Modular Fully-Abstract Compilation
by Approximate Back-Translation:
Technical Appendix

Dominique Devriese Marco Patrignani
Frank Piessens

Report CW 702, March 2017

KU Leuven

Department of Computer Science
Celestijnenlaan 200A — B-3001 Heverlee (Belgium)

Modular Fully-Abstract Compilation
by Approximate Back-Translation:
Technical Appendix

Dominique Devriese Marco Patrignani
Frank Piessens

Report CW 702, March 2017

Department of Computer Science, KU Leuven

Abstract

A compiler is fully-abstract if the compilation from source language programs to
target language programs reflects and preserves behavioural equivalence. Such
compilers have important security benefits, as they limit the power of an at-
tacker interacting with the program in the target language to that of an at-
tacker interacting with the program in the source language. Proving compiler
full-abstraction is, however, rather complicated. A common proof technique is
based on the back-translation of target-level program contexts to behaviourally-
equivalent source-level contexts. However, constructing such a back-translation
is problematic when the source language is not strong enough to embed an
encoding of the target language. For instance, when compiling from the simply-
typed A-calculus (A7) to the untyped A-calculus (\"), the lack of recursive types
in A\” prevents such a back-translation.

We propose a general and elegant solution for this problem. The key insight
is that it suffices to construct an approzimate back-translation. The approxima-
tion is only accurate up to a certain number of steps and conservative beyond
that, in the sense that the context generated by the back-translation may di-
verge when the original would not, but not vice versa. Based on this insight, we
describe a general technique for proving compiler full-abstraction and demon-
strate it on a compiler from \” to A". The proof uses asymmetric cross-language
logical relations and makes innovative use of step-indexing to express the rela-
tion between a context and its approximate back-translation. The proof extends
easily to common compiler patterns such as modular compilation and it, to the
best of our knowledge, it is the first compiler full abstraction proof to have been
fully mechanised in Coq. We believe this proof technique can scale to challenging
settings and enable simpler, more scalable proofs of compiler full-abstraction.

This report contains the technical appendix for a companion article by the
same title.

Modular Fully-Abstract Compilation
by Approximate Back-Translation:
Technical Appendix

Dominique Devriese Marco Patrignani®

Frank Piessens!
T iMinds-Distrinet, KU Leuven, Belgium
first.last @Q cs.kuleuven.be

* MPI-SWS, Saarbriicken, Germany
first.last@Qmpi-sws.org

Abstract

A compiler is fully-abstract if the compilation from source language
programs to target language programs reflects and preserves behavioural
equivalence. Such compilers have important security benefits, as they
limit the power of an attacker interacting with the program in the tar-
get language to that of an attacker interacting with the program in the
source language. Proving compiler full-abstraction is, however, rather
complicated. A common proof technique is based on the back-translation
of target-level program contexts to behaviourally-equivalent source-level
contexts. However, constructing such a back-translation is problematic
when the source language is not strong enough to embed an encoding of
the target language. For instance, when compiling from the simply-typed
A-calculus (A7) to the untyped A-calculus (A"), the lack of recursive types
in A\ prevents such a back-translation.

We propose a general and elegant solution for this problem. The key
insight is that it suffices to construct an approrimate back-translation.
The approximation is only accurate up to a certain number of steps and
conservative beyond that, in the sense that the context generated by the
back-translation may diverge when the original would not, but not vice
versa. Based on this insight, we describe a general technique for proving
compiler full-abstraction and demonstrate it on a compiler from A" to
A", The proof uses asymmetric cross-language logical relations and makes
innovative use of step-indexing to express the relation between a context
and its approximate back-translation. The proof extends easily to com-
mon compiler patterns such as modular compilation and it, to the best of
our knowledge, it is the first compiler full abstraction proof to have been
fully mechanised in Coq. We believe this proof technique can scale to
challenging settings and enable simpler, more scalable proofs of compiler
full-abstraction.

This report contains the technical appendix for a companion article
by the same title.

Contents

1 The Source Language A"
1.1 Syntax
1.2 Static Semantics
1.3 Dynamic Semantics oL
1.4 Program contexts L L oo
1.5 Contextual equivalence oL

2 The Target Language \"
2.1 Syntax
2.2 Well-scopedness s
2.3 Dynamic Semantics
2.4 Program contextso oL

2.5 Contextual equivalence

Language and World Specifications

3.1 General Language Specification
3.2 General World Specification
3.3 Language Specification for A7
3.4 Language Specification for A"
3.5 World Specification

Logical Relations

Compiler

5.1 Compiler definition: erase and protect
5.2 Properties of erasure

5.2.1 Compatibility lemmas
5.3 Properties of dynamic type wrappers
5.4 Contextual equivalence reflection

Equivalence preservation and emulation

6.1 n-approximate UVal
6.2 EmulDV specification
6.3 Upgrade/downgrade
6.4 Injecting A" into UVal
6.5 Emulating A" in UVal
6.6 Approximate back-translation L.
6.7 Contextual equivalence preservation

Compiler full abstraction

18

22
22
23
24
32
37

39
39
40
41
49
63
76
76

78

8 Modular Full Abstraction 79

8.1 Linking o 79
8.2 Compiler 79
8.3 Additional Theorems and Proofs 79

8.3.1 Proofs about Modularity 82

Important note: as mentioned in the companion article, many of the logical
relation definitions in this technical appendix are simplifications of the corre-
sponding definitions in a paper by Hur and Dreyer [2011].

1 The Source Language \"

This Section presents the syntax, static semantics and dynamic semantics of
A7 (Sections 1.1 to 1.3, respectively). Then it defines program contexts and
contextual equivalence for A7 (Sections 1.4 and 1.5). This calculus features
Unit and Bool primitive types. We will use b to indicate values of those types
and B to indicate those types when it is obvious.

1.1 Syntax

The syntax of A" is presented below.

Terms™ t := unit | true | false | Ax:7.t | x|t t|t.1]t.2](t, t)
|inl t | inr t | case t of inl X1 +— t | inr xo —t | t;t
if t then t else t | fix, . t

Vals® v ::= unit | true | false | Ax: 7.t | (v,v) |inl v | inr v
Types* 7 = Unit |Bool |7 =7 |7 x7|TWT
F:=0|T,x:7
Cu=[]|Ct|vC|C1|C.2]|(Ct)]|(v,C)
| inl C |inr C | case C of inl x1 + t1 | inr x> to | C;t
| if C then t else t | fix,—,, C

1.2 Static Semantics

The static semantics of A7 is given according to the following type judgements.
There, I' is the environment binding variables to types.

I'kFo Well-formed environment I'
THt:7 Well-typed term t of type 7

The type rules for A" are given below.

(AT-Env-ind)

(AT-Env-base) ko < ¢ dom(F) (A7 -unit)
OFo I (x:7)Fo ' unit : Unit
(A7 -true) (A7 -false) (A"-Type-var)
'kto (x:7)el
I' - true : Bool I'+ false: Bool TFx:r
(A7 -Type-fun) (A7 -Type-pair)
O,(x:7)Ft:7 FFti:m TPhta:m
FFXx:rt:7—= 171 Lk (ty,t2) : 71 X 72

(A" -Type-app) (A"-Type-proj1) (A"-Type-proj2)

Ftt:7'>7 TkHt:7 PEt:m X7 PEt:m X7
THtt :7 THtl1:7y THt2:7m
(A" -Type-inl) (A7 -Type-inr)
'Ht:7 I'Ht:7
TrFinlt:7w 7’ TrFinrt:7Wr
(A7-Type-case)
THt:m W

Iy(xp:m)Fti:7 D,(xe:7m2)Fta:T
T'Fcase t of inl xq — tq | inr xg = ta: 7

(A7 -Type-if) (A" -Type-seq)
I'Ft: Bool 'ty :Unit T'kFto:7
I'ttiy:7r Thto:T T tto.
' if t then tq else to : 7 1,827
(AT -Type-fix)
FFt:(rn — 7)) — (11— 72)

FFfixy ym tim — 72

1.3 Dynamic Semantics

The dynamic semantics of A” is given as a relation < C Terms® x Terms™ .
The semantics relies on the definition of evaluation contexts C, which model
where the next primitive reduction is taking place. Additionally, the seman-
tics relies on the (standard) capture-avoiding substitution function t[v/x] that

replaces all occurrences of x in t with v.

true[v/x| = true false[v/x| = false

unit|[v/x] = unit x[v/x]=v
ylv/x] = if x4 y

Ay : 7.t)[v/¥] —/\y 7. t[v /%] if x#yandy ¢ FV(v)
(b1, t2)[v/x] = (t1[v/x], t2[v/x]) t1 ta]v/x] = ta[v/x] t2[v/X]
t.1lv/x] = t[v/x].1 t.2[v/x] = t[v/x].2

(inl t)[v/x] = inl (t[v/x]) (inr t)[v/x] = inr (t[v/x])
[v/x]
[v/x]

)
(t1;t2)[v/x] = t1[v/x]; ta[v/X]
)

(hXT1%T2 t V/X _hXT1ﬁ‘F2 [V/X]

(if t then tq else ta)[v/x] = if t[v/x] then t1[v/x] else ta][v/x]
case t of inl x1 — t1 |inr xp — to[v/x] = if x1 £ X A X # XA X1,Xg ¢ FV(V)

case t[v/x] of inl x4 — tq[v/x] | inr xa — ta[v/X]

Define a substitution mapping m as a mapping between a variable and a value,

formally m ::= [v/x]. A list of substitution mappings is denoted with ~. Define
the application of a list of substitution mappings 7 to a term t as follows:
t(0) =t t([x/v];7) = t[v/x](7)

(A7-Eval-ctx) (A\T-Eval-beta) (A7-Eval-proj1)
t—t
C[t] = C[t'] (Ax : 7. t) v t[v/X] (v1,va). 1= vy
(A7 -Eval-proj2)

<V1, V2>.2 — Vg

(A7 -Eval-case-inl)

case inl v of inl x7 — t1 | inr xg — to <= t1[v/x1]

(A7 -Eval-case-inr)

case inr v of inl X3 + t1 | inr xg > tg <> ta[v/X2]
(A7-Eval-if-v)
v=true=t'=t; v=false=t =tq
if v then t; else to —t’
(A7 -Eval-seqg-next)

unit;t—t
(A7 -Eval-fix)

fixr, g (AX 171 = T2 t) S t[(Ay T fixy oy (AX T — T2.t) ¥)/X]

1.4 Program contexts

We define program contexts ¢ as expressions with a single hole.

We define a typing judgement for program contexts - ¢ : TV, 7/ =T, 7 by
the following rules:
(A7-Type-Ctx-Lam)
Fe: T "= (T,x:7),7
Fixx:r.¢:. IV 7" T, 7 =1 RS N g N
(A7-Type-Ctx-Pairl)
"Q:ZF/7T/—>F77'1 T'Hty:mo
F <Q:,t2> : F/,T/—>F,T1 X To

(A7-Type-Ctx-Hole)

(A7-Type-Ctx-Pair2) (A" -Type-Ctx-Inl)
'ty FEC:T, 7>, Fe: T, 7" =T, 7
F(t1,&) : IV, 7" =T, 71 X 72 Finl¢: IV, 7" T, 767
(A7 -Type-Ctx-Inr) (A" -Type-Ctx-Appl)
Fe:. T 7" =T, Fe: IV, 7 —-T,71 w17 Ihkte:m
"inI‘Q:II‘//’T//—)I‘,TLHT/ |_Q:t2:1'1/’7_/_>:["7_2
(A7 -Type-Ctx-App2) (A" -Type-Ctx-Proj1)
Phtyim—»m FE:IToTn FE: T, 7> T, 1 Wy
R A F¢1: IV, 7 -»T,n

(A -Type-Ctx-Proj2)
Fe: IV, 7 -, 71 ¥7o
Fe2:TV,7 =T,
(AT-Type-Ctx-Casel)
Fe: IV, 7 >T,mqWre DI,xy:mibti:im3 Ixg:mabty:Ts
F case € of inl X3 > t1 |inr xg — to : IV, 7/ > T 73

(A7-Type-Ctx-Case2)
THt:mmWme FC:IV 7> T,x1:71),73 I, Xo:72kty:73
Fcase t of inl x1 — € |inr xg > to : IV, 7/ =T 73
(A7 -Type-Ctx-Case3)
Fl_tZTlﬂ'JTz F,X1171|_t12T3 "Q:ZF/7T/—>(F,X22T2),T3
Fcase t of inl x1 +> tq |inr xg — €: TV, 7/ =T 73
(A7 -Type-Ctx-If1)
Fe¢:IV,77—>T,Bool TI'kFty:7 Thkty:7T
Fif € then ty else to : TV, 7' =T, 7
(A7 -Type-Ctx-1f2)
I't:Bool FC:IV,7/—=T,7 Tktg:7T
Fif t then €else to : TV, 7/ =T, 7
(A7 -Type-Ctx-1f3)
I't:Bool TI'Fty:7 FC:IV,7—=T,7
Fif t then tq else €: TV, 7/ =T, 7

(AT-Type-Ctx-Seql) (A7 -Type-Ctx-Seq2)
¢: IV, 7/ —=I,Unit Thkt:7T 'tt:Unit ¢:IV,7 —=TI,7
F&t: T, T =TT Ft;¢:. TV, 7 -1, 7

Lemma 1. If-¢: TV, 7' 5T, 7 and '+t : 7/, then T+ C[t] : 7.

Proof. Easy induction on - ¢ : TV, 7/ =T, 7. O

1.5 Contextual equivalence

Definition 1 (Termination). For a closed term) & t : 7, we say that ti iff
there exists a v such that t—"v.

Definition 2 (Contextual equivalence for A7), If ' F ty : 7 and T' F to : 7,
then we define that T' F tq ~., to : 7 iff for all € such that+ ¢ : T',7— 0,7/,
we have that C[t1]{ iff C[t2]l.

2 The Target Language \"

This Section presents the syntax and the dynamic semantics of \" (Section 2.1
and 2.3, respectively). It also define well-scopedness of terms (Section 2.2), pro-
gram contexts (Section 2.4) and it defines contextual equivalence (Section 2.5).

2.1 Syntax
The syntax of A" is presented below.

t:=unit | true | false | Ax.t|x|tt|t.1]|t.2] (t,t)|inl t|inr t|wrong
| case t of inl xg > t | inr xo — t| t;t | if t then t else t

<

= unit | true | false | Ax.t | {v,v) | inl v | inr v

a=0]T,x

Cx=[]|Ct|]vC]|C1|C2]|(C,t)]|(v,C)

| inl C | inr C | case C of inl xy — t; | inr xo = tp | C;t | if C then t else t

-

2.2 Well-scopedness

We define a well-scopedness judgement for A" in terms of contexts [that are a
list of in-scope variables.
The rules for the well-scopedness judgement are unsurprising;:

A\'-W¥-Base (A"-WH-Lam) (A“-W¥-Var) (A\“-Wf-Pair)
() Mxkt xerl M-t Ikt
FEb MFxt MFx MF (tp,t)
(A“-Wt-Inl) (A“-WH-Inr) (A*-Wf-App) (AU-WF-Proj1)
[t M-t N-t1 It M-t
Minl t [MFinrt Mty to MFt.1
(AU-WF-Proj2) (A"-Wf-Case) (A\-Wf-Wrong)
M-t [+t F,xll—tl r,X2|_t2
M-t.2 I'F case t of inl xg +— t1 | inr xp > to [+ wrong
(AU-WH-If) (AU-WF-Seq)
Nt Ity TTHEb M-t TIkt
[if t then ty else t, MEty;ts

2.3 Dynamic Semantics

The dynamic semantics of A" is given as a relation < C Terms™ x Terms” . The
semantics relies on the definition of evaluation contexts C, which model where
the next primitive reduction is taking place. Additionally, the semantics relies
on the capture-avoiding substitution function t[v/x] that replaces all occurrences

of x in t with v.

truelv/x] = true falsel[v/x| = false
unit[v/x] = unit x[v/x] = v
ylv/x] = ifx#y
(Ay.t)[v/x] =)\y t[v/x] if x#yandy ¢ FV(v)
(t1,t2) /] = (v talv/) b tolv/] = talv/] v/
t.1lv/x] = t[v/x].1 t.2[v/x] = t[v/x].2

wrong[v/x] = wrong

inl tlv/x] = inl (t[v/x]) inr tlv/x] = inr (t[v/x])
(t1;t2)[v/x] = t1[v/x]; t2[v/x] (if t then ty else to)[v/x] = if t[v/x] then t1[v/x] else ta[v/X]

case t of inl xy =ty | inr xp = to[v/x] = i x3 XA xp # XAxy,x2 & FV(v)
case t[v/x] of inl x; — t1][v/X] | inr xp +— ta[v/X]

Define a substitution mapping m as a mapping between a variable and a value,
formally m ::= [x/v]. A list of substitution mappings is denoted with ~. Define
the application of a list of substitution mappings 7 to a term t as follows:

() =t t(fx/vI;) = tlv/x](7)

(A“-Eval-ctx) (A*-Eval-ctx-wrong) (A"-Eval-beta)

test/ C#[]
Clt] = C[t'] Clwrong] < wrong (A1) v tlv/]
(A"-Eval-proj1) (\"-Eval-proj2)
(vi,va).l<vq (V1,Vv2).2 <> vy

(A"-Eval-case-inl)

case inl v of inl x; — t; | inr xp — tp < t1[v/xq]

(A“-Eval-beta-w)
Ar.v = x t
case inr v of inl x; > t1 | inr xp — ty <> ta[v/Xo] v v/ < wrong

(A"-Eval-case-inr)

(A“-Eval-case-w)
HN.v=inlv Vv=inrV
case v of inl x; > ty | inr xp > tp <> wrong

(\"-Eval-proj-wrong)
je{1,2} Fvi,va.v=(vi,va)

V.j <> wrong
(A\"-Eval-if-v)
v=Etrue=t =t; v=false=t =t (A"-Eval-seq-next)
!/ — F—
(v # true Av # false) = t' = wrong mit tot

if v then t; else ty —t’

(\"-Eval-seq-wrong)
v # unit
v; t<— wrong

Since A" is untyped, some reduction can result in a stuck term wrong, e.g., ap-
plying a non-lambda value to an argument (Rule \"-Eval-beta-w) or projecting
over a function (Rule A\"-Eval-proj-wrong).

2.4 Program contexts

We define program contexts ¢ as expressions with a single hole.
We define a well-scopedness judgement for program contexts ¢ : [/ =T in-
ductively by the following rules:

10

(A"-Wf-Ctx-Lam)
Fe:T"—(I,x)

(A"-WF-Ctx-Pairl)

(A“-Wf-Ctx-Hole) Fo: T Mt

FAx. ¢/ =T o=l F(C ty): T =T

(A"-WH-Ctx-Pair2) (A“-WH-Ctx-Inl) (A“-WF-Ctx-Inr)
ko FE:M=T Fe:" =T Fe: ">l
F(t,€): " =T Finl¢: =T Finr €:"—T
(A"-Wf-Ctx-Appl) (A"-WF-Ctx-App2) (A"-Wi-Ctx-Proj1)

Fe: "=l Tkt Mbt, Fe: T AN

FCt: "=l Ft; ¢: 1" =T Fel:1"—T
(A“-WF-Ctx-Proj2) (A"-Wf-Ctx-Casel)

Fe:T =T Fe: "= Ixibty Mixkt
Fe2: =T Fcase € of inl x; >ty | inr xp >t : " —T

(A“-Wf-Ctx-Case2)
rct FeE:M=(T,x1) Mxakt

Fcasetof inl x; = € |inr xg =t : [N =T

(A“-Wf-Ctx-Case3)
Fret Iixpbty BFE:T = (T x)

Fcasetof inl x; =ty [inr xp = C: " =T

(A“-Type-Ctx-If1) (A“-Type-Ctx-1f2)
Fe:I"—=I Tkt TrFo r-t FC:I"—=r Tkt
Fif € then ty else tp : [=T Fif tthen Celse th : [=T

(A"-Type-Ctx-1f3) (A"-Type-Ctx-Seql)
r-t ety FC:IMM—=T C: M=l Tkt
Fif t then t; else € : " =T Fet: =T

(A\"-Type-Ctx-Seq2)
Mkt ¢ =T
Ft@: =T

2.5 Contextual equivalence

Definition 3 (Contextual equivalence for \"). If I F t; and [- ty, then we
define that T+ ty ~ ., to iff for all € such that - € : T — (), we have that C[ty]}
Zﬁ @[tg“l

11

3 Language and World Specifications

This Section defines general language and world specifications LSpec and WSpec
(Section 3.1 and Section 3.2, respectively). Then, a concrete language specifica-
tions for both \™ and A" is provided (Sections 3.3 to 3.4), as well as a concrete
world specification (Section 3.5).

3.1 General Language Specification

The general language specification is presented below.

LSpec f {Val, Ter, Con, Conf,
plugv, plugc, step, oftype, bool,
unit, pair, appl, inl, inr |
Val, Ter, Con, Conf € Set A plugv € Val x Con — P(Conf)
A plugc € Ter x Con — P(Conf) Astep € Conf — Conf W {halt,fail}

A oftype € Types™ — P(Val) A unit € Unit — P(Val)

A bool € Bool — P(Val) A pair € Val x Val — P(Val)
A appl € Val x Val — P(Ter)

Ainl € Val — P(Val) Ainr € Val — P(Val)}

For a language to implement the language specifications, it must provide values
(Val), terms (Ter), continuations (also known as contexts, Con) and configura-
tions (Conf). Then, it must provide functions to plug a value in a continuation
(plugv), to plug a term in a continuation (plugc), to perform a reduction step
(step), to identify the values of a type (oftype), to identify primitive values (base),
to build pairs (pair) and to apply functions to arguments (appl). This specifica-
tion will need to be enriched in case either the source or the target languages
are enriched (i.e., when references are added, memories must be modelled).

Define a configuration ¢ € Conf performing & reduction, denoted as ¢ &
steps as follows:

0
t—1
fail if step(t) = fail
k+1 .
t < < halt if step(t) = halt
¢ if step(t) = ¢ and t/ < t/
Define the set of possible statuses of a computation after some steps as CS =
{fail,halt,running}. Define the set of possible endings of a computation as

CE = {fail,halt,diverge}.
Define the function observe-k(-) : N x Conf — CS, which tells whether a

12

configuration can be observed for k steps, as follows:
fail if ¢ < fail
observe-k(k,t) = { halt if t < halt
. k
running if It =t/

Define the function observe(-) : Conf — C&, which tells the ending outcome
of a configuration, as follows:

fail if 3k € N.observe-k(k,t) = fail
observe(t) = ¢ halt if 3k € N.observe-k(k,t) = halt
diverge otherwise (Vk € N, observe-k(k,t) = running)

3.2 General World Specification

The general world specification is presented below.

