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An Energy-Efficient Precision-Scalable ConvNet
Processor in 40nm CMOS

Bert Moons, Student Member, IEEE and Marian Verhelst, Senior Member, IEEE

Abstract—A precision-scalable processor for low-power Conv-
Nets or Convolutional Neural Networks (CNN) is implemented
in a 40nm CMOS technology. To minimize energy consumption
while maintaining throughput, this work is the first to implement
dynamic precision and energy scaling and exploit the sparsity of
convolutions in a dedicated processor architecture. The proces-
sor’s 256 parallel processing units achieve a peak 102GOPS run-
ning at 204MHz and 1.1V. It is fully C-programmable through a
custom generated compiler and consumes 25-287mW at 204MHz,
scaling efficiency between (.3-2.7 effective TOPS/W. It achieves
47fps on the convolutional layers of the AlexNet benchmark,
consuming only 76mW. This system hereby outperforms the state-
of-the-art up to 5x in energy efficiency.

Index Terms—Deep Learning, ConvNet, Convolutional Neural
Network, CNN, Approximate Computing, Voltage Scaling, DVAS,
Dynamic- Voltage-Accuracy-Scaling, Processor Architecture.

I. INTRODUCTION

EEP Learning [1] networks, and more specifically Conv-

Nets or Convolutional Neural Networks (CNN), have
come up as state-of-the-art classification algorithms, achiev-
ing near-human performance in applications in both Com-
puter Vision (CV) and Automatic Speech Recognition (ASR).
ConvNets have been used to achieve unprecedented accuracy
for tasks ranging from phone recognition [2], handwritten-
digit recognition [3], [4], object recognition [5]-[8], object
detection [9], [10], scene understanding or semantic seg-
mentation [11] and even video-recognition [12]. Although
these networks are extremely powerful, they are also very
computationally and memory intensive, requiring hundreds of
megabytes for filter weight storage and hundreds of millions
of operations per input. This high cost makes them diffi-
cult to employ on embedded or battery-constrained systems.
However, the energy consumption of neural networks can be
significantly reduced by exploiting a number of algorithm-
specific observations.

First, hardware implementations of neural networks can be
made more energy-efficient by exploiting temporal and spatial
data-locality [13].

Second, numerous references [14] [15] [16] [17] show
ConvNets are inherently fault-tolerant and can be operated at
low computational precision with limited accuracy loss. [15]
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even goes down to 1-bit (1b) operations with more accuracy
loss.

Third, as in [14] [18] and [19], ConvNets are extremely
sparse and can be compressed to reduce their memory footprint
and be made more efficient by skipping unnecessary compu-
tations.

Several works have proposed specialized and optimized
CNN data flows for energy-efficient network-inference, either
on existing platforms, or on novel hardware architectures.
Optimizations for high-performance applications on CPU [20],
GPU [21], or FPGA [22]-[24] all consume several to hun-
dreds of Watts, making them unusable in battery-constrained
embedded systems. Other works, such as [25]-[32], are ASICs
which focus on low-power embedded applications, aiming
to achieve real-time operation at sub-Watt power consump-
tion. They are all accelerators, reducing their flexibility in
exchange for energy-cfficiency. Eyeriss [25] proposcs a two-
dimensional spatial architecture, exploiting data-locality and
network sparsity, but does not exploit reduced precision com-
putations. [26] is an optimized architecture exploiting reduced
precision, but can only perform a hardwired number of layers.
DaDianNao [27] and ShiDianNao [28] exploit locality, but
only achieve high performance for small neural networks. [29]
uses a specific 7 x 7 convolutional engine, which limits
flexibility, operating at constant 12b fixed-precision. [30]
combines DaDianNao’s architecture with hardware support to
exploit network sparsity in the time-domain, achieving up to a
1.55x performance improvement. EIE [31] and Minerva [32]
exploit reduced precision and sparsity in a novel hardware
architecture, but tailored only for fully connected network
layers.

This work [33], outperforms the state-of-the-art up to 5x
in energy-efficiency as it is the first to exploit all main
energy-saving opportunities in ConvNets: (1) data-locality, (2)
precision scaling and (3) network sparsity. These results were
achieved through three key innovations:

1) A processor architecture employing a two dimensional
(2D) Single Instruction Multiple Data (SIMD) MAC-
array.

2) Hardware support for Dynamic-Voltage-Accuracy-
Scaling (DVAS), allowing modulation of both the
computational precision and the used supply voltage
from layer to layer. We hereby illustrate the concept
of approximate computing [34]: an efficient baseline
processor can be made more energy-efficient if the
algorithm requires less accurate computations.

3) Hardware support for network compression and guard-
ing sparse operations.

This paper is organized as follows. Section II discusses
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Fig. 1. Overview of a typical ConvNet architecture: 2 sequences of convolutional - ReLU - Maxpool layers perform hierarchical feature extraction. This is

followed by a multi-layer fully connected classification stage.

the basics of ConvNets and the possibilities for efficiency
optimization. Section III discusses the processor architecture.
Section IV and section V discuss the necessary extra hard-
ware support and layout considerations to achieve efficiency
gains. Section VI illustrates the processor’s instruction set.
Section VII shows extensive measurement results, showcas-
ing the efficiency gains of the different applied techniques.
Section VIII compares with the state of the art and section IX
concludes this work.

