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Abstract

We present a general, high-order, fully explicit relaxation scheme which can be applied to any
system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two
steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a
kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a
projective integration method. After taking a few small (inner) steps with a simple, explicit method
(such as direct forward Euler) to damp out the stiff components of the solution, the time derivative
is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an
appropriate choice of inner step size, the time step restriction on the outer time step is similar to
the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps
is also independent of the stiffness of the BGK source term. We discuss stability and consistency,
and illustrate with numerical results (linear advection, Burgers’ equation and the shallow water and
Euler equations) in one and two spatial dimensions.

1 Introduction

Hyperbolic conservation laws arise in numerous physical applications, such as fluid dynamics, plasma
physics, traffic modeling and electromagnetism (see, for instance, [26,37]). They express the conservation
of physical quantities (such as mass, momentum, or energy) and may be supplemented with boundary
conditions that control influx or outflux at the boundaries of the physical domain [26]. In this paper, we
consider a system of hyperbolic conservation laws in multiple spatial dimensions:

∂tu +∇x · F(u) = 0, (1)

or, equivalently,

∂tu +

D∑
d=1

∂xdFd(u) = 0, (2)

in which x =
(
xd
)D
d=1
∈ RD represents the space variables (D being the number of spatial dimensions),

u(x, t) := (um(x, t))
M
m=1 ∈ RM denotes the conserved quantities, and F(u) ∈ RM×D corresponds to the

flux functions.
Hyperbolic conservation laws are often solved using a finite volume method [26,29], which is derived

from the integral expression of the conservation law. To that end, in a scalar, one-dimensional setting
and with a spatially uniform grid, the domain is divided in I cells Ci = [xi−1/2, xi+1/2] with constant cell
width ∆x over which the cell average of the solution u(x, t) to the conservation law

∂tu+ ∂xF (u) = 0, (3)
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is approximated at time t = tn by

Uni ≈
1

∆x

∫
Ci
u(x, tn)dx. (4)

Note that boldface is removed whenever the quantities are scalar. A numerical scheme is then constructed
by integrating the conservation law (3) in space over the cell Ci and in time from tn to tn+1 to obtain

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2 − F

n
i−1/2

)
, (5)

in which ∆t = tn+1 − tn and the numerical flux satisfies

Fni±1/2 ≈
1

∆t

∫ tn+1

tn
F
(
u(xi±1/2, t)

)
dt. (6)

Clearly, equation (5) is conservative by construction. The numerical fluxes Fni±1/2 can be obtained by

constructing an (approximate) Riemann solver, based on a (possibly high-order) reconstruction of the
solution in each of the cells using interpolation over the neighboring cells [26,32]. However, in the general
nonlinear case, these spatial discretizations require the (possibly tedious) computation of the solutions
of local Riemann problems.

Relaxation methods offer an interesting alternative in which the nonlinear hyperbolic conservation law
is replaced by a linear transport equation with a stiff nonlinear (but local) source term, see, for instance,
discrete kinetic schemes in [18,19,27] and, in particular, [1] which also contains a brief historical overview.
In a relaxation method, the conservation law (1) is approximated by a problem of higher dimension
containing a small relaxation parameter ε such that, when ε tends to zero, the original problem is
recovered. In this paper, we will consider the relaxation problem to be a kinetic BGK equation. In a
scalar one-dimensional setting, this equation describes the evolution of a distribution function fε(x, v, t)
of particles at position x with velocity v at time t and takes the following form:

∂tf
ε + v∂xf

ε =
1

ε
(Mv(u

ε)− fε). (7)

The left hand side of equation (7) describes the transport of particles, whereas the right hand side
represents collisions between particles, which is modeled as a linear relaxation to the MaxwellianMv(u

ε)
with a relaxation time ε. The idea is that some of the difficulties associated with the original problem are
avoided, while, for sufficiently small ε, the relaxation problem is a good approximation of the problem
of interest. In particular, the advantage of the kinetic equation (7) over the conservation law (3) is the
fact that the advection term in (7) is now linear, removing the difficulties associated with the high-order
discretization of a nonlinear flux term. The disadvantage is the appearance of a stiff source term, which
requires special care during time integration. The first methods, proposed in [1,19] are based on splitting
techniques. As a consequence, the order in time is restricted to 2 and can only be improved by nontrivial
manipulations, see [9]. More recently, several asymptotic-preserving methods based on IMEX techniques
(in the sense of Jin [17]) have been proposed. An appealing idea along this line of thought, based on
IMEX Runge-Kutta methods, is presented in [5, 6] for general hyperbolic systems with relaxation. We
refer to [10, 14] for specific methods for the Boltzmann equation in the hyperbolic and diffusive regimes
with a computational cost that is independent of ε. We note that the principle of a kinetic relaxation
scheme also bears resemblance to the method of transport [13], see also [38].

In this paper, we propose to use a projective integration method to solve the stiff relaxation systems
with an arbitrary order of accuracy in time. We will show that the resulting scheme constitutes a flexible,
robust and fully explicit alternative to splitting and IMEX methods, while avoiding the construction of
complicated and problem-specific (approximate) Riemann solvers. Projective integration methods were
proposed in [15] for stiff systems of ordinary differential equations and analyzed in [23] for kinetic equa-
tions with a diffusive scaling. An arbitrary order version, based on Runge-Kutta methods, has been
proposed recently in [22], where it was also analyzed for kinetic equations with an advection-diffusion
limit. Projective integration is particularly suited for stiff problems with a clear spectral gap. In such stiff
problems, the fast modes, corresponding to the Jacobian eigenvalues with large negative real parts, decay
quickly, whereas the slow modes correspond to eigenvalues of smaller magnitude and are the solution
components of practical interest. Projective integration allows a stable yet explicit integration of such
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problems by first taking a few small (inner) steps with a simple, explicit method, until the transients
corresponding to the fast modes have died out, and subsequently projecting (extrapolating) the solution
forward in time over a large (outer) time step. Besides being robust and fully explicit, the resulting
projective integration relaxation method is very appealing for nonlinear hyperbolic conservation laws
because of its flexibility: once a solver is available, applying it to a different nonlinear hyperbolic conser-
vation law merely amounts to changing the definition of the Maxwellian functionMv(u) in equation (7),
leaving both the space and time discretizations untouched.

Projective integration fits within recent research efforts on numerical methods for multiscale simu-
lation [11, 20, 21]. In this context, projective integration is a useful technique to effectively deal with
problems in which there is a macroscopic (slow) dynamics whose mathematical formulation is not known
and that can be captured “on-the-fly” by a short (appropriately initialized) microscopic simulation. Then,
a few small steps of the full microscopic dynamics are combined with an extrapolation of the macroscopic,
slow degrees of freedom only, and the resulting method is called coarse projective integration. Examples
are, amongst others, bacterial chemotaxis [31], chemical reactions [30] and disease modeling [8]. For more
examples, we refer to [21]. To conclude, we also mention alternative approaches to obtain a higher-order
projective integration scheme which have been proposed in [24,30]; see also [12,34,35] for related work.

The remainder of this paper is structured as follows. In section 2, we introduce the kinetic equations
that form the basis of the relaxation method, and discuss their asymptotic equivalence with the original
hyperbolic problem. In section 3, we describe the projective integration method that will be used to
integrate these kinetic equations. We then analyze convergence of the resulting projective integration
relaxation method for hyperbolic conservation laws in section 4, including the choice of appropriate
method parameters. This analysis is based on the results in [22], for which we provide a number of
alternative, simplified proofs that are specific for the relaxation systems of section 2. Section 5 reports
the results of extensive numerical tests for a set of benchmark problems in both one and two space
dimensions: linear advection, nonlinear conservation, the dam-break problem and Sod’s shock test. We
conclude in section 6 with a brief discussion and some ideas for future work.

2 Relaxation systems

2.1 Kinetic equation and hydrodynamic limit

To solve equation (1), we introduce, as in [1], the (hyperbolically scaled) kinetic equation:

∂tf
ε + v · ∇xfε =

1

ε
(Mv(uε)− fε), (8)

or, equivalently,

∂tf
ε +

D∑
d=1

vd∂xdfε =
1

ε
(Mv(uε)− fε), (9)

which models the evolution of a vector of particle distribution functions fε(x,v, t) = (fεm(x,v, t))Mm=1 ∈ RM
with particle positions x ∈ RD and velocities v ∈ V ⊂ RD. The right hand side of (9) contains the BGK
relaxation operator [3] that describes linear relaxation of fε to a Maxwellian equilibrium Mv(uε) ∈ RM ,
in which the argument uε(x, t) = 〈fε(x,v, t)〉 is obtained via averaging over the measured velocity space
(V, µ):

u := 〈f〉 =

∫
V

fdµ(v). (10)

The advantage of the kinetic formulation is that the advection term is now linear, and therefore easier
to discretize. The disadvantage is the increased dimension, as well as the introduction of the stiff source
term of size O(1/ε). The projective integration scheme that we will propose in section 3 allows to
integrate this stiff source term using an explicit method of arbitrary order.

To ensure that the kinetic equation (9) converges to the conservation law (1) in the hydrodynamic
limit ε→ 0, one requires: {

〈Mv(u)〉 = u,〈
vdMv(u)

〉
= Fd(u), 1 ≤ d ≤ D.

(11)
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Then, one can show [1] that, in the limit of ε→ 0, the kinetic model (9) is approximated by the following
equation:

∂tu
ε +

D∑
d=1

∂xdFd(uε) = ε

D∑
d=1

∂xd

(
D∑
d′=1

Bdd′(u
ε)∂xd′ uε

)
+O

(
ε2
)
, (12)

in which Bdd′(u
ε) ∈ RM×M is generally called the diffusion matrix belonging to velocity components vd

and vd
′
, and is defined as:

Bdd′(u) :=
〈
vdvd

′
∂uMv(u)

〉
− ∂uFd∂uFd

′
, (13)

in which the M ×M matrices ∂uMv(u) and ∂uFd represent the Jacobian matrices of Mv(u) and F(u),
respectively.