WSpec oof {World,lev,>,0,3 |

World € Set Alev € World —» N

A € World — World A O € P(Ly.Conf x L5.Conf)
A Jd € P(World x World) A J is a preorder

AYW JW.> W I>W

AYW.>W IW AVYW I W.lev(W') < lev(W)

AYW.lev(W) > 0 = lev(>W) = lev(W) — 1}

A world specification must define what a world is (World), how many steps are
left for the computation (lev, this is a trick needed for defining step-indexed
logical relations that hide the step in the world), how to derive a ‘later’ world
with smaller steps (), how to observe configurations (O), how to define future
worlds (3J) and public versions of future worlds (3). This specification is given
in general terms w.r.t. language specifications £; and Lo. It will be made
concrete in Section 3.5 with instantiations of concrete language specifications
LSpec’\T and LSpec)‘“ that are defined later on.
Define the strictly-future world relation, denoted with 7, as follows:

3, Z LW, W) | lev(W) >0 AW I W}

Use R to denote an arbitrary relation, i.e., a set of tuples of elements of set.
Define the set of world-value relations WVRel as follows: {R € P(World, £;.Val, £L5.Val)}.
Define the values of a world-value relation R based on a world W as follows:

R(W) = {(v1,v2) | (W,v1,v2) € R} for R € WVRel

Define the monotonic closure of a world-value relation R, denoted with CI(-),
as follows:

O(R) & {(W,v1,v5) | YW IW. (W, v1,v2) € R} for R € WVRel

13

Define the function for building of a world-value relation, denoted with
WVRel(-), as follows:

def

WVRe|(R1,R2) = {(W,Ul,vg) ‘ VYW, v1 € Ri,vg € RQ}
for R1 Q £1.Va|, R2 Q Lg.VaI

Note that function WVRel(-), works on sets now, but it can be extended to work
on relations as well.

Lemma 2 (Well-founded T3,). 3, is well-founded.
Proof. Because the level of the worlds strictly decrease. O
Lemma 3 (Properties of future worlds).

YW, W W’ w”’ s W and W' 0. W then w” . W
YW, W W' W 3, W and W IW then W' 3, W
YW, W W’ W’ IW" and W 3, W then W' 3, W

Proof. By definition of 7, and >, lev, J. O

3.3 Language Specification for \"

LSpec™’ is the language specification for \”.

Val & {v} Ter = {t}
Con ¥ {C} Conf & {t}
plugv(v,C) £ C[v] pluge(t, C) £ C[t]
t/ ift—t
step(t) = { halt ift € Val oftype(r) = {v |0+ v: 7}
fail otherwise
unit(v) «f {unit}
bool(v) &t {true, false} pair(vy, va) &t {(v1,v2)}

def

appl(vy,vz) = {t € Ter | ', x,7.vi = \x: 7.t/ At = t'[x — val}

inl(v) «f {v'| v =inl v} inr(v) = {v'| v/ =inr v}
LSpec™ = (Val, Ter, Con, Conf, plugv(-), plugc(-), step(-),
oftype(-), unit(-), bool(-), pair(-), appl(-), inl(v), inr(v))

To ensure this definition is correct, LSpec/\T must be included in the general
language specification LSpec (Theorem 1).

AMe LSpec

Proof of Theorem 1. Trivial. U

Theorem 1 (Correctness of LSpec*). LSpec

14

3.4 Language Specification for \"
LSpec)‘“ is the language specification for \".

Val ¥ {v}

Ter = {t}

Con & {C} Conf & {t}

plugv(v, C) = C[v] pluge(t, C) = Clt]
t/ if t—t/

step(t) {halt ifte Val
fail otherwise
Jt'v = Ix. t/ fr=m —m

Avy, vo.v = (v, Vo)A

vi € oftype(11) A va € oftype(Ta) =7 x72

def Jvi.v =inl v A vy € oftype(ry) or e
oftype(r) = qv Ivo.v = inr vo A vy € oftype(Tz) ifr =107
vV = unit if 7 = Unit
VvV = trueV . _
v = false if 7 = Bool

unit(v &ef unit}

II%;

bool(v rue, false}

(v1,v2)}

t € Ter | 3t',x.vi = Mt At =t [x— o]}

II%;

pair(vy, Vo

I8

appl(vi, vz

II%;

inl(v vV [V =inl v}

)=A{
)= {t
)= {
)= {
)=V
)=V

inr(v v |V =inr v}

LSpec® & (Val, Ter, Con, Conf, plugv(-), plugc(-), step(-),
Oftype('), umt(')v b00|('), palr(-), appl(l) (V)a mr(v))

To ensure this definition is correct, LSpec® must be included in the general
language specification LSpec (Theorem 2).

Theorem 2 (Correctness of LSpecAu). LSpec® € LSpec

Proof of Theorem 2. Trivial. O

15

def

3.5 World Specification

This Section presents VWV, a concrete instantiation of the WSpec of Section 3.2
to be used by the logical relation between concrete language specifications.

World? < {W = (k) | k € N}
lev(W) = W.k

>(0) = (0)
> (k+1) 2 (k)

o
0
-

e LSpecAT.observe—k(lev(W) t) = halt =
OW)« & L (t,t () ’
W< {() 3k. LSpec® .observe-k(k,t) = halt)
- LSpec* .observe-k(lev(W),t) = halt =
ow)s = L, 1| g)
W)z {('t Jk. LSpec® .observe-k(k,t) = halt)

Wwe {Worldﬁ, lev?’ 1>, 0%, a3

To ensure this definition is correct, YW must be included in the general lan-
guage specification WSpec (Theorem 3).

Theorem 3 (Correctness of W). W € WSpec
Proof of Theorem 3. Trivial. O

In subsequent sections, we will regularly use <, >~ and ~ as subscripts on
logical relations and so on, to indicate that theyNshguld be interpreted w.r.t.
the worldspec with the corresponding O(W). We will use o as a meta-variable
that can be instantiated to either <,2, or & for those theorems or definitions
that work for all three.

Lemma 4 (Observation relation closed under antireduction). If t<'t’ and
tlt, (1) € O(W)g, W IW, lev(W') > lev(W) — min(i, j), i-e. lev(W) <
lev(W') + min(i, j), then (t,t) € O(W)g.

Proof. If t’ and t’ halt, then so do t and t. Otherwise, if t’ and t’ take at least
lev(W') steps, then t and t take at least lev(W’') +min(i, j) steps. O

Lemma 5 (No observation with 0 steps). If lev(W) = 0, then for all t, t, we
have that (t,t) € O(W)g.

Proof. Just a bit of definition unfolding. O

Lemma 6 (Source divergence is target divergence or failure). If t ' and either

t1 or t—"wrong, i.e. t diverges and t either diverges or fails, then we have
that (t,t) € O(W)g.

16

Proof. Just a bit of definition unfolding. O

Lemma 7 (No steps means relation). If LSpec® .observe-k(lev(W),t) = running

and LSpec)‘u.observe—k(Iev (W),t) = running, i.e. both t and t run out of steps
in world W, then we have that (t,t) € O(W)g.

Proof. Just a bit of definition unfolding. O

17

4 Logical Relations

This Section defines the logical relations used to prove properties of the compiler.
Instead of giving general logical relations as Hur and Dreyer, a specific logical
relations is given, between source and target language specifications.

The logical relations between LSpec® and LSpec)‘u are defined based on a
relation on values V[-], continuations K[-], terms (also called computations)
E[]5 and based on an interpretation for typing environments G[-]5. These
logical relations are used to relate LSpec’\u and LSpeCAT, so their definition
contains terms of the two language specifications in place of elements of abstract
language specifications and elements of W in place of elements of an abstract
world specification.

Pseudo-type 7.

7 u=Bool |Unit |7 X7 |7W7 |7 — 7 | EmulDV,,,
o=0|0)x:7
Helper functions for EmulDV.

toEmul()), , = ipr (% - Emu1DV,)

0 toEmul(l,)., = toEmul(l)
repEmul(()) =0 repEmul(T,(x: 7)) = repEmul(T), (x : repEmul(7))

repEmul(7 x 7/) = repEmul(7) x repEmul(7’)
repEmul (7 & 7') = repEmul(7) & repEmul (7/)
repEmul (7 — 7/) = repEmul(7) — repEmul(7’)
repEmul (EmulDV,.,) = UVal,
repEmul(Bool) = Bool
repEmul(Unit) = Unit

oftype(-) definition.

oftype(?) & {v | 0 v : repEmul(7)}

v =unit if 7 = Unit
v =true or v = false if 7 = Bool

oftype(7) Jt.v= Mt 3, 7. 7=71 — T2
vy € oftype(71), va € oftype(72).v = (v1,va) if A7, 72. 7 =71 X T2
vy € oftype(71).v =inl vy or v, € oftype(rz).v =inr vp if F74, 7.7 = 71 W72

oftype(7) £ {(v,v) | v € oftype(7) and v € oftype(7)}

Logical relations for values (V[-]g), contexts (K[]5), terms (£[-]5) and

18

environments (G[-]5)-

def

>R={(W,v,v) |lev(W) >0= (>W,v,v) € R}
V[Unit]g = {W,v,v) | (W,v,v) € O(WVRel(unit(unit), unit(unit)))}

def

V[Bool]g = {(W, v,v) | Jv € [Bool]. (W, v,v) € O(WVRel(bool(v), bool(v)))}

(v,v) € oftype(r’ — 7) and

. V(W W) e 3., VW, v/ V) e V][]

, -~ cléf W RANEILAS Dy VXY,) 0>
VI = 7o (W, v, v) Vt € appl(v, V'),

vt € appl(v,V), (W', t,t) € €[]

(v,v) € oftype(71 X 72) and
H(Wa Vi, Vl) €> V[[’]:l]]th

H(W, Vo, V2) S V[[fz]]m,
(W, v,v) € O(WVRel(pair(vq, va), pair(vi, v2)))
(v,v) € oftype(71 X 72) and
IV (W, v, V) e V[A]g and
(W, v,v) | (W,v,v) € O(WVRel(inl(v'),inl(v")))) or
IV VL (W, v V) € V[R]g and
(v,v) € O(WVRel(W, inr(v'),inr(v'))))

def

VﬂTAl X TAQ]]D = (W,V,V)

v[[TA]_] TAQ]]D déf

V[EmulDVo,,] o déf{(w,v,v) | v =unit and p = imprecise}

v € oftype(UVal, ;1) and one of the following holds:
V = iny,k.n and p = imprecise

Iv'.v = ingien v and (W, v/, v) € V[Unit]g
Iv'.v = ingoer.n v’ and (W, v/, v) € V[Bool]g

def

V[[EmU1DVn+1;p]]D = (W7 v, V) Iv.v = inX;n v/ and

(W, Vv’,v) € V[EmulDV,., x EmulDV,.,]q
I.v =iny, v and

(W,v',v) € V[EmulDV,,, ¥ EmulDV,,,]
Iv.v=in_, v/ and

(W,v’,v) € V[EmulDV,,, — EmulDV,,]5

K[7]g £ {(W,C,C) | YW IW,¥(W,v,v) € V[#]q, Vt € plugv(v, C),
vt € plugv(v, C), (t,t) € O(W')}

EMF]n € {(W, t,1) | V(W, C,C) € K[#]g, Vt' € pluge(t, C),
vi' € pluge(t, C), (t/,t') € O(W)}

GI0o = {(W, 0,0)}
GIT, (x:)] & {(W, y[x — v], 7 v]) | (W,7,7) € G[[]g and (W, v,v) € V[7]g}

19

Define relatedness of open terms when closing them with related substitu-
tions produces closed terms that are related by the expression relation.

Definition 4 (Logical relation up to n steps).

Dty t: 7% repEmul (D) -t : repEmul(7) and dom(T') F t
and YW. lev(W) < n = Y(W,7,7) € G[T]g. (W, tv,t7) € E[7]g

Definition 5 (Logical relation).

f‘l—tDt:%déff‘l—tDnt:%foralln

We also define a logical relation for program contexts:
Definition 6 (Logical relation for contexts).

Fede: 1,7 1,7 %

¢ : repEmul(I"”), repEmul(7’) — repEmul(I"), repEmul(7)
and + ¢ : dom(T") — dom(I
and for all t,t. if T/ FtOt: 7,
then T Fe[t] O Cft] : 7

Lemma 8 (Closedness under antireduction). If C[t] <! C[t'] and C[t] — C[t']
for any C and C, (W', t/,t") € E[7]5, W I W, lev(W') > lev(W) — min(s, 5),
i.e. lev(W) < lev(W') + min(i, j), then (W,t,t) € E[7].

Proof. Take an arbitrary (W,C,C) € K[7]5. Then we need to prove that
(C[t],C[t]) € O(W). By Lemma 4, it suffices to prove that (C[t'], C[t']) € O(W’).
By Lemma 12, we have that (W', C,C) € K[7], so that the result follows from

(W, t',t) € E[7]o. =
Lemma 9 (Later operator preserves monotonicity). VR, R C O(R) = > R C
O(> R)

Proof. By definition and assumptions on > and lev. O

Lemma 10 (Term relations include value relations). V7, V[7]5 C E[7]5.
Proof. Simple induction on 7. O

Lemma 11 (Monotonicity for environment relation). If W I W, then (W, ~,~) €
G implies that (W', ~,~) € G[I']p.

Proof. By definition. O

Lemma 12 (Monotonicity for continuation relation). If W' I W, then (W, C,C) €
K[#]g implies that (W', C,C) € K[7]5.

Proof. By definition. U

20

Lemma 13 (Monotonicity for value relation). V[7]5 € OV[7])g

Proof. By induction on 7. Definitions for all cases are monotone. The inductive
cases follow by Lemma 9 and Lemma 3. O

Lemma 14 (Adequacy for <). If0Ft S, t: 7, and if t =™ v with n > m,

then also tl].

Proof. We have directly that (W, t,t) € £[7] < for a world W such that lev(W) =

n. Since (W, -, -) € K[r] <, we have that (t,t) € O(W)<. Since LSpec* .observe-k(lev(W),t) =

S

halt, we have by definition of O(W)< that LSpec® .observe-k(k,t) = halt for

—

some k, i.e. ti. O

Lemma 15 (Adequacy for 2). If 0 -t =, t: 7 and if t —™ v with n > m,
then also tl).

Proof. We have directly that (W, t,t) € £[7]~ for a world W such that lev(W) =
n. Since (W, -, -) € K[]s, we have that (t,t) € O(W)>. Since LSpec* .observe-k(lev(W),t) =

halt, we have by definition of O(W)> that LSpec*” .observe-k(k,t) = halt for
some k, i.e. tl. O

Lemma 16 (Adequacy for < and 2). If 0 -t <, t: 7, and if t =" v with
n > m, then also t).
If0-t 2, t: 7 and if t—™v with n > m, then also t ||.

Proof. By Lemma 14 and Lemma 15. O
Lemma 17 (Value relation implies oftype). V[7]5 C oftype(7)

Proof. Simple induction on 7. O

21

5 Compiler

This section defines type erasure and protection for terms (Section 5.1), the
two functions that constitute the compiler. Then it presents properties for
erasure (Section 5.2) and for protection (Section 5.3). Finally it concludes with
contextual equivalence reflection (Section 5.4).

Recall that we will use b to refer to unit / unit, true / true and false /
false when it is not necessary to specify or when it is obvious. Analogously,
we use 5 to mean Unit or Bool.

The compiler [[]]i is a function of type Terms* — Terms® defined as
follows:

ifT'Ft:7, then [[t]RT = protect, erase(t)

AT AY

Where erase(-) is a function of type Terms” — Terms” and protect, is a A"

term for any type 7.

5.1 Compiler definition: erase and protect

Function erase(:) takes a A" term and strips it of type annotations, effectively
turning it into a A" term.

erase(b) =b erase(Ax : 7. t) = M\x. erase(t)

)=
erase(x) = x erase((t1,t2)) = (erase(ty), erase(tz))
erase(t; to) = erase(ty) erase(ts)
erase(t.1) = erase(t).1 erase(t.2) = erase(t).2
erase(inl t) = inl erase(t erase(inr t) = inr erase(t)
)=

erase(ty;ty) = erase(t);erase(ts2)

erase(case t of inl xq — t1 | inr xg — to

case erase(t) of inl x; — erase(ty) | inr x, — erase(tz)

)=

) o

erase(if t then t else ta)
if erase(t) then erase(ty) else erase(ts)

)

erase(fix,, .., t) = fir erase(t

For fix,, ,,, we use a strict fix combinator fiz (Plotkin’s Z combinator, see
TAPL §5.2). We define

def

fix = M. (Ax.f (Ay.xxy)) (Ax.f (Ay.x xy))
fizy «f (A (Ay.xxy)) (Ax.f (Ay.x xy))
and we already note that if v is a value then

fir v— fix,

22

and we also have that

ﬁq’)(/\xe) — (/\X E) (/\y ﬁqjx\xe y) — e[()\y .ﬁm)\er y)/X]

Function protect takes a A” type to a function that wraps a term so that
it behaves according to the type. The definition of protect relies on another
function confine that is used to wrap externally-supplied parameters with the
right checks that ensure no violation of source-level abstractions. Both functions
are defined inductively on the type as presented below.

def
protecty = Ax. X

protect,, xro oot Ay. (protect,, y.1, protect,, y.2)

def - . . .
protect,,wr, = Ay.case y of inl x; — inl (protect,, x1) | inr xo +— inr (protect,, xo)

protect,, —yr, =)y Ax.protect,, (y (confine,, x))

. def .
confinegniy = \y.y;unit

confinegyo1 &ef Ay.if y then true else false

def

confine,, x,, = Ay. (confine,, y.1, confine,, y.2)

def

confine,,wr, = Ay.case y of inl x; + inl (confine,, x;) | inr xp — inr (confine,, xp)

def

confine,, ., = Ay. Ax. confine,, (y (protect,, x))

The compiler security checks appear in the function type 7/ — 7 case for protect.
There, we know that the term t will take an input and continue as a function.
Therefore, the compiler wraps t in a function that takes the input, checks that
it complies to 7/, and then it supplies that input to t. To check that an input
complies to a type, confine is used. Dually, the function case for confine must
call protect on the argument that in this case is supposedly coming from the
compiled term.

The checks inserted for base types appear in the base type case Bool and
Unit for confine. The returned argument, applied to the arguments supplied in
the case of confines ensures that if the argument t is not of base type, then the
compiled term will diverge at runtime. If the argument t is of base type, then
the execution will proceed normally.

5.2 Properties of erasure

This section presents required results (Lemmas 18 to 20). Then it presents
compatibility lemmas (Lemmas 21 to 31 in Section 5.2.1). Finally, it concludes
by proving semantics preservation of erase Theorems 4 and 5.

Lemma 18 (Erased contexts bind the same variables). If - ¢ : IV 7' =T, 7,
then + erase(?) : dom(I'") — dom(T").

23

Proof. Trivial induction on T'. O

Lemma 19 (Related terms plugged in related contexts are still related). If
(W, t,t) € E[F]g and if for all W IW, (W', v,v) € V[#']g, we have that
(W', Clv],Clv]) € €[7] 5 then (W, C[t],C[t]) € E[]q

Proof. Take (W,C’,C") € K[7]5. It suffices to show that (C'[C[t]],C'[C]t]]) €
O(W). This follows from (W,t,t) € E[7']5 if (W,C'[C[-]],C'[C[]]) € K[7']5-
So, take W' I W, (W', v,v) € V[#'] 5. We need to show that (C'[C[v]], C'[C[v]])
O(W’). But this follows from (W', C[v], C[v]) € £[7]y, since from (W,C’,C’) €
K[7]g, we get (W', C’,C’) € K[#]5 by Lemma 12.

m

Lemma 20 (Related functions applied to related arguments are related terms).
If (W,v,v) € V[7' — 7]5 and (W,v',V') € V[7']5 then (W, v v/,v V') € E[7] .

Proof. Take (W, C,C) € K[7]5, then we need to show that (C[v v'[,Clv V']) €
o(wW).

From (W, v,v) € V[7" — 7], we get that v = Ax: 7.t/ and v = Mx. t’ for
some t’ and t’. We then know that C[v v'| — C[t'[v’/x]] and C[vy vo| < C[t'[va/x]]
and by Lemma 8, it suffices to show that (C[t'[va/x]], C[t'[V//x]]) € O(>W).

Since (W, C,C) € K[7]5, > W I W, we have by Lemma 12 that (> W, C,C) €
K[7]g. It then suffices to prove that (> W, t'[v'/x],t'[V//x]) € E[7]5. This fol-
lows from (W, v,v) € V[7' — 7], since > W T, W, if we show that (> W, v/,v') €
V[7']5- The latter follows from (W, v',v") € V[7'] 5 by Lemma 13 since > W J W.

O

5.2.1 Compatibility lemmas

Lemma 21 (Compatibility lemma for lambda). If I',x: 7/ F t O, t : 7, then
TFMx:7.t0, \Xxt: 7 — 7.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) ' Ax:7".t : 7/ — 7 and (2) for all W, (W, ~,~) € G[I']5 (HG), we
have that (W, Ax : 7/.tv, \x.ty) € E[7" — 7]4.

Part 1 holds by the typing rule rule A\"-Type-fun combined with the fact
I''x:7'+t:7 which we get from I',x: 7/t O, t: 7.

Let us now prove part 2.

By Lemma 10, it suffices to prove that (W, A\x : 7/.ty, \x.ty) € V[’ — 7].

Take W' T3, W, (W', v/,v") € V[7'] (HV), then we need to show that (W', ty[v//x], ty[V//x]) €
Elr].

The thesis follows from T', x : 7/ - t O, t : 7 if we show that (W', [v//x]v, [V//x]7) €
GIr, (x: 7)].

Unfold the definition of G[T', (x : 7/)] 5, so the thesis becomes: (1) (W’,~,
7) € G[I]g and (2) (W', v/,V) € V[']5.

Part 1 holds due to HG and Lemma 11, as HG holds in W and here we need
it in a future world W'.

Part 2 holds due to HV. O

24

Lemma 22 (Compatibility lemma for pair). If I' F t1 O, t; : 71 and [H2:
't O, tr: T2, then I' - <t1,t2> U, <t1,t2> 1T1 X To.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) T' - (t1,t2) : 71 x 72 and (2) for all W, (W,~,v) € G[I']5, we have
that (W, <t1, t2>’}/, <t1, t2>"y') S 5[[7'1 X T2ﬂ|:|.

Part (1) holds by typing rule rule A™-Type-pair and the facts that I' - t4 : 74
and I' F to : 79, which follow from I"' - t; [0, t1 : 77y and I' F to [0, to : 72
respectively.

Let us now prove part (2). We have that (W,t1v,t17) € £[r1]g from
I'-t; 0, t; : 7. By Lemma 19, it then suffices to show that for all W JW,
(W', v1,v1) € V[r1] g, we have that (W', (v1,t17), (vi.t27)) € E[71 x T2] 5.