II. EMBEDDED CONVNETS

A. ConvNet background

ConvNets, as in Fig. 1, are a type of artificial neural
networks inspired by visual neuroscience. They are a cascade
of multiple stacked convolutional-, non-linearity- and pooling-
layers used for feature extraction, followed by a smaller
number of fully-connected neural network layers used for
classification. The weights of all stages in the cascade of con-
volutional network layers are trained to represent hierarchical
features. In a face recognition example, the first layers in a
network will train to recognize crude features, such as edges
and contrast changes. Deeper layers will train to recognize
higher order features such as noses, mouths or eyes while the
deepest layers will eventually model faces. The number of
cascaded stages in recent ConvNet models varies anywhere
from 2 [3], typically 10-20 [6] to more than one hundred [8],
ending with typically 3 fully connected layers [5].

A convolutional layer (CONV), with topology parameters
listed in Table I and Fig. 1, transforms input feature maps (I)
into output feature maps (O), each containing multiple units.
Each unit in an output feature map (M x M x 1) is connected
to local patches of units (K x K x C) in the input feature
maps through a filter bank (W) (K x K x C' x F') existing out
of a set of machine-learned weights and a bias (B) per output
feature map. All units from a single output feature map share
the same filter bank, while different feature maps in a layer
use different filter banks. The basic computation of such a
CONYV layer is shown in Fig. 1. Using the shape parameters
listed in Table I, a formal mathematical description is given

TABLE 1
PARAMETERS OF A CONV LAYER

Parameter | Description | Range
F Number of filters per layer 16-512
H Width & height of input feature map 16-227
C Number of channels in input feature map 3-512
K Width & height of filter plane 1-11
M Width & height of output feature map 16-227

TABLE 11
MODEL-SIZE AND COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN
FC AND CONV LAYERS.

Network CONV size FC size  CONV ops FC ops
[#w] [#w]  [#MAC] [#MAC]
LeNet-5 [3] 25.5k 405k 1888k 405k
AlexNet [5] 2.3M 58.6M 666M 58.6M
VGG-16 [6] 14.7M 124M 15.4G 124M
SqueezeNet [18] 733k 0 T746M 0
in the following equation:
C K K
Olfllallyl =Y > > 1l[Sz + il[Sy + 5] x WIf][e][d][5]
=0 i=0 j=0
+ B[z]
ey

Where S is a stride and z,y, f are bounded by: z,y €
0,...,M[and f€[0,...,F].

The result of the local sum computed in this filter bank
is then passed through a non-linearity layer. In ConvNets,
this layer is typically a Rectified Linear Unit (ReLU), using
the nonlinear activation function f(u) = maxz(0,w), where
w is a feature map unit. This activation function reduces the
vanishing gradient problem [35] in the backpropagation-based
training phase of the network and leads to high degrees of
sparsity due to non-activated outputs.

Max-pooling layers compute and output only the maximum
of a local (typically 2 x 2 or 3 x 3) patch of output units
in a feature map. They thereby reduce the dimension of the
feature representation and create an invariance to small shifts
and distortions in the inputs.

Finally, fully connected layers (FC) are used as classifiers
in the ConvNet algorithm. An FC layer is njlvz[tthematically

described as the matrix-vector product O[z] = Y W[z, m]x
m=0
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Fig. 2. Different hardware platforms in the energy-efficiency vs flexibility
space. ASIP’s offer better flexibility than hardwired or reconfigurable ASICs
at a similar energy efficiency.

I[m]. Where, M is the size of vectorized input feature map
and z € [0,...,Z[ is the number of neurons in the fully
connected layer. As all the used weights are only used once
in a forward pass, there is no weight reuse in these layers.
Due to this observation, architectures proposed for FC layers,
as [31] and [32], are different from architectures for CONV
layers.

As illustrated in Table II, the total network weight size
is dominated by the FC layer weights (> 90% of the total
network size), while the amount of computations is heavily
dominated by the CONV layers (> 90% of the total amount
of MAC operations).

Even though FC layers dominate the network size, the
amount of weights can be pruned down to 1 — 5% of the
original size [36], by explicitly removing unnecessary con-
nections, leading to a significant speedup. As there is no
such impressive compression or speed-up possible for CONV
layers, acceleration of these layers is the primary focus of the
design presented in this paper.

B. Increasing energy-efficiency in ConvNets

There are three distinct ways to minimize energy consump-
tion in ConvNet acceleration:

1) Algorithm optimized hardware architectures: Fig 2
gives an overview of different hardware platforms for ConvNet
implementations in the efficiency-vs-flexibility space. CPU-
platforms, are highly flexible, but very inefficient, as they are
sequential and waste too much of their power budget in control
overhead. CONV operations, which are inherently parallel, can
be operated on parallel platforms, such as GPU’s or naive
SIMD DSP processors. These trade flexibility for energy-
efficiency, but they do not sufficiently exploit data locality
and require too high bandwidth from DRAM and on-chip
SRAM [13]. A hardwired solution, typical for Application-
Specific Integrated Circuits (ASIC), can be parallelized while
exploiting data-locality. However, inflexible solutions are not
suited for ConvNet acceleration because of the vast amount
of different ConvNet topologies. Table I shows the possible
range of shape configurations in typical ConvNets.