Clearly, equation (9) is consistent with equation (1) to order 1 in ε. Moreover, the analysis reveals
an additional condition on the choice of Mv(u) and V . Indeed, to ensure the parabolicity of (12), the
diffusion matrix B(u) should be positive definite. This leads to the so-called subcharacteristic condition
[1, 7]:

D∑
d,d′=1

(
Bdd′(u)ξd · ξd

′)
≥ 0, (14)

which must be satisfied for all sets of vectors ξ =
(
ξd
)D
d=1
∈ RDM with ξd ∈ RM .

In what follows, we will always assume that the velocity space is discrete and of the form:

V = {vj}Jj=1, dµ(v) =

J∑
j=1

wjδ(v − vj)dv, (15)

with vj denoting the chosen velocities and wj the corresponding weights for which we have
∑J
j=1 wj = 1.

Due to this choice of V the system of kinetic equations (8) breaks up into a system of J coupled partial
differential equations:

∂tf
ε
j + vj · ∇xfεj =

1

ε
(Mj(u

ε)− fεj ) (1 ≤ j ≤ J), (16)

in which fεj (x, t) ≡ fε(x,vj , t), and the only coupling between different velocities vj is through the
computation of uε, see equation (10). As ε→ 0, a Chapman-Enskog expansion allows to write:

fεj = Mj(u
ε) +O(ε), (17)

so that, injecting it in (16) and taking the mean value over V , we get:

∂t〈Mj(u
ε)〉+∇x · 〈vj ·Mj(u

ε)〉 = O(ε).

Finally, the compatibility conditions (11) imply:

∂tu
ε +

D∑
d=1

∂xdFd(uε) = O(ε). (18)

Remark 2.1 (Minimal number of velocities). In the relaxation problem (16), the minimal number J
of discrete velocities depends on the spatial dimension of the problem. In particular, one needs to ensure
– at least – that there is a velocity associated to each possible direction of motion. There are J = 2
possible velocity directions in 1D (left, right) and J = 4 possible directions in 2D (left, right, up, down).
Since the computational complexity of the relaxation system is proportional to J , we will not consider
higher values of J here. Hence, the one-dimensional stability analysis in section 4 will be performed
specifically for J = 2, and in the experiments in section 5, we will only use J = 2 in 1D and J = 4 in 2D
(the effect of including more velocities is taken up in section 4.3). Finally, we stress that when choosing
J = 2 in 1D, the form of the discrete kinetic system given in equation (16) coincides precisely with the
relaxation system introduced by Jin and Xin in [19].
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Remark 2.2 (Choice of ε). From equation (18), it is clear that the relaxation system (16) contains a
modeling error that is proportional to ε. In our projective integration schemes, however, a finite value
of ε will need to be chosen. This choice will also be dictated by the numerical schemes; in particular,
roundoff errors will become important as ε→ 0, see section 4.4.

Remark 2.3 (Boundary conditions). We point out that, in general, the main difficulty of imposing
boundary conditions arises when replacing the hyperbolic system (1) with the relaxation system (8). This
issue is the subject of several papers in its own right (see, for instance, [2,25]) and will not be treated in
this work. We confine ourselves to periodic boundaries in the analysis (section 4) and to both periodic
and Neumann boundary conditions in the numerical experiments (section 5).

2.2 One-dimensional examples

In one space dimension, we write system (1) as:

∂tu + ∂xF(u) = 0, (19)

with x ∈ R the spatial variable, u(x, t) = (um(x, t))
M
m=1 ∈ RM the set of conserved quantities, and

F(u) = (Fm(u))
M
m=1 ∈ RM the set of flux functions. Correspondingly, the system of kinetic equations

(9) becomes:

∂tf
ε + v∂xf

ε =
1

ε
(Mv(u

ε)− fε), (20)

where fε(x, v, t) = (fεm(x, v, t))
M
m=1 ∈ RM denotes the vector of particle distribution functions and the

particle velocities are represented as v ∈ V ⊂ R.
In equation (20), the Maxwellian Mv is as yet not completely defined, as we only require the con-

ditions (11) to be satisfied. A physically relevant Maxwellian that corresponds to these conditions,
is:

Mv(u
ε) = uε +

vF(uε)

〈v2〉
, (21)

with corresponding velocity space V = R and measure:

dµ(v) =
1√

2πσ2
exp

(
− v2

2σ2

)
dv. (22)

To satisfy the subcharacteristic condition given in (14), the variance σ2 ∈ R+ of the velocity measure
dµ(v) needs to be chosen appropriately. For instance, in the scalar case (M = 1), using equations (13)
and (21), we obtain the following constraint:〈

v2
(

1 +
vF ′(u)

〈v2〉

)〉
≥ (F ′(u))2.

Since this velocity space is odd symmetric, meaning that
∫
V
h(v)dµ(v) = 0 for every odd function h(v),

this condition further reduces to: 〈
v2
〉
≥ (F ′(u))2.

For the Gaussian measure in equation (22) we have
〈
v2
〉

= σ2. Consequently, we require σ ≥ maxu|F ′(u)|
to ensure parabolicity of equation (12). Based on (22), we choose a discrete measured symmetric velocity
space with an even number J of velocities that satisfy vJ−j+1 ≡ −vj . From the measure given in

(22), these discrete velocities (vj)
J
j=1 and weights (wj)

J
j=1 are derived as the nodes and weights of the

corresponding Gauss-Hermite quadrature. In particular, for J = 2, this results in vj = ±σ, with
corresponding weights wj = 1/2.

An alternative suggestion, that is identical to the above choice for J = 2, was proposed in [7] and is
of the following form:

Mv(u
ε) = uε +

F(uε)

v
. (23)
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For both choices (21) and (23), the conditions (11) can be seen to be satisfied. In case of the Maxwellian
given in equation (23), the specific values of the velocities vj need to be chosen such that the subchar-
acteristic condition (14) is satisfied. When we further restrict to a scalar case (M = 1):

∂tu+ ∂xF (u) = 0, (24)

and choosing an odd symmetric velocity space, the subcharacteristic condition again gives rise to the
condition

〈
v2
〉
≥ (F ′(u))2, which is always satisfied when choosing the discrete velocities as:

|vj | ≥ max
u
|F ′(u)| (1 ≤ j ≤ J). (25)

The corresponding weights are chosen as wj = 1/J . Note again that all boldfaced typesetting is removed
for a scalar case.

For the numerical illustrations, we choose concretely the following examples:

Example 2.4. The scalar linear advection equation,

F (u) = a · u, a ∈ R. (26)

Example 2.5. The scalar (inviscid) Burgers’ equation,

F (u) = u2/2. (27)

Example 2.6. The one-dimensional Euler equations,

u = (ρ, ρv̄, E), F(u) = (ρv̄, ρv̄2 + P, (E + P )v̄), (28)

which can be closed by the polytropic equation of state:

P = (γ − 1)

(
E − 1

2
ρv̄2
)
. (29)

2.3 Two-dimensional examples

In two space dimensions, we write system (1) as

∂tu + ∂xF
x(u) + ∂yF

y(u) = 0, (30)

with x = (x, y) ∈ R2 the spatial variables, u(x, t) = (um(x, t))Mm=1 ∈ RM the vector of conserved quanti-
ties, and Fx,y(u) = (F x,ym (u))Mm=1 ∈ RM the sets of fluxes in the x- and y- directions. Correspondingly,
the kinetic system (9) becomes:

∂tf
ε + vx∂xf

ε + vy∂yf
ε =

1

ε
(Mv(uε)− fε), (31)

with fε(x, y, vx, vy, t) = (fεm(x, y, vx, vy, t))Mm=1 ∈ RM the vector of particle distribution functions and
the particle velocities given by v = (vx, vy) ∈ V ⊂ R2, with vx,y the velocity of particles in the x- and
y-direction, respectively.

Compared to the one-dimensional setting, the description of the discrete velocity space is considerably
more elaborate, and many options have been documented, see, for instance, [1, 4, 28]. In the numerical
examples in this paper, we choose the orthogonal velocities method (see [1]), which we now detail for
the scalar case (M = 1). In this method, we choose a set of velocities with varying length and direction.
More specifically, we first fix a maximal velocity length vmax. We then consider R different velocity
lengths:

ρr =
r

R
vmax, 1 ≤ r ≤ R,

and 4S different velocity directions:

θs =
s

S

π

2
, 1 ≤ s ≤ 4S,
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with R,S ≥ 1. We then obtain J = 4RS velocities vj = (vxj , v
y
j ), 1 ≤ j ≤ J , by assigning an index

j = (r − 1)4S + s to every length-direction pair (r, s), and writing

vxj = ρr cos(θs), vyj = ρr sin(θs), 1 ≤ r ≤ R, 1 ≤ s ≤ 4S. (32)

The Maxwellian function Mj for the jth equation of system (16) is then chosen as:

Mj(u) = u+ vxj
F x(u)

〈(vx)2〉
+ vyj

F y(u)

〈(vy)2〉
, (33)

with vx,y =
(
vx,yj

)J
j=1

the velocity components along the x- and y-directions. It can be shown that〈
(vx)2

〉
=
〈
(vy)2

〉
for the orthogonal velocities method (32).

The generalization to M > 1 is straightforward. In [1] it is proven that the subcharacteristic condition
induces the following constraint on the choice of vmax:

v2max ≥
12R2

(
‖∂uFx‖2 + ‖∂uFy‖2

)
(R+ 1)(2R+ 1)

, (34)

where ‖·‖ is the matrix norm associated with the classical 2-norm when M > 1.