From I' - t5 [, t : 72, we also have that (W', t27,t7) € E[r2]5- Again by
Lemma 19, it then suffices to show that for all W’ I W', (W" v, vs) € VIra2lg,
we have that (W”, (v, va), (vi,v2)) € E[r1 ¥ T2]g-

By Lemma 10, it suffices to show that (W, (v, va), (vi.v2)) € V[r1 X 72] 4,
and the result follows by definition with (W”,va,v2) € V[r2]g, (W', vi,v1) €

V[71]5 and using Lemma 13. 0

Lemma 23 (Compatibility lemma for application). If I' - t1 O, t1 : 7/ — 7
and IH2: T+ to O, tr : 7/, then Tt to O, 11 to @ 7.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) T' - ty tp : 7 and (2) for all W, (W,~,7) € G[I']5, we have that
(W, t1y tav,t1y toy) € E[7] o

Part (1) holds because of the typing rule rule A"-Type-app and the facts
that 'ty : 7 — 7 and ' F ty : 7/ which follow from I' - t; O,, t; : 7/ — 7
and I' - t, [0, to : 7' respectively.

Let us now prove part (2). We have that (W, t1v,t17) € E[7" — 7] from
I'Fty O, t;: 7 — 7. By Lemma 19, it suffices to show that for all W JW,
(W, vq,vi) € V[— 7], that (W', vy tay,vi ty) € Elrln-

We also have that (W, t27y,t27) € E[7 g from Tty to O, t1 to : 7. Again
by Lemma 19, it suffices to show that for all W’ IW', (W" va,vs) € VIr'lqs
that (W”, vy va,vi vo) € E[7]q.

From (W', vy,v1) € V[— 7], we get (W, v1,v1) € V[7" — 7] by Lemma 13
and the result then follows by Lemma 20. O

Lemma 24 (Compatibility lemma for left projection). If T' + t; O, t; :
T1 X 7o, then T'Ht1.1 0, t1.1:71.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) I' - t;.1 : 74 and (2) for all W, (W,~,~) € G[I']5, we have that
(W7t1.1"/,t1.1’7) S 5[7'1]]'].

Part (1) holds because of rule A"-Type-projl, and the fact that ' F t; :
T1 X Tg, which follows from I' - t1 [, t1 : 71 X T2.

25

Let us now prove part (2). We have that (W,t17,t17) € E[r1 x 72]5 from
T'kty O, t;: 71 X 72. By Lemma 19, the result follows if we prove that for all
W IOW, (W, v,v) € V[x 72]|g, we have that (W, v.1,v.1) € Elr1] -

So, take (W', C,C) € K[r1], then we need to prove that (C[v.1],C[v.1]) €
oWw’).

From (W', v,v) € V[r1 x 72], we know that v = (vi,vs) and that v =
(v1,v2) for some vy, va, vi, vo with (W", vy, v1) € V[71]5 (HV) and (W”, v, vo) €
V[r2]g for any W’ 3, W'

We have that C[v.1] < C[v4] and C[v.1] < C|v;], so by Lemma 8, it suffices
to prove that (C[vy],Clv1]) € O(@>W'). This follows because we know that
(>W',C,C) € K[r1]g from (W,C,C) € K[r1]5 and >W IW by Lemma 12
and because we have that (>W',vy,v1) € V[r1]5 (HV). O

Lemma 25 (Compatibility lemma for right projection). If T' F+ t; O, t; :
T1 X 7o, then T'Ft1.20, t1.2 : 7o.

Proof. Simple adaptation of the proof of Lemma 24. O

Lemma 26 (Compatibility lemma for inl). IfT'Ft O, t:7 then I'Finl t O,
inlt:7W7’.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) I' Finlt : 7w 7" and (2) for all W,(W,~,v) € G[I']5, we have that
(W, inl tv,inl ty) € E[r B 7] 5.

Part (1) holds by rule A"-Type-inl and the fact that T' I t : 7 which follows
from T"HtO, t:7.

Let us now prove part (2). Expand the definition of OJ,,. The thesis becomes
V(W,7,7) € G[T] 5, (W, inl tv,inl ty) € E[7 W 7] 5.

Expand the definition of £[7 & 7']5. The thesis becomes V(W,C,C) €
Klr & 7']5 (HK), (C[inl t7], Clinl t7]) € O(W).

Take the hypothesis, expand the defintion of £[7]5 in it. We have that
YW',9",7) € G[T], VW', C', ') € K], (C'[t+'], C'[ty']) € O(W).

Instantiate W' with W, €’ with Clinl -] and C" with Cl[inl -].

The thesis is now proven, if we prove that (W, Clinl -], C[inl -]) € K[7]5.

Unfold the definition of K[7].

The thesis becomes YW’ I W, V(W', v, v) € V[7]5 (HV), (C[inl v], C[inl v]) €
o).

Take HK and unfold the definition of K[& 7'].

We get that YW I W, V(W",v/,v) € V[r W], (C[v/],C[V/] € O(W").

Instantiate W’ with W’ and v/ with inl v and v/ with inl v.

The thesis is now proven if we prove that (W', inl v,inl v) € V[r & 7].

This follows from the definition of V[7 & 7], given HV and Lemma 13
applied to HV. O

Lemma 27 (Compatibility lemma for inr). IfTFt O, t: 7' then T Finr t O,
inrt: Ty

Proof. Simple adaptation of the proof of Lemma 26. O

26

Lemma 28 (Compatibility lemma for case). If T' - t O, t : 7y W7 (H),
Dy(x1:71) bt Opty 7 (H1) and T, (x2 : 72) b to Oy to 2 7 (H2), then T
case t of inl x3 > tq | inr xo — t2 O, case t of inl x3 ¥ty | inr xp —tp : 7.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) T'F case t of inl x3 ~— t1 | inr xg — to : 7 and (2) for all W, (W, ~,~) €
G[I']5, we have that (W, case t of inl xy +— t; [inr xg ~— tgy,case t of inl x; — t; | inr xo = t27y) €
El7]o-

Part (1) holds by rule A"-Type-case and the fact that T' - t : 71 W75 and
I)(x1:71)Fty:7and T',(xz : 72) F t2 : 7 which follow from T' F t O, t :
T1W7re, D (x1:71)Ft1 Opty:7and T, (xg : 72) F to O, to 1 7

Let us now prove part (2). Expand the definition of [J,,. The thesis becomes
YW, Y(W,v,7) € G5, V(W, C,C) € K[7], (Clcase t of inl xq > t1 | inr xg — ta],
Clcase t of inl x; — t; | inr xp — to]) € O(W).

Expand H, we have that: YW',V(W',~/,+') € G[T']5 (HG) ,Y(W',C’,C") €
Klr1 @ 2l (C't), C']) € O(W).

Instantiate W' with W, C’- with Clcase - of inl x; + tq | inr x5 + t2] and
C’- with C[case - of inl x; > t; | inr xp — tp].

The thesis holds if we prove that (W, C[case - of inl x3 — t1 | inr xa — ta],
Clcase - of inl x; — t1 | inr xp = t2]) € K11 W 2] 5.

Unfold the definition of K71 & 72]5.

The thesis becomes: YW” IW,V(W",v,v) € V[r1 & 2] (HV)

, (Ccase v of inl x1 > t1 | inr X3 > t3], Clcase v of inl x; + t1 | inr xp +— t5]) €
ow".

Unfold HV and the definition of V[71 & 72].

HV becomes v € oftype(7" W r) A IV V. (W,v',Vv) € > V][] (HVI)
AW, v,v) € OWVRel(inl(v'),inl(v")))) or Iv/,v'. (W, v',v) € >V[r2]g A
(v,v) € O(WVRel(W, inr(v'),inr(v')))).

There are now 2 cases to consider: v and v being both inl or both inr .

inl Expand H1, we get: YW,,V(W;,7v1,71) € G[T, (x: 71)],V(W;,C1,Cy) €
Klrlg, (Ciltiral, Ciltim]) € O(W,).
By definition of G[], HG, Lemma 11, and HV1, we have that (bW, [v//x1]7, [V//x1]7) €
GIr, (x: 71)].
Therefore, we have that (Cq[t1[v'/x1]7], Ci[t1[V//x1]7]) € O(W,).
We can apply Lemma 8 to prove the thesis.

In fact, rule A"-Eval-case-inl tells us that C[case inl v/ of inl x1 — t1 | inr xg — to] —
Clt1[v/x1]], given that v = inl v’.

And rule X\"-Eval-case-inl tells us that Clcase inl v/ of inl x; — ty | inr xp — tp] <
Clt1[v/x1]], given that v = inl V.

inr Analogous.

27

Lemma 29 (Compatibility lemma for if). IfT'+ t; O, t; : Bool (H1) and T+
to Opto:7 (H2) and T+ t3 O, t3: 7 (H3), then T' F if t1 then to else t3 O,
if t; then tp else t3: 7.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) ' k- if ty then ty else tg : 7 and (2) for all W,(W,~,~) € G[I'], we
have that (W, t17;t2y,t17:t2y) € E[7]5-
Part (1) holds by rule A"-Type-if and the fact that I' F t; : Bool which
follows from H1 and that I' - t5 : 7 and I" F t3 : 7 which follow from H2 and
H3.
Let us now prove part (2). Expand the definition of [J,, and of £ 5. The the-
sis becomes VW, V(W, v, 7) € G[I'] 4, V(W, C, C) € L[], then (C[if t;17 then ty7y else ts7],
C[if t1y then tyy else t37y]) € O(W).
Unfold H1: YW, V(W,,71,71) € G[T]5, V(W,,Cy,Cy) € K[Bool], (Cy[ti71], Ciltim]) €
oW,).
The thesis follows by instantiating W, with W, vq with v, 71 with v and C4
with CJif [-] then ta7 else tz] and C; with C[if - then toy else ts37] if we prove
that (W, C[if [-] then tg7 else tg], C[if - then ty7 else t37]) € K[Bool].
We expand the definition of K[and the thesis becomes: YW I W, V(W ;,v,v) €
V[Bool]y, (C[if v then t27y else t37], C[if v then tyy else t37])O(Wp).
We now have two cases: v = true = v or v = false = v. We prove only
the first, the second is analogous using H3 in place of H2.
Unfold H2. VWQ, V(WQa V2, ’\/2) S gﬂr]]m, V(W27 CZa (C2) € ’CHT]]Da (CZ[tZ,?/ZL (CZ [t232]) S
O(W,).
The thesis follows from Lemma 4 by rule A"-Eval-if-v and rule A"-Eval-if-v
since v = true = v.

O

Lemma 30 (Compatibility lemma for sequence). IfI' -ty O, t; : Unit (H1)
and I' - t2 Dn t: 7 (HQ) then T + t1;t2 Dn ti;to: 7.

Proof. By definition of [J,,, the thesis consists of two parts, which both must
hold: (1) I' F ty:ty @ 7 and (2) for all W,(W,~,7) € G[I']5, we have that
(W, t1y;t2y, tiyitoy) € E[7].

Part (1) holds by rule \"-Type-seq and the fact that I - t; : Unit which
follows from I' -ty [, t; : Unit.

Let us now prove part (2). Expand the definition of [J,, and of £ 5. The the-
sis becomes VW, V(W, v,7) € G[I']5 (HK), ¥(W, C,C) € K[7]5, (Clt1y:t2y], Cltivy:tov]) €
owW).

Unfold H1.

YW, V(le Y1, 7”1) € g[[]'-‘]]Eh V(Wp Cy, Cl) € ’C[[UHit]]D7 (C[tlﬁ/l]’ C[tlﬂrl]) €
oW,).

The thesis holds by instiating W, with W, 1 with ~, 1 with v, C; with
C[;t27] and C; with C[-; to7].

We need to prove that (W, C[-:t27],C[;t29]) € K[Unit]5. The thesis is:
YW, W, V(W,,v,v) € V[Unit]g, (Clv;taq], Clvitay]) € O(Wy).

28

Assume A = (C[t27],Clt27]) € O(>W,), the thesis follows from Lemma 4
because of rule A\"-Eval-seq-next and rule \“-Eval-seq-next and because v =
unit and v = unit.
Prove A.
Unfold H2. YW,, V(W% 72, 72) € QHFHD, V(W% Cz, (C2) € ’C[[T]][h ((C[tZ'YZ]a (C[t2n}’/2D €
O(W,).
The thesis follows by instantiating W, with > W, v4 with v, 72 with v and
due to Lemma 12 applied to HK. O

Lemma 31 (Compatibility lemma for fix). IfTFt O, t: (71 — 72) = 71 — T2,
then ' - fix,, -, t O, fir t: 71 — 72.
For easy reference, we repeat the definition of fix:

_def

fix = M. (Ax.f (Ay.x xy)) (Ax.f (Ay.x xy))

Proof. Take (W, C,C) € K[r1 — 72]5. Then we need to prove that (Cl[fix., .., t7], C[fiz t7]) €

O(W)g. Define €' ¥ Clfix,, ,, -] and €' = C[fiz -]. The result follows from

PHtO,t: (11 = 72) = 71 — 72 if we prove that (W, C',C") € K[(11 — 72) = (71 — 72)]5-
So, take W' IW, (W', v,v) € V[(r1 — 72) — (71 — 72)]5. Then we need

to show that

(©[V),C'M)) = (Clfixs, v, V], Clfiz v]) € O(W)g.
We have that C[fiz v| < C[fiz,], so by Lemma 4, it suffices to prove that
(Clfixry 7, V], Clfiz,]) € OW')g

or, sufficiently, (W', fix,, ., v, fiz,) € E[T1 — T2]. We prove the latter for an
arbitrary W', by induction on lev(W'), assuming that (W', v,v) € V[(71 — 72) — (71 = 72)] 5
Take (W', C”,C") € K[r1 — 72]|5, then we need to prove that (C”[fix,, ., v],C"[fiz,]) €
O(W')g. If lev(W') = 0, then by Lemma 5, this is okay, so we assume that
lev(W') > 0. From (W', v,v) € V[(r1 — 72) = (71 — 72)]5, we get t and t
such that v = Ax: 77 — 72.t and v = MAx.t. We have that C"[fix,, ,,, v]—
CHHIA y : 1 iy oy v y)/x]) and €7 [fin,| > C7[O. 1) (. iz,)] > C {0y fiz, v)/]l
and by Lemma 4, it suffices to prove that (C”[t[(\ y : 71. fix;, rp v ¥)/X]], C"[t[(Ay. fiz, v)/X]]) €
O(>W')g. Note that since lev(W') > 0, we have that lev(>W') < lev(W').
First, we prove that

W Ny : 11 fixe, orp VY, A fiz, y) € V[r1 — T2]o-

By definition, this means proving, first, that 0 = X\ y : 71 fix,, o, Vy : 71 — T2.

We know from (W', v,v) € V[(11 — 72) — (71 — 72)|gthat 0 F v : (71 — 72) — (11 — T2),
from which this easily follows. Secondly, we need to prove that for all W’ 3, & W/,

for all (W”,v',v') € V[r1]q, that (W", fix,, ., v v/, fiz, V) € E[r2]5. By in-

duction on lev(W’), we have that (W, fix,, .., v, fiz,) € E[r1 — 2], since

by monotonicity of V[(71 — 72) — (71 — 72)], we know that (W v,v) €

V(71 — 72) = (11 — 72)]g. The result now follows directly by Lemmas 10

and 23.

29

Now that we have shown
(> WAy T1. 0%, rp VY, AY. fiz, y) € V[T1 = T2]0,

we still need to show that (C”[t[(\ y : 71. fix,, —ry v y)/X]], C"[t[(Ay. fiz, y)/X]]) €

O(>W')g. Since > W I W', we have that (>W',C",C") € K[r1 — T2]g by

Lemma 12. Therefore, it suffices to prove that (> W', t[(\ v : 71. fix,, .., v y)/x],t[(\y. fiz, v)/x]) €
E[r1 — 72]5. However, by definition of V[(71 — 72) — (71 — 72)]5, this fol-

lows directly from (W', v,v) € V[(71 — 72) = (71 — 72)]g, v = Ax: 71 — Ta2.t

and v = Mx.t and

W Ny : 11 fixe, orp VY, Y. fiz, y) € V[r1 — T2]o-
O

Theorem 4 (Erase is semantics-preserving). IfT' -t : 7, thenT' -t O,, erase(t) :
T for all n.

Proof. The proof proceeds by induction on the type derivation of I' - t : 7. The
hypothesis H1 is that I' -t : 7.
Rules A -unit to A"-false Here, t is a primitive value b inhabiting type B.
The thesis is: I' - b 0,, erase(b) : 5.
By applying erase(-), the thesis becomes: T'b O, b : B.
By definition of [J,,, the thesis consists of 2 parts, which both must hold:
(DT FDo:BA VW, V(W,v,7) € G5, (W, by,by) € E[B]4
Part 1 holds because of hypothesis H1.
For part 2, note that substitutions (yand +) do not affect b.
Part 2 becomes: YW, (W, b,b) € E[B]5.
By Lemma 10, it suffices to prove that (W,b,b) € V[B], which is true
by definition.
Rule \"'-Type-var Here, t is a variable x.
The thesis is: T'F x 0,, erase(x) : 7.
By applying erase(-), the thesis becomes: T' - x O, x : 7.

By definition of [J,,, the thesis consists of 2 parts, which both must hold:
(I)F F X T A (Q)VW,V(W7 e /\7/) € g[[r]]lj7 (Wv X7, X",) € 5HT]]|:I'

Part 1 holds because of hypothesis HI1.
Let us now prove part 2.
By H1 we know that x € dom(T").

By the definition of G[I']5, we know that x € dom(7), that x € dom(y),
that we can replace xvy with v and xy with v and that (W, v,v) € V[7]5
(HV).

This case holds by applying Lemma 10 to HV.

30

Rule \'-Type-fun Here, t is a lambda-abstraction of the form Ax : 7.t while
7 is an arrow type of the form 7/ — .

The thesis is: T' - A\x : 7/.t O, erase(Ax : 7/.t) : 7/ — 7.

The inductive hypothesis IH is T, (x : 7/) F t OJ,, erase(t) : 7.

The result follows from Lemma 21, since erase(Ax : 7/.t) = \x. erase(t).
Rule \"-Type-pair Here, t is a pair of the form (tq,t2) while 7 is a product

type of the form 7y x 7o.

The thesis is: T' - (t1,t2) O, erase((t1,t2)) : 71 X T2.

There are two inductive hypotheses ITH1: T' F t; [J,, erase(ty) : 71 and
IH2: T'+ tp O, erase(ts) : 72.

The result follows from Lemma 22, since erase((t1,t2)) = (erase(tq), erase(tz)).

Rule \'-Type-app Here, t is t; to.
The thesis is ' - t1 to O, erase(ty t2): 7.

We have two inductive hypotheses: TH1 = I' t4 [J,, erase(ty) : 7/ — 7
and IH2 =T+ t, O,, erase(ts) : 7.

The result follows from Lemma 23, since erase(t; ty) = erase(t;) erase(ts).

Rule \'-Type-projl Here, t is t;.1 while 7 is 77.
The thesis is I' - t1.1 O,, erase(ty.1) : 71.
There is one inductive hypothesis ITH: T' - t1 J,, erase(t1) : 71 X T2.

The result follows from Lemma 24, since erase(t;.1) = erase(tq).1.

Rule \"'-Type-inl Here, t is inl t; while 7 is 5.
The thesis is T' - inl t; O,, erase(inl t1) : 71 W 72.
There is one inductive hypothesis TH: T' - t1 J,, erase(ty) : 71.

The result follows from Lemma 26, since erase(inl t1) = inl erase(tq).

Rule \"-Type-inr Here, t is inr to while 7 is 75.
The thesis is T' - inr to [0, erase(inr ty) : 7 W 75.
There is one inductive hypothesis TH: T' F to O,, erase(ts) : 2.
The result follows from Lemma 27, since erase(inr tz) = inl erase(tz).
Rule A" -Type-case Here, t is case t of inl xq + t1 | inr xg — to while 7 is
T1) T2.
The thesisis I' F case t of inl x1 > tq | inr x5 +— to 0, erase(case t of inl x1 + tq | inr xo > t2) :
T1] T2.
There are three inductive hypotheses: T' F t [, erase(t) : 71 Wrs,
I (x1:7)F ty O, erase(ty) : 7 and T', (x2 : 72) F to O, erase(ts) :
T2.
The result follows from Lemma 28, since erase(case t of inl x; > tq | inr xg > tg) =
case erase(t) of inl x; — erase(ty) | inr x, — erase(tz).

31

Rule \"-Type-fix We have that t = fix,, ., €. erase(fix,, ,,, €)= fiz erase(e’).

The result follows from the induction hypothesis and Lemma 31.

Rule \"-Type-if We have that t = if t’ then t; else ta. erase(if t’ then tq else ta) =
if erase(t’) then erase(tq) else erase(ts)

The result follows from the induction hypotheses and Lemma 29.
Rule \"-Type-seq : We have that t = t;t’. erase(t;t’) = erase(t);erase(t’)
The result follows from the induction hypotheses and Lemma 30.

O

Theorem 5 (Erasure is semantics preserving for contexts). For all €, if - € :
7" = T,7 then - €, erase(C) : IV, 7/ — T, 7.

Proof. Take t,t with I'" -t OJ,, t : 7/. Then we need to show that I' - ¢[t] OJ,,
erase(®)[t] : 7. We do this by induction on - ¢ : IV, 7 — T', 7.

The case for \"-Type-Ctx-Hole is tautological. The other cases follow easily
using the compatibility lemmas: Lemmas 21 to 31. O

5.3 Properties of dynamic type wrappers

This section proves additional results and then that protect is semantics pre-
serving Theorem 6.

Lemma 32 (Protected and confineed terms reduce). Ifv € oftype(r), then there
exists a v/ such that C|protect, v| <* C[V'] for any C and v/ € oftype(r) and
there exists a v’ such that C[confine, v] <* C[v"] for any C and v"" € oftype(7).

Proof. By induction on 7.

e 7 = J3 for some B: For any C, we have that C[protects v] < C[v]. We
already know that v € oftype(Bool).

For B = Unit, we have that
Clconfineyyit v] — C[v;unit]
From v € oftype(Unit), we get that v = unit, from which we get that
C|v;unit] < C|v]
We already know that v € oftype(Unit).
For 5 = Bool, we have that

Clconfinegoo1 v] < CJ[if v then true else false]

From v € oftype(Bool), we get that v = true or v = false, from which
we get that
CJif v then true else false] < C|v]

We already know that v € oftype(Bool).

32

e 7 = 71 X To: By definition of oftype(71 X 72), we have that v = (vq,v2)
with vy € oftype(71) and v, € oftype(rs).

For any C, we have that

Clprotect,, xr, V] — C[(protect,, v.1, protect,, v.2)] —
C[{protect,, vi, protect,, v.2)] —* C[{v}, protect,, v.2)] —
C[(v}, protect,, va)] <—* C[{v], V))]
where we use the induction hypotheses to obtain v| and v} such that
the relevant parts of the above evaluation hold. The fact that (vi,v}) €

oftype(r1 X 72) follows from the definition and the corresponding results
of the induction hypotheses.