This work hence proposes the design of a C-programmable
Application-Specific Instruction set Processor (ASIP), com-
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With these quantization settings [14], the network achieves 99% relative
accuracy compared to full precision 32b floating point operation.
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Fig. 4. (a) The basic principle of DVAS in a digital Baugh-Wooley multiplier
example. (b) When precision is reduced by signal-gating less-significant
bits both the switching activity (DAS) and the critical path length are
reduced, allowing for a reduced supply voltage for the whole multiplier. The

combination of reduced o and V' leads to major energy savings at limited
root-mean-square error (RMSE).

pletely optimized for ConvNet data flows while maintaining
flexibility.

2) DVAS: Dynamic-Voltage-Accuracy-Scaling: Typically,
ConvNets are computed using 32b Floating-Point preci-
sion [15] [16] [17]. However, they can be operated at Fixed-
Point precision, at lower energy per operation. [14] even shows
that precision should not be fixed for a whole network, but
can be modulated on a per-layer basis. Fig. 3 shows 1- to
6b precision suffices for LeNet-5 [3] on MNIST [37] data,
and 5- to 9b for AlexNet [5] on ImageNet [38] data, at 99%
relative benchmark accuracy compared to a 32b floating point
baseline.

A multiplier, capable of modulating its precision and supply
voltage was first proposed in [39]. The simplified example
in Figure 4 can operate from 1- to 4b, with two operating
modes (2b and 4b) highlighted in the figure. At high precision
all building blocks will be switching, resulting in a high
switching activity and a long critical path (dashed line). In the
low-precision case, only the two most significant bits (MSB)
are used, resulting in a lower switching activity and shorter
critical path (full line). The LSB’s are signal gated. At constant
frequency, this shorter critical path can be compensated for
through a lower supply voltage. Modulating the supply voltage
from layer-to-layer is feasible, as a typical ConvNet layer
takes O(ms) or O(us) to complete, while existing DC-
DC converters for fast voltage scaling show transition times
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ranging from tens of nanoseconds [?] to sub-nanosecond [?].

These combined effects - (1) reduction of switching activity
and (2) shorter critical paths allowing lower supply voltages
- have a major impact on the system’s dynamic power con-
sumption. If leakage power is neglected, the power P of a
DVAS-system is given in equation 2.

P=aCfV? 5 P= 3Cf(z)2 )
AT

Where « is the circuit’s switching activity, C'is the technology
dependent circuit capacitance, f is the clock frequency and
V' the system’s supply voltage. At low precision k; is a
circuit architecture-dependent parameter and ks depends both
on circuit architecture and technology.

This technique was first introduced as Dynamic-Voltage-
Accuracy-Scaling (DVAS, DAS without voltage scaling) [39],
in which the supply voltage can be modulated with varying
precision requirements. The concept is similar to Dynamic-
Voltage-Frequency-Scaling (DVFS) [40], in which the supply
voltage is modulated with varying throughput requirements.

One disadvantage of DVAS is that it cannot be applied to all
building blocks in a typical digital system. The critical paths
of many building blocks, such as SRAM memories or control,
decode and fetch units, do not scale with reduced precision.
Therefore, a DVAS system will be split into several power
domains: one for all arithmetic capable of DVAS and one for
all other building blocks. The design specifics for such a setup
are discussed in section IV.

3) Exploiting Network Sparsity: A final opportunity for
energy reduction in embedded ConvNets is their high inherent
sparsity. If weights or input are zero, their computations
become redundant. Energy consumption can hence be reduced
by explicitly skipping these computations.

Typical sparsity levels from [14] and [19] are shown in
Fig. 5. Sparsity levels of up to 90% in the [eature maps and
up 20% in the network weights are measured for AlexNet
performed on ImageNet. Sparsity can be due to three reasons.
First, in reduced precision, small values will be explicitly
mapped to integer zero. Second, ReLU layers map all negative
input explicitly to integer zero. Finally, sparsity can also be
explicitly enforced by pruning unimportant network connec-
tions [19]. Section V discusses the added hardware support to
allow exploiting sparsity.

TABLE III
WORDS FETCHED PER MAC-UNIT PER MAC-OPERATION

Filter Size | 1D-SIMD | 2D-SIMD | 2D-FIFO | Gain [x]

1x1 2 0.125 0.125 16.0
3x3 2 0.125 0.086 233
5X5 2 0.125 0.078 25.6
11 x 11 2 0.125 0.072 27.8

III. A 2D-MAC PROCESSOR ARCHITECTURE FOR
EMBEDDED CONVNETS

The proposed programmable and energy-efficient ASIP ar-
chitecture, shown in Fig. 6, employs a 2D SIMD MAC-array as
an efficient convolutional engine (section III-A). For flexibility,
a configurable on-chip memory architecture and on-chip Direct
Memory Access (DMA) controller (section III-B) have been
added. Section VI discusses the processor’s instruction-set.

A. Processor Datapath

1) 2D MAC-array: The 16 x 16 2D-MAC array, shown
in Fig. 6 and 7 operates as a convolution engine. First,
the array of single-cycle MAC’s achieves a 256 speedup
compared to a scalar solution, while minimizing bandwidth
to on-chip memory. The 2D architecture allows applying 16
different filters to 16 different units of the input feature map
simultaneously. This exploitation of data reuse thus allows a
256 speedup, at more than 16x lower internal bandwidth
compared to a naive 1D-SIMD solution, requiring 2 inputs per
processing unit per cycle. The local communication overhead
can be further reduced by adding a FIFO-register at the input
of the MAC-array, as shown in Fig.7. Table III shows a
comparison of the bandwidth fetch-reductions of the 2D-MAC
array architecture compared to the naive 1D-SIMD baseline.