Remark 2.7. As pointed out in remark 2.1, in the experiments in section 5 we will always choose J = 4
velocities in 2D. This is accomplished by setting R = S = 1 in the orthogonal velocities method (32).

3 Projective integration

In this section, we construct a fully explicit, asymptotic-preserving, arbitrary order time integration
method for the stiff system (16). The asymptotic-preserving property [17] implies that, in the limit
when ε tends to zero, an ε-independent time step constraint, of the form ∆t = O(∆x), can be used,
in agreement with the classical hyperbolic CFL constraint for the limiting equation (12). To achieve
this, we will use a projective integration method [15, 23], which combines a few small time steps with
a naive (inner) timestepping method, such as a direct forward Euler discretization, with a much larger
(projective, outer) time step. The idea is sketched in figure 1.

The inner and outer integrator can be selected independently. In section 3.1, we discuss the inner
integrator. Afterwards, in section 3.2, we consider the outer integrator, before studying their numerical
properties in section 4.

3.1 Inner integrators

We intend to integrate (16) on a uniform, constant in time, periodic spatial mesh with spacing ∆x,
consisting of I mesh points xi = i∆x, 1 ≤ i ≤ I, with I∆x = 1, and a uniform time mesh with time
step δt and discrete time instants tk = kδt. (The generalization to space-time adaptive grids is of course
straightforward.) The numerical solution on this mesh is denoted by fki,j , where we have dropped the
superscript ε for conciseness. After discretizing in space, we obtain a semidiscrete system of ordinary
differential equations:

ḟ = Dt(f), Dt(f) = −Dx,v(f) +
1

ε
(Mv(u)− f), (35)

where Dx,v(·) represents a suitable discretization of the convective derivative v∂x (for instance, using
upwind differences), and f is a vector of size M · I · J that results from discretizing the kinetic system
(16) in space and velocity.

As inner integrator, we choose an explicit scheme, for which we will, later on, use the shorthand
notation:

fk+1 = Sδt(f
k), k = 0, 1, . . . (36)

The forward Euler (FE) method and Runge-Kutta (RK) methods immediately come to mind.
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time
tn−1 tn tn+1

Figure 1: Sketch of projective integration. At each time instant, an explicit method is applied over a number
of small time steps (red dots) so as to stably integrate the fast modes. As soon as these modes are sufficiently
damped the solution is extrapolated using a much larger time step (dashed lines).

Forward Euler (FE). The simplest time discretization routine is the forward Euler method:

fk+1 = fk + δtDt(f
k). (37)

Higher-order Runge-Kutta (RK). To obtain higher-order accuracy in time in the inner integrator,
one could also employ any Runge-Kutta method [16,36], such as the second-order method:

k1 = Dt(f
k), (38)

k2 = Dt

(
fk +

δt

2
k1

)
, (39)

fk+1 = fk + δtk2. (40)

However, in section 4, we will show that higher-order inner Runge-Kutta methods of even order have
spectral properties that make them unsuitable for use in conjunction with projective integration. Hence,
in the following sections, we will always use forward Euler as inner integrator.

3.2 Outer integrators

In system (16), the small parameter ε in the relaxation term leads to the classical time step restriction
of the form δt = O(ε) for the inner integrator. However, as ε goes to 0, we obtain the limiting equation
(18) for which a standard finite volume/forward Euler method only needs to satisfy a stability restriction
of the form ∆t ≤ C∆x, with C a constant that depends on the specific choice of the scheme and the
parameters of the equation.

In [23], it was proposed to use a projective integration method to accelerate such a brute-force
integration; the idea, originating from [15], is the following. Starting from a computed numerical solution
fn at time tn = n∆t, one first takes K + 1 inner steps of size δt:

fn,k+1 = Sδt(f
n,k), 0 ≤ k ≤ K, (41)

in which the superscript pair (n, k) represents the numerical solution at time tn,k = n∆t+ kδt. The aim
is to obtain a discrete derivative to be used in the outer step to compute fn+1 = fn+1,0 via extrapolation
in time, that is:

fn+1 = fn,K+1 + (∆t− (K + 1)δt)
fn,K+1 − fn,K

δt
. (42)

This method is called projective forward Euler (PFE), and it is the simplest instantiation of this class
of integration methods [15].

Higher-order projective integration methods can be constructed by replacing each time derivative
evaluation ks in a classical Runge-Kutta method by K + 1 steps of an inner integrator as follows (with
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fn,0 = fn for consistency) [22]:

s = 1 :


fn,k+1 = fn,k + δtDt(f

n,k), 0 ≤ k ≤ K

k1 =
fn,K+1 − fn,K

δt

(43)

2 ≤ s ≤ S :


fn+cs,0s = fn,K+1 + (cs∆t− (K + 1)δt)

s−1∑
l=1

as,l
cs

kl,

fn+cs,k+1
s = fn+cs,ks + δtDt(f

n+cs,k
s ), 0 ≤ k ≤ K

ks =
fn+cs,K+1
s − fn+cs,Ks

δt

(44)

fn+1 = fn,K+1 + (∆t− (K + 1)δt)

S∑
s=1

bsks. (45)

To ensure consistency, the Runge-Kutta matrix a = (as,l)
S
s,l=1, weights b = (bs)

S
s=1, and nodes c =

(cs)
S
s=1 satisfy (see, for instance, [16]) the conditions 0 ≤ bs ≤ 1 and 0 ≤ cs ≤ 1, as well as:

S∑
s=1

bs = 1,

S−1∑
l=1

as,l = cs, 1 ≤ s ≤ S. (46)

(Note that these assumptions imply that c1 = 0 using the convention that
∑0

1 · = 0.)
In the numerical experiments, we will specifically use projective Runge-Kutta methods of orders 2

and 4, whose data is summarized in the Butcher tableaux in figure 2.

3.3 Stability of projective integration

We now briefly discuss the main stability properties of projective Runge-Kutta methods as derived in [22].
To that end, we introduce the test equation and its corresponding inner integrator:

ẏ = λy, yk+1 = τ(λδt)yk, λ ∈ C. (47)

As in [15], we call τ(λδt) the amplification factor of the inner integrator. (For instance, if the inner
integrator is the forward Euler scheme, we have τ(λδt) = 1 + λδt.) The inner integrator is stable if
|τ | ≤ 1. The question then is for which subset of these values the projective integration method is also
stable.

Considering projective forward Euler with amplification factor, it can easily be seen from (42) that
the projective forward Euler method is stable if:∣∣∣∣[(∆t− (K + 1)δt

δt
+ 1

)
τ − ∆t− (K + 1)δt

δt

]
τK
∣∣∣∣ ≤ 1, (48)

for all eigenvalues τ of the inner integrator for the kinetic equation (20). The goal is to take a projective
time step ∆t = O(∆x), whereas δt = O(ε) necessarily to ensure stability of the inner brute-force forward
Euler integration. Since we are interested in the limit ε→ 0 for fixed ∆x, we look at the limiting stability
regions as ∆t/δt→∞. In this regime, it is shown in [15] that the values τ for which the condition (48)
is satisfied lie in the union of two separated disks DPFE

1 ∪ DPFE
2 with:

DPFE
1 = D

(
1− δt

∆t
,
δt

∆t

)
and DPFE

2 = D

(
0,

(
δt

∆t

)1/K
)
, (49)

where D(c, r) denotes the disk with center (c, 0) and radius r. One then aims at positioning the eigen-
values that correspond to modes that are quickly damped by the timestepper in DPFE

2 , whereas the
eigenvalues in DPFE

1 should correspond to slowly decaying modes. The projective integration method
then allows for accurate integration of the modes in DPFE

1 while maintaining stability for the modes in
DPFE

2 .
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Figure 2: Butcher tableaux for Runge-Kutta methods. Left: general notation; middle: RK2 method; right: RK4
method.

In [22], this analysis is extended to the projective Runge-Kutta case, showing that, in the limit when
δt/∆t tends to 0, the stability region of the projective Runge-Kutta method also breaks up into two

regions DPRK,q
1 and DPRK,q

2 . Moreover, these regions satisfy ∀q ∈ {1, 2, ...}:

DPRK,q + 1
1 ⊇ DPRK,q

1 ⊇ DPFE
1 and DPRK,q + 1

2 ⊇ DPRK,q
2 ⊇ DPFE

2 ,

in which the constant q indicates the order of the specific Runge-Kutta method. This implies that the sta-
bility regions of lower-order projective integration methods are contained within those of the higher-order
ones. The main conclusion is that, whereas the stability regions of higher-order projective Runge-Kutta
methods differ from those of projective forward Euler in their precise shape, their qualitative dependence
on the parameters of projective integration (δt, K and ∆t) is identical, and method parameters that are
suitable for projective forward Euler will also be suitable for the higher-order projective Runge-Kutta
methods.

4 Numerical properties

Now we are ready to use the projective integration method on the relaxation system (35). The parameters
to determine are then the time scale separation parameter ε in the relaxation system (35), as well as
the projective integration parameters: the inner time step δt, the outer time step ∆t and the number of
inner steps K. The projective integration parameters δt, K, and ∆t can be determined by imposing that
all the eigenvalues of the selected inner integrator scheme fall into the stability region of the projective
integration method. While the numerical experiments also deal with systems of nonlinear hyperbolic
conservation laws in multiple space dimensions, the analysis is restricted to a one-dimensional, scalar,
linear setting. In section 4.1, we will calculate the spectrum of the inner integrators constructed for the
relaxation system given in (35), and this in the specific case J = 2 (see Remark 2.1). This result is a
special case (with an adapted proof) of the more general result for any (even) number of velocities J
that was obtained in [22]: for J = 2, we are able to derive explicit asymptotic expansions for both the
fast and slow eigenvalues in the spectrum. Then, we derive suitable choices for the projective integration
parameters in the specific setting of this paper (section 4.2). Thereafter, in section 4.3, we regard
the influence of adding more velocities to the kinetic relaxation system. Finally, we elaborate on the
consistency of the resulting method for the hyperbolic conservation law (3) in section 4.4. There, we will
also see how to properly choose the relaxation parameter ε.