The proof for confine,, -, is symmetric.
e 7 =71 W7o By definition of oftype(r1 W 72), we have that v = inl v; with

vy € oftype(r1) or v = inr v; with v, € oftype(73). We give the proof for
the first case, the other case is similar.

For any C, we have that

Clprotect,,wry V] =
C|case v of inl x; — inl (protect,, x) | inr xp — inr (protect,, xp)] <
Clinl (protect,, vi)] = Cl[inl vi]

where we use the induction hypotheses to obtain a v} such that the relevant
part of the above evaluation holds. The fact that inl v| € oftype(71 W 72)
follows from the definition and the corresponding result of the induction
hypothesis.

The proof for confine,, w,, is symmetric.
e 7 =71 — To: For any C, we have that
Clprotect,, s+, V] <> C[Ax.protect,, (v (confine,, x))]

and

Clconfine;, .+, v] < C[Ax.confine,, (v (protect,, x))].

The fact that \x.protect,, (v (confine,, x)) € oftype(r1 — 72) and Ax.confine,, (v (protect,, x)) €
oftype(r1 — 72) follows from the definition.

O

Lemma 33 (Related protected terms reduce and they are still related). For
any T,

If (W,v,v) € V[r]g, then

33

e there exists a V' such that C[protect, v| —* C|V'] for any context C and
(W, v,v') € V[7].

e there exists a V' such that C|confine, v| <* C[V"] for any context C and
(W, v,v") e V[1]5.

Proof. We prove this by induction on 7.

e 7 = 3: We have that protecty = Ay.y and

confineyyiy = Ay.y;unit

confineg,o1 = Ay.if y then true else false

From (W, v,v) € V[Unit], we get that v = v = unit and from (W, v,v) €
V[Bool] g, we get that v =v = v with v € {true, false}.

For protectg, it’s clear that C[protects v| < C[v] and that (W,v,v) €
V[B]g-

For confines, we can prove in all cases that
C[confinep v]—*Clv]
and it is clear that (W, v,v) € V[B]5.
e 7 =71 — 75: We have (by definition) that
protect,, -, = Ay. Ax.protect,, (y (confine,, x))
and
confine;, -, = Ay. Ax. confine,, (y (protect,, x)).

We do the proof for protect,, _,,,, the proof for confine,, ., is symmetric.

We have that C[protect,, ,,, v| <> C[Ax. protect,, (v (confine,, x))]. Now
we need to prove that (W, v, \x. protect,, (v (confine,, x))) € V[r1 — 72]5.

From (W,v,v) € V[r1 — 72]g, we have that § = v : 74 — 72, and
that there exist t and t such that v = Ax: 7.t and v = Ax.t. It re-
mains to prove that for any W' 3, W, (W', v/, V') € V[71], we have that
(W', t[v'/x], protect,, (v (confine., v'))) € E[r2]g-

So, take (W', C,C) € K[r2], then we need to prove
(C[t[v'/x]], C[protect,, (v (confine,, V'))]) € O(W')g.

Since C[protect,, (v -)] is an evaluation context and (W', v',v') € V[r1],
we have by induction that

C|protect,, (v (confine,, v'))] <—* C|protect,, (v v")]

34

for some v such that (W', v',v") € V[r1]5. By Lemma 4, it suffices to
prove that
(C[t[v'/x]], C|protect,, (v Vv")]) € O(W')g.

Furthermore, we have that
C|protect,, (v v")] < C[protect,, (t[v""/x])]
and again by Lemma 4, it suffices to prove that
(CI6[v' /], Clprotect,, (t]v"/x])]) € O(W)g.

From (W,v,v) € V[r1 — 72]5 and (W', v/,v") € V[r1]5, we have that

(W' t[v'/x],t[v"/x]) € E[72] - It then suffices to prove that (W', C, C|protect,, -|) €
Klr2]g-

So, take W’ IJW’ and (W”,v"”",v"’) € V[r2]5. Then it suffices to prove

that (C[v"],C|[protect,, v'’]) € O(W")g. Again, we have by induction
that Clprotect,, v/] <»* C[v""] for some v/ with (W",v"",v""") € V[72]5.
By Lemma 4, it suffices to prove that (C[v"”], C[v"""]) € O(W")g. We still
have (W”, C, C) € K[r2]5 by public world monotonicity, so that the result
follows in combination with (W”, v/ v"""") € V[r2]q.

T =171 X T2: We have (by definition) that

protect,, x-, = Ay. (protect,, y.1, protect,, y.2)
and

confine,, x,, = Ay. (confine,, y.1, confine,, y.2).

We do the proof for protect,, x,,, the proof for confine,, «,, is symmetric.

We know from (W, v,v) € V[r1 x 73] that v = (vi,va) and v = (vi,vo)
for some vi,va,vi,vo and that (W, vyi,vi) € > V[7r1]5 and (W, va,v2) €
>V[r2]g. We also have that v € oftype(r1 x 72), which implies that
vy € oftype(71) and v, € oftype(72).

If lev(W) = 0, then we use Lemma 32 to obtain v| and v such that for
any C

C[(protect,, vi, protect,, v.2)] —* C[(v], protect,, v.2)]

and
C[(vy, protect,, va)] =* C[{v], Vv5)],

and V) € oftype(r1) and v} € oftype(72). We then have for any C that

Clprotect,, xr, V| — C[{(protect,, v.1, protect,, v.2)] —
C[(protect,, vi, protect,, v.2)] —* C[{v], protect,, v.2)] —
C[(v1, protect, v2)] =" C[(vy,v3)],

35

We then also have that (W, (v1,v2), (Vi,Vv5)) € V[71 x 72]5 by definition
and by the fact that (W, v1,v]) must be in >V[r1] because lev(W) = 0
and similarly (W, va,v5) € > V[72].

Iflev(W) > 0, then we have that (> W, vy, v1) € V[71]5 and (bW, v, vs) €
V[r2]5- We have for any C that

Clprotect,, xr, V| — C[{(protect,, v.1, protect,, v.2)] —
C[{protect,, vi, protect,, v.2)] —* C[({v}, protect,, v.2)] <
C[(v1, protect, v2)] =" C[(vy,v3)],

where we use the induction hypotheses to obtain v| and v} such that
C|[(protect,, vi, protect,, v.2)] <—* C[(v], protect,, v.2)]

and
C[(vy, protect,, va)] <™ C[{v], Vv5)].

The induction hypotheses also give us that (>W,vq,v]) € V[r1]5 and

(l> W, Va, V/2) S V[[TZ]]D~

It remains to prove that (W, (vq,va), (Vi,v5)) € V[71 X 72]5, but this

follows easily by definition and by Lemma 17.

7 =171 W7o We have (by definition) that

protect,,wr, = Ay.case y of inl x; + inl (protect,, x;) | inr xo — inr (protect,, xz)
and

confine,,wr, = Ay.case y of inl x; — inl (confine,, x1) | inr xo + inr (confine,, x3).

We do the proof for protect,,y,,, the proof for confine,,w, is symmetric.

We know from (W,v,v) € V[r; W 73] that either v = inl vy and v =
inl vi for some vy,vi with (W,vi,vi) € >V[r1]5 or v = inr v, and
v = inr v, for some va, v, with (W, va,vs) € > V[72]5. We complete the
proof for the first case, the other one is similar.

If lev(W) = 0, then we use Lemma 32 to obtain v{ and v such that for
any C
Clinl (protect,, vi)] < Clinl v],

and v € oftype(71). We then have for any C that
Clprotect,,wry V] =

C|case v of inl x; — inl (protect,, x1) | inr xp — inr (protect,, xp)] <
Clinl (protect,, vi1)] <™ Clinl v}],

We then also have that (W, (vi,va), (V],Vv5)) € V[71 W 72]5 by definition
and by the fact that (W, vq,Vv]) must be in > V[r1] because lev(W) = 0.

36

Iflev(W) > 0, then we have that (> W, vy,v1) € V[71]5 and (> W, v, vs) €
V[72]g- We have for any C that

Clprotect,,wry V] —
C|case v of inl x; — inl (protect,, x;) | inr xp — inr (protect,, xp)] <

Clinl (protect,, vi)] <™ Clinl v{],
where we use the induction hypotheses to obtain v{ such that

Clinl (protect,, vi1)] <™ Clinl v{]

The induction hypotheses also give us that (>W,vq,v;) € V[ri]5. It
remains to prove that (W, v,inl v{) € V[71 W 73] 5, but this follows easily
by definition and Lemma 17.

O

Theorem 6 (Protect and confine are semantics preserving). For any n, if
'ty O, ty:7 then I' -ty O, protect, tp : 7 and I' -ty O, confine, t : 7.

Proof. We only prove the part about protect,, the result about confine, is sim-
ilar.

Take W with lev(W) < n, (W,v,7) € G[I']5. Then we need to show that
(W, tv, protect, ty) € E[7]5. From I' -t [, t : 7, we have that (W, tv,ty) €
&[] so that by Lemma 19, it suffices to prove that for all W I W, (W', v,v) €
V[7]g, we have that (W', v, protect, v) € E[7]q.

So, take (W', C, C) € K[7], then we need to show that (C[v], C[protect, v]) €
O(W')g. From Lemma 33, we get a v/ such that C[protect, v| <* C[V/] and
(W', v,v) € V[r]g. By Lemma 4, it suffices to prove that (C[v],C[V/]) €
O(W')g. This now follows directly from (W', C,C) € K[r]5 with (W', v,V/) €
Virlg- O

5.4 Contextual equivalence reflection

Theorem 7 ([[]];T is semantics preserving). For all t, if T -t : 7 then T I
G

t Oy, [t]5 @ 7.

Proof. By definition, we have that [[t]]y = protect, erase(t). From 't : 7,
we get I' b t O, erase(t) : 7 by Theorem 4. By Theorem 6, we get that
't O, protect, erase(t) : 7 as required. O

Theorem 8 ([I]]f\‘T reflects equivalence). If) - t1 : 7, O - t2 : 7 and 0 F
protect, erase(t;)~ ., protect, erase(ts), then () F t1 ~p to: 7.

Proof. Take € so that - € : (), 7 — (), 7'. We need to prove that €[t]| iff €[to]{).
By symmetry, it suffices to prove the = direction. So assume that €[t1]{}, then
we need to prove that ¢[ts]{.

37

Define ¢ & erase(€), then Theorem 5 tells us that - ¢ O, €: (), 7 =0, 7.

From Theorem 7, we get that 0 - t; O, [[tl]]iT :7and 0ty O, [[t2]]§T DT

By definition of - € O,, € : (), 7 — 0, 7/, we get that @ - €[t1] O, Q[[[tl]];\j] o7
and 0 F C[t2] O, ¢[[t2]30]: 7.

By Lemma 16, €[t1|{} and @ - €[t1] O, Q[[[tl]]ir] : 7/ imply that Q[[[tl]]ir]l}

From () [[tl]]iT ~te [[t2]}:\v and Q[[[tl]]i:]ll, we get that Q[[[tz]]i:“l«, since by
Lemma 18, we get F € :) —» () from - € : (), 7 — 0, 7.

By Lemma 16, we now get that €[to]|} from 0 - C[t2] O, Q[[[tz]]iT] : 7" and
¢[[t2]30 10 O

38

6 Equivalence preservation and emulation

This section defines UVal (Section 6.1) and clarifies EmulDV (Section 6.2). Then
it introduces upgrade and downgrade (Section 6.3), inject and extract (Sec-
tion 6.4) and emulate (Section 6.5). Finally it defines the approximate back-
translation (Section 6.6) and it proves compiler security (Section 6.7).

6.1 n-approximate UVal
We define a family of \™ types UVal:

UValp = Unit
UVal,s 1 = Unit W Unit & Bool & (UVal, x UVal,) & (UVal, — UVal,) & (UVal, & UVal,)
Note: in UVal,.1, the first Unit represents an emulation of an unknown value
and the second Unit represents the emulation of an actual Unit value. We
define the following functions with the obvious implementations:
inunk:n : UV&lln+1
iNgpie;n : Unit — UVal,yg
ingoo1;n : Bool — UValniq
in,., : (UVal, x UVal,) — UVal, 4,
ing., : (UVal, W UVal,) — UVal,;1
in_,, : (UVal, — UVal,) — UVal,41
We also define a convenience meta-level function for constructing an un-
known UVal, for an arbitrary n:
unk, : UVal,
unkg &f unit

def .
unkn+1 = Mynk;n

39

We also define the following functions:

omega, : T
omega., oef fixunit—+ (AX : unit — 7.x) unit

caseynit;n ¢ UValpyr — Unit

Casegoo1;n ¢ UValy41 — Bool
casey . : UValyy1 — (UVal, x UVal,)
casew, : UValyy1 — (UVal, W UVal,)
case_,, : UVal,y; — UVal, — UVal,

caseynitm \x : UVal,41. case x of {inyyi¢;n X+ X; _ +> omegayis

CaSegoolin F\x : UVal,41. case x of {ingoo1;n X+ X; _ > OMeZaApoo1 |
casey.q = \x UVal, 1. case x of {iny;n X = X; _ > 0mMega(yval, xUval,) |
casey:; x UVal, 1. case X of {iny;n X+ X; _ +> omega uval,wuval,) }
case_,q *F\x : UVal,y1. Ay : UVal,.case x of {in_,, z+> z y; > omegayval, }

Lemma 34 (omega diverges). For any T and any evaluation context C, Clomega, |1,

i.e. it diverges.

Proof. We have the following:

Clomega, | = Clfixynit—+ (AX : unit — 7.x) unit] <
C[(Ay : unit. fixypit—- (AX : unit. x) y) unit] <

Clfixunit—+ (Ax : unit. x) unit] = Clomega,]

In summary, Clomega,| <2 Clomega.], so that it must diverge. O

6.2 EmulDV specification

We use an indexed definition of EmulDV,., that takes into account the fact that
we have a step-indexed UVal now. In fact, we need two indices n and p. The
first index n is a non-negative number which determines the type of the ™ term,
ie. if (W,v,v) € V[EnulDV,], then we must have that 0 - v : UVal,. The
index p must either be precise or imprecise and determines the level up to
which the term is accurate. If p is imprecise, the term may contain inuk.n
values corresponding to arbitrary A" values. However, if p is precise, it must
not contain iny,i.s, at least up to the level determined by the amount of steps
in the world.

40

6.3 Upgrade/downgrade

We define the following functions:

downgraden.q : UVal,4q — UVal,
def .
downgradeq.q = \v : UValy. unit
def
downgraden 1.4 = Mx : UVal, q.1. case x of
inllllk;n+d — inunk;n;
inUnit;n+d Y= inUnit;n Y
inBool:ner Yy — inBool;n Y;
iny.ntd ¥ — iny.y, (downgrade,q y.1,downgraden.q y.2);

inynta y — ingy case y of inl z — inl (downgraden.q x);inr x — inr (downgraden.q x)

in_.niq ¥y in, (Az: UVal,. downgradenq (v (upgradenq z)))

upgradey,.q : UVal, — UVal,;4
def
upgradeg,y = Ax : UValg. unkq
def
upgradenyi.g = Ax : UValpy1. case x of
inunk;n = inunk;n+d;
inUnit;m Y= inUni‘c;nde Y3
inBool;n Y= inBool;ner Y;
iny., y— iny.nta (upgradenqg y.1, upgradenq v.2);
ing.y, y — inynyq case y of inl z — inl (upgradenq);inr z — inr (upgraden.y x)

in., y+—in.nirq (Az: UVal,. upgradenq (y (downgradenq 2)))

Lemma 35 (Upgrade and downgrade are well-typed). For alln, d, upgrade,.q :
UVal, — UVal,+q4 and downgraden.q : UVal,1q — UVal,.

Proof. Easily verified. O

Lemma 36 (Upgrade and downgrade reduce). If) - v : UVal, 4, then for any
C, Cldowngradey.q v] —* C[v'] for some v'.
If 0+ v : UVal,, then for any C, Clupgrade,.q v| <* C[v'] for some v'.

Proof. Take () - v : UVal, 4 and an arbitrary C. We prove that C[downgrade,.q v] <*
C[v'] by induction on the structure of v.
If n = 0, then we have that C[downgrade,.q v] = C[(Ax : UValg. unit) v] < Clunit].
For n+1, we have by a standard canonicity lemma, that one of the following
holds:

® vV =iny,k.ntd. In this case, we have that

Cldowngraden 1.4 v] = Clinupk:n]

41

® V = inyitm+a V. In this case, we have that

C[downgrade, 1.4 v] = Clingpitm v’

® Vv = iNps1nta V. In this case, we have that

Cldowngrade, 11,4 v] < Clingeo1;n V']

o v=in,.,+4 (v1,Vs) with vi € oftype(UVal,q4) and vo € oftype(UVal,q).
In this case, we have that

Cldowngradeny1.4 v] = Cliny.({downgraden.q v.1, downgraden.q v.2))] —
Cliny.n ((downgraden,q v1,downgraden.g v.2))] —*
Cliny;n({v}, downgrade,q v.2))] <
Cliny.n((v}, downgrade,.q v2))] =" Cliny.n((v], vy))]

where we use the fact that by induction C[downgraden.q vi] —* C[v]]
and C[downgrade,.q va] <" C[v}] for some v/, v, for any C.

o v = inyntq(inl vi) with v; € oftype(UVal,1q) or v = ing.nta(inr va)
with vy € oftype(UVal,;q4). We only treat the first case, the other is
similar. We then have that

Cldowngrade, ;1,4 v] < Clinu,n(inl (downgraden,q v1))] <" Clin,n(inl v})]

where we use the fact that by induction Cldowngrade,.q v1] —* C[v}] for
some v} for any C.

o v =1in_,,.q(v') with v € oftype(UVal,;q — UVal,14). We then have
that
Cldowngradent1.4 V] —
Clin_.n(Az : UVal,. downgraden.q (y (upgradenq z)))],
which is clearly a value.

Now take v € oftype(UVal,). We prove that Clupgrade,.q v] —* C[v'] by
induction on the structure of v.

If n = 0, then we have that Clupgrade,.q v] = C[(Ax : UValg. unkyq) v] < Clunkq],
and we know that unky is always a value.

For n+1, we have by a standard canonicity lemma, that one of the following
holds:

® V = iny,k.n. In this case, we have that

Clupgradent1.d v] = Clingnkin+d

42

® V = inyuitn(v’). In this case, we have that

Clupgraden 1.4 v] = Clinypitnta(v')]

® vV = ing,1.n(v’). In this case, we have that

Clupgraden 1,4 v] < Clingoo1;n+d(v')]

o v =in,,((v1,Vv2)) with v; € oftype(UVal,) and v, € oftype(UVal,).
In this case, we have that

Clupgradent1.g v] = Cliny.nia((upgraden.q v.1, upgradenq v.2))] —
Cliny.nt+da((upgraden.q v1, upgraden.q v.2))] —*
Cliny;nta((v}, upgradenq v.2))] <

Clinemeal(Vh, upgradeny va)] < Clinnsa((vh, v4))]

where we use the fact that by induction Clupgrade,.q v1] —* C[v}] and
Clupgraden.q va| <* C[v}] for some v}, v} for any C.

e v = inyy(inl vq) with vy € oftype(UVal,) or v = iny.,(inr vo) with
vy € oftype(UVal,). We only treat the first case, the other is similar.
We then have that

Clupgraden1.4 v] = Cliny,ntda(inl (upgraden.g v.1))] —
Clinw;nta(inl (upgraden.q v1))] —* Clingntda(inl v})]

where we use the fact that by induction Clupgrade,q v1] <* C[v}] for
some v} for any C.

e v=in_,(v) with v € oftype(UVal, — UVal,). We then have that

Clupgradent1.q4 v] —
Clin.nt+a(Az : UValytq. upgraden.q (y (downgradenq z)))],

which is clearly a value.
O

Lemma 37 (Related upgraded terms reduce and they are still related). If
(lev(W) < n and p = precise) or (0 =< and p = imprecise), and if
(W, v,v) € V[EmulDV, . 4.,] 5, then there exists a v’ such that Cldowngrade,.q v| <"
C[v'] for any C and (W,v’,v) € V[EmulDV,.,]5-

If (lev(W) < n and p = precise) or (O =< and p = imprecise), then if
(W, v,v) € V[EmulDV,.,] 5, then there exists a v/ such that Clupgrade,g v| —*
C[v'] for any C and (W, v’,v) € V[EmulDV, q.p]5-

43

Proof. We prove both results simultaneously by induction on n.

If n = 0, then take (W, v,v) € V[EmulDV, 4.,]5. We have that downgradeg,q =
Av : UValg. unit, so that C[downgradeg.q v] < C[unit] for any C. By definition
of V[EmulDVy.,], we have that (W, unit,v) € V[EmulDVo,p].

Still if n = 0, take (W, v,v) € V[EnulDV,]5. We have that upgradeg,q =
Ax : UValg. unkgq, so that Clupgradeq.y v] < Clunkq] for any C. If p = imprecise,
then we have by definition that (W, unkq,v) € V[EmulDVyp]o. lev(W) <n =0
is not possible.

So now let us prove the results for n + 1. We have that

downgraden 1.4 “x UVal,d+1. case x of
inunk;n+d — inunk;n;
iNgnit;nyd ¥ = Nunien Y5
iNgoo1:ntd ¥ — iNpoorin ¥
iny.nta y — ing., (downgradenq y.1, downgraden.q y.2);

iNgntd ¥ — ingy, case y of inl x — inl (downgraden,q x);inr « — inr (downgraden.q z)

innta ¥y in, (Az: UVal,. downgradeny (y (upgradenq 2)))
and

def
upgraden 1.4 = Ax : UVal, 1. case x of
inunk;n = inunk;n+d;
ingnit;n ¥ = iNunitnta ¥
inBool;m Y= inBool;!thd Y;
inx;n Y= in><;n+d <upgraden;d y'lvupgraden:d y2>
ing.n y — iny.nyq case y of inl z +— inl (upgradenq «);inr « — inr (upgraden.y x)

in., y—in_.,i+q (Az: UVal,. upgradenq (y (downgraden,q 2)))

If (W, v,v) € V[EmulDV, ¢ y1.5], then we have by definition that one of the
following must hold:

® vV =inyuknta and p = imprecise. We know that Cldowngrade, 1.4 inynkns+da] —*
Clingyin]. It follows directly that (W,in,in,v) € V[EmulDV,i1.,]5,
since p = imprecise.

e IV.v = ingnra(v') and (W,v',v) € V[B]5. In this case, we have for
any C that
Cldowngradens 14 v] =" Clingn(v')],
for any C and it remains to prove that (W, ing.,(v'),v) € V[EmulDV,;1.5]5,
but this follows immediately by definition of V[EmulDV, 1.,]5.

e Iv.v = inyna(v') and (W,v/,v) € V[EmulDV, g, X EmulDV,q.5]5-
The latter implies that v/ = (vq,va) and v = (vq,vs) for vy, va,vy, vo with
(W, vq,vi) € > V[EnulDV, 4.5]5 and (W, va,vs) € > V[EmulDV, 4.5 -

44

If lev(W) = 0, then we know by Lemma 17 that v/ € oftype(EmulDV, 4., X EmulDV,4q.,),
from which it follows that v; € oftype(EmulDV,4.,) and vo € oftype(EmulDV,4q4.p),

ie. 0 F vy : UValyyg and 0 = vo : UVal,iy. By Lemma 36, we

then get v}, v5 such that Cldowngrade,q vi] —* C[v]] for any C and
Cldowngraden.q va] <" C[v}] for any C. It follows for any C that

C[downgradent1.4 V] <"
Cliny.n((downgraden.q v.1, downgraden.q v.2))] —
Cliny.n ((downgraden.q v1,downgraden.g v.2))] —*
Cliny;n({v}, downgrade,q v.2))] <

*

Cliny.nta((v}, downgrade,.q4 va))] —
Clinyn({v, va))]
and we have that (W, in,.,((v}.v5)), (vi.v2)) € V[EmulDV, 1.,,]5 by def-
inition and by the fact that lev(W) = 0.