The example in Fig. 7 illustrates the four first operation
steps of a typical 3 x 3 x C filter data flow, of which 4 out of
I filters are performed in parallel. The concept is illustrated
for a simplified 4 x 4 MAC array for clarity, but the chip
has a 16 x 16 array. In the first step, a vector is loaded from
the input feature map buffer. This vector is stored in a FIFO
register, multiplied with the first filter values of 4 different
filters, accumulated with the previous result and stored in
the accumulation register. In the second and third steps, a
single word is fetched from the input feature map memory
and pushed through the FIFO. This shifted vector is again
multiplied with the next four filter values and accumulated
with the previous result. This sequence is repeated three times
for the 3 x 3 filter, illustrated by step 4, in which a vector
of the next input row is multiplied and accumulated with the
correct weights.

An additional advantage of this scheme, is that it allows all
intermediate values to be kept in the accumulation registers
for a full K x K x C convolution. Therefore the MAC
accumulation registers are 48b, which is an over-design for
the worst case in the AlexNet benchmark. However, there is
no need for frequent write-backs to SRAM. Here we leverage
both spatial and temporal data-locality [13], as we keep data
local to minimize data movement and multiply and accumulate
multiple weights with multiple inputs simultaneously.
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intermediate result that is stored in the MAC’s accumulation register. In step 2
and 3, a single feature d is fetched and pushed through the FIFO structure at
the feature side. The resulting FIFO vector is multiplied and accumulated with
a new weight vector. This sequence is repeated three times in this example,
once for every row of the filter.

2) 1D SIMD-unit: The processor also contains a 1D-SIMD
processing unit capable of performing multiple types of vector
operations. This vector unit contains 16 parallel processing
units with support for bitwise- and shift operators, MAC and
max-pooling (2 x 2 and 3 x 3).

3) Scalar unit: The processor also contains a standard
scalar ALU and MAC.
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Fig. 8. On-chip memory architecture. One large address space is subdivided
into 4 blocks, each containing 16 banks of single port SRAM. Every SRAM
macro can store 1024 x 16b words. The architecture allows scalar, vector
or double vector access from the processor side, while being read or written
through a vector port from the DMA side.

B. On-chip memory architecture

1) On-chip Main Memory: Fig. 8 shows the on-chip data
memory topology. It is organized as one large 16b mem-
ory address space (128kB) and is subdivided into 4 blocks
(32kB) containing 16 single port SRAM banks (2kB) of
1024 x 16b words. Every block hence allows vector access,
reading/writing one word from every bank. Single word access
is also possible for scalar operations and for the FIFO-based
architecture. The programmer is free to store feature maps or
filter bank weights in any of the four available memory blocks.
This cache-architecture exploits temporal data-locality [13]: it
allows storing data close to the computational units for later
reuse.

From the processor side, two of the four blocks can be read
simultaneously. Typically one block would contain only filter
values and a second block a part of an input feature map. This
allows fetching both filter and feature inputs for the 2D-MAC
array in a single cycle. There is only one write port from the
processor side, due to the lower amount of write accesses.
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2) Direct Memory Access Controller: A custom designed
DMA allows to efficiently communicate with off-chip mem-
ory, without stalling the processor pipeline. In parallel with
access from the processor, any of the memory blocks can
be read or written by the DMA which is controlled by
memory-mapped registers. Synchronization between processor
and DMA is done by checking DMA-specific status registers,
indicating if data transfer is done or not.

Furthermore, it contains a specific Huffman-based en/de-
coder [41] performing IO compression on sparse in- and output
data (section V-B). Communication with the outside world is
done using a 32b parallel interface, transferring two words per
cycle in standard mode.

IV. HARDWARE SUPPORT FOR
DYNAMIC-VOLTAGE-ACCURACY-SCALING

The processor is made DVAS compatible by adding RTL
support for precision scaling and by splitting the design into a
scalable power domain for the MAC array and a fixed power
domain for all other blocks. An advanced back-end place and
route optimization is needed as well.

A. RTL level hardware support

The inputs to the MAC array in the scalable voltage
domain are precision scaled by rounding their values to a
programmable number of Most-Significant-Bits (MSB). The
Least-Significant-Bits (LSB) are explicitly gated to zero, to
reduce switching activity. This is done through classical round-
up rounding, transforming the positive number 10010 to 10100
if it is quantized to 3b MSB. This process requires (wo
additions to the processor architecture.

First, two programmable status registers are added, as in
Fig. 9a, one for feature map inputs and one for filter weights,
containing the number of bits that will be used for computa-
tion. These status registers can be written from software with
a latency of 2 cycles. In practice, the precision is only changed
on a per-layer basis. Second, two 1 x 16 vector arrays of
programmable rounding units have to be added at the input
of the MAC-array, as shown in Fig. 9a. Fig. 9b shows the

building blocks of this rounding unit: one adder, two shifters
and 16 AND-gates. Each programmable rounding unit is 267
nand-2 equivalent gates.

The 2D-architecture is crucial to limit the overhead of the
rounding units. Only 2 x 16 = 32 inputs have to be rounded
in order to provide rounded inputs to 16 x 16 = 256 MAC
units.

B. Physical implementation

Creating a multi-power domain DVAS design, with one
fixed and one scalable power domain for the MAC array,
implies several complications in the physical implementation.
Not only should the layout of the floorplan be adapted to
contain level shifters, multiple power grids and multiple supply
ports, the back-end optimization flow should be changed as
well.