4.1 Spectrum of inner integrators

To compute bounds on the spectrum of the inner integrator for the scalar kinetic equation (20) with a
linear Maxwellian,

Mv(u) = u+
u

v
,

we first rewrite the semi-discretized kinetic equation (35) in the (spatial) Fourier domain:

∂tF̂(ζm) = B F̂(ζm), B =
1

ε
(−εD + MP− I), (50)

10



with F̂ ∈ C2, B, D ∈ C2×2, M, P ∈ R2×2, and I the identity matrix of dimension J = 2. In (50), the
matrix D represents the (diagonal) Fourier matrix of the spatial discretization chosen for the convection
part, P is the Fourier matrix of the averaging of fε over the positive and negative velocities,

P =
1

2

(
1 1
1 1

)
, (51)

and the matrix M represents the Fourier transform of the Maxwellian:

M = I + V−1, (52)

with V = diag([v∗,−v∗]) and v∗ the chosen (discrete) velocity component.
Since we are using a symmetric velocity space, we have the following property on the diagonal elements

of the matrix D: D1 = D2. Hence, from now on, we write the diagonal elements of D as:

D1,2 = α± ıβ, (53)

in which α and β depend on the spatial discretization, the velocity value v∗ and the (discrete) Fourier
variable ζm, m = 1, . . . , I, see table 1. As a result, the matrix B in (50) also depends on ζm through D.

Since in the Fourier domain we are calculating the eigenvalues of (2 × 2) matrices, we can compute
all eigenvalues of the matrix B in the following theorem.

Theorem 4.1. Under the above assumptions, the spectrum of the matrix B =
1

ε
(MP− I− εD) contains

one slow eigenvalue λ1 and one fast eigenvalue λ2 which can be expanded in terms of ε as:

λ1 = α+ β2

(
1− v2∗
v2∗

)
ε+O(ε3) + ı

(
β

v∗
+ 2

β3

v∗

(
1− v2∗
v2∗

)
ε2 +O(ε4)

)
λ2 = −1

ε
+ α− β2

(
1− v2∗
v2∗

)
ε+O(ε3)− ı

(
β

v∗
+ 2

β3

v∗

(
1− v2∗
v2∗

)
ε2 +O(ε4)

)
.

(54)

Consequently, when choosing v∗ = 1 (and also for ε→ 0 with v∗ 6= 1), the spectrum of B can be written
as:

Sp(B) ⊂

{
D

(
−1

ε
,max
ζm

√
α2 +

β2

v2∗

)
∪ {λ1}

}
. (55)

Proof. Since we discretized in space, the Fourier variable ζ is a discrete variable, ζm = 2πm∆x, m =
1, . . . , I. The matrix product MP and the matrix D(ζm) in the Fourier domain become:

MP =
1

2

(
1 + 1/v∗ 1 + 1/v∗
1− 1/v∗ 1− 1/v∗

)
, D =

(
z+ 0
0 z−

)
, (56)

where we used the matrices M and P given in equations (52) and (51). Furthermore, in (56) we adopted
the shorthand notation z± = α ± ıβ, where α and β depend on the spatial discretization method, the
velocity value v∗ and the Fourier variable ζm, see table 1.

We start by calculating the spectrum of the matrix A = εB. The eigenvalues λ̃ of A can be obtained
as the roots of its characteristic polynomial, denoted by χA(λ̃), which is given by:

χA(λ̃) =
∣∣∣A− λ̃I

∣∣∣
= λ̃2 + (1− ε(z+ + z−))λ̃+ ε

(
1− v∗

2v∗
z− − 1 + v∗

2v∗
z+
)

+ ε2z+z− = 0.
(57)

Using the equalities

z+ + z− = 2α, z+ − z− = ı2β, z+z− = α2 + β2,

the roots of equation (57) can be calculated as:

λ̃1,2 =
−1 + 2αε±

√
∆

2
, (58)
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α

β

upwind 1 upwind 2 upwind 3

−v∗
2 sin2(ζm/2)

∆x
−v∗

3 − 4 cos(ζm) + cos(2ζm)
2∆x −v∗

3 − 4 cos(ζm) + cos(2ζm)
6∆x

−v∗
sin(ζm)

∆x −v∗
4 sin(ζm) − sin(2ζm)

2∆x −v∗
8 sin(ζm) − sin(2ζm)

6∆x

Table 1: Dependence of α and β on v∗, ζ and the chosen spatial discretization technique.

where the discriminant ∆ of equation (57) is written as:

∆ = 1− 4β2ε2 + ı4
β

v∗
ε.

Performing a Taylor series expansion of
√

∆ for ε→ 0 in (58) leads to:

√
∆ = 1 + 2β2

(
1− v2∗
v2∗

)
ε2 +O(ε4) + ı

(
2
β

v∗
ε+ 4

β3

v∗

(
1− v2∗
v2∗

)
ε3 +O(ε5)

)
.

Plugging this expansion into equation (58), we obtain:

λ̃1 =
−1 + 2αε+

√
∆

2

= αε+ β2

(
1− v2∗
v2∗

)
ε2 +O(ε4) + ı

(
β

v∗
ε+ 2

β3

v∗

(
1− v2∗
v2∗

)
ε3 +O(ε5)

)
λ̃2 =

−1 + 2αε−
√

∆

2

= −1 + αε− β2

(
1− v2∗
v2∗

)
ε2 +O(ε4)− ı

(
β

v∗
ε+ 2

β3

v∗

(
1− v2∗
v2∗

)
ε3 +O(ε5)

)
.

Finally, the dominant and fast eigenvalues, λ1 and λ2, of the matrix B =
1

ε
A are then given by:

λ1 = α+ β2

(
1− v2∗
v2∗

)
ε+O(ε3) + ı

(
β

v∗
+ 2

β3

v∗

(
1− v2∗
v2∗

)
ε2 +O(ε4)

)
λ2 = −1

ε
+ α− β2

(
1− v2∗
v2∗

)
ε+O(ε3)− ı

(
β

v∗
+ 2

β3

v∗

(
1− v2∗
v2∗

)
ε2 +O(ε4)

)
.

When we write the Fourier transform of the inner forward Euler scheme (37) as:

F̂k+1 = SδtF̂
k = (I + δtB)F̂k, (59)

it is clear that the amplifications factors τ = (τ1, τ2) of the forward Euler scheme, which are the eigen-
values of Sδt, and the eigenvalues λ = (λ1, λ2) of the matrix B are related via

τj = 1 + λjδt, j ∈ {1, 2}. (60)

Thus, the spectrum of an inner forward Euler timestepper satisfies:

Sp(I + δtB) ⊂

{
D

(
1− δt

ε
, δtmax

ζm

√
α2 +

β2

v2∗

)
∪ {1 + λ1δt}

}
, (61)

with λ1 given in theorem 4.1.
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For higher-order Runge-Kutta inner integrators (of order Q), we have

τj = 1 +

Q∑
q=1

(λjδt)
q

q!
, j ∈ {1, 2}, (62)

and the corresponding spectrum reads:

Sp

(
I +

Q∑
q=1

(δtB)q

q!

)
⊂

{
D

(
1 +

Q∑
q=1

(−1)q

q!

(
δt

ε

)q
, Cδtmax

ζm

√
α2 +

β2

v2∗

)
∪

{
1 +

Q∑
q=1

(λ1δt)
q

q!

}}
, (63)

in which the constant C depends on the order of the Runge-Kutta method. The spectrum in (63) follows
from transforming the spectrum of B in (54) by the particular expression of the Runge-Kutta inner
integrator amplification factor given by (62).

4.2 Method parameters

In this section the projective integration method parameters will be determined by ensuring that the
spectrum of the inner integrator falls within the stability region of the projective forward Euler method.
First, we select a suitable inner time step δt such that the fast modes are quickly damped (section 4.2.1).
Then, we choose the outer time step ∆t commensurate with the slow part of the evolution (section 4.2.2).
Finally, we fix K to ensure overall stability (section 4.2.3).

4.2.1 Choice of inner integrator and time step

Let us first discuss the effect of the inner integrator choice. To that end, we look at the discretization
error and the desired stability properties.

Concerning stability, we deduce from the stability properties of the projective integration method
(see section 3.3) that it is preferable to center the part of the inner timestepper spectrum corresponding
to quickly damped modes around 0. Since, for forward Euler, these fast modes are given by (61), we
choose, for inner forward Euler, δt = ε.

For higher-order inner integrators of even order, one cannot center eigenvalues τ2 corresponding to
quickly damped modes around 0. For instance, for a second-order Runge-Kutta method we have:

min
λ2δt

τ2 = min
λ2δt

(
1 + λ2δt+

1

2
(λ2δt)

2

)
=

1

2
, (64)

and this value is reached for λ2δt = −1 or, equivalently, δt = ε. Although Runge-Kutta methods of odd
order can center the eigenvalues around 0, as we will show below, the discretization error of the projective
integration scheme is dominated by the error of the outer integrator, whereas the discretization error
due to the inner integrator is negligible. As a consequence, we conclude that there is no point in using
a higher-order time discretization for the inner integrator.