If lev(W) > 0, then we have that (>W,vy,vi) € V[EmulDV, 4.,]5 and
(>W,va,vs) € V[EmulDV, 4.,]5-

By induction, we have that C[downgrade,.q v1| <+* v} and C[downgrade,.q va] <
vy for some v, v, with (>W, v/, vi) € V[EmulDV,] and (>W, v, vo) €
V[EmulDV,.p] 5.

We then also have for any C that

*

C[downgradent1.4 V] ="
Cliny.n((downgraden.q v.1, downgraden.q v.2))] —
Cliny.n ((downgraden.q v1,downgraden.g v.2))] —*
Cliny;n((v}, downgrade,,q v.2))] <
Cliny.n((v},downgrade,.q va))] —*

Clinxn((vi, v2))]

and we have that (W, in,.,((v],v5)), (vi,v2)) € V[EmulDV,.,]5 by defini-
tion and by the facts that (> W, v/, v;) € V[EnulDV,.,]5 and (> W, v5,vs) €
V[EmulDVpp] 5.

I'.v = ingnra(v') and (W,v',v) € V[EmulDV, g, W EmulDVyg;p]o-
Similar to the previous case.

Iv.v = in,npq(v) and (W,v',v) € V[EnulDV, q,, — EmulDVyg;p] -
We have that

Cldowngradent1,4 V] ="
Clin_.n (Az: UVal,.downgrade,.q (v' (upgradenq z)))]

45

It remains to show that

(W, Az : UVal,. downgrade,.q (v’ (upgraden.q z)),v) €
V[EmulDV,., — EmulDV,. ;]

From (W,v’,v) € V[EmulDV,, 4., — EmulDV, q.,]5, we have that v/ =

Ax : UVal,i4.t and v = Ax. t for some t, t.

We need to prove that Az : UVal,. downgrade,.q (v (upgradenq z)) in oftype(EmulDV,,, — EmulDV,.;),
which follows from Lemma 35 and rule A\"-Type-fun.

Now take W' 3, W, (W', v”,v") € V[EnulDV,], then we need to show
that

(W', downgrade,.q (v' (upgradenq v")),t[v"/x]) € E[EmulDV, ,]5-
By induction, we get a v"”’ such that Clupgrade,.q v"'] —* C[v"’] for any C

and (W', v"”",v") € V[EmulDV, 4,]5. We also have that C[v’ v/’ < C[t[v"" /x]].
By Lemma 8, it suffices to prove that

(W', downgraden.q (t[v""/x]),t[v"/x]) € E[EmulDV,.,]q.

Since we know that (W, v/,v) € V[EnulDV, 4., — EmulDVy i g.p] 5, W 3, W
and (W', v"",v") € V[EnulDV, 4], it follows that

W' t[v" /x],t[V"/x]) € E[EmulDV, iq.p]0-

By Lemma 19, it now suffices to show that for all W’ I W', (W", v, vs) €
V[EmulDV, 4] 5, we have that (W”, downgraden.q v4,vs) € E[EmulDV,.p] 5.
By induction, we get that C[downgrade,.q va] —* C[vs] for any C, for
some vs with (W”, vs,vs) € V[EmulDV,;gp]g. By Lemma 8, it suffices
to prove that (W", vs, v4) € E[EnulDV,], but this follows directly using
Lemma 10.

Now take (W, v,v) € V[EmulDV,1.,,]. then we have by definition that one
of the following must hold:

e v = iny ., and p = imprecise. We have that Clupgrade,s1.4 v] —*
Clinuyk;ntal for any C. It follows directly that (W, v’,v) € V[EmulDV, g 1.]5s
since p = imprecise.

o Jv.v =ing.,(v') and (W,v',v) € V[B]5. In this case, we have for any
C that
Clupgraden 1.4 v] =" Clingnta(v')],

for any C and it remains to prove that (W, ing.,a(v'),v) € V[EnulDV, g 1.5]5,
but this follows immediately by definition of V[EmulDV, 4 1,5]5-

46

e .v = in, (V) and (W,v’,v) € V[EmulDV,, x EmulDV,,]5. The
latter implies that v/ = (vq,vs) and v = (v, vs) for vi,va,vy,vo with
(W, vy1,v1) € > V[EmulDV,] 5 and (W, va,v2) € > V[EmulDV,]+

If lev(W) = 0, then we know by Lemma 17 that v’ € oftype(EmnulDV,., x EmulDV,.,),
from which it follows that v; € oftype(EmulDV,.,) and vo € oftype(EmulDV,.,),
which imply) vy : UVal, and () F v4 : UVal,. By Lemma 36, we then

get v, vh such that Clupgrade,.q v1] —* C[v}] and Clupgrade.4 va] <*

C[vh] for any C. It follows for any C that

Clupgradent1.4 V] =~

Cliny;n+d((upgraden.g v.1, upgradeng v.2))] —

Clinyn+da((upgraden,q v1, upgraden.q v.2))] —*
Cliny.nt+a((v}, upgradenq v.2))] —
Cliny;nta((vy, upgradenyg va))] <*

Clinxnta((vy, v3))]

and we have that (W, in, ., a((v},v5)), (vi.v2)) € V[EnulDV, 441,5]5 by
definition and by the fact that lev(W) = 0.
If lev(W) > 0, then we have that (>W,vq,vi) € V[EmulDV,,]5 and
(>W,va,vo) € V[EmulDV,p] 5.
By induction, we have for any C that Clupgraden.q v1] <™ v} and Clupgrade,.q va] <*
vy, for some v/, v, with (> W, v}, vi) € V[EmulDV, 4] and (> W, v5,vo) €
V[EmulDV,ig:p] -
We then also have for any C that

Clupgradent1.4 v] ="
Clink.nt+a((upgraden.q v.1,upgradenq v.2))] —
Clinyn+a((upgraden,q v1, upgraden,q v.2))] —*
Cliny;nt+a((v}, upgradenq v.2))] <
Cliny;n+a((v}, upgradenq va))] <
Cliny;nta((vy, va))]

*

and we have that (W,in, ., a((v},v5)), (vi.v2)) € V[EmulDV, . g 1.5]5
by definition and by the facts that (>W,v’,vi) € V[EmulDV,,]5 and
(>W,v5,vs) € V[EmulDV,p] 5.

e Jv.v =iny,(v') and (W, v’,v) € V[EmulDV, & EmulDV,.,]5. Similar to
the previous case.

e Jv.v=in_,(v')and (W,v’,v) € V[EnulDV,,, — EmulDV,,]5.

Clupgradenyi1.q4 v] ="
Clin_snta (Az: UVal,yq. upgradenq (v' (downgrade,q z)))]

47

It remains to show that

(W, Az : UVal,;q4. upgrade,.q (v’ (downgrade,.q z)),v) €
V[EmulDV,d;p — EmulDV,q.p] .

From (W, v’,v) € V[EnulDV,., — EmulDV,.,], it follows that v/ = Ax : UVal,.t
and v = \x. t for some t, t. Take W' 3, W, (W', v",v") € V[EnulDV,a.p] s
then we need to show that

(W', upgraden.q (v (downgrade,.q v"’)),t[v""/x]) € E[EmulDV,iq.p]5-

By induction, we get a v"”’ such that C[downgrade,.q v”'] <—* C[v"’] for any
Cand (W', v"”,v"") € V[EmulDV,.,] 5. We also have that C[v/ v"] < C[t[v""/x]].
By Lemma 8, it suffices to prove that

(W', upgradenq (6[v"/x]),t[v"/x]) € E[EmulDVyp]p.

Since we know that (W, v’,v) € V[EmulDV,, — EnulDV,;]5, W' 3, W and
(W', v V") € V[EmulDV,.,] 5, it follows that

W, t[v"/x], t[v"/x]) € E[EmulDVy]o.

By Lemma 19, it now suffices to show that for all W’ I W', (W" v4,vs) €
V[EmulDV,.;]5, we have that (W upgraden.q va,vs) € E[EmulDVy g:p] -
By induction, we get that Clupgrade,.q v4] —* C|vs] for any C, for some
vs with (W, vs,vs) € V[EmulDV,.q,]5. By Lemma 8, it suffices to
prove that (W”,vs,vs) € E[EmulDV, 4], but this follows directly us-
ing Lemma 10.

O

Theorem 9 (Upgrade and downgrade are semantics preserving). If (n < m and
p = precise) or (O =5 and p = imprecise), and if I' -t O, t : EmulDVp,q.p,
then I' - downgradem.q t Oy t : EmulDVy,p.

If (n < m and p = precise) or (O =< and p = imprecise), then if
't 0, t: EmulDVyp, then I' - upgradem,q t O t : EMulDVy,g.p.

Proof. Take I' F t O, t : EmulDVy g, W with lev(W) < n and (W,~,7) €
G[I'], then we need to prove that (W, downgradey.q ty,t7) € E[EmulDVy,.,]5.
From I' - t O, t : EmulDVp, 4., we have that (W, tv,ty) € E[EmulDVig.p]5-
By Lemma 19, it then suffices to prove that for all W' I W, (W', v, v) € V[EnulDVy4a.p],
we have that (W', downgraden,q v,v) € E[EmulDV,] .
We have that lev(W') < lev(W) < n. By Lemma 37, there exists a v/ such
that Cldowngradeny.q v| <»* C[v/] for any C and (W', v/,v) € V[EnulDV,,]q.
By Lemma 8, it suffices to prove that (W',v’,v) € E[EmulDVy,;]5, but this
follows directly from (W',v’,v) € V[EmulDV,, ;] 5 by Lemma 10.

48

Now take I' =t Oy, t : EnulDVpy,p, W with lev(W) < n and (W, v,7) € G[I'],
then we need to prove that (W, upgraden.q tv,ty) € E[EmulDVyq.p]5-

From I' -t O, t : EnulDVpy,,,, we have that (W, t,ty) € E[EmulDV,,]5. By
Lemma 19, it then suffices to prove that for all W' I W, (W', v, v) € V[EnulDV,],
we have that (W', upgraden.q v,v) € E[EmulDVq.p]5-

We have that lev(W') < lev(W) < n. By Lemma 37, there exists a v/ such
that Clupgraden,q v] <* C[v/] for any C and (W', v’,v) € V[EmulDVy q;p]-
By Lemma 8, it suffices to prove that (W',v/,v) € E[EmulDVy, q,p], but this
follows directly from (W',v’,v) € V[EmulDV,,,4.,] by Lemma 10. O

6.4 Injecting \" into UVal

extract,,, : UVal, — 7

extract = \x UValg. omega

def
extractypitint1 = Ax : UVal, 1. casepitn X

def
extractpoorint1 = Ax : UVal, 1. casepoorn X

extract def AX : UValp 1. Ax @ 71. extract,,.,
T mintl (case_,.,, x (inject ., x))

extract def Ax : UValyt1. (extract, ., (casey, x).1,
TiXmindl = extract,,, (casex., x).2)

Ax : UValp 1. case casey;, x of

def . .
extract wrint1 = inl y — inl (extract,., y)

inr y — inr (extract,,., y)

inject,,, : 7 — UVal,
. . def
inject;,p = Ax : 7. omega
.. def L.
injectynit;nt1 = AX : Unit.ingpign X
def

injectpoo1;n+1 = AX : Bool.ingee1;n X

.. def AX 177 — To.in_,, (Ax: UVal,.
mjects »mint1 = inject,., (x (extract,,., x)))

inject def AX 1 Tq X To.in, . (inject, ., x.1,
MJECtn xmint1 = inject,., x.2)
23 °

AX 1 71 W To. iny., (case x of
inl y — inr (inject,,., y)
inr y — inr (inject,,., y)

_— def
anectTl Wrosn+1l =

Lemma 38 (Inject and extract are well-typed). For all n, 7, extract, ., :
UVal, — 7 and inject,,, : 7 — UVal,.

Proof. By definition. O

49

Lemma 39 (Diverging terms and non-values are related with no steps or for
<) If lev(W) = 0 or O =5, if C[t]} for any C and t is not a value then
(Clt], Clt)) € O(W)p for any C, C.

Proof. If lev(W) = 0, then the result follows from Lemma 7 because C]t] is not
a value and neither is C[t] since C[t]{} for any C.

If on the other hand O =<, then we have that (C[t],C[t]) € O(W)g by
definition and by the fact that C[t]{} for any C. O

Lemma 40 (Inject/extract and protect/confine either relate at values or they
are observationally equivalent). Assume that one of the following two conditions

are fulfilled:
o n > lev(W) and p = precise
e [1=X and p = imprecise
If (W, v,v) € V[r]q, then one of the following holds:

o there exist v/ and V' such that Clinject,., v| <—* C[v'] and C[protect, v] <*
CV'| for any C, C and (W,v',Vv') € V[EmulDV,.;]5.

e (C[inject,., v],C[protect, v|) € O(W)g for any C, C.
Also, if (W,v,v) € V[EmulDV,] then one of the following must hold:

o there exist v/ and V' such that Clextract,,, v| —* C[v'] and Clconfine, v| —*
C[V'] for any C and C and we have that (W, v',v') € V[7]5.

o (Clextract,., v|,Clconfine, v]) € O(W)g for any C, C.
Proof. We prove both results simultaneously, by induction on 7.

First, we consider the case that n = 0.

inject .o = Ax : 7. omegayval,
extract,,o = A\x : UValg. omega,

For inject, and protect,, we have that lev(W) < n = 0 or O =<, that
Clinject .o v|{} for any C and that protect, v is not a value, so by Lemma 39,
it follows that (C[inject,,q v], C[protect, v]) € O(W)g for any C, C.

For extract,g and confine,, almost exactly the same reasoning applies as

for inject..o and protect,.
Now consider the case for n + 1. We do a case analysis on 7.

e 7 = 3: We have that
protecty = Ax. X
confineypit oef Ay.y;unit

. def .
confinegoo; = Ay.if y then true else false
extractp,ni 1 = Ax : UValy 1. casepy x

injectp.nt1 = Ax : b.ing,, x

50

For protectg, we directly have that C[protects v| < Clv| for any C. We also
have that Clinjectp.n+1 v] < Cling., v] for any C, so we can take v/ =
ing.,, v, V' = v. It remains to prove that (W,ing., v,v) € EmulDV,q.p.
This follows directly from the definition of EmulDV,, 1,5, since we have that
(W, v,v) € V[B].

For confines, we get from (W, v,v) € EmulDV,y1,, that one of five cases
holds:

vV = iny,k.n A p = imprecise

Iv.v =ing,(v") A (W, V', v) € V[B]g

I m'.v=in ,(vV)A(m=m'+1Vm=m'=0)A
(W, v',v) € V[EmulDV,., x EmulDV,.,]5

I, m'.v=ing,(vV)A(m=m'+1Vm=m'=0)A
(W, v/,v) € V[EmulDV,., ¥ EmulDV,.,] 5

Iv.v=in,,(V)A

vm' < m.(W,v',v) € V[EmulDV,., — EnulDV, ;]

In the first case, we know that O =< from the assumptions, Clextract,.,+1 V|
for any C and confine, v is not a value, so that by definition of O(W)<,

— 7~

we have that (Clextract,.,.1 v], Clconfine, v]) € O(W)g for any C, C.

Next, we distinguish the second case and the three others. In fact, within
the second case, (where v = inpg ., (v') and (W,v’,v) € V[B']5), there is
the case that B = B’ and B # B’. We treat the former specially and deal
with the latter together with the three other top-level cases.

So, first, assume that v = ing,, v/ and (W,v’,v) € V[B]5. This implies
that v/ =v =unit if B = Unit and v/ = v = v for some v € {true, false}
if B = Bool.

It follows for any C, C that
C|confinep v] — CJv]|
and

Clextractp.nt1 v] = Clcasepy v] =
Cl[(Auwv : UValpy1. case uv of {ing., x +— x; > omegag}) v]—
Clcase v of {ing.,, x — x; _ +— omegag}| =
Clcase (ing.n V') of {ing.n x +— x; _ +—> omegag}] — C[V']

Since we already know that (W, v’,v) € V[B]5, this case is done.

Secondly, we assume that B # B’ or v = in,.,(v') and (W,v/,v) €
V[EmulDV,., X EmulDV,.,]or v =in_,.,(v') and (W, v/,v) € V[EmulDV,, — EmulDV,,]5
or v =iny,(v’') and (W,v’,v) € V[EmulDV,., & EmulDV,.,]5. In the first
case, we have that B = Bool,3’ = Unit and v = unit or B = Unit,

o1

B’ = Bool and v € {true,false}. In the second case, we have that
v = (v1,vs) for some vy, vy, in the third case v = Ax. t for some t and in
the fourth case v = inl v; or v = inl v, for some v; or vs.

From this, it follows for any C and C that
C[confinep v] — C[wrong] < wrong

and
Clextractp.n+1 v] = C[casep,, v] — Clomegag]

We know that Clomegag|{ (by Lemma 34) for any evaluation contexts C,
so that we get by Lemma 6 that (Clextractp.,+1 v], Clextractg.ni1 v]) €
O (W) for any C, C.

7 =171 — T2: We have that

protect,, ,,, = Ay. Ax.protect,, (y (confine,, x))
confiner, s+, = Ay. Ax. confine,, (y (protect,, x))
extract,;, ,.,.nt1 = Auv : UValyyq1. Ax @ 71. extract,,., (case_,, uv (inject,, ., x))

inject., rpnp1 = AV : 71 — T2.in_,,, (Ax: UVal,.inject.,,, (v (extract,,., x))).

e First, we consider protect,, .., and inject; _,,.n. 1. We have for
any C that

C[protect,, —sr, V] = C[(Ay. Ax.protect,, (y (confine;, x))) v] —
C[Ax. protect,, (v (confine,, x))]

and for any C

(C[inje(:tﬁ—)rgzn+l V] =
Cl(AV:T1 = T2.in_, 5 (Ax : UVal,.inject,,., (v (extract, ., x)))) v]—

Clin,.n (Ax : UVal,.inject,,.n (v (extract, ., x)))].

We take
v/ = Ax. protect,, (v (confine,, x))

and
v/ =in_,, (Ax:UVal,. inject,,., (v (extract, ., x)))

and it remains to prove that (W,v’,v) € V[EmulDV,,1,,]5. De-

fine v/ = Ax : UVal,.inject,,., (v (extract,,., x)). By definition of
V[EmulDV, . 1.n] g, it suffices to show that (W, v"”,v") € V[EmulDV,., — EmulDV,].
We need to prove that v is well typed (oftype() condition of the

logical relations), which follows from Lemma 38 and rule \"-Type-

fun.

92

Now take W' 3, W and (W', v”,v""’) € V[EnulDV,]5. It suffices to
show that

(W', inject., , (v (extract,,, v""")),
protect,, (v (confine,, v""'))) € E[EmulbV,.,]5-

By induction, we have that one of the following cases holds:

e there exist v/ and v such that Clextract,,., v''] <* C[v""]
and C|[confine,, v''| <* C[v""’] for any C, C and (W', v v""") €
VIrilg

o (Clextract,., v""’], Clconfine, v'"]) € O(W)g for any C, C.

In the latter case, the result follows easily from the definition of
E[- -]5- In the former case, by Lemma 4 it suffices to prove that

(W, inject,,., (v v"""), protect,, (v v"")) € E[EmulDV,,]g.

By Lemma 20, we have that (W', v v/, v v""") € 2] since (W', v v/"") €
V[71]5 and we get (W', v,v) € V[r1 — 72]5 from (W, v,v) € V[r1 — 72]
by Lemma 13.

By Lemma 19, it then suffices to prove that for all W’ I W', (W", vs,vs) €
V[72] g, we have that (W”, inject.,., vs, protect,, vs) € E[EmulDV,.,].
Again by induction, we know that one of the following cases holds:

e there exist vg and ve such that Clinject,,., vs] —* C[vg] and
Cl[protect,, vs] <" C|vg| and (W",ve,vs) € V[EnulDV,.,]5. The
result then follows by Lemmas 8 and 10.

e (C[inject,,., vs], C[protect,, vs|) € O(W")q for any C, C. The
result follows by unfolding the definition of £[EmulDV,.,].

Next, we consider confine,, ,,, and extract, _,,,..y1. We have that

Clconfine,, s+, v] =
C[(Ay. Ax. confine,, (y (protect,, x))) v] —
C[Ax. confine,, (v (protect,, x))]

for any C and

Clextract,, srynt1 V] =
C[(Auv : UValpi1. Ax : 71. extract,,,, (case_,, uv (inject, ;s x))) v] —

C[Ax : 71. extract,,,, (case_, v (inject, ., x))]

for any C.

We take
v/ = Ax. confine,, (v (protect,, x))

93

and
' . .
v/ = A\x : 71.extract,,., (case_,, v (inject;,.n x))

and it suffices to prove that (W, v’,v') € V[r1 — 72]5.
We need to prove that v’ is well typed (oftype() condition of the
logical relations) that follows from Lemma 38 and rule A™-Type-fun.

Now take W' 3, W, (W', va,v,) € V[71]5, then we need to prove
that

(W', extract,,., (case_,., v (inject,,., v2)),

confine,, (v (protect,, v2))) € E[r2]g-
We have that
case_,., = Auv : UVal,p1. Ax : UVal,. case wv of {in_,., y — y x; _ +— omegauval, },

so that

extract,,., (case_,,, v (inject,., v2)) =

extract,,, ((Auv : UValpy1. Ax : UVal,. case wv of {in_,.,, y = y x;
_ > omegauval, }) v (inject ., v2)) —

extract,,,, ((Ax: UVal,.case v of {in,., y — y x;
_ > omegayval, }) (inject,,.n va))

We call

def -
v/ = Ax:UVal,.case v of {in,,, y =y x; + omegayval, }

and by Lemma 4 and some definition unfolding, it suffices to prove
that

(W', extract,,., (v' (inject, ., v2)),

confine,, (v (protect,, v2))) € E[r2]g-

By induction, we have that one of the following holds:

e there exist vs,v3 such that Clinject ., va] —* Clvs] and C[protect,, vo| —*
Clvs] for any C, C and (W', v3,v3) € V[EmulDV,] .
e (Clinject,, ., val, C[protect,, v2|) € O(W')g for any C, C.

