition: external vs. internal) × 2 (group: EB, SC) ANOVA was therefore conducted on speed 
of performance (i.e., block duration in ms) and accuracy (i.e., number of correct sequences per block). We also 
examined participants’ performance in the representation session by conducting a 4 (blocks of practice during 
the representation session) × 2 (condition: external vs. internal) × 2 (group: EB, SC) ANOVA on speed of perfor-
mance and accuracy.

Finally, to examine the transfer in sequence knowledge, taken as an indicator of the development of exter-
nal and internal representations, the averaged performance of the first four blocks of training was compared 
to the four blocks of the representation test session. We tested this with a three-way ANOVA with the averaged 
performance of the first four blocks of training and the four blocks of the representation session as the first 
within-subject factor (session), the type of representation (external vs. internal) as the second within subject fac-
tor and the group (EB, SC) as the between-subject factor. As previously, this analysis was performed on speed of 
performance and accuracy. Comparing the beginning of the training session (first 4 blocks) to the representation 
session (4 blocks) is a procedure generally used to assess the amplitude of the transfer of sequence knowledge26, 30.

Results
Temporal order judgment task. Results of the 2 (postures: uncrossed vs. crossed) × 2 (groups: EB, SC) 
ANOVA carried out on the slopes of each individual regression lines showed: (1) a significant effect of posture, 
F(1, 20) = 13.93, p = 0.001, η2 = 0.41, the regression line for the uncrossed posture being steeper (M = 0.90 ± 0.03) 
than the regression line for the crossed posture (M = 0.59 ± 0.09); (2) a significant effect of group, F(1, 20) = 8.47, 
p = 0.009, η2 = 0.30, the EB (M = 0.90 ± 0.08) performing better than the SC (M = 0.59 ± 0.08); and (3) a sig-
nificant posture × group interaction, F(1, 20) = 11.37, p = 0.003, η2 = 0.36. To further examine this interaction, 
paired samples t-test were performed on each group separately with hand position as the only factor. In SC group, 
participants’ performance was better in the uncrossed posture (M = 0.88 ± 0.06) than in the crossed posture 
(M = 0.29 ± 0.18), t(10) = −3.61, p = 0.005 (see Fig. 2A). In deep contrast, the performance did not significantly 
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differ between hand postures in the EB group, t(10) = −0.98, p = 0.350, the slope of the regression lines being 
similar in the uncrossed (M = 0.91 ± 0.01) and crossed postures (M = 0.88 ± 0.04). As the development of spatial 
representation is sensitive to early visual deprivation during the first years/months of life31, we performed the 
same analysis without the 2 EB participants. Only the 9 congenitally blind were included. This analysis yielded 
the same results as the one described above (see supplemental material for a detailed description of the results).

Moreover and as shown in Fig. 2B, crossing the hands led to a significant decrement in performance in SC; it 
actually more than doubled the JND. The EB group, in striking contrast, was not affected by the crossing of their 
hands as already reported by Röder et al.7. Since both groups of participants presented similar level of performance 
in the uncrossed position, this observation could not be explained by better temporal resolution ability in EB.

3.2 Motor sequence learning task. Training session. The 14 (blocks of practice during the training ses-
sion) × 2 (representation: external vs. internal) repeated measures ANOVA conducted on speed of performance 
(i.e., block duration in ms), with group (EB, SC) as the between-subject factor, yielded a significant main effect 
of block, F(13, 260) = 49.80, p = 0.000, η2 = 0.71, indicating that block duration decreased with practice. There 
was also a significant block × group interaction, F(13, 260) = 3.77, p = 0.02, η2 = 0.16, indicating that the learn-
ing curve (changes in performance from one block to the other) differed between SC and EB. Data inspection 
revealed that the learning curve was steeper in SC due to slower performance at the beginning of training. A 
significant block × group × representation interaction, F(13, 260) = 3.01, p = 0.043, η2 = 0.13 was also observed. 
However, follow-up analyses indicated no block × representation interaction within each group (all F < 3.16, all 
p-values > 0.06). No other effect was significant (see Fig. 3).

The same 14 (blocks of practice during the training session) × 2 (condition: external vs. internal) × 2 (group: 
EB, SC) ANOVA conducted this time on the accuracy scores (number of accurate sequences per block) did not 
reveal any significant effect (all ps > 0.05).

Representation test sessions. The 4 (blocks of practice in the representation test session) × 2 (representations: 
external vs. internal) repeated measures ANOVA carried out on performance speed with group (EB, SC) as the 
between-subject factor revealed a significant main effect of block, F(3, 60) = 24.81, p = 0.000, η2 = 0.55, block dura-
tion decreasing with practice for the two representations of the sequence (see Fig. 3). No other effect was observed.