DVAS is not automatically possible if the back-end opti-
mizations are only performed in full precision mode. In a
real chip, there are no guarantees that critical paths actually
decrease at low computational precision, even if the circuit
architecture does permit it. Theoretically shorter paths in a
multiplier can still be critical at low precision due to sub-
optimal placement, high wire delays or small transistor sizings.
Therefore, in DVAS it is necessary to perform an advanced
multi-mode, multi-corner place and route optimization scheme
enforcing the theoretical potential of shorter critical paths at
lower precision in the physical implementation. Ideally, layout
should be optimized for the continuous precision range [rom
1-16 bit, using libraries characterized at all supply voltages.
However, satisfactory results where achieved optimizing only
for the 4—, 8—, 12— and 16b modes. The design was optimized
for 200MHz operation in different simultaneously performed
optimization modes, listed in Table IV. If libraries where not
available at the necessary voltage, the circuit was optimized
at the lowest available voltage with heavier timing constraints,
effectively mimicking lower-voltage operation.
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(b) Outline of hardware implementation.

V. HARDWARE SUPPORT FOR EXPLOITING NETWORK
SPARSITY

Hardware extensions are implemented to perform operation
guarding and data compression.

A. Guarding Operations

At the start of a new CONV layer, both the sparsity
information of the input feature map and of the layer filter
banks is known. This information is stored in two dedicated,
small on-chip SRAM buffers (Fig. 9a), containing 1024 x 16b
words each (4kB total), storing the sparsity information for
one main memory block. Every word is a 16 x 1b flag, where
every flag denotes the sparsity information of an associated
feature map unit or filter weight. If the flag is 1, the associated
word contains valid data, if it is O it contains zero-data. These
flags are used both for guarding unnecessary memory fetches
from and for guarding switching in the MAC array.

1) Guarding Memory Fetches: is done by checking the
sparsity flags before performing a fetch from on-chip memory.
Depending on the value of the flag, words are conditionally
fetched. This is simply done by gating the enable signals to
the on-chip SRAM memories, as in Fig. 9c. 16 + 16 1b flags
are checked in order to potentially prevent 32 large SRAM
banks from switching.

2) Guarding 2D-MAC operations: is done by both pre-
venting the MAC inputs from switching and by clock-gating
the accumulation registers. To this end, extra arrays of switch-
prevention circuitry, as shown in Fig. 9, are added. A sparsity-
guard register is controlled by a sparsity-flag. If the flagis 1 a
new input value is stored in the register and propagated directly
to the MAC-array. If the flag is O the switch-prevention register
is disabled and the previous value is kept as input to the MAC-
array. This way, the input to a column or row of the MAC

TABLE IV
MULTI-MODE OPTIMIZATION SETTINGS

Mode | Fixed V | Fixed f | Scalable V | Scalable f

4b 1.1V 200MHz 0.9V 400 MHz
8b 1.1v 200MHz 0.9V 200 MHz
12b 1.1V 200MHz 1V 333 MHz
16b 1.1V 200MHz 1.1V 200 MHz

for (int f = 0;f<F;f++){
for (int h1=0;hl1<H;hl++){
for (int h2=0;h2<H;h++) {
pW = (vintx) &Weights[f(f,h)];
for (int c¢=0;c<C;c++){
plg = (intx) &Feature_grds[fun(f,hl,h2,c)];
pWg = (intx) &Weight_grds[fun(f,hl,h2,¢c)];
for (int k = 0; k<K;k++){
// Fig 7. step 1, 4, 7
| pl = (vintx) &Features|[fun(f,hl,h2,c,k)];
Cl | Igr = round(guard(pl++,1,plg)); //guard, round
| Wgr = round(guard (pW++,W,pWg)); //guard, round
| R = gMAC(Igr ,Wgr,R, plg++,pWg++); //guarded mac

// Fig 7. step 2, 5, 8

pls = (intx) &Features[fun(f,hl,h2,c,k)+1];

Is = fifo(pls++); //FIFO 1d
round (guard (Is ,I,plg++)); //guard, round

Wgr = round (guard (pW++,W,pWeg++)); // guard , round

|
|

C2 | Igr =
| =
| R = gMAC(Igr ,Wgr,R,plg++,pWg++); //guarded mac

// Fig 7. step 3, 6, 9

pls = (intx) &Features[fun(f,hl,h2,c,k)+2];

Is = fifo(pls++); //FIFO 1d
round (guard (Is ,1,plg++)); //guard, round

Wger = round (guard (pW++,W,pWeg++)); // guard , round

|
|

C3 | Igr =
| —
| R = gMAC(Igr ,Wgr,R,plg++,pWg++); //guarded mac

}
}
}

Listing 1. Example code for a 3x3xC CONV layer. pI is a vector pointer, /g
is the guarded vector, Igr is the guarded and rounded vector. The compiled
assembly associated with this code is shown in Fig. 11. C1-3 are as in Fig. 11

array is kept constant, effectively lowering the switching-
activity. Each MAC-guarding unit (Fig. 9c) contains 94 nand-2
equivalent gates. The actual power reduction is dependent on
the product of the sparsity levels of both the weights s,, and
the feature map inputs s;. A multiplier will only be guarded
completely if both inputs are zero: Prep = 8; X Sy

The same flags are used to clock-gate the accumulation
registers. In this case, the sparsity flags are used to clock
gate whole columns or rows in the MAC array at once. This
leads to much higher relative gains, as only one of the inputs
of the MAC must be zero to clock gate the accumulation
register: Prep = 8; + Sy X (1 — ;).