In the latter case, the result follows by unfolding the definition of
E [[7' 2]]|:|.
In the former case, by Lemma 8 it suffices to prove that

(W', extract,,., (v' v3),confine,, (v v3)) € E[r2]g-

54

We have that

extract,,., (v v3) =

extract,,., ((Ax: UVal,.case v of {in_,, y = y x;
_ > omegayval, }) Va) <

extract,,., (case v of {in_,., y =y v3; > omegayval,) —

and again by Lemma 8, it suffices to prove that

(W', extract.,,., (case v of {in_,, y —y va; > omegayval,}),

confiner, (v v3)) € E[r2]g-

Now, from (W, v,v) € V[EmulDV, 15[, we get that one of the fol-
lowing must hold:

® v =in,xn Ap = imprecise

e Iv.v =ingy,(v')and (W,v',v) € V[B]

o V. .v=inn(v)A W,V v) € V[EmulDV,, x EnulDV,.]
. v =ingn(v') A (W, V', v) € V[EnulDV,., & EnulDV,.,] 5
o V. .v=in,,(v)A(W,V',v) € V[EnulDV,, — EmulDV,]

In the first case, we have that 0 =< and we know that

Clextract,,., (case v of {in_,., y — y v3; > omegayval, })] —
Clextract,., omegayval,]

which diverges for any C. It follows by definition of O(W)< and
& [[T 2]]I:I that

(W', extract,,., (case v of {in_,, y —y vs; > omegayval,}),

confine,, (v v3)) € E[r2]o-
In the second, third and fourth case, we have that

Clextract,,,, (case v of {in_,., y — y vs3; > omegayval, })] —
Clextract.,., omegayval,]
for any C and C|confine,, (v v3)] < C[confine,, wrong] for any C.
This means that Clextract,,., omegayya, |1 for any C and C[confine,, (v v3)] <*
wrong for any C. By Lemma 6, we have that (Clextract.,., omegayva, |,

Clconfine,, (v v3)]) € O(W) for any C, C. The result follows from
the above evaluations, Lemma 4 and the definition of £[72].

In the last case, we have that

extract,,., (case v of {in_,.,, y — y v3; > omegayval,}) —

extract,,., (v’ v3)

%)

with (W,v"”,v) € V[EmulDV,, — EmulDV,,]5. Again by Lemma 8,
it suffices to prove that

(W', extract.,., (v"' vs),confine,, (vv3)) € E[r2]g-

V[EmulDV,.,] 5, by Lemmas 13 and 20, we have that (W', v" vs,v v3) €
E[EmulDV,,]n. By Lemma 19, it suffices to prove for W’ I W',
(W",va,vs) € V[EnulDV,,] that

By the facts that (W, v, v) € V[EmulDV,,, — EmulDV,.,]5, (W', vs,v3) €

(W", extract,,., va4,confine., v4) € E[2]-

By induction, we have that one of the following must hold:

e there exist vs and vs such that Clextract,,., v4] —* Clvs] and
Clconfine;, v4] <" Clvs] for any C and C and (W, vs,vs) €
V[[Tz]]D

o (Clextract,,., va4], C[confine,, ws]) € O(W)g for any C, C.

In the latter case, the result follows directly by definition of £[72].
In the former case, the result follows by Lemma 8 and Lemma 10.

e 7 =171 X T9: We have that

inject;, xr,int1 = AV : T1 X Ta2.iny .y (inject, ., v.1,inject,,., v.2)
extract;, xr,.nt1 = Auv : UVal,y1. (extract, ., casey., uv.1, extract,,,, casey., uv.2)

protect,, x-, = Ay. (protect,, y.1, protect,, y.2)

confiner, xr, = Ay. (confine,, y.1,confine,, y.2)

If (W, v,v) € V[r1 x 73], then we have that v = (vq,vz) and v = (vi,v)
for some vi,va, vi.vo with (W,vy,vi) € o V[r1]g and (W, va,v2) €
DV[[TQ]]D.

If lev(W) = 0, then we know by Lemma, 7 that (C[inject,, xr,.n+1 V], C[protect,, x-, v]) €
O(W)g for any C, C, since inject,, xr,.nt1 v and protect,, «-, v are not
values.

If lev(W) > 0, then we know that (>W, vi,vi) € V[71]5and (bW, va,vo) €
V[72]g- We have for any C that
Clinject , xrpint+1 V] —
Cliny,p(inject,,., v.1,inject ,., v.2)] —

Cliny.n(inject,,.n v1,inject ,., v.2)]

and for any C that

Clprotect,, xro V] —
C[(protect,, v.1, protect,, v.2)] <
C[{protect,, vi, protect,, v.2)].

96

By the induction hypothesis for 77, we have that one of the following must
hold:

e there are v} and V| such that Clinject, ., v1] <" C[v]] and C|protect,, vq] <=*
C[v}] for any C and C and that (>W, v}, v]) € V[EnulDV,.,].
e (Clinject,, ., v1], Clprotect,, vi]) € O(>W)g and for any C, C.
In the latter case, we have by the above evaluation and by Lemma 4 that
(Clinject, xrpn+1 V], Clprotect,, -, v|) € O(W)g for any C, C.

In the former case, we can continue the evaluations for any C and for any
C as follows:

Cliny.n(inject,,.n v1,inject ., v.2)] —*
Clink.n(v],inject,,, v.2)] —

Cliny;n (v}, inject ., va)]
and

C[(protect,, vi,protect,, v.2)] <"
C[(vy, protect,, v.2)] < C[{v], protect,, v2)]

By the induction hypothesis for 75, we have that one of the following must
hold:

o there are v4 and v/ such that Clinject,,., vo] —* C[v5] and Clprotect,, vo] —*
C[v5] for any C and C and that (>W,v5,v5) € V[EmulDV,.,]5.
e (Clinject,,., va], Clprotect,, v»]) € O(>W)g for any W' 3, W and
for any C, C.
In the latter case, we have by the above evaluations and by Lemma 4 that
(Clinject, xryint1 V], Clprotect,, -, v|) € O(W)g for any C, C.
In the former case, we can continue the evaluations for any C and for any
C as follows:

Clinyn (v}, inject,,n va)] =" Cliny.n(vy, va)]

and
C[(v], protect,, va)] <™ C[{v],V5)].

It remains to prove that (W, [iny., (v}, v5)], [(vi,V5)]) € EmulDV,iq,p, but
this follows directly by definition of EmulDV, 1.5, by the facts that (> W, v/,v}) €
> V[EmulDV,.,]5 and (> W, v5,v5) € > V[EmulDV,] 5.

Now if (W, v,v) € V[EmulDV,1.,]5, then we have that one of the following
cases must hold:

® vV =iny, Ap = imprecise

57

o V. v=ing,(v)AW,v,v) e V[B]

o V. v=inu(v)AW,v,v) € V[EnulDV,, x EnulDV,,]
o IV.v=iny,(v)A(W,v',v) € V[EmulDV, & EmulDV,]
o I .v=in_,(v)A(W,v',v) € V[EmulDV,,, — EmulDV,.;]

In the first case, we know that (0 =< and we have that

Clextract;, xrpint1 V] =
C[({extract,,,, casey,, v.1,extract,,., casey,, v.2)] ="

Cl(extract,,;, omega yval, xUval,)-1, extract,,., case, v.2)]

By definition of O (W) <, we have that (Clextract,, «-,.n+1 V], Clconfine,, «-, v]) €

— 7~

O(W) for any C, C.

We repeat the definition of casey ., for easy reference:

casey;n = Auv : UVal,yg. case uv of {iny,n X — X; _ +— omega(yval, xUval,) }
In the second, fourth and fifth case, we have that

Clextract,, xrynt1 V] <=
Cl[(extract,,., casex,, v.1,extract,,, casey., v.2)] =~

Cl(extract, ., omega(yval, xUval,)-1, extract ,., casey.x v.2)]

(which diverges) and for any C that

Clconfines, xr, V] <> C[{confine,, v.1,confine,, v.2)]
C[{confine;, wrong, confine,, v.2)] < wrong
By Lemmas 4 and 6, we have that (Clextract,, x,,.n+1 V], Clconfine,, -, v]) €
O(W) for any C, C.

In the third case (where v = in, ,(v’)) we have that v/ = (vq,v3), v =
(vi,vo) with (W, vy, vi) € > V[EmulDV,,] 5 and (W, va,vs) € > V[EmulDV,.,] 5,
by definition of V[EmulDV,., x EmulDV,,].

If lev(W) = 0, then by Lemma 5, (Clextract,, x,.n V], Clconfine,, «-, v]) €
O(W)g for any C, C.

If lev(W) > 0, then we have that (>W,vq,vi) € V[EmulDV, ;] and
(>W,va,vs) € V[EmulDV,] .

We already have for any C that

Clextract;, xrp:nt1 V] <=
C[{extract,,., casex., v.1,extract,,., casey., v.2)]<—

Cl(extract, ;, case v of {iny.n X+ X; _ + omega(uyval, xUval,) }-1,

—
extract,,., casex., v.2)]

C[(extract,,., v'.1,extract,,., casex v.2)] —

C[({extract,,,, v1,extract,,., casey., v.2)]

98

and for any C that

Clconfine;, x+, V] = C[{confine,, v.1,confine,, v.2)] <

C[{confine,, v1,confine,, v.2)]

By induction, we know that one of the following cases holds:
e there exist v} and V| such that Clextract, ., vi] —* C[v}] and
Cl[confine,, vi| <" Clv{] for any C and C and (>W, v}, Vv)) € V[71]5
o (Clextract,,., v1],C|confine, vi1]) € O(>W)g for any C, C.
In the latter case, by Lemma 4 and the above evaluation, we get that
(Clextract,, xr,.:n V], Clconfine,, -, v]) € O(W)g for any C, C.
In the former case, the above evaluation judgements continue as follows

for any C and C:

*

C[(extract,,., v1,extract,,., casex, v.2)] —
C[(v]},extract,,, casey., v.2)] —
C[(v},extract,,, case v of {in,;n X — X; _ — 0mega(yval, xUval,) }-2)] =

C[(v},extract,,., v'.2)] — C[(v], extract,,., va)]
and
C[(confine,;, v1,confine,, v.2)] —*
C[(v}, confiner, v.2)] <
C[(v}, confine,, vo)]
Again by induction, we know that one of the following cases holds:

o there exist v, and v, such that Clextract,,.,, vo| —* C[v,] and
Clconfine,, vo| <" C[v5] for any C and C and (> W, v5,v5) € V[72].
o (Clextract,,., va], Clconfine,, v»]) € O(>W)g for any C, C.
In the latter case, by Lemma 4 and the above (continued) evaluation, we
get that (Clextract,, «,,.n V], C[confine,, x-, v|) € O(W)g for any C, C.
In the former case, the evaluation judgements continue further as follows
for any C and C:

Cl(vy, extract,,., va)] =" C[(v}, V)]

and
C[(v}, confine,, va)] —* C[{vi,V5)]

It now suffices to prove that (W, (v}, v5), (v{,v5)) € V[71 X 72], but this
follows directly from (>W,v,v}) € V[r1]5 and (>W, v5,Vv5) € V[72]5-

99

e 7 =171 W7o We have that

L. . inl © — inl (inject,,.n x)
inject wr,nt1 = AV : Ty W7o ing,, | case v of | . L
' inr z — inr (inject,,.,)

inl x — inl (extract,,., z)
extract, wr,.;nr1 = Auv : UValyy;. case casey,, uv of

inr z — inr (extract,,., x)
protect,,wr, = Ay.case y of inl x — inl (protect,, x) | inr x — inr (protect,, x)

. def -
confine,,wr, = Ay.case y of inl x — inl (confine,, x) | inr x — inr (confine,, x)

If (W,v,v) € V[r1 W 72]g, then we have that either v = inl vy and v =
inl v; for some vy, vi with (W,vy,vi) € >V[r1]5 or v = inr v, and
v = inr vy for some va, vo with (W,va,vs) € >V[r2]5. We prove the
result for the first case, the other case is completely similar.

If lev(W) = 0, then we know by Lemma 5 that (C[inject., v], C[protect, v|) €
O(W)g for any C, C. If lev(W) > 0, then we have that (>W,vy,vy) €
V[[Tl]]D-

We have for any C that

Clinjectr,wrynt1 V] —
Cliny,n (case v of inl x — inl (inject,,., x) | inr x — inr (inject,,.n x))] —
Cling,n (inl (inject,,.n v1))]

and for any C that

C|protect,,wry V] —
Clcase v of inl x — inl (protect,, x) | inr x — inr (protect,, x)] <
Clinl (protect,, v1)]

By induction, we know that one of the following cases must hold:

*

e there are v} and v| such that Clinject, ., v1] <" C[v]] and C|protect,, vi] <>
Cl[v}] for any C and C and that (>W,v},v}]) € V[EnulDV,]-.

e (Clinject,, ., v1], Clprotect,, vi1]) € O(>W)g for all C and C.

In the latter case, it follows by the above evaluation and by Lemma 4 that
(Clinject,wrynt1 V], Clprotect,,wr, v]) € O(W)g for all C and C.

In the former case, we have for any C that
Cling.n (inl (inject,,.n v1))] =" Cling.y (inl v})]
and for any C that

Clinl (protect,, vi1)] <™ Clinl v{]

60

It remains to prove that (W, [iny., (inl v})],[inl v{]) € EmulDV,q,p, but
this follows directly by definition of EmulDV, 1,5, V[71 © 72]5 and by the
fact that (> W, v},v]) € V[EmulDV,.,]5.

Now if (W, v,v) € V[EnulDV,1,,] 5, then we have that one of the following
cases must hold:

® Vv =inyn Ap = imprecise

o IV.v=ing,(v)AW,v,v)eV[B]g

o V.v=in (V')A W,V v) € V[EnulDV,, x EnulDV,.,]
o IV .v=ing,(v)A(W,v,v) € V[EmulDV,, & EmulDV,p]
o Iv.v=in,,(v)AN(W,V',v) € V[EnulDV,, — EmulDV,,;]

We repeat the definition of casey., for easy reference:

caseyn = Auv : UValyy ;. case uv of {inw, X — X; _ — omega(uval,wuval,) }
In the first case, we know that 0 =< and

Clextract, ,yrynt1 V] —
inl © — inl (extract,,,, x)

(C[casc omcga(UVa]anvam oI | .
inr z — inr (extract,,., x)

which diverges. By definition of O(W)<, we know that (Clextract ,u,,.n1 V],
Clconfine;, wr, v]) € O(W) for any C, C.

In the second, third and fifth case, we have for any C that

Clextract,,yry:nt1 V] =
inl — inl (extract, ., x)

Clcase O0mega,(yval,wUVal,) OI , .
inr ¥ — inr (extract,,, x)

(which diverges) and for any C that

Clconfine;, wr, V] —
Clcase v of inl x — inl (confine,, x) | inr x — inr (confine,, x)] <

C|wrong] < wrong

By Lemmas 4 and 6, we have that (Clextract ,u,,;n+1 V], Clconfine, -, v]) €

O(W) for any C, C.

In the fourth case (where v = iny., (v')) we have by definition of V[EmulDV,, & EmulDV,]
that either v/ = inl vy, v = inl v; with (W, vy,vi) € > V[EmulDV,,,]5, or

v/ =inr v, v =inr vo with (W, va,vs) € > V[EmulDV,.,]5. We prove the

result for the first case, the other case is completely similar.

61

If lev(W) = 0, then we know by Lemma 5 that (Clextract,,u-,.n v], Clconfine ., v|) €
O(W)g for any C, C. If lev(W) > 0, then we have that (>W,vy,vy) €
V[EmulDV,.p] 5.

We then already have for any C that
Clextract,,yry:nt1 V] —

_|inl — inl (extract,,., x)
C|case casey., v of ’

inr z — inr (extract,,., x)

inl x — inl (extract,,., x
Clcase v' of (min @)

inr © — inr (extract,,,, x)
Clinl (extract,,., v1)]
and for any C that
Clconfine,, wry V] <
C|case v of inl x — inl (confine;, x) | inr x — inr (confine,, x)] —
Clinl (confine,, x)]
By induction, we know that one of the following cases holds:

o there exist vj and V| such that Clextract, ., vi] —* C[v]] and
Clconfine,, vi] <" C[v{] for any C and C and (> W, v}, v]) € V[71]5
o (Clextract,,., v1],C[confine,, vi1]) € O(>W)g for any C, C.

In the latter case, by Lemma 4 and the above evaluation, we get that
(Clextract,,ur,.n v], C[confine, wr, v]) € O(W)g for any C, C.

In the former case, the above evaluation judgements continue as follows
for any C and C:

Clinl (extract,,., v1)] —* Clinl v}]

and
Clinl (confine,, x)] —* Clinl v/]

It now suffices to prove that (W,inl v/,inl vi) € V[r1 & 72]5, but this
follows directly from (>W,v},v}) € V[r1].

O

Theorem 10 (Inject is protect and extract is confine). If (m > n and p =
precise) or (O =< and p = imprecise) and ¢f T+t O, t: 7, then

I' Finject,,, t O, protect, t : EmulDVp,.,.

If (m > n and p = precise) or (O =< and p = imprecise) and if T
t On t: EmulDVp,., then

T F extract., ., t O, confine, t: 7.

62

Proof. Take W with lev(W) < n. Take (W,v,v) € G[I'|5. Then we need to

show that
(W, inject ., ty, protect, ty) € E[EmulDVp,,]5.

We know that (W,tv,ty) € £[7]5. By Lemma 19, it then suffices to show
that for all W I W, (W', v,v) € V[r]5, we have that

(W, inject ., v, protect, v) € E[EmulDVy,]5.
So, take (W, C,C) € K[EmulDVy,] 5. Then we need to show that
(Clinject,.m v], Clprotect, v]) € O(W).
By Lemma 40, we get that one of the following cases must hold:

e v/ and V' such that Clinject,.,, v] —* C[v'] and C[protect, v| —* C[V]
and (W, v’,v") € V[EmulDV,, ;] 5. By Lemma 4, it suffices to prove that

(CHV],C[v]) € O(W).

But this follows directly from (W, v/,v') € V[EmulDV,, ;] and (W, C,C) €
K[EmulDVp:p] -

e (Clinject,., v], C[protect, v]) € O(W)g for any C, C. The result follows
directly by definition of £[EmulDV,,.,]5.
O

6.5 Emulating \" in UVal

emulate, (t) : UVal,

def
emulate,(unit) = downgraden.; (inypit;n unit)

def
emulate, (true) = downgraden.; (inpoo1,n true)

emulate,(false ot downgraden.; (inpeo1:n false)

o
[
LN

emulate, (x

o
[
LN

downgraden.; (in_., (Ax : UVal,. emulaten(t)))

emulate, (Ax. t

o
LN

)
)
)
)
)
)
emulate, (t1 t2) = case_,,, (upgraden (emulate,(t1))) emulate,(to)
) (
)
)
1)
2)
)
)=

o
[
LN

emulate, (t1), emulate,(t2)))

emulate, ((t1, t2) ngraden (iny.pn

o
[
LN

inl emulate,(t)))

emulate, (inl t

o
0
LN

dow
downgraden;; (inuw;n (
dow (inr emulate,(t)))

emulate, (inr t ngraden.; (iny.n

o
0
LN

emulate, (t.

o
0
LN

casex;, (upgraden.; (emulate,(t))
)

emulate, (t.

o
[0
LN

(c)1
(casex.n (upgrade,.; (emulaten(t)))).2
") = (caseunitn (upgraden.(emulate,(t)))); emulate, (t')

emulate, (t; t

def
emulate, (wrong) = omega

63

def
emulate,(case t; of inl x — tp | inr x — t3) =

case casey.y (upgraden; (emulate,(t1))) of
inl x — emulate, (t2) | inr x — emulate,(ts)
emulate, (if t then t; else t5) oef
if (casepoo1.m(upgraden s (emulatent))) then emulate,(t1) else

emulate, (t2)

o
o
-

emulate,(-)

o
o
-

(-
emulate, (Ax. €)

downgraden.; (in_,., (Ax : UVal,. emulate,(<)))

o
o
-

emulate, (€ to) = case_,, (upgraden.; (emulate,(€))) emulaten(tz)

emulate, (t; ot case_,, (upgraden; (emulate,(t1))) emulate, ()

)
)1
)2

!I.

emulate, (€ (casex;n (upgraden,; (emulate, (€

o
o
-

)
)

(casey.n (upgraden.; (emulate, (¢

o
0
-

emulate, ((¢, ta

downgraden.; (iny., (emulate,(¢), emulate,(ts)))

o
0
-

\/\/

emulate, ({t;, € downgraden.; (iny., (emulate,(t1), emulate,(¢)))

)

II&;

)

€)=

1=

emulate, (€.2)
)

)

)

emulate, (inl €

3

(
((

downgraden 1 (ing,y (inl emulate, ()))
((i

) def

emulate, (inr €) = downgraden,; (inw,, (inr emulate, (<)))

3

def
emulate, (case € of inl x — tp | inr x — t3) =

case casey. (upgraden.; (emulate,())) of
inl x — emulate, (t2) | inr x — emulate,(t3)
emulate, (case t; of inl x 5 € | inr x 5 t3) =
case casey., (upgraden.; (emulate,(t1))) of
inl x — emulate,(€) | inr x — emulate,(t3)
emulate, (case t; of inl x — tp | inr x — €) = «f
case casey.y (upgraden; (emulate,(ti))) of

inl x — emulate,(tp) | inr x — emulate, (C)

def if (casepoo1:n(upgraden 1 (emulate,(€))))
emulaten(if € then t; else t2) = then emulate,(t1) else emulatey (t,)
)

def if (casepoo1:n(upgraden 1 (emulate,(t)))
emulaten(if t then € else tp) = then emulate, (¢) else emulate,(t,)

def if (casepoo1n(upgraden 1 (emulate,(t))))
emulaten(if t then t; else €) = then emulate, (tl) else emulate, ()

emulate, (¢; t) (caseu,u»C -« (upgrade, 1 (emulate,(€)))); emulate, (t')

emulate, (t; Q‘) = (caseUnit;n (upgradey.; (emulaten (t)))); emulate, (€)

64

Lemma 41 (Compatibility lemma of emulation for lambda). If (m > n and p =
precise) or (0 =5 and p = imprecise), then we have that if toEmul(l’,x) .+
t O, t: EmulDVy,.,, then
t',oEmul(I_)m,p F downgradem;1 (in_,,m (Ax: UValy.t)) O) Ax.t : EmulDVy,p.
Proof. By Theorem 9, it suffices to prove that
toEmul(r)m;p Fin, ., (Ax: UValy. t) O, Ax.t : EmulDVigp.