The same 4 (blocks of practice in the representation test session) × 2 (representations: external vs. internal) × 2 
(groups: EB, SC) ANOVA conducted on the accuracy measure did not show any significant effect, accuracy 
remaining stable with a low error rate throughout the 4 blocks of practice, F(3, 60) = 1.06, p = 0.395, η2 = 0.05, 
whatever the representation tested, F(1, 20) = 0.21, p = 0.651, η2 = 0.01, and in the 2 groups of participants, F(1, 
20) = 0.05, p = 0.817, η2 = 0.003.

Transfer between the training and the representation test sessions. The 2 (session: first 4 blocks vs. last 4 
blocks) × 2 (representation: external vs. internal) × 2 (group: EB, SC) ANOVA performed on block duration 
revealed a significant main effect of session, F(1, 20) = 35.16, p = 0.000, η2 = 0.64, showing an improvement of 
performance from the training to the representation test session (see Fig. 3). No between-groups differences, 
F(1, 20) = 1.46, p = 0.241, η2 = 0.07, and no interactions were observed. Interestingly, the representation × ses-
sion × group interaction was not significant, F(1, 20) = 1.76, p = 0.199, η2 = 0.08, showing that EB and SC both 

Figure 2. (A) Standardized z-score equivalents of the mean proportions of right-hand responses and best-
fitting linear regression lines for the uncrossed (II – continuous lines) and crossed (X - dotted lines) postures 
for EB (in blue) and SC (in black). Bars represent standard error of the mean; (B) JND: the minimum interval 
between the two tactile stimuli required for participants to judge their temporal order accurately on 75% of 
trials. No error bars are presented as the JND was calculated on the group data.
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demonstrated significant transfer of motor sequence knowledge irrespective of whether the representation of the 
sequence was external or internal. The same analysis performed without the 2 early blind participants yielded 
the same results as the one described above (see supplemental material for a detailed description of the results). 
Moreover, to further examine the absence of the representation × session × group interaction on block duration 
measures, we computed Bayesian statistics with JASP32. These statistics have the main advantages of quantifying 
evidence instead of forcing an all-or-none decision. Bayes factors indeed provide a coherent approach to deter-
mining whether non-significant results support a null hypothesis (interaction absent) over a theory (interaction 
present), or whether the data are just insensitive. This analysis highlighted a BF01 of 4.65, indicating that the pos-
terior probabilities were 0.82 for H0 (the null hypothesis has 82% chance of being true) and 0.18 for H1. According 
to Raftery’s (1995)33 classification of evidence into weak (0.50–0.75), positive (0.75–0.95), strong (0.95–0.99), and 
very strong (>0.99), the probability value obtained here provided positive support for H0.

A 2 (session: first 4 blocks vs. last 4 blocks) × 2 (representation: external vs. internal) × 2 (group: EB, SC) 
ANOVA was finally performed on accuracy scores. It only revealed a significant effect of session, F(1, 20) = 6.51, 
p = 0.019, η2 = 0.55, indicating improvement in performance accuracy. No other results were significant.

Discussion
We aimed to investigate the role visual experience plays in shaping the use of internal and external coordinate 
systems for sensori-motor processing. The same participants were involved in two different tasks allowing us to 
directly compare their use of different spatial coordinates in the sensory and motor fields. The spatial representa-
tion of touch was assessed by asking participants to perform a TOJ task with the hands uncrossed or crossed over 
the body midline. The spatial representation of motor plans was tested by requiring participants to reproduce a 
motor sequence with the hand turned upside-down either following internal or external coordinates.

Results of the TOJ task replicated the data of Röder et al.7: in SC, crossing the hands reduced the slope of 
the regression line while no decrease of performance was observed in EB. This absence of crossed-hand effect 
in CB and EB is attributed to a difference in the weights that are used to integrate internal and external spatial 
information. While the weighting scheme of SC automatically favors an external coordinate system, EB pref-
erentially rely on an internal frame of reference to perform the task. The automatic integration of internal and 
external coordinates for touch localization therefore appears to be driven by developmental vision. Such inte-
gration probably helps the alignment of the spatial frames of references that are used by the distal senses (e.g., 

Figure 3. Results of the motor sequence learning task. Mean block duration during the 14 blocks of the training 
and the 4 blocks of the representation test (transfer) sessions for the internal (A) and external conditions (C) 
of the task. Transfer of sequence knowledge in the internal (B) and external (D) conditions of the task. Bars 
represent standard error of the mean.
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vision and audition) and the body limbs. For example, our ability to interact with our immediate surroundings 
depends on our ability to represent the location of objects with respect to our own body and especially to our 
hands. This process is particularly critical since the hands move constantly within the space around our body as 
different postures are adopted. It has therefore been demonstrated that EB have more difficulties to optimally inte-
grate audio-tactile information in the crossed posture due to the poorly aligned spatial coordinates of these two 
modalities in such conditions9. However, since the TOJ task may be resolved using skin-based coordinates only, 
the weighting scheme used by the EB shields them from the detrimental crossing effect. Interestingly, a similar 
difference in the weights that are used to integrate anatomical skin-based and external spatial information has 
been observed in patient HS, a man who had been totally deprived of vision for the first two years of life33. This 
suggests the presence of a sensitive period early in life for the development of the automatic use of an external 
visuo-spatial frame of reference for coding touch in space34. It is therefore possible that early visual deprivation 
alleviates the weights of external coordinates due to the reorganization or to the lack of development of the brain 
circuits implicated in such process. The posterior parietal cortex (PPC) has been hypothesized to play a crucial 
role in implementing such operation in SC35 and this region has been repetitively shown reorganized in EB36–39. 
The role of the PPC in touch localization is partially supported by an electroencephalographic study showing that 
the detection of deviant tactile stimuli at the hand induced event-related potentials that varied in crossed when 
compared to uncrossed condition of posture in sighted subjects, whereas changing the posture of the hand had 
no influence on the early blind subjects’ brain activity40, 41.