4.2.2 Outer time step

Given the inner time step δt = ε, we choose ∆t such that the dominant eigenvalue τ1 of the inner
integrator lies inside the stability region DPRK,q

1 . Let us first look at the projective forward Euler
method, with stability regions (49). We have the following condition on ∆t such that τ1 is contained
within DPFE

1 : (
<(τ1)−

(
1− ε

∆t

))2
+
(
=(τ1)

)2
≤
( ε

∆t

)2
. (65)
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Using the expressions of τ1 in (60) and λ1 given by (54) in theorem 4.1, for which we both consider only
terms up to order ε, we compute:(

(1 + εα)−
(

1− ε

∆t

))2
+

(
β

v∗
ε

)2

≤
( ε

∆t

)2
(
α+

(
1

∆t

))2

+

(
β

v∗

)2

≤
(

1

∆t

)2

α2 +
2α

∆t
+
β2

v2∗
≤ 0.

From the last inequality, we deduce a bound on ∆t of the form:

∆t ≤ min
ζm

(
−2αv2∗

α2v2∗ + β2

)
. (66)

For the projective forward Euler method and first-order upwind discretization, using table 1, the restric-
tion in (66) produces a CFL-like bound:

∆t ≤ ∆x

v∗
.

As indicated in section 2.2, we need to choose v∗ ≥ maxu|F ′(u)| to satisfy the subcharacteristic condi-
tion (14). When choosing v∗ = maxu|F ′(u)|, we obtain exactly the stability condition for the forward
Euler method applied to the original hyperbolic conservation law (3).

When combining a higher-order upwind method with forward Euler timestepping, the time step
restriction becomes much more severe, in exactly the same way as would be the case with a direct
higher-order upwind/forward Euler discretization of equation (3). Using table 1 and equation (66), we
find:

∆t ≤ 2π2v∗(3− 10π2∆x2)

3
∆x3 (second-order upwind)

∆t ≤ 2π2v∗(3− 2π2∆x2)

9
∆x3 (third-order upwind).

The reason for these severe conditions is that, for higher-order upwind methods, the dominant eigenvalues
do not lie on a circle anymore. In fact, they belong to a region that is much steeper close to (1,0) in the
complex τ -plane. Since the dominant stability region of projective forward Euler is always a circle, we
need to choose its radius sufficiently large such that even the steepest eigenvalues fall into this circular
stability region. When we use a higher-order projective Runge-Kutta method, we should determine the
bound on ∆t using its proper dominant stability region (see, for instance, [22]). For example, in case of
the second-order projective Runge-Kutta method, we obtain the following CFL-like bound:

∆t ≤ ν∆x,

where ν is the CFL-number which depends on the coefficients α and β. It is important to notice, however,
that in all above cases ∆t never depends on ε.

4.2.3 The number K of inner time steps

The only parameter that remains to be chosen is the number K of inner steps such that all fast eigenvalues
τ2 (see equation (60) or (62)) corresponding to quickly damped modes are contained within the stability
region DPFE

2 in (49). For given time steps δt and ∆t, this is achieved by expressing that the radius of
the fast eigenvalues zone may not exceed the radius of the stability region DPFE

2 . For forward Euler as
inner integrator, we obtain a condition for K of the form:

cε ≤
( ε

∆t

)1/K
, c = max

ζ

√
α2 +

β2

v2∗
.
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From this we obtain the following lower bound on K:

K ≥ 1

1 +
log(c)

log(ε)

+
log(∆t)

log

(
1

εc

) .
Therefore, for ε small, a safe choice is taking K ≥ 2, uniformly in ε. The computational cost of the
method is then independent of ε.

Note that, when choosing a higher-order inner Runge-Kutta method of even order, the fast eigenvalues
τ2 cannot be centered around 0, see (64). In that case, we need to impose that the radius of the stability
region DPFE

2 in (49) is sufficiently large to encompass the fast eigenvalues zone of the inner Runge-Kutta
method, yielding:

c̃ ≤
(
δt

∆t

)1/K

, c̃ = 1 +

Q∑
q=1

(−1)q

q!

(
δt

ε

)q
+ Cδtmax

ζ

√
α2 +

β2

v2∗
.

Taking the logarithm of both sides and rearranging terms ultimately leads to

K ≥
log

(
1

δt

)
log

(
1

c̃

) +
log(∆t)

log

(
1

c̃

) ,
which results in a condition of the form K ≥ log(1/ε) since δt = O(ε). Hence, using an inner integrator
of even order destroys the asymptotic-preserving nature of the projective integration method.

4.3 Number of velocities

In remark 2.1, we stated that we use J = 2 discrete velocities in 1D as using more velocities increases
the computational cost of the method. Nonetheless, here, we investigate the effect of using more discrete
velocity components in 1D, for which we always assume an even number J . More specifically, we consider
the influence on the dominant eigenvalues λ1 since the artificial diffusion of the kinetic relaxation system
depends on the position of these components. In [22], it is shown that, when using the Maxwellian (23)
with linear flux function F (u) = a · u, the dominant eigenvalues (to order ε) are given by:

λ1 = 〈α〉+O(ε) + ı

(
a

〈
β

v

〉
+O(ε)

)
,

in which α = (αj)
J
j=1 and β = (βj)

J
j=1 represent the real and imaginary parts appearing in the diagonal

Fourier domain matrix D = diag(α+ ıβ) of the spatial discretization. They are retrieved from table 1
by replacing v∗ by |vj | for αj and v∗ by vj for βj . When repeating the proof in [22] using the Maxwellian
in (21), we now obtain:

λ1 = 〈α〉+O(ε) + ı

(
a

〈v2〉
〈βv〉+O(ε)

)
,

from which we find that only the imaginary part of λ1 is affected when changing the Maxwellian.
Another effect induced by these Maxwellians is the set of corresponding discrete velocities and weights.

As discussed in section 2.2, for the first Maxwellian, the weights are chosen as wj = 1/J together with
the following uniform velocity discretization:

vj =

{
v∗ + ∆v(j − 1) (1 ≤ j ≤ J/2)

vJ−j+1 (J/2 + 1 ≤ j ≤ J),
(67)

where v∗ ≥ |a| is chosen such that the discretization complies with the subcharacteristic condition (25)
and ∆v > 0 denotes the velocity increment. For the Maxwellian in (21) with velocity measure (22),
the velocities and weights are chosen as the nodes and weights from Gauss-Hermite quadrature, and the
variance of the velocity measure σ2 =

〈
v2
〉

must satisfy the subcharacteristic condition σ2 ≥ a2.
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We now regard the influence of J on the position of the dominant eigenvalues. We first note that,
since βj can be written as βj = vjh(ζm) (see table 1), for both Maxwellians, the imaginary part (to order
ε) of the dominant eigenvalue λ1 is independent of J . This can be seen as follows:

a

〈
β

v

〉
=
a

J

J∑
j=1

h(ζm) = ah(ζm),
a

〈v2〉
〈βv〉 =

a

〈v2〉

J∑
j=1

wjv
2
jh(ζm) = ah(ζm).

On the other hand, we have αj = −|vj |g(ζm), giving:

〈α〉 = −g(ζm)

J∑
j=1

wj |vj |. (68)

It is clear that for the Maxwellian (23) with uniform velocity discretization (67) and weights wj = 1/J ,
the sum in equation (68) increases with J . This is seen by explicitly computing the sum as follows:

1

J

J∑
j=1

|vj | =
2

J

J/2∑
j=1

|vj | = v∗ +
2∆v

J

J/2∑
j=1

(j − 1) = v∗ +
∆v

J

J(J − 2)

4
,

where we used the known result on sums of successive natural numbers to arrive at the last equality.
Substituting this into equation (68) yields:

〈α〉 = −g(ζm)

(
v∗ +

∆v

4
(J − 2)

)
,

which indeed reveals a linear dependence on the number of velocities J . We conclude that, when
increasing the number of velocities for Maxwellian (23), not only does the method become more expensive,
the dominant eigenvalues of the kinetic relaxation system are also stretched out to the left in the complex
plane (however, preserving their imaginary part), thus increasing the artificial diffusion of the problem.

For the Maxwellian (21) with Gauss-Hermite velocity discretization, it is known that integration
with respect to the measure (22) of polynomials of v up to order 2J − 1 yields an exact result. However,
since the function |v| in equation (68) is not a polynomial, the value 〈|v|〉 computed by Gauss-Hermite
quadrature will only be an approximation that converges to the true value 〈|v|〉 = σ

√
2/π as J → ∞.

In figure 3, we plot the computed values 〈|v|〉 (blue line) as a function of J together with the exact
value 〈|v|〉 (black line). It is seen that the computed values alternately over- and underestimate the true
value. However, since we always require an even number J , we observe convergence to the true value
from above (red line). In conclusion, for the Maxwellian (21), the addition of more velocities compresses
the dominant eigenvalues in the complex plane (however, preserving their imaginary part) thus reducing
the artificial diffusion of the kinetic relaxation system at the cost of increasing its size. As indicated
in figure 3, the reduction in diffusion is expected to be most significant for low values of J . The above
observations seem to extend naturally to the nonlinear case. However, a detailed analysis would lead us
too far.

4.4 Consistency analysis

We now examine the consistency behavior of the proposed method in a scalar, one-dimensional setting
(M = D = 1). To that end, we regard the local truncation error of the method. The exposition in this
section is based on the consistency derivation in [23], which becomes simpler in the hyperbolic case. We
introduce the following notation for N ≥ 0 and 0 ≤ k ≤ K + 1:

1. f̃N,k denotes the exact solution at time tN,k = N∆t+ kδt and is a vector of length I · J obtained
by collecting fε(xi, vj , t

N,k), ∀ 1 ≤ i ≤ I, 1 ≤ j ≤ J ;

2. fN,k denotes the numerical solution at time tN,k starting from the exact solution, that is, fN,k =
Skδt(f̃

N ). It is a vector of length I · J obtained by collecting fN,ki,j , ∀ 1 ≤ i ≤ I, 1 ≤ j ≤ J ;

3. uN =
〈
fN
〉

and ũN =
〈
f̃N
〉

represent the numerical and exact conserved quantity at time tN ≡
tN,0 obtained by averaging over velocity space. Both are vectors of length I.
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Figure 3: Convergence of 〈|v|〉 (blue line) to 〈|v|〉 = σ
√

2/π (black line) for Gauss-Hermite quadrature and
σ = 1. The red line shows convergence for an even number J .