Take W such that lev(W) < n and (W,~,7) € G[toEmul(l) [. Then we
need to show that

(W,in_,m (Ax : UValy. t)y, Ax.ty) € E[EmulDVii1,p]0,
or (by Lemma 10)
(W,in_,.;m (Ax : UValy,. ty), Ax.ty) € V[EmulDVmy1.p] -

By definition of V[EmulDV,,1.,], it suffices to prove that Ax : UValy,. ty is
in oftype(EmulDVy,., — EmulDVy,,), which holds since t is well-typed and

(W, Ax : UValy,. ty, Ax.ty) € V[EmulDVp,, — EmulDVy,p]5.
So, take W' 3, W and (W', v,v) € V[EmulDV,,.,] 5. We then need to prove that

(W' ty[v/x], ty[v/x]) € E[EmulDVp.p]o-

with (W', v,v) € V[EnulDVy,], then we get that (W', ~y[x — v],v[x > v]) €
G[toEmul(T, X)m;p]]D'

Since lev(W') < lev(W) < n, we have that lev(W’) < n. It now follows from
toEmul(l, x) .+t Oy t : EnulDVy,, that

By Lemma 11, we get that (W', ~,7) € GtoEmul(l), . [If we combine this

(W', ty[v/x], ty[v/x]) € E[EmulDVm;p]p,
as required. O

Lemma 42 (Compatibility lemma of emulation for application). If (m > n
and p = precise) or (O =< and p = imprecise), then we have that if
toEmul(I')m;p F t1 On t1 @ EmulDVy,,, and if toEmul(r)m”D F oty O to
EmulDVp,.,, then

toEmul(r)m,p F case_,,, (upgradem.1 t1) to Op t1 to : EmulDVy,,.

Proof. Take W with lev(W) < n. Take (W,~,7) € G[toEmul(l) . Then we
need to prove that

(W, case_..; (upgradem.1 t17) t27,t1y toy) € E[EmulDVy,p]o.

65

By Theorem 9, it follows from toEmul(l_)mp F tq O, t; : EmulDV,,, that
toEmul(r)rmp F upgradem:1 t1 On t1 : EmulDViq.p.
This gives us that

(W, upgradem,1 t17,t17) € E[EmulDVii1,p]g-

By Lemma 19, it suffices to prove that for all W I W, (W', v,vy) € V[EmulDVy1:0] o,
that then
(W', case . V1 t27,v1 t2y) € E[EmulDVy,] o-

From (W', vq,vq) € V[EmulDVy 4 1.5]g, we get by definition that one of the
following cases must hold:

e vy =in,,, Ap = imprecise

o Ivi. vy =ing,(v)) A (W', v, vi) € VIBlg

e Ivi.vi =in. (Vi) A (W, v),v1) € V[EmulDV,,, x EnulDV,.,]q
o Ivi.vi = inu, (Vi) A (W, v],v1) € V[EmulDV,,, & EnulDV,,]5
e Ivi.vyi =in_n(v)) A (W, v}, v1) € V[EmulDV,,, — EmulDV,]

In the first case, we know that 0 =< and C[case_,., vy t27]{ for any C.
By definition of £[EmulDV,,,] and by definition of O(W’')<, the result follows.

In the second, third and fourth case, we also have that C[case_,., v1 t27]1
for any C. Additionally, we have that C|v; t,7] <—* wrong for any C. The result
follows by definition of £[EmulDV,,,]5 and by Lemma 6.

In the fifth case, we have that Clcase_ .., vi tay] —* C[v] t2v], so by
Lemma 8, it suffices to prove that

(W', v} tav,vi toy) € E[EmulDVy,.).
From toEmul(l), & to Oy to : EnulDVy,p, we have that
(W, t27,127) € E[EmulDVp;p]o.

By Lemma 19, it suffices to prove that for all W’ I W', (W",v2,v5) € V[EnulDVy,],
that then
(W, v} va,vi Vo) € E[EmulDVy,] 5.

By Lemma 13, we have that (W, v},vi) € V[EmulDV,,, — EmulDV,.] and the
result follows by Lemma 20.

Lemma 43 (Compatibility lemma of emulation for case). If (m > n and p =
precise) or (=3 and p = imprecise), then we have that if toEmul(l)
t1 O t1 : EmMulDVyy,,p, toEmul(l_,x])m;p F to O, to : EmulDVy,.,, and iftoEmul(r,x])m‘p -
ts On t3 : EmulDVy,.p, then

toEmul(r)nmp F case (casew., (upgraden.; t1)) of inl x +— to | inr x — t3 O,

case t; of inl x — tp | inr x > t3: EmulDVyp.

66

Proof. Take W with lev(W) < n. Take (W,~,7) € G[toEmul(l'),]. Then we
need to prove that '

(W, case (casewy (upgraden.; t17)) of inl x — to7y | inr x +— t37,
case t17y of inl x — toy | inr x — t37y) € E[EmulDVp.p]o-

By Theorem 9, it follows from toEmul(l_)m;p F ty On t1 : EmulDVy,,, that
toEmul(r)mAp F upgradem,1 t1 Op t1 : EmulDVpy1.p.
This gives us that

(W, upgradem.1 t17,t17) € E[EmulDViyi1,p]o-

By Lemma 19, it suffices to prove that for all W' I W, (W', v, v1) € V[EmulDVy,i1.] 0,
that then

(W, case (caseyy v1) of inl x — tay | inr x — t37,

case vy of inl x — tpy | inr x — t37y) € E[EmulDVpp]o.

From (W', vi,vi) € V[EmulDVy1,]5, we get by definition that one of the
following cases must hold:

® Vi = iny,n Ap = imprecise

o Ivi.vi =ing,(v)) A (W, v, v1) € V[B]5

o Ivi.vi =ingn(vh) A (W, v),vi) € V[EmulDVp,, X EmulDVep]
o v vy = ingna(vh) A (W, v),vi) € V[EmulDVp,, & EmulDVenp] o
e Ivi.vi =in,(v)) AW, v}, v1) € V[EmulDVy,,, — EmulDVip]5

In the first case, we know that 0 =< and C[case (casew, v1) of inl x — toy | inr x — tgy|f
for any C. By definition of £[EmulDV,,.,] and by definition of O(W’)<, the re-
sult follows.
In the second, third and fifth case, we also have that Clcase (caseyy v1) of inl x — toy | inr x — ta3y]{
for any C. Additionally, we have that Clcase vq of inl x + toy | inr x > t3y] <*
wrong for any C. The result follows by definition of £[EmulDV,.,]J5 and by
Lemma 6.
In the fourth case, we get from (W', v}, vi) € V[EmulDV,, , & EmulDV,,.]
values v{ and v} such that (WvY,v{) € > V[EmulDV,.,]5 and either (v} =
inl v/ and v; = inl v{) or (v} = inr v{ and v; = inr v{). We only consider the
first case further, the other case is completely similar.
We now have that

Clcase (casew v1) of inl x +— toy | inr x — tgy] —

Clcase v} of inl x > ta7 | inr x — t37] < C[t27y[v]/x]]

and
inr x — t3y] < tay[vy /]

Clcase vy of inl x — toy

67

Now if lev(W') = 0, then we have that
(W', case (caseyy v1) of inl x — toy | inr x — tg7,

case vy of inl x — tpy | inr x — t37y) € E[EmulDVy.p] o,

by definition of £[EmulDVy,.,]5 and Lemma 7.
If lev(W') > 0, then we have that (>W',v/,v{) € V[EmulDV,,]5. By
Lemma 8, it suffices to prove that

(> W, t29[vy/x], 29[V /¥]) € E[EmulDVpp]n.

This follows from toEmul(l_)m;p F t1 O, t; : EmulDV,,, since lev(> W) <
lev(W') < lev(W) < nif we show that (> W/, y[x — v{],v[x — v{]) € GltoEmul(l), l5
We know that (W,v,7) € G[toEmul(l')], and by Lemma 11, also (> W', 7, 7) €
GltoEmul(r), . Combined with (>W',v/,v{) € V[EnulDVy], this gives us
(>W, y[x = V], v[x — v{]) € GtoEmul(l), 5. as required. O

Lemma 44 (Compatibility lemma of emulation for pair). If (m > n and p =
precise) or (=< and p = imprecise), then we have that if toEmul(l)
ty1 Oy t1 : EmulDVy,., and t',oEmul(r)m,p Fte On to : EmulDVy,.,, then

toEmul(r)m;p F downgradem:1 (inx,m (t1,t2)) On (t1,t2) : EmMulDVp,,p.
Proof. By Theorem 9, it suffices to prove that
toEmul(l_)m;p F (inx.m (t1,t2)) O (t1,t2) : EmulDVq.p.

Take W such that lev(W) < n and (W,v,7) € G[toEmul(l) [5. Then we
need to show that '

(W7 inx;m <t177 t27>a <t1A)'! t2’\l/>) S EHEmU'lDVm-FLPHD'

From toEmul(l) - F ti Oy t1 @ EmulDVpp, lev(W) < n and (W,7,7) €
GltoEmul(l), [, we get that

(W, t17,t17) € E[EmulDVpy.p]5-

By Lemma 19, it then suffices to prove that for all W IW, (W', vq,vi) €
V[EmulDVy.;] 5, we have that

(W', inm (vi,t27), (v1,t27)) € E[EmulDVim;1p]o.

By Lemma 11, we have that (W', ~,~) € GltoEmul(l), . [5 from W JW.
From this, from ‘coEmul(r)rmp F t2 Op to : EmulDVyy,,, and lev(W') < lev(W) < n,
we then get

(W, t27,t27) € E[EmulDVy,]o-

68

By Lemma 19, it then suffices to prove that for all W/ W', (W" vy, vs) €
V[EmulDVy.;]5, we have that

(w”, ing.m (vi,va), (vi,vo)) € E[EmulDVimi1p]0,
or (by Lemma 10)
(W ing.m (vi,va), (v1,Vv2)) € V[EmulDVpi1,p]0-

By definition of V[EmulDV,;1.,]5, it suffices to prove that (vy, vs) is oftype(EmulDVy,., X EmulDVy,.,),
which follows from the hypotheses on v; and vy and by rule A"-Type-pair, and

(W", (v1,v2), (v1,v2)) € V[EmulDVy, , X EmulDVp,. o]

This follows by definition, by Lemma 13, and by the facts that (W', vy,v;) €
V[EmulDVy 5] 5 and (W, va,vo) € V[EmulDVe,p] - O

Lemma 45 (Compatibility lemma of emulation for injection). If (m > n
and p = precise) or (O =< and p = imprecise), then we have that if
toEmul(l) .+t On t: EmulDVy,, then

toEmul(l), .+ downgradem; (inwm (inl t)) O inl t : EmulDVep.
and
toEmul(r)m_p F downgradem;1 (inw.m (inr t)) O, inr t : EmulDVyy,.

Proof. We only prove the result about inr , the other is completely similar.
By Theorem 9, it suffices to prove that

toEmul(l) o+ inwm (inl t) O inl t : EmulDViggp.

Take W such that lev(W) < n and (W,,7) € G[toEmul(l)]5. Then we need
to show that

(W, iny.m (inl tv),inl ty) € E[EmulDVyi1,p]o-

From toEmul(l), F t Oy t : EmulDVi, lev(W) < n and (W,7,7) €
GltoEmul(l), Iq, we get that

(W, t,t7) € E[EmulDVp.p] -

By Lemma 19, it then suffices to prove that for all W I W, (W', v,v) € V[EmulDVp.p] o,
we have that

(W' iny.m (inl v),inl v) € E[EmulDVyy1.p]0,
or, by Lemma 10,
(W', iny.m (inl v),inl v) € V[EmulDVi1.5]5-

By definition of V[EmulDV,,1.,]5, it suffices to prove that inl v is oftype(),
which follows from the hypothesis on v and rule A"-Type-inl, and

(W',inl v,inl v) € V[EmulDVy,., & EmulDVp,] o-

This follows by definition and by the fact that (W', v,v) € V[EmulDV, ,J5. O

69

Lemma 46 (Compatibility lemma of emulation for projection). If (m > n
and p = precise) or (O =< and p = imprecise), then we have that if
toEmul(l) .+t Oyt : EmulDVy,, then

toEmul(l) . + (casex; (upgradem; t)).1 g t.1 : EmulDVp.

and

toEmul(l) F (caseyn (upgradem, t)).2 O, t.2 : EmulDVp,,p.

p
Proof. We only prove the result about t.1 and t.1, the other is completely
similar.

Take W such that lev(W) < n and (W,v,7) € G[toEmul(l) . [5. Then we
need to show that

(W, (casex.n (upgradem. tv)).1, (ty).1) € E[EmulDVm1,p]o-

From toEmul(l) .+t O, t : EnulDVy,,, we get by Theorem 9 that toEmul(l) .+

upgraden t On t @ EnulDV, 1., From lev(W) < nand (W, ~,7) € g[[toEmul(l')m”;]}E|7
we then get that

(W, upgradem.1 tvy,ty) € E[EmulDVyi1.5]5-

By Lemma 19, it then suffices to prove that for all W I W, (W, v,v) € V[EmulDVii1:5]0s
we have that
(W', (casey.y v).1,v.1) € E[EmulDVy o] o-

From (W', v,v) € V[EmulDV,,.1,,], we get that one of the following cases
must hold:

® Vv =in,x.m Ap = imprecise

o Iv.v=ingm()A W,V v)eV[B]g

o Iv.v=in m()AW,v,v) € V[EnulDVy,, x EmulDVy.)5
e IV.v=inym(Vv)A W, v, v) € V[EnlDVy,,, & EmulDVn,]
e IV.v=in,m(V)AW,Vv,v) € V[EnulDVy, — EnulDVm,]q

In the first case, we have that C[(casey., v).1]f} for any C. We then also
know that 0 =<, and by definition of £[EmulDV,,.,]5 and O(W’')<, the result
follows.

In the second, fourth and fifth case, we have that C[(case ., v).1]{ for any
C and C[v.1] < wrong for any C. By the definition of £[EmulDV ;] and
Lemma 6, the result follows.

In the third case, from (W',v',v) € V[EmulDV, x EmulDV..,]5, we get
v, Vh, vi,vo such that v/ = (v, vh) and v = (vi,vo), (W', v}, v1) € > V[EmulDVy,]
and (W', v, v2) € > V[EmulDVy, o] 5.

We then have that

Cl(casex v).1] = C[v'.1] — C[v]]

70

for any C and
C[v.1] = CJv4]

for any C.
Now if lev(W') = 0, then we have that

(W, (casex.q v).1,v.1) € E[EmulDVy,.,]

by definition of £[EmulDV,,] and Lemma 7.
If lev(W') > 0, then we have that (>W',v},vi) € V[EmulDV,]; and
(>W',vh,vo) € V[EmulDV,,,] 5. By Lemma 8, it suffices to prove that

(> W', vi,v1) € E[EmulDV,,.]
This follows directly using Lemma 10. O

Lemma 47 (Compatibility lemma of emulation for if). If (m > n and p =
precise) or (=5 and p = imprecise), then we have that if toEmul(l) +
t On t @ EmulDVyy, (H) and toEmul(l), . F t1 Oy ti @ EmulDVe, (H1) and
toEmul(r)rmp Fto O to : EmulDVy,., (H2), then

toEmul(I_)m.p Fif (casepoorm(upgraden.1(t))) then tq else to O,
if t then t; else tp : EmulDVp,p.

Proof. Take W, lev(W) < n (HN) and (W,~,7) € G[toEmul(l)]o (HG). We
need to show that (W, if (casepoo1.n(upgraden.1(t))) then tq else to,if t then t; else to) €
E[EmulDV.p] 5.

Apply Theorem 9 to H to get that toEmul(r)rmp F upgraden it O, t :
EmulDVpy1,, (HH). By HH, HN and HG, we have that (W, upgraden.i(tv),tvy) €
E[EmulDVm 1] -

Assume A = VW, IW,V(W;, v,v) € V[EmulDVy 1] (HV), (C[if casepoorn - then t17 else ta7],
C[if - then t;7 else t27]) € K[EmulDVm 1,p]o-

The thesis follows from Lemma 8.

Prove A. Let C'- = CJif casepoo1.n -+ then ty17 else t2y] and C'- = CJif - then ti7 else t7]) €
K[EmulDVy,1.5]. We have these cases based on HV:

® Vv =in,x.m Ap = imprecise

o IV.v = ingiem(v) A (W, v/, v) € V[Unit]y

o Iv.v = ingoorm(v') A (W, v/, v) € V[Bool],

o Iv.v=inm(V)AW,v,v) € V[EnulDVy, x EmulDVe.p]5
e Iv.v=inum(v)A W,V V)€ V[EnlDVy, & EmulDVm,]q

e Iv.v=in,.,(v)AW,v,v) € V[EnulDV,,, — EnulDVy]

71

In the first case, we have that C'[v]{} for any C. We then also know that O =<,
and by definition of £[EmulDV,,.,]5 and O(W')<, the result follows.

In the seconfd, fourth, fifth and sixth case, we have that C’[v]{ for any C and
C'lv] <" wrong for any C. By the definition of £[EmulDVy,.,]5 and Lemma 6,
the result follows.

In the third case we have two cases: v/ =V = true or v =V = false. We
consider the first only, the second is dual with H2 used in place of H1.

We have that C'[ing,o1,m(v')] —* Clt17] and C’[v] — Clt;7]. Assume B=
(Clt17], C[t1v]) € O(> W), the thesis follows from Lemma 8.

Prove B. Unfold H1 and we get VW;, V(W;,v1,71) € G[toEmul(l), Iq.
V(W;,Cq,Cq) € K[EmulDVy,.,] (HI), (Ci[t1791], Ci[tim]) € O(>W;).

The thesis holds by instantiating W; with >W,, 71 with 7, 71 with 7, Cy
with C and C; with C and by Lemma 12 applied to HJ. O

Lemma 48 (Compatibility lemma of emulation for sequence). If (m > n
and p = precise) or (0 =< and p = imprecise), then we have that if
toEmul(r)mip Ft Oy t: EmulDVy,,, and toEmul(r)m,p F t1 O, t1 : EmulDVyy,p,
then

toEmul(r)m_p(caseUnmn (upgraden1(t))); t1 Oy tty : EmulDVyy,p.

Proof. Take W, lev(W) <n (HN) and (W, ~,7) € G[toEmul(l) . [5 (HG). We
need to show that (W, (caseuygic(upgraden(t))):t1,t:t1) € E[EmulDVy] 5.

Apply Theorem 9 to H to get that toEmul(l) mp [upgradenit Oy t -
EmulDVp, 1., (HH). By HH, HN and HG, we have that (W, upgraden, 1(tv) ty) €
E[EmulDVm 1] -

Assume A = VW, IW, V(W,, v, v) € V[EmulDVy1.5]5 (HV), (Clcaseynitm s t17],
Cl:t17]) € K[EmulDVpyi1:5] -

The thesis follows from Lemma 8.

Prove A. Let C'- = C[casepnitn; t17] and C'- = C[-; t17]) € K[EmulDVip1.p].

We have these cases based on HV:

® vV =in,x.m Ap = imprecise

o I . v =ingiem@) AW, v, V)€ V[Unit],

o V. v = ingeorm(v) A (W, v/, v) € V[Bool],

o Iv.v=inm(V)A W, v, v) € V[EnulDVy, x EmulDVe.p]5
o Iv.v=inum(v)A W, v, v) € V[En1DVy, & EmulDVnm,]q
o Iv.v=in,,(v)AW,v,v) € V[EnulDV,,, — EnulDVy]

In the first case, we have that C'[v]{ for any C. We then also know that 00 =<,
and by deﬁnltlon of E[EmulDVy,] and O(W)<, the result follows.

In the third, fourth, fifth and sixth case, we have that C'[v]{ for any C and
C'lv] <* wrong for any C. By the definition of £[EmulDV, ;] and Lemma 6,
the result follows.

72

In the second case we have that: v/ =v = unit.

We have that C'[inggie.m(v')] —* C[t17] and C'[v] < Clt;7]. Assume B=
(Clt17],Clt17]) € O(>Wy), the thesis follows from Lemma 8.

Prove B. Unfold H1 and we get VW;, V(W;,v1,71) € G[toEmul(l), Iq;
V(Wl, (Cl,Cl) S IC[[EmulDVm;p]]D (HJ), (C1[t17ﬂ761[t1%]) € O(\> Wl)

The thesis holds by instantiating W; with >W,, 71 with v, 71 with 7, Cy
with C and C; with C and by Lemma 12 applied to HJ. O

Theorem 11 (Emulate is semantics-preserving). If I' b t, and if (m > n and
p = precise) or (=% and p = imprecise), then we have that toEmul(l')
emulatey (t) Op t : EmulDVyy,.p.

Proof. By induction on [|- t.
e rule \"-Wf{-Base: We have that

emulaten, (b) &ef downgradem.; (ingm b)

By Theorem 9, it suffices to prove that tOEmUJ‘(r>m;p Fing., b 0O, b :
EmulDVy415p.

So, take W with lev(W) < n, (W,v,7) € G[toEmul(l) [5. we need
to show that (W, ing.,(b),b) € E[EmulDVy 1., This follows by the
definition of V[EmulDVy,1.,]5 and V[B].

e rule \"-Wf-Lam: We have that
emulaten, (Ax. t) oot downgradem.; (in_,,m (Ax : UValy,. emulater x;m(t)))

We get by induction that toEmul(l", x]), F emulaten(t) On t : EmulDVpy,p.
The result follows by Lemma 41.

e rule \"-Wi{-Var: We have that emulate,,(x) = x. So, take W with lev(W) <
nand (W,v,7) € G[toEmul(l'),]5. Then we need to show that (W, y(x),7(x)) €
E[EmulDV,,] 5. But since x € I', this follows directly from Lemma 10 and
the definition of G[toEmul(l), 5.

e rule \"-W{-Pair: We have that
emulaten ((t1, t2)) = downgradem.; (inx.m (emulatenm(t1), emulaten,(t2))).

By induction, we have that toEmul(r)rmp F emulatem (t1) O t1 : EmulDVyy,,
and toEmul(r)m_p F emulatem (t1) Op to : EmulDV,,.,. The result follows by
Lemma, 44.

e rule A\"-Wf-Inl: We have that
emulaten, (inl t) = downgradem.; (iny.m (inl (emulaten (t1)))).
By induction, we have that toEmul(l) .+ emulaten(t) Og t : EmulDVi,p

The result follows by Lemma 45.

73

rule A"-Wf-Inr: We have that
emulaten, (inl t) = downgradem.; (inw.m (inl (emulaten (t1)))).

By induction, we have that toEmul(l') F emulatey(t) Oy t @ EnulDVp,p
The result follows by Lemma 45.

rule \"-W{-App: We have that
emulatem (t1 t2) oef case_, (upgradem.; emulaten(t1)) emulatem (to).