The overhead of sparsity guarding is limited due to the 2D
array topology. 32 x 1b flags have to be checked in order to
potentially prevent 256 MAC-units from switching. In total,
a 4kB SRAM and < 3kgates are used to guard 32kB of
memory and > 400kgates in the MAC-array. Measurements
of the influence of sparsity guarding on energy consumption
are given in Fig. 15.

B. Compressing 10 streams for off-chip communication

Off-chip communication is controlled through a DMA con-
taining an en/decoder. We implement a linear compression
scheme based on 2-symbol Huffman encoding. If data is zero,
the 16b data word is encoded as a 1'b0. If the word is non-
zero, it is encoded as a 17b word {1’01, 16'bdata}. As shown
in Fig. 10, this allows near ideal linear compression with the
compressed data-size (C): C' = (s x = 4 (1—s) x L) Here,
s is the degree of sparsity and n = 16 is the wordlength.
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C1: Idigrd[r1++], Id wgrd[rO++], grd v_Id DMIi[r5++ISIZE], round, grd v_Id DMw/[r3++WSIZE], round, guarded MAC
C2: Id wgrd[rO++], s_Id FIFO DMi[r5++1], round, grd v_Id DMw][r3++WSIZE], round, guarded MAC
C3: Id wgrd[r0++], s_Ild FIFO DMi[r5++1], round, grd v_Id DMw[r3++WSIZE], round, guarded MAC

Fig. 11.

Example assembly for the inner loop of listing 1. Every line is a combination of multiple sub-instructions: Id igrd and Id wgrd load the guard vectors

from the guard SRAM, s_Ild FIFO DMi and grd v_ld DMw perform guarded memory fetches, round rounds input data and guarded MAC performs a guarded
MAC operation. If the code is not unrolled, a nop operation is necessary inside the loop, reducing the MAC-efficiency of the code.

Although compression algorithms available such as Run-
Length Encoding (RLE), used in [25] e.g., could potentially
achieve superlinear compression, they do not perform well on
ConvNet datasets. This is illustrated in Fig. 10a, where the
plotted compression rate for RLE is a function of the data
distribution and clustering, while for Huffman, it is only a
function of sparsity.

An overview of the on-chip en/decoder is given in Fig. 10b.
All words stored in on-chip memory are decompressed, as the
correct data-address is crucial for pointer based processing.

VI. ENERGY-EFFICIENT FLEXIBILITY THROUGH A CUSTOM
INSTRUCTION SET

The arithmetic blocks, memory architecture, computational
precision round- and guard units are controlled in the custom
processor architecture shown in Fig. 6. This processor is built
on a baseline SIMD RISC processor with a 16b instruction
set and an 8192-word (16kB) instruction memory using an
ASIP design tool [42]. It operates a 7-stage pipeline with one
fetch (IF), one decode (ID), and 5 execute (El...ES5) stages
and is fully C-programmable using pointers. Furthermore it
is equipped with numerous standard scalar- and vector-ALU
instructions, as well as with jump and control instructions.
Hardware loop counters are built-in for three nested loops.

Listing 1 illustrates the C-implementation of a typical 3 x
3 x C convolution, of which the steps are illustrated in Fig. 7.
In this work, multiple custom variable-length sub-instructions
are added to the instruction set to, among others, support
these guard, round and MAC operations. The ASIP’s compiler
can merge these sub-instructions to exploit instruction level
parallelism. This is illustrated in Fig. 11, showing assembly
code generated by the generated compiler of the ASIP tool
for the inner loop of the C-code example in Listing 1. The
listed instructions are a parallelized combination (PC,) of
basic sequential variable length sub-instructions combined
into one single instruction. These combined instructions are
hence the parallel combination of 2 guard fetch, 2 guarded
vload, 2 round and a guarded MAC instruction into one 16b
word. This code compaction should not be done manually,
but is performed automatically by the ASIP’s compiler, which
can both call the sub-instructions sequentially or in parallel,

depending on the C-code. By using these parallel instructions,
the number of cycles for the inner loop of Listing 1 is reduced
from 3 x 7 =21 to 3+ 1 = 4, increasing the MAC-efficiency
and hence throughput by more than 5x. Moreover, this also
drastically improves energy efficiency, as it decreases the
required amount of instruction memory fetches and decoding,
hence lowering the non-compute overhead, and minimizes
unnecessary return to zero in the MAC array in between
computations.

VII. MEASUREMENT RESULTS

The ConvNet processor, with layout shown in Fig. 12, was
implemented in a 40nm LP technology on an active area of
2.4mm?. Section VII-A discusses the baseline performance.
Sections VII-B and VII-C discuss the individual gains of
DVAS and sparsity guarding. Section VII-D demonstrates
the influence of the combined techniques on a number of
benchmarks.