Since the goal of the simulations is to obtain u(x, t) = 〈fε(x, v, t)〉, we define the local truncation error
at time tN+1 as:

EN+1 =
ũN+1 − uN+1

∆t
. (69)

We focus here on the consistency analysis for PFE. The analysis can be straightforwardly extended
to higher-order PRK methods, see [22], since ks on each stage s in the projective Runge-Kutta methods
are computed as finite difference approximations of the time derivative in which the function values are
obtained by the PFE method, see equations (43)-(44). By averaging equation (42) over velocity space
and substituting the result into (69), we find:

EN+1 =
ũN+1 − uN,K+1

∆t
−
(

∆t− (K + 1)δt

∆t

)
uN,K+1 − uN,K

δt
. (70)

Equation (70) shows that the local truncation error of the PFE method depends on its inner integrator.
Therefore, we also introduce the local truncation error of the inner integrator, defined as:

eN,k+1
f =

f̃N,k+1 − fN,k+1

δt
, (71)

for which we now calculate an estimate. We rewrite both quantities f̃N,k+1 and fN,k+1 in terms of their
respective solutions at time tN,k. The numerical solution fN,k+1 is reformulated by recalling that we
choose the FE scheme (37) as inner integrator (see section 4.2.1), and the fact that we require δt = ε for
stability (see section 4.2.1), giving:

fN,k+1 = Sδt(f
N,k) = fN,k + ε

(
−Dx,v(fN,k) +

1

ε

(
Mv(u

N,k)− fN,k
))

= −εDx,v(fN,k) +Mv(u
N,k). (72)

The exact solution f̃N,k+1 is computed by applying a Taylor series expansion of f̃N,k+1 around tN,k,
yielding:

f̃N,k+1 = f̃N,k + ε ∂tf̃
N,k +O(ε2)

= f̃N,k + ε

(
−ṽ∂xf

N,k
+

1

ε

(
Mv(u

N,k)− f̃N,k
))

+O(ε2)

= Sδt(f̃
N,k) + ε

(
Dx,v(f̃N,k)− ṽ∂xf

N,k
)

+O(ε2). (73)

The second equality is obtained by using the expression of the kinetic system (20), where ṽ∂xf
N,k

denotes the evaluation of the convective derivative v∂xf
ε at time tN,k, which is subsequently collected

on all discrete points xi and vj . The last equality follows from adding and subtracting Dx,v

(
f̃N,k

)
and

subsequently using the forward Euler timestepper expression (37). Substituting equations (72) and (73)
into (71), we find:

eN,k+1
f = Sδt(e

N,k
f ) +

(
Dx,v(f̃N,k)− ṽ∂xf

N,k
)

+O(ε). (74)

17



Working out the recursion in (74) gives:

eN,K+1
f =

K∑
k=0

Skδt

(
Dx,v(f̃N,K−k)− ṽ∂xf

N,K−k
)

+O
(
(K + 1)ε

)
. (75)

Since the difference between brackets in equation (75) precisely corresponds to the spatial discretization
error, we find the following estimate for the inner integrator local truncation error:

eN,K+1
f = O

(
(K + 1)∆xp

)
+O

(
(K + 1)ε

)
, (76)

where p denotes the order of accuracy of the spatial discretization method. Then, using equations (71)
and (76), the local truncation error (70) of the PFE method is computed as:

EN+1 =
ũN+1 − ũN,K+1 + ε

〈
eN,K+1
f

〉
∆t

−
(

∆t− (K + 1)ε

∆t

) ũN,K+1 − ũN,K − ε
〈
eN,K+1
f − eN,Kf

〉
ε

= O(∆t) +O

(
ε2

∆t

)
+

ε

∆t

〈
eN,K+1
f

〉
+

(
∆t− (K + 1)ε

∆t

)(
O(∆xp) +O((K + 1)ε)

)
= O(∆t) +O(∆xp) +O((K + 1)ε) +O

(
ε2

∆t

)
+

ε

∆t
O(∆xp), (77)

where we used Taylor expansions of all quantities ũ around tN in the first equality.
Ultimately, we obtain the following expression for the local truncation error for PFE and FE as inner

integrator:

EN+1 = O(∆t) +O(∆xp) +O
(
(K + 1)ε

)
+ εO

(
∆xp + ε

∆t

)
. (78)

It can then easily be shown, following the proof of [22, Theorem 5.1], that a projective Runge-Kutta
method of order q has the following discretization error:

EN = O(∆tq) +O(∆xp) +O
(
(K + 1)ε

)
+ εO

(
∆xp + ε

∆t

)
. (79)

The first term in (79) is due to the time discretization error made in the outer Runge-Kutta integrator,
whereas the next two terms are the space and time discretization error respectively due to the inner
integrator. The last term results from the time derivative operator approximation. We remark that, in
the limit of ∆t going to 0, for fixed ε, this last term would result in divergence. However, since the goal
is to create an asymptotic-preserving scheme, valid for fixed ∆t (independent of ε), while ε tends to 0,
this is not an issue: the last term then becomes of O(ε), and hence negligible. Consequently, the scheme
is indeed consistent and asymptotic-preserving in the limit ε→ 0.

Finally, we mention that the choice of ε in this work is determined by the finite difference approx-
imation to the time derivative appearing in the projective Runge-Kutta formulations which have the
following form:

fn,K+1 − fn,K

ε
. (80)

As a consequence, the numerical error of this approximation is O(ε) and is bounded below by O(
√
εmach)

with εmach ≈ 10−16 being the machine precision. For that reason, we choose ε = 10−8. Clearly, the
above reasoning assumes implicitly that the distribution function fε is not very small or very large. This
can always be realized by a proper non-dimensionalization of the system under study.

5 Applications

In this section, we illustrate the relaxation method with projective integration on a number of example
systems. We first examine the one-dimensional case. In section 5.1, we consider the linear advection
equation, and demonstrate the spatial and temporal order of the methods. Subsequently, we investigate
nonlinear conservation laws: Burgers’ equation in section 5.2 and the Euler equations (Sod’s shock test)
in section 5.3. Afterwards, we consider linear advection, the dam-break problem and the Euler equations
in the two-dimensional case (sections 5.4–5.6).
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5.1 Linear advection in 1D

Let us first illustrate the order of the relaxation method with projective integration, both in space and
time. To this end, we consider the linear advection equation, that is, equation (3) with the linear flux
function (26):

∂tu+ ∂x(a · u) = 0, (81)

in which the macroscopic unknown function u(x, t) denotes the conserved quantity that propagates with
velocity a ∈ R. We compute the solution for t ∈ [0, T ] and x ∈ [0, 1], using a = 1. We impose periodic
boundary conditions and choose a smooth initial condition:

u(x, 0) = exp
(
−100(x− 0.5)2

)
. (82)

We compute the global error EN at time tN = T which is defined as EN = ‖EN‖, with EN =
(
ENi
)I
i=1

,

and ENi denoting the global space-time discretization error at time t = tN and grid location x = xi given
by:

ENi = ∆x
∣∣uNi − u(xi, t

N )
∣∣, (83)

(For the linear advection equation (81), the exact solution is known analytically.) Here, we shall always
choose the 1-norm to calculate the global error EN .

For the relaxation method, we use the kinetic system (20), in which we discretize velocity space using
J = 2 velocities. Taking into account the subcharacteristic condition (25), the velocities are fixed as:
v1 = −|a| and v2 = |a|. We point out that, in this purely academic first test case, we recover the Jin-Xin
relaxation system (see also Remark 2.1), and additionally, the distribution corresponding to v1 = −|a|
vanishes in the limit of ε tending to zero. As the Maxwellian, we choose (23), with F (u) = a·u. The inner
integrator is a space-time discretization of system (20), in which we choose the standard upwind spatial
discretizations of order 1, 2 and 3 with grid spacing ∆x (that will vary throughout the experiments),
combined with a forward Euler time discretization with δt = ε and ε = 10−8. The projective integration
method uses K = 2 inner steps, and an outer time step of size ∆t (that will also vary).

Numerical spatial order (figures 4 and 5) To illustrate the spatial order of accuracy, we calculate
the global error at time T = 0.02 and vary the grid spacing ∆x as:

∆x = [0.04, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001]. (84)

Correspondingly, depending on the spatial order of accuracy p and the temporal order of accuracy q of
the outer integrator, we choose the outer time step ∆t as:∆t = O

(
∆xp/q

)
= Cp∆x

p/q (p ≥ q)

∆t = Cp∆x (p < q).
(85)

The choice of outer time step for p ≥ q ensures that the temporal discretization error and the spatial
discretization error display the same asymptotic behavior as ∆x tends to zero, while for p < q the spatial
discretization error dominates in (79). The constants Cp in (85) should be chosen such that the projective
integration method remains stable for all choices of ∆x. Figure 4 shows the error as a function of ∆x.
In the left plot, time integration is done using the projective forward Euler method (PFE), for which
the time order q = 1. The constants in (85) are then chosen as C1 = 0.5, C2 = 20 and C3 = 100. We
clearly observe the expected spatial order. This is confirmed by fitting a least squares line through the
calculated error points. The slopes of these lines correspond to the numerical order which in this case
were found to be 0.98, 1.94 and 2.99. These indeed lie sufficiently close to the expected spatial order.