Motor sequence learning, on the other hand, has been shown to encompass two independent processes named 
“spatial” (external) and “motor” (internal)42–44. Within this view, learning a piano sonata not only requires per-
forming specific series of finger movements (in an internal reference frame) but also requires learning the position 
of specific musical notes in an external reference frame. In our second experiment, a motor sequence-learning 
task was used to characterize the effect of visual experience on the creation of both external and internal motor 
representations. The existence of these two representations after an initial learning phase was measured using a 
“transfer” protocol in which all participants were tested on their ability to produce the internal or external-spatial 
sequence with the same hand, but with the keypad turned upside down (see Fig. 1). By reversing the keypad, 
the same finger movements were no longer associated with the identical spatial sequence in external space and 
vice versa26. Accordingly, such a manipulation generated two different sequence representations: an internal 
representation that probed movement-based learning and an external representation that probed external spa-
tial learning26. As expected, we observed that SC developed both external and internal representations of the 
sequence. Blocks’ duration indeed decreased from the training to the representation test session in the external 
as well as in the internal conditions of the study. Crucially, our results show that EB were similarly able to develop 
these two spatial representations. As an absence of evidence that group differences exist is not necessarily an 
evidence for the true absence of such difference, one may suggest that our motor sequence learning task was not 
sensitive enough to highlight true differences in spatial representation between the two groups. We however do 
not believe this hypothesis is the most parsimonious. First, our complementary Bayesian statistics support the 
idea of a “true” absence of group differences. Second, the observation that both groups of participants were able to 
implicitly create an internal and an external spatial representation of their motor action parallels previous studies 
also showing an absence of difference between the sighted and blind groups to support the idea that vision is not 
necessary to the development of external coordinates in motor coordination17.

While the effector-dependent representation is supported by a striato-motor network45–48, the 
effector-independent motor representation has been found to recruit an hippocampo-cortical network35 involv-
ing prefrontal and parietal cortices42–44, 46. Even if visual inputs are the predominant sensory inputs of the parietal 
cortex, auditory and somatosensory information also access this area49, 50. Makin, Holmes and Zohary51 demon-
strated that the posterior intraparietal sulcus (IPS) and lateral occipital complex represent hand-centered space in 
a predominantly visual manner, whereas the anterior IPS was characterized by a more proprioceptive representa-
tion of the space surrounding the hand. It is therefore possible that EB mainly rely on the anterior IPS to code 
an external representation of the space surrounding the hand. Through the proprioceptive and auditory modal-
ities, EB people might therefore localize objects in the external space and produce a goal-directed action toward 
them. Such non-visual sensory-motor loop may be sufficient to build an external sense of space, which is used 
to act in the external environment. In support of this hypothesis, it was demonstrated that the parieto-occipital 
reach-related regions retain their functional role — encoding of the spatial position of the reach target — in EB52.

The fact that SC and CB performed differently in the TOJ task could be explained by the idea that CB, in con-
trast to SC, do not integrate internal and external spatial information by default. However, the fact that CB and 
SC behaved similarly in the motor sequence learning task is more in accordance with the idea that both groups 
integrate spatial information from different reference frames but do this integration according to different weight-
ing schemes4, 18, 19. While integration seems automatic in SC, external coordinates are used by the CB when the 
focus of the task is on external coordinates (as in the external condition of the motor sequence learning task). To 
summarize, our results therefore suggest task-specific differences in the way blind and sighted use specific spatial 
frame of references for sensori-motor processing4. It has been argued that tactile localization is a two-step pro-
cess, in which tactile information is first remapped to an external representation4. Then anatomical and external 
spatial information are integrated. The weights used for integration are presumably determined by early visual 
experiences and by the current task demands. While external coordinates are more weighted in the SC while 
they perform the TOJ experiment, this does not prevent the external representation of motor action in EB. In 
other words, our data do not support the idea that early visual experience is necessary for the development of an 
external coordinate system for perception and action. Our results rather suggest that, even if such external frame 
of reference is less automatically activated in early blind for the processing of touch, it is readily accessible when 
participants have to perform an action in the external world17, 18.
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