TABLE V
MAC-EFFICIENCY AS A FUNCTION OF FILTER-SIZES

Filter Size | Not-unrolled [%] | Unrolled [%]
50

1x1 33
3x3 53 75
5x5 72 83
11 x 11 85 92
2mm
Vscalable

2D-MAC array

1.2mm

RISC, DMA, Misc.

vfixed ; Mem \

Fig. 12. Chip photograph and layout overview of the processor. The system
totals 2.4mm? in a 40nm LP technology.
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A. Processor Architecture baseline

A non-unrolled 5 x 5 x C' CONV layer, similar to listing 1,
is executed on the processor. At it’s nominal supply voltage
of 1.1V and operating at full precision, the processor operates
at a nominal frequency of 204MHz and a peak performance
of 204MHzx256MACsx2 = 102 giga-operations per second
(GOPS). Every MAC-unit hence performs two operations per
cycle: 1 multiply and 1 add. The real coding efficiency,
the average number of MAC instructions per cycle, of the
processor is typically lower and dependent on the operated
filter-sizes, as listed in Table V. The reference code does not
achieve peak performance, but has a coding-efficiency of 72%.
Hence the effective performance in this case is 74 GOPS. In
this nominal mode, the processor consumes 287mW, achieving
372 peak or 270 effective GOPS/W in energy-efficiency.
Table VI shows a measured power breakdown of the processor.
If operated simultancously, the DMA and en/decoder consume
an additional 2.5mW, the extra on-chip SRAM consumption
in this case ranges anywhere from 5 — 10mW depending on
the data-sparsity and precision.

If lower throughput is allowed, the full precision processor
can easily be operated at lower voltages, as in Fig. 13. It
runs at 100MHz at 0.8V, consuming 72mW at 37 GOPS or
510 GOPS/W. Energy-efficiency improves further up until 900
GOPS/W in full precision mode, if operating at 12MHz at
0.6V, consuming only 5mW at 4.4 GOPS.

B. Influence of Dynamic-Voltage-Accuracy-Scaling

In DVAS the supply of the scalable power-domain can be
lowered at constant frequency, as illustrated in Fig. 13 for

TABLE VI
FULL PRECISION POWER BREAKDOWN AT 1.1V AND 204MHZ.
Dynamic [mW]  Leakage [mW]  Total [mW]

Program Mem 4.1
Data Mem 18 04 225
Control 6.4
Data Transfer 12 03 187
MAC array 244 1.6 245.6
Total 284.5 2.3 286.8

300 300
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200 200
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g 150 =+ Control g 150
5 ‘ =0~ Memory 5
£100 [ o7 o MAC £ 100
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Fig. 14. Effect of precision scaling on power consumption under (a) DAS
and (b) DVAS.

different modes. The fixed power-domain is always operat-
ing at the supply necessary for full-precision operation. At
204MHz, the scalable supply can be lowered down to 0.9V
and 0.8V for 8b and 4b operation respectively. Up to 2715
GOPS/W operation is measured at 12MHz and 4b precision.
Figure 14 shows the explicit effect of precision-scaling and
voltage-scaling on the power consumption of different parts of
the processor. The measured efficiency gains are significant:
in a typical AlexNet 12 (Table VII), reducing precision down
to 7b, improves energy-efficiency 2.6 compared to the full
precision baseline.

C. Influence of sparsity guarding

Figure 15 shows the individual effects of sparsity guarding
in different parts of the processor, using the same reference
code as in the previous sections at nominal frequency and
supply voltage. Memory energy-consumption scales down
linearly with the sparsity degrees s,, and s;. The effect of s;
on memory power consumption is limited, because the FIFO-
based architecture requires less reads from the input feature
memory than from the weight memory. Energy gains are small
if only one of the inputs is sparse. Still, in a typical AlexNet 13
(Table VII), relatively high sparsity s, = 11% and s; = 82%,
leads to a large 3x energy decrease in the MAC array and a
2.4x decrease for the whole system at full precision. At 100%
input and weight sparsity, the dynamic power consumption is
non-zero due to sparsity-flag fetching, instruction fetch- and
decoding and toggling control signals.

D. Combined effects on benchmarks

Table VII shows the combined effect of the proposed
techniques on the energy consumption of three benchmarks:
AlexNet [5], Lenet-5 [3] and the full precision baseline ref-
erence layer of section VII-A. All measurements are again
performed at the nominal 204MHz.