By induction, we have that toEmul(l) + emulatem(t) Oq t1 : EnulDVpn.p,
and ‘t,oEmul(l_)m,p F emulaten (t2) O, t2 : EmulDVy,,,. By Lemma 42, the
result follows.

rule \"-Wf-Projl: We have that
emulateny (t.1) = (casey ., (upgradem.: (emulaten(t)))).1

By induction, we have that toEmul(l) + emulatem(t) Oy t: EnulDVp,p.
The result follows by Lemma 46.

rule \"-W{-Proj2: We have that
emulaten (t.2) = (casex.q (upgradem,1 (emulaten(t)))).2

By induction, we have that toEmul(l'), emulaten(t) Oy t @ ERulDVy.p.
The result follows by Lemma 46.

rule \"-Wf-Case: We have that

emulaten (case t; of inl x +— tp | inr x > t3) =
case casey;, (upgradem.; (emulatey(t1))) of inl x — emulaten (t2) | inr x — emulaten(t3)
By induction, we have that toErrlul(r)m_p F emulatem(t1) On t1 : EmulDVpy,p,

toEmul(I',x])m,p F emulaten, (t2) O, to EmulDV,,, and toEmul(r.,x])m_p -
emulaten (t3) O, t3 : EmulDVy,.,. The result follows by Lemma 43.

rule A\"-Wf-Wrong: We have that emulate,,(wrong) = omegayva,,. So,
take W with lev(W) < n and (W,v,7) € G[toEmul(l), Jg. Then we
need to show that (W, omegagva,,, wrong) € E[EmulDVy,.,]5. This follows
easily by Lemma 6 and the definition of £[EmulDV,.,]5.

rule \"~-W{-If We have that
emulaten, (if t; then tp else t3) =
if (casepoo1.m(upgraden.; (emulatent;))) then emulaten(t2) else emulaten(ts)

By induction, we have that toEmul(r)m.p F emulatem (t1) On t1 : EmulDVy,.p,
toEmul (I, x]),, o F emulaten(t2) On to : EmulDVi, and toEmul(l,x]) o+
emulaten (t3) Oy t3 @ EmulDVy,.,. The result follows by Lemma 47.

74

e rule \"-Wf-Seq We have that

emulaten (t1;t2) =

(caseynitn (upgrade,.;(emulate,(t1)))); emulate,(ts)

By induction, we have that toEmul(r)m,p F emulatem (t1) On t1 : EmulDVy,.p,
toEmul(l, x]), ot emulaten(t2) Oy to : EmulDVy,,. The result follows by
Lemma, 48.

O

Theorem 12 (Emulate is semantics preserving for contexts). Ift- € : " — T, if
(m > n andp = precise) or (O =< and p = imprecise), thenF emulate, (<) O,
¢ : toEmul(l) ., EmulDVy, — toEmul(l) . EmulDVp,,

m;p?
Proof. We prove this by induction on the judgement + ¢ : [/ — T,

e rule \"-W{-Ctx-Hole Follows trivially.

e rule A\"-W{-Ctx-Lam Follows by the induction hypothesis and Lemma 41.

e rule \"-W{-Ctx-Pairl Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 44.

e rule \"-W{-Ctx-Pair2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 44.

e rule \"-W{-Ctx-Inl Follows by the induction hypothesis and by Lemma 45.
e rule \'-W{-Ctx-Inr Follows by the induction hypothesis and by Lemma 45.

e rule \"-W{-Ctx-Appl Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 42.

e rule \"-W{-Ctx-App2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 42.

e rule \"-W{-Ctx-Projl Follows by the induction hypothesis and by Lemma 46.
e rule \"-W{-Ctx-Proj2 Follows by the induction hypothesis and by Lemma, 46.

e rule \"-Wf{-Ctx-Casel Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 43.

e rule \"-W{-Ctx-Case2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 43.

e rule \"-Wf-Ctx-Case3 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 43.

e rule \"-Type-Ctx-Ifl Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 47.

()

e rule \"-Type-Ctx-If2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 47.

e rule \"-Type-Ctx-If3 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 47.

e rule \"-Type-Ctx-Seql Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 48.

e rule \"-Type-Ctx-Seq2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 48.

O

6.6 Approximate back-translation

The n-approximate back-translation of a context ¢ with a hole of type 7 is
defined as follows.

(@) .0 = emulaten 1 (€)[inject ., |

Lemma 49 (Correctness of ((-))+.n). If (m > n and p = precise) or (0 =< and
p = imprecise), then b € : =0 and 0 F t O, t : 7 implies O F (€);.m[t] O,
C[protect; t| : EmulDVpy,p.

Proof. Follows from Theorems 10 and 12 O

6.7 Contextual equivalence preservation

Theorem 13. If) -ty : 7, 0 F to : 7 and 0 F ty~te = 7, then 0 F
protect, (erase(ty)) ~ .., protect, (erase(t1)).

Proof. Note that protect, (erase(tq)) = [t1] by definition and similarly for ts.
Take a b € :) = () and suppose that ¢[protect, (erase(ty))|!}, then by sym-
metry, it suffices to show that ¢[protect,(erase(t2))!.
Take n strictly larger than the number of steps in the termination of ¢[protect, (erase(t1))]{).
By Theorem 4, we have that @ - t1 >, erase(t1) : 7.
By Lemma 49, we then have (taking m =n > n, p = precise and 00 = 2)
that
0+ (@) 7n[t1] Zn C[protect, (erase(ty))] : EmulDVy precise-

Now by Lemma 15, by €[protect,(erase(t))]!}, and by the choice of n, we
have that (&) ..[t1]{.

It now follows from () b t1 ~ .4, t2 : 7 and (€));.a[t1] that (€),..[t2]{.

Now take n’ the number of steps in the termination of (), ,[t2]{. We have
from Theorem 4 that @ - to <, erase(ts) : 7.

By Lemma 49, we then have (taking m = n, n = n’, p = imprecise and
O = <) that

O F (€)rnlta] Sar Clprotect, (erase(tz))] : EmulDVyimprecise

76

Now by Lemma 14, by ((€)),..[t2]l, and by the choice of n’, we have that
C[protect, (erase(tz))|! as required. O

7

7 Compiler full abstraction

Theorem 14 ([-] is fully-abstract). If 0 -ty : 7, 0 Fto: 7 then) F tq =~y to :
7 iff 0 F protect, (erase(t1)) ~ i, protect,(erase(t1)).

Proof. Combine Theorems 16 and 17. O

8

8 Modular Full Abstraction

8.1 Linking

If
X :Teg > TobFty:7] =71
X1:Tp > T ta Ty = T
then
fiXuni e ((r{>m1) x (75 —72))
by 4ty ¥ (Ap : Unit — ((11 = 71) X (75 — 72)). A__: Unit. anit

Ay (Mg 0 75 — To.t1) ((p unit).2)) o,)
Arh 7 (Aay 21 — 11 t2) ((p unit).1)) a4

We can show that the this produces a well-typed term:
(Axy :7p.t1) + (Axh : 1h.t2) : (17 — 71) X (15 — T2))
It

Xo F t1
x1 F to

then
def [. Az (Az2.t1) (p unit).2) o, .
it _<ﬁ‘1/ (/\p. A < Azh. (Az1.t2) (p unit).1) 2 unit

8.2 Compiler

The compiler changes as follows, provided that xo : 75 — 79 F Ax) : 71.t1 :
T — T1, then:

A" :
[Ax] @ 71-ta]je = protects ., (AX]. ((Axz. erase(ty))(confiner, ., x2)))

8.3 Additional Theorems and Proofs

This section presents which additional theorems are needed for modular full
abstraction and which theorems replace which old ones.

Lemma 50 (An extra confine is just fine). If
e I'x:7'Ft:7 (Ht),

then I',x : 7/t O, (A\x.erase(ty))(confine, x) : 7

79

Proof. By Definition 5 we need to prove forall n:

YW. lev(W) < n = VY(W,v,7) € G, x: 7']5.
(W, ty, (Ax. erase(t))(confine,s x))v) € &[]
Take v and v to be [v/x]y" and [v/x]7' respectively.
So (W, v,v) € V[7'] (Hv) and (W,~',~") € G[I'] (Hg).
The thesis is:

YW. lev(W) < n =
(W, t[v/x]7, (Ax. erase(t))(confine,, x)[v/x]7") € €[]

SO

YW.lev(W) <n =
(W, t[v/x]y, (\x. erase(t))(confine,, v)v') € E[7]H

By Lemma 33 and Hv, we have that

(Ax. erase(t))(confine,s v)y/
—(\x. erase(t)) (V)Y

and that (Hvpp)
(W, v,v) e V[7']
So we know that:

)) (confine s v)y'
—(\x. erase(t)) v+
—erase(t)[V' /x|’

(A\x. erase(t

By Lemma 8, it suffices to prove that
(W, t[v/x]7, erase(t)[V' /") € El7l
By Theorem 5 with Ht we know that (Htr)
Iyx:7' +t0, erase(t) : 7
By Definition 5 we get

YW lev(W') < n = Y(W',1",7") € G[T, x : 7']g.
(W', t7", erase(t)y”) € €[]

We instantiate W' with W, 4" with [v/x]y’ and 7" with [v//x]7’
By Hvpp and Hg we have that (W', [v/x]y/, [V//x]7) € G[T, x : 7] 5.
So the thesis holds.

80

Theorem 15 (Confining free variables is correct (aka, [[]]iT is correct)). If
® Xo:Th—To b AX) 7.t i — T (Ht),

then xg : 5 — T2 = Ax 1 71 t1 Oy protect,; ., (AX]. ((Ax2. erase(ty))(confine,; ., x2))) :
/
T — T1

Proof. By Theorem 6 it is sufficient to prove that
Xg i Ty — T2 b Axy i 7161 Op (AX). ((Axo. erase(ty))(confine; -, x2))) :
/
7T — T1
By Lemma 21 it suffices to prove that:
Xz 1 Ty =+ T2; Xy 1 7p Ft1 Op ((Ax2. erase(ty))(confine,; .., x2)) : 71
This holds by Lemma 50.

Theorem 16 ([[]]iT reflects equivalence). If

o x:7 Tk X) Tyt — T (HED),

o x:7 STk, T te T — 71 (Ht2),

o xF A 7 ta N e [MxG T ta] N (Hic),
then x : 7/ — T H AX] 0 71 t1 et AXh 17 b2 i T — T1.

Proof. In the following we shorten Ax : 71.t1 to t1 and Ax5 : 71.t2 to ts.
Take ¢ so that - ¢ :x: 7/ — 7,71 — 71 —0,7” (Hk).
We need to prove that €[tq]{ iff C[ts]d).
By symmetry, it suffices to prove the = direction.
So assume that C[tq]|} (Ht1ld).
Then we need to prove that €[ts]d).
Define ¢ & erase().
Theorem 5 tells us that F€ 0O, €:x: 7" = 7,71 — 71 —0,7".
Theorem 15 with Ht1 yields x : 7/ — 7 F t1 O, [[tl]]ir : 7 (Htle).
Theorem 15 with Ht2 yields x : 7/ — 7 F t2 O, [[tz]];T : 7 (Ht2c¢).
By definition of F € O, € : x: 7" — 7,77 — 71 =0, 7" with Htlc and Ht2c,
we get that

o O Clty] O, ¢[[ts]3] : 7 (Htlr) and
o Ok Clta) O, €[[t2]Xe] : 7 (Ht2r).

By Lemma 16 with Ht1d and Htlr imply that ¢[[t,] 1) (Hk1).

By Lemma 18 with Hk we get - ¢ :x— 0.

So, from Htc and Hk1, we get that QZ[[[tﬂ]i‘; [(Ht2t).

By Lemma 16 with Ht2r and Ht2t we now get that €[t2]| O

Theorem 17 ([[]]iT preserves equivalence). If

81

o x:7 = ThH XX 7.ty = 7 (Htl),

o x:7 = THE AL T te T — 7 (Ht2),

o x: 7' AX] Tty Yo AX) o to 0 T (Hic),
then x b [Ax) :T{.tl]]i: etz [AX3 Té-t2]]§:'

Proof. Take a = € : x— ().

Assume that €[[Ax] : T{.tl]];\:]ll (Ht1d).

By symmetry, it suffices to show that C[[Ax} : 75. tz]]is]l}.

Take n strictly larger than the number of steps in the termination of €[[Ax] : 71. tl]]is 4.

By Theorem 15 with Ht1 we have that x : 7/ — 7 F Ax] : 71.t1 2n [Ax] @ 71. tl]}i: :
Ty — T1.

By Lemma 49 , taking m = n, so m > n and p = precise and 0 = 2, we
then have that () (€)1 [Ax) : 7. t1] 20 C[[AX, < 7t]3| : EMUIDV, precs ce-

By Lemma 15 with Ht1d, and by the choice of n, we have that (€)),.,[Ax] : 1. t1]!
(Ht1t).

From Htc and Ht1t we have that (€)),.,[Ax5 : 75. t2]{.

Take n’ the number of steps in the termination of (€)),.,[Ax} : 75. ta]{
(Ht2t).

From Theorem 15 with Ht2 we have that x: 7" — 7 F Ax,:75.t2 Sy
[Ax5 - Té.tz]]i: ST

By Lemma 49 , taking m = n, n = n’, p = imprecise and 0 = < we then
have that) - (&), ., [Ax5 : 75 ta] Sp C[[AX) : Té.tz]]in : EmulDVy,imprecise

By Lemma 14 with Ht2t, and by the choice of n’, we have that C[[Ax} : 75. tg]]iz]i).

O

Theorem 18 (Compiler Full Abstraction).
o x:7 =5 ThEAX] 7.ty = 71 (Htl),
e x:7 5 ThEAG T ta Ty = 71 (Ht2),
thenx : 7/ — 7 F AX].t1 >y AXb. t2 1 7] > 71 <= xFt [[/\X/l'tl]]f—zcm [[/\Xé'tz]]f—'

Proof. By Theorem 17 and Theorem 16. O

8.3.1 Proofs about Modularity

Lemma 51 (Source linking is related to target liking). If
o Xo:Th —>To bty — 71 (Htl)
e x1:7 711 Ete:Th = o (Ht2)

then 0 Ft1 +t2 O, [[tﬂ]i' + [[tﬂ]:\v (1] = 1) X (Th — 72).

82

Proof. Unfold the definitions of linking. We need to prove that:

fiXunit— (7 =) X (14— 72))

(Ap:Unit — ((1] = 71) X (15 — 72)). A__: Unit.
Az 7 (A 0 75 — 1. t1) ((p unit).2)) o,
Az 7y (A o 7] — 1. t2) ((p unit).1)) z5))

0+

unit

Oy
! x A unit).2) 2
<< - ()\p. A <)‘331- (Az2. [[tl]]ii) (p t).2) 17>>> unit)
Azh. ((Azq. [t2]5) (p unit).1) a5
(1 = 11) X (15— T2)

By Lemma 23 it suffices to show the following:

fXynit— (7 =) x (4 —72))

(Ap:Unit — ((1] = 71) X (15 — 72)). A__: Unit.

Az 7 (Mg 0 75— 1. t1) ((p unit).2)) o,
1)

) £5))

0+
Axy 7 (Azy 27 = 71 t2) ((p unit).
Ly,
<ﬁ:z: ()\p. A <)\J:/1 ((\xa. [[tl]]ig) (p unit).2) L’17>>>
Azh. ((Azy. [t2]5) (p unit).1) a5
:Unit — (T{ —71) X (Té N 7.2)

By Lemma 31 it suffices to show that:
(Ap : Unit — ((11 = 71) X (15 — 72)). A_: Unit.
0+ Oy s (Mg 15 — 12.11) ((p unit).2)) o4,
Ay 7. (Awq 0 7] — 7. t2) ((p unit).1)) z5))
Uy
o Az]. (Aza. [[tl]]iT) (p unit).2) 27,
p.A_. .
Ath. (Az1. [t2]3e) (p unit).
(71

(Uit — (17 = 71) X (12 = 72)) — (Unlt — (11 = 711) X (15 = 72))

83

By Lemma 21 it suffices to show that:

p:Unit — ((17 = 71) X (174 = 72)) F

) z5))

x1:7 — 711-t2) ((p unit).1
U,
A <)\1‘1 ((Az2. [[tl]])\u) (p unit).2) T’1,>)
Azhy. (Azy. [[t2]])\u) (p unit).1) a4

:Unit — (11 = 71) X (75 — T2)

:Unit.
)\xl 7'1 /\IQ 75 — 72.11) ((p unit).2)) o,
PV)

By Lemma 21 it suffices to show that:

p:Unit — ((17 = 71) X (175 = 72)) F

< (Axl TI (Ao : 75— 75.11) ((p unit).2)) x;,>
Az ((Az1: 7 — 71-t2) ((p unit).1)) z5))
U,
</\a"’1 (M. [[tl]]Au (p unit).2) 1:§>

Ay, (M. [[tz]])\u) (p unit).1) a4

2 (1) = 1) X (14 — T2)

By Lemma 22 it suffices to show that:
o
p:Unit — ((r1 = 71) X (74 = 72)) F

Ax) o7 (Ax2 0 75 — T2.t1) ((p unit).2)) x)
U,

Ax]. (Axa. [[tl]]if) (p unit).2) x}
2 (1y = 1)
By Lemma 21 it suffices to show that:
p:Unit — ((17 = 71) X (75 = 72)); X} 171 F

((Axg : 74 — T2.t1) ((p unit).2)) xj
Uy

(Axz. [ta]3e) (p umit).2) X}

cT1

By Lemma 23 it suffices to show that:

84

p:Unit — ((13 = 71) X (15 = 72));X) =7 F
((Axz : 75 = 72.t1) ((p unit).2))
Un
(M- [ta]3w) (p unit).2)
STy T
By Lemma 23 it suffices to show that:
[)

p:Unit — ((1] = 71) X (1 = 72)); %} : 71 F
1 2 1°7T1

(Axg : 75 — Ta.t1)

(S

()\Xz. [[tl]]i\j)

((14 = T2) = (11 = T1)

By Lemma 21 it suffices to show:

p:Unit — (77 = 71) X (74 = T2)); X} : T1; X2 : To — T2
(t1)
Un
\T
([ta05)
:(m1y — 1)

This holds by Theorem 15, and weakening, since p and x}
are not in tq.

p:Unit — ((17 = 71) X (75 = 72)); X} 171 F
(p unit).2
U,
(p unit).2
D Th = T
By Lemma 25 it suffices to show:
p:Unit — ((17 = 71) X (75 = 72)); X} 171 F
(p unit)
U,
(p unit)

2 (1y = 1) X (T4 — T2)

85

By Lemma 23 it suffices to show:

[]
p:Unit — ((17 = 71) X (75 = 72));x} 171 F
(p)
O,
(p)

:Unit — (17 = 71) X (74 — T2)

This holds by definition of the logical relation and by
Lemma 10 after the substitutions.

p:Unit — ((17 = 71) X (75 = T2)); X} 71 F
(unit)

Un

(unit)

:Unit

This holds by definition of the value relation for unit.

p:Unit — ((17 = 71) X (75 = 72)); %X} 171 F

This holds by definition of the logical relation and by Lemma 10
after the substitutions.

p:Unit — ((17 = 71) X (75 = T2)) F

(Ahy 7y ((Aay 7 = 11 t2) ((punit).l)) af)

Un
Azhy. (Az1. [[tZ]R:) (p unit).1) x4
: (15 = T2)

Analogous to the previous point.

¢ Funit O, unit : Unit

86

This holds by definition of the logical relation, and the definition of the
value relation for Unit.

O
Theorem 19 (Compiler Modularity). If
® Xo:Th > To b AXy 7.ty T — 71 (Ht1)
e x1:7 T EAXL Th bty T — T2 (Ht2)
then 0 F [AX] : 7). t1 + AXh : T ta e ~er [AX) 74 ta] 3o +[AXG : 5. t2] N -
Proof. = direction: Take a - € : () — ().
Assume that C[[Ax] : 74 t1 + Axb : 75 t2] 3 | (Ht1d).
We need to prove that C[[Ax} : 75. t1ﬂ§:+[[/\x/2 D Th. tﬂ}i:]i}.
Take n strictly larger than the number of steps in the termination of
Cl[Ax] 71 t1 + Ax5 Té.tz]]iu]i}.
By Theorem 7 with Ht1 and Ht2 we have that () - Ax) : 71.t1 + Axh : 75.t2 2,
[Ax} : 71 t1 + Ax5 Té.tg]]iu (= 1) X (75 = T2)).
By Lemma 49 , taking m = n, so m > n and p = precise and [0 = 2, we

then have that 0 b (&) .o [AX] : 71 t1 + Axh 75 t2] Zn C[[AX] 7161 + X5 ¢ TétZIIiT} :
EmulDVy precise-

By Lemma 15 with Ht1d, and by the choice of n, we have that (€)).,[Ax} : 7. t1 + Ax, : 75 t2]{
(Ht1t).

Take n the number of steps in the termination of (&) .o [Ax} : 71.t1 + Axb : 5. t2]{

(Ht2t).

From Lemma 51 we have that () - A\x] : 7.t + Axbh 75 t2 S [Ax]) 7. tl]]§:+[[/\x/2 D Th. tg]]i: :
((11 = 1) X (15 = T2)).

By Lemma 49 , taking m = n, p = imprecise and [0 = < we then have

that 0 - (@) ~.n[AX] 0 71 t1 + AXh 1 75 t2] S C[[AX] 71 tl]]iu +[Ax5 75 tz]]iu} :
EmulDVn:imprecise

By Lemma 14 with Ht2t, and by the choice of n, we have that €[[Ax} : 7. tl]]ig +HAx5 : 7. tz]]izw.

< direction: Dual to the previous one.
O

Acknowledgements

Dominique Devriese holds a Postdoctoral mandate from the Research Foun-
dation Flanders (FWO). Marco Patrignani held a Ph.D. fellowship from the
Research Foundation Flanders (FWO) during the development of this work.
This research is partially funded by project grants from the Research Fund KU
Leuven, and from the Research Foundation Flanders (FWO).

87

References
C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and assembly.

In Principles of Programming Languages, pages 133-146. ACM, 2011. doi:
10.1145/1926385.1926402.

88

	The Source Language blackNavyBlue
	Syntax
	Static Semantics
	Dynamic Semantics
	Program contexts
	Contextual equivalence

	The Target Language blackWildStrawberryu
	Syntax
	Well-scopedness
	Dynamic Semantics
	Program contexts
	Contextual equivalence

	Language and World Specifications
	General Language Specification
	General World Specification
	Language Specification for blackNavyBlue
	Language Specification for blackWildStrawberryu
	World Specification

	Logical Relations
	Compiler
	Compiler definition: erase and protect
	Properties of erasure
	Compatibility lemmas

	Properties of dynamic type wrappers
	Contextual equivalence reflection

	Equivalence preservation and emulation
	n-approximate NavyBlueUVal
	EmulDV specification
	Upgrade/downgrade
	Injecting blackNavyBlue into NavyBlueUVal
	Emulating blackWildStrawberryu in NavyBlueUVal
	Approximate back-translation
	Contextual equivalence preservation

	Compiler full abstraction
	Modular Full Abstraction
	Linking
	Compiler
	Additional Theorems and Proofs
	Proofs about Modularity