In the middle plot, the experiment is repeated using a second-order projective Runge-Kutta method
(PRK2, q = 2). For spatial orders p ∈ {1, 2}, we choose ∆t = 0.5∆x. In that case, the first term in
expression (79) will be dominant and the order in space can be observed. For p = 3 we put ∆t = C3∆x3/2

and choose C3 = 4. On these plots, we observe that, for the third-order upwind discretization, the error
curves start to level off for small values of ∆x. This is due to the fact that the contribution of the spatial
discretization error in (79) becomes negligible, and the O(ε) term becomes dominant. As indicated in
section 4.4, this term results from the time derivative approximation in the projective step by a finite
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difference expression, see equation (80). When calculating the slopes of the least squares fit we now
obtain 0.99, 1.99 and 3.07 which correspond to the expected spatial orders.

In the right plot, we use a second-order Runge-Kutta method as inner integrator. We note that, in
agreement with the observations in section 4.2, the number K of inner steps can now no longer be chosen
independently of ε. For stability, we are required to choose (at least) K = 21 for p ∈ {1, 2} and K = 22
for p = 3. The numerical orders are 1.00, 1.99 and 3.04. Moreover, we again observe that the error levels
off, since the remaining error is due to the finite difference approximation of the time derivative, and not
due to the time discretization error of the inner integrator. Note that the error curve now levels off to a
value which is about 10 times higher than in the forward Euler case, due to a less efficient damping of
the fast eigenvalues, as can be seen in (63). This observation is supported by looking at equation (79) in
which the value of K needs to be taken 10 times higher for RK2 as inner integrator so as to guarantee
a stable functioning of the method. From these findings we conclude that it is not useful to select a
higher-order inner integrator within the projective integration framework. Therefore, in what follows we
will always select FE as inner integrator.

Next, we repeat this experiment using a fourth-order projective Runge-Kutta method (PRK4). We
choose ∆t = C∆x for each p ∈ {1, 2, 3} and put C equal to 0.4. The result is depicted on the left hand
side plot of figure 5, where we again see the expected behavior (numerical orders: 0.99, 1.99 and 2.97).
To avoid unphysical oscillations associated with higher-order upwind schemes, we also performed the
same experiments using an essentially non-oscillatory (ENO) spatial discretization [32], which uses an
adaptive stencil to avoid stencils with large variations in the solution values. The order test of the PRK4
scheme with ENO is shown on the right hand side plot of figure 5. The calculated numerical orders are
0.99, 1.86 and 2.86 which are in agreement with the expected spatial orders of the ENO scheme.

Numerical time order (figure 6) The temporal order of the projective integration methods is
demonstrated in a slightly different manner as outlined above. Now, we fix the grid spacing ∆x = 0.05
and vary the outer time step ∆t as

∆t = [0.04, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001]. (86)

We will calculate the error at time T = 0.04. The other simulation parameters remain the same as above.
The error is now calculated by taking the 1-norm of the difference between the numerical solution and
the analytical solution of the (linear) semi-discretized system (35). By doing so we take into account
the discretization error in space such that we only look at the error in time. The simulations are run
for PFE, PRK2 and PRK4 with FE as inner integrator and upwind differences of order 3 in space. The
results can be seen in figure 6 in which we also look at the influence of the value of ε by choosing ε = 10−5

(left hand side plot) and ε = 10−8 (right hand side plot). It is clearly indicated on the plots that for
small values of ∆t the error curves level off towards the value of the dominant term of O(ε) in expression
(79) since the other terms in (79) are negligible. For ε = 10−5 the numerical orders are 1.07 and 2.00
for PFE and PRK2, respectively. In this case there were too few meaningful points to reliably estimate
the numerical order of the PRK4 method. For ε = 10−8 the numerical orders are 1.02, 2.00 and 4.07,
corresponding to the expected time order of the different methods.

5.2 Burgers’ equation in 1D

As a second example, we consider the inviscid Burgers’ equation in one spatial dimension,

∂tu+ ∂x

(
u2

2

)
= 0. (87)

We compute the solution for t ∈ [0, 1] and x ∈ [0, 2]. We impose periodic boundary conditions and
consider three different initial conditions: a Gaussian pulse u1(x), a sinc wave packet u2(x) and a sine
wave u3(x) given by:

u1(x) = exp(−25(x− 1)2), u2(x) = sinc(5(x− 1)), u3(x) = sin(πx). (88)

For the relaxation method, we use the kinetic system (20) together with the more realistic form of
the Maxwellian given in (21) with F (u) = u2/2. (Note that, compared to the previous example with
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Figure 4: Spatial order test for PFE with FE as inner integrator (left) and PRK2 with FE (middle) and RK2
(right) as inner integrators and three different spatial orders. The error is computed using the 1-norm. On each
plot, the solid lines represent the calculated error whereas the dotted line shows the expected error.
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Figure 5: Spatial order test for PRK4 with FE as inner integrator and three different spatial orders using a)
upwind differences (left plot) and b) the ENO scheme (right plot). The error is computed using the 1-norm. On
each plot, the solid lines represent the calculated error whereas the dotted line shows the expected error.

Order test (time) for linear advection

10−4 10−3 10−2
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

∆t

E
rr

o
r

(1
-n

o
rm

)

ε = 10−5

PFE

PRK2

PRK4

10−4 10−3 10−2
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

∆t

E
rr

o
r

(1
-n

o
rm

)

ε = 10−8

Figure 6: Temporal order test for the different projective integration methods under study: PFE, PRK2 and
PRK4 with FE as inner integrator and upwind differences of order 3 in space comparing results for ε = 10−5 (left
plot) and ε = 10−8 (right plot). The error is computed using the 1-norm. On each plot, the solid lines represent
the calculated error whereas the dotted line shows the expected error.
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linear advection, this only requires a change in one line of the code.) We discretize the velocity space
using J = 2 velocities which are obtained as the nodes of Gauss-Hermite quadrature with σ2 = 1 in
equation (22). The inner integrator is a space-time discretization of system (20) using the standard
upwind spatial discretizations of order 1, 2 and 3 with grid spacing ∆x (that will vary throughout the
experiments), combined with a forward Euler time discretization with δt = ε and ε = 10−8. We also
consider the third-order ENO scheme. The projective integration method uses K = 2 inner steps, and
an outer time step of size ∆t (that will also vary).

We first perform a numerical simulation using a third-order ENO spatial discretization and a fourth-
order projective Runge-Kutta method (PRK4) with ∆x = 10−2 and ∆t = 0.5∆x. The results are
depicted in figure 7. We clearly see that the discontinuities are nicely captured without the appearance
of spurious oscillations.

Next, we also investigate the temporal order of the methods. Since the analytical solution of Burgers’
equation is not available explicitly, the error is computed with respect to a reference solution that is
obtained using a high-order simulation of (87) with the PRK4 method and FE as inner integrator using
upwind differences of order 3 in space with grid spacing ∆x = 0.05 and time step δt = 10−8. The outer
time step is chosen to be ∆t = 10−6. Then, we vary ∆t as given by (86) and we again examine the
influence of the value of ε by choosing ε = 10−5 (left hand side plot) and ε = 10−8 (right hand side
plot) in figure 8. It is observed on the plots that for small values of ∆t the error curves level off towards
the value of the dominant term of O(ε) in expression (79) since the other terms in (79) are negligible.
For ε = 10−5 the numerical orders are 1.07 and 2.00 whereas for ε = 10−8 the numerical orders are
1.00, 2.00 and 4.18 which are in agreement with the expected time order of the different methods. For
the temporal order test the initial solution consists of a Gauss curve centered around the middle of the
domain x ∈ [0, 2] (that is, function u1(x) in (88)) and the error is calculated at t = 0.04. The results are
comparable to the linear advection case, see figure 8.

5.3 Sod’s shock test in 1D

Sod’s shock test is an important numerical test to check how a numerical method captures shock waves
[33]. The test involves the Euler equations in one spatial dimension for mass, momentum and energy,
u = (ρ, ρv̄, E), 

∂tρ+ ∂x(ρv̄) = 0,

∂t(ρv̄) + ∂x(ρv̄2 + P ) = 0,

∂tE + ∂x((E + P )v̄) = 0,

(89)

in which the pressure P is determined via the polytropic equation of state:

P = (γ − 1)

(
E − 1

2
ρv̄2
)
, (90)

in which the constant γ equals 7/5 in case of a diatomic perfect gas [33].
Sod’s shock test consists of an initial centered Riemann problem with the following left and right

state values [33]: ρLv̄L
PL

 =

1
0
1

,
ρRv̄R
PR

 =

0.125
0

0.1

. (91)

Furthermore, we impose outflow boundary conditions and perform simulation for x ∈ [0, 1] and t ∈ [0, 0.22].
The particular choice of the time interval allows for a clear visualization of the three different character-
istic waves (see below) and an easy comparison with the available literature.

For the relaxation method, we use the kinetic system (20), in which we discretize the velocity space
with J = 2 velocities corresponding to the nodes of Gauss-Hermite quadrature. The Maxwellian is chosen
as:

Mv(u
ε) =

 ρ
ρv̄
E

+
v

〈v2〉

 ρv̄
ρv̄2 + P
E + P v̄

. (92)

The inner integrator uses a third-order spatial ENO discretization with ∆x = 5 · 10−3 and a forward
Euler time discretization with δt = ε = 10−8. As the outer method, we choose the fourth-order projective
Runge-Kutta method (PRK4), using K = 2 inner steps and an outer step of size ∆t = 0.5∆x.
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Evolution of Burgers’ equation for several waves (PRK4 + FE + ENO3)
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Figure 7: Numerical solution of Burgers’ equation (87) obtained with PRK4 and FE as inner integrator using a
third-order ENO scheme with ∆x = 10−2. The thick blue and red line represent the solution at t = 0 and t = 1.
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Figure 8: Temporal order test for Burgers’ equation for the different projective integration methods under study:
PFE, PRK2 and PRK4 with FE as inner integrator and upwind differences of order 3 in space comparing results
for ε = 10−5 (left plot) and ε = 10−8 (right plot). The error is computed using the 1-norm. On each plot the
solid lines represent the calculated error whereas the dotted line shows the expected error.