As shown in Table VII and Fig. 16, the filter weights and
feature map inputs can be represented using only 7b. Reducing
global power consumption by 1.9x from 274mW at full
precision down to 142mW. Voltage in the MAC array can be
set to 0.9V, lowering power by an additional 1.3x to 107mW.
With these quantization settings, sparsity in the filters is 20%
and 89% in the input feature map. If operations and memory
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TABLE VII
PERFORMANCE COMPARISON OF RELEVANT BENCHMARKS, RUNNING AT 204MHz.
Laver Weight Input Weight Input Weight BW  Input BW 10 HufflO Voltage MMACs/ Power Effective
y bits bits  Sparsity (%) Sparsity (%) Reduc. Reduc. (MB/f)  (MB/f) V) Frame (mW) TOPS/W
General CNN 16 16 0% 0% 1.0x 1.0x — — 1.1 — 287 0.3
AlexNet 11 7 4 21% 29% 1.17x 1.3%x 1 0.77 0.85 105 85 0.96
AlexNet 12 7 7 19% 89% 1.15% 5.8% 32 1.1 0.9 224 55 1.4
AlexNet 13 8 9 11% 82% 1.05% 4.1x 6.5 2.8 0.92 150 77 0.7
AlexNet 14 9 8 04% 72% 1.00x 2.9%x 54 3.2 0.92 112 95 0.56
AlexNet 15 9 8 04% 72% 1.00x 2.9% 3.7 2.1 0.92 75 95 0.56
Total / avg. — — — — — — 19.8 10 — — 76 0.9
LeNet-5 11 3 1 35% 87% 1.40x 5.2% 0.003  0.001 0.7 0.3 25 1.07
LeNet-5 12 4 6 26% 55% 1.25x 1.9% 0.050  0.042 0.8 1.6 35 1.75
Total / avg. — — — — — — 0.053  0.043 — — 33 1.6
VIII. COMPARISON WITH THE STATE-OF-THE-ART
» % As shown in table VIII, CPU and GPU implementations [21]
20 are extremely flexible but consume > 100W at low energy-
s 25 effciency. Origami [29], running at 12 achieves an energy-
5 5 efficiency of 437 GOPS/W, but can not scale its energy
H =10 . . L .
8 8 consumption depending on the application’s requirements. [26]
5 is a hardwired ASIC for a fixed two-layer network topology,
0 only achieving high performance when the network is > 90%
0 50 100 . . .
Weight Sparsity s _ (%] Weight Sparsity s _ (%] sparse. Eyerls.s [25], implemented in a 65nm CMOS technol-
M (b) Control + trans ogy and running at 16b, consumes 278mW or 166 GOPS/W
() Memory ) Control + transfer on the AlexNet benchmark at a throughput of 34.7 fps on the
500 200 CONV layers, or an efficiency of 8mlJ/frame.
This work, achieves 47fps throughput on the AlexNet
250 250 . . .
CONV layers at nominal speed, consuming 76mW or
%200‘ 220 1.6mJ/frame if the system is fully optimized. This is hence
2150 g“”o a bx improvement over the AlexNet-benchmarked reference.
& 100 & 100 The processor further allows scaling energy efficiency depend-
50 50 ing on the network’s requirements. LeNet-5, consumes only
0 0l | 25 — 33mW or 1600 GOPS/W at the same nominal 204MHz
0 50 100 0 50 100 . .
Weight Sparsity s [%] Weight Sparsity s, [%] clock frequency, due to DVAS and sparsity guarding. _No
(¢) MAC array (d) Total other Work allows such network dependent energy-scalability
at nominal throughput.
Fig. 15. Influence of Input and Weight sparsity guarding on the power

consumption of the (a) Memory, (b) Control unit and data transfer and the
2D MAC array. (d) Gives an overview of the global power consumption.

fetches are guarded as well, power consumption goes down
another 1.9x to 56mW, which is a total 5x gain compared to
the already efficient 2D-baseline processor architecture. Also,
because of sparsity, the IO-communication can be compressed
up to 5.8x for input features. Similar results are illustrated for
the other layers in table VII, resulting in an average of 76mW
or 0.9 TOPS/W for AlexNet, running at 47 fps.

LeNet-5 is more sparse and requires less computational pre-
cision, even down to 1b in the first layer, gaining another factor
of 2x in energy-efficiency. The combination of these effects -
lower precision arithmetic, lower voltages and more guarded
operations - allows running LeNet-5 at 13k fps at an efficiency
of 1.6 effective TOPS/W or 2.5ul/frame. We hereby illustrate
the flexibility, performance and unique energy-scalability of
this design.

IX. CONCLUSION

A precision-scalable processor for ConvNets with operator-
and memory-guarding was fabricated in a 40nm LP CMOS
technology. It has a total active area of 2.4mm? and runs at a
nominal frequency of 204MHz at 1.1V

Il MEM + CTRL
[ IMAC-array

1.9x

16b 7b 0.9V Guarded

Fig. 16. Influence of the different techniques on the power consumption of
AlexNet layer 2. A total 5X gain in power consumption is achieved through
precision, voltage scaling and sparse operator guarding.
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TABLE VIII
COMPARISON OF THIS WORK WITH PREVIOUS PUBLISHED CONVNET IMPLEMENTATIONS

Reference DAC’15 [21] DAC’15 [21] GLSVLSI’15 [29] | VLSI'16 [26] ISSCC’16 [25] This Work
Technology E5-1620v2 CPU | Tegra K1 GPU 65nm 40nm 65nm LP 40nm LP
Gate Count [NAND — 2] - - 912k - 1852k 1600k
Core Area [mm?] - - 1.31 1.41 12.25 24
On-chip SRAM [k B] - - 43 52 (Reg) 181.5 148
# c-MAC units [-] - - 196 2432 (eq.) 168 256
Nominal Frequency [MHz] 3700 852 500 240 200 204
Peak Performance [GOPS] 118 365 196 898 67 102
Average Performance [GOPS] 35 84 145 - 60 74
Bitwidth [bits] 32 float 32 float 12 fixed 8 fixed 16 fixed 1-16 progr.
Filter-sizes [-] all all <7TXT <8x8 1-12[h], 1-32[v] all
Channels [-] all all 1-256 3,16 1-1024 all
Filters [-] all all 1-256 16, 64 1-1024 all
Layers [-] all all all 2 all all
Stride support [-] all all - no 1-12[h], 1-4[v] 1-4 [h], all [v]
Power-Scalability @ fyom [mMW] 130000 11000 510 141 235 - 332 25 - 300
Energy-Scalability [GOPS/W] 0.15 8.6 437-803 6400 160 - 250 270 - 2750
Power (AlexNet) [mW] - - - - 278 76
Throughput (AlexNet) [fps] - - - - 34.7 47
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