The result is illustrated in figure 9, where we plot density, velocity, energy and pressure at time
t = 0.22, along with the analytical solution, calculated with an exact Riemann solver, for comparison.

We clearly see the development of three characteristic waves. The first wave corresponds to a rar-
efaction wave propagating to the left since initially the pressure and density on the left half side of the
shock tube are higher than on the right side. Secondly, a contact discontinuity is observed. This right
propagating wave corresponds to the initial discontinuity of (91). Finally, a shock wave propagating
to the right has also appeared. It appears that only pressure and velocity remain continuous over the
contact discontinuity and exhibit a very flat state. Furthermore, it can be observed that all the quantities
are discontinuous over the shock wave. The projective integration method captures all these phenomena,
without developing undesired oscillations and without smoothing out the discontinuities too much.

5.4 Linear advection in 2D

We now turn to problems in two spatial dimensions. We again start with the linear advection equation,
which, in two dimensions, reads:

∂tu+ a∂xu+ b∂yu = 0, (93)

in which a, b ∈ R are the constant advection speeds along the x- and y-direction, respectively. The
macroscopic unknown function u(x, y, t) denotes the two-dimensional conserved quantity. In the simula-
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Evolution of Sod’s shock test (PRK4 + FE + ENO3)
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Figure 9: Fluid properties in Sod’s shock test at t = 0.22 obtained with PRK4 and FE as inner integrator and
a third-order ENO discretization in space using ∆x = 5 · 10−3.

tions we integrate over t ∈ [0, 1] and (x, y) ∈ [0, 1]2, and we set a = b = 1. We impose periodic boundary
conditions and start from a Gaussian pulse centered in the middle of the domain:

u(x, y, 0) = exp
(
−50(x− 0.5)2

)
exp
(
−50(y − 0.5)2

)
. (94)

As described in section 2.3 we now solve the two-dimensional kinetic system (31) with Maxwellian
given by (33). The velocity discretization is determined by the orthogonal velocity method, in which we
fix R = S = 1 (see remark 2.7). To satisfy the subcharacteristic condition, we calculate vmax by choosing
the (integer) lower bound from expression (34):

vmax =

⌈√
12R2(a2 + b2)

(R+ 1)(2R+ 1)

⌉
= 2.

The inner integrator is a space-time discretization of the kinetic system (31), in which we take the ENO
scheme of order 1, 2 and 3 in space with ∆x = ∆y = 0.04 and the forward Euler scheme in time with
δt = ε = 10−8. The outer integrator is the fourth-order projective Runge-Kutta (PRK4) method, using
K = 2 and ∆t = 0.3∆x.

We compare the obtained numerical results for increasing order in space from 1 to 3. This is shown
in figure 10.

5.5 Dam-break problem in 2D

In dam-break problems, one is interested in the evolution of two (or more) regions of water that are
separated by a dam, which then is suddenly removed. Such problems are modeled by shallow water
equations which, in general, describe the evolution and development of waves that are shallow with
respect to their wavelength [26]. In two space dimensions, the shallow water equations take the following
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Figure 10: Comparison of the numerical solution for linear advection in 2D at t = 1 obtained by PRK4 and FE
as inner integrator for different orders in space of the ENO scheme with ∆x = ∆y = 0.04.

form: 
∂th+ ∂x(hv̄x) + ∂y(hv̄y) = 0

∂t(hv̄
x) + ∂x

(
h(v̄x)2 + P

)
+ ∂y(hv̄xv̄y) = 0

∂t(hv̄
y) + ∂x(hv̄xv̄y) + ∂y

(
h(v̄y)2 + P

)
= 0,

(95)

in which h is the water depth, v̄ = (v̄x, v̄y) is the (macroscopic) velocity vector, and P is the pressure.
All these unknown functions depend on x, y and t. The system in (95) contains three equations for four
unknown functions: h, v̄x, v̄y and P . It is closed by the following (hydrostatic) equation of state [26]:

P =
1

2
gh2. (96)

The shallow water system is considered over the domain (x, y) ∈ [−2.5, 2.5]2 and t ∈ [0, 1.5]. We impose
outflow boundary conditions and define the initial solution as a cylindrical basin of water surrounded by
a dam (see [26]):

h(x, y, 0) =

{
2, x2 + y2 ≤ 0.5

1, otherwise
, v̄(x, y, 0) = 0. (97)

For the relaxation method, we use the kinetic system (31) together with the Maxwellian given by (33),
which now becomes:

Mj(u
ε) =

 h
hv̄x

hv̄y

+
vxj

〈(vx)2〉

 hv̄x

h(v̄x)2 + P
hv̄xv̄y

+
vyj

〈(vy)2〉

 hv̄y

hv̄xv̄y

h(v̄y)2 + P

. (98)

The velocity discretization is determined by the orthogonal velocity method, in which we fix R = S = 1
and vmax = 2. In the projective integration framework, the inner integrator is a space-time discretization
of the kinetic equation (31), in which we take the WENO3 scheme in space with ∆x = ∆y = 0.02
and the forward Euler method in time with δt = ε = 10−8. The outer integrator is the fourth-order
projective Runge-Kutta (PRK4) method, using K = 2 and ∆t = 0.5∆x. Due to the radial symmetry of
the problem, in figure 11, we only plot the cross-section h(x, 0, t) of the water depth. As in [26], we first
observe an inflow of water, which eventually drops below h = 1, followed by a strong outflow around
t = 1. After t = 1, two shock waves that weaken over time start propagating away from the origin. At
t = 1.5, the water depth near the origin stabilizes around h ≈ 0.96.
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Figure 11: Time evolution of the water depth h(x, 0, t) in the cylindrical dam-break problem obtained with
PRK4 and FE as inner integrator using the WENO3 scheme with ∆x = ∆y = 0.02 and ∆t/∆x = 0.5. The black
dashed line (top left) represent the initial water depth in (97).

5.6 Euler equations in 2D

When extending the Euler equations from one to two spatial dimensions, we obtain a system of four
equations, given by: 

∂tρ+ ∂x(ρv̄x) + ∂y(ρv̄y) = 0

∂t(ρv̄
x) + ∂x

(
ρ(v̄x)2 + P

)
+ ∂y(ρv̄xv̄y) = 0

∂t(ρv̄
y) + ∂x(ρv̄xv̄y) + ∂y

(
ρ(v̄y)2 + P

)
= 0

∂tE + ∂x((E + P )v̄x) + ∂y((E + P )v̄y) = 0.

(99)

In system (99) the unknown functions ρ, v̄ = (v̄x, v̄y), P and E all depend on x, y and t. Similarly to the
one-dimensional case, we close the Euler system by the two-dimensional polytropic equation of state:

P = (γ − 1)

(
E − 1

2
ρ|v̄|2

)
, (100)

with γ = 7/5. We consider the Euler system over the domain (x, y) ∈ [−0.5, 0.5]2 and t ∈ [0, 0.16].
The extension of Sod’s shock test (91) of Sod’s shock test in 1D to two dimensions is given by (see [1]):ρ1v̄1

P1

 =

0.1
0

0.1

 (xy ≤ 0), and,

ρ2v̄2

P2

 =

1
0
1

 (otherwise), (101)

which is also called a double Sod tube. Furthermore, we impose outflow boundary conditions.
For the relaxation method and velocity discretization, we use the same setup as in section 5.5. In the

projective integration framework, the inner integrator is a space-time discretization of the kinetic system
(31), in which we take the WENO3 scheme in space with ∆x = ∆y = 0.01 and the forward Euler scheme
in time with δt = ε = 10−8. The outer integrator is the fourth-order projective Runge-Kutta (PRK4)
method, using K = 2 and ∆t = 0.4∆x. The results can be seen in figure 12 and correspond to those
in [1].

6 Conclusions

We presented a general, high-order, fully explicit, relaxation scheme for systems of nonlinear hyperbolic
conservation laws in multiple dimensions, by approximating the nonlinear hyperbolic conservation law by
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Figure 12: Contour plots of the numerical solution of Sod’s double shock tube problem at t = 0.16 obtained
with PRK4 and FE as inner integrator using the WENO3 spatial discretization with ∆x = ∆y = 0.01 and
∆t = 0.4∆x.

a kinetic equation with BGK source term, which is, in turn, discretized and integrated using a projective
integration method. After taking a few small (inner) steps with the direct forward Euler method, an
estimate of the time derivative is used in an (outer) Runge-Kutta method of arbitrary order.

Unlike other methods based on relaxation [1,19], the projective integration method does not rely on a
splitting technique, but only on an appropriate selection of time steps using a naive explicit discretization
method. Its main advantage is its generality and ease of use: implementing the method for a different
system of hyperbolic conservation laws only requires changing the definition of the Maxwellian.

We showed that, with an appropriate choice of inner step size, the time step restriction on the outer
time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number
of inner time steps is also independent of the scaling parameter. We analyzed stability and consistency,
and illustrated with numerical results on a set of test problems of varying complexity.

For future work, it is interesting to extend and analyze the proposed technique to quasilinear systems
of conservation laws and hyperbolic equations with source terms.
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