
Modular Fully-Abstract Compilation

by Approximate Back-Translation:

Technical Appendix

Dominique Devriese Marco Patrignani
Frank Piessens

Report CW702, March 2017

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Modular Fully-Abstract Compilation

by Approximate Back-Translation:

Technical Appendix

Dominique Devriese Marco Patrignani
Frank Piessens

Report CW702, March 2017

Department of Computer Science, KU Leuven

Abstract
A compiler is fully-abstract if the compilation from source language programs to
target language programs reflects and preserves behavioural equivalence. Such
compilers have important security benefits, as they limit the power of an at-
tacker interacting with the program in the target language to that of an at-
tacker interacting with the program in the source language. Proving compiler
full-abstraction is, however, rather complicated. A common proof technique is
based on the back-translation of target-level program contexts to behaviourally-
equivalent source-level contexts. However, constructing such a back-translation
is problematic when the source language is not strong enough to embed an
encoding of the target language. For instance, when compiling from the simply-
typed λ-calculus (λτ) to the untyped λ-calculus (λu), the lack of recursive types
in λτ prevents such a back-translation.

We propose a general and elegant solution for this problem. The key insight
is that it suffices to construct an approximate back-translation. The approxima-
tion is only accurate up to a certain number of steps and conservative beyond
that, in the sense that the context generated by the back-translation may di-
verge when the original would not, but not vice versa. Based on this insight, we
describe a general technique for proving compiler full-abstraction and demon-
strate it on a compiler from λτ to λu. The proof uses asymmetric cross-language
logical relations and makes innovative use of step-indexing to express the rela-
tion between a context and its approximate back-translation. The proof extends
easily to common compiler patterns such as modular compilation and it, to the
best of our knowledge, it is the first compiler full abstraction proof to have been
fully mechanised in Coq. We believe this proof technique can scale to challenging
settings and enable simpler, more scalable proofs of compiler full-abstraction.

This report contains the technical appendix for a companion article by the
same title.

Modular Fully-Abstract Compilation
by Approximate Back-Translation:

Technical Appendix

Dominique Devriese† Marco Patrignani∗

Frank Piessens†
† iMinds-Distrinet, KU Leuven, Belgium

first.last @ cs.kuleuven.be
∗ MPI-SWS, Saarbrücken, Germany

first.last@mpi-sws.org

Abstract

A compiler is fully-abstract if the compilation from source language
programs to target language programs reflects and preserves behavioural
equivalence. Such compilers have important security benefits, as they
limit the power of an attacker interacting with the program in the tar-
get language to that of an attacker interacting with the program in the
source language. Proving compiler full-abstraction is, however, rather
complicated. A common proof technique is based on the back-translation
of target-level program contexts to behaviourally-equivalent source-level
contexts. However, constructing such a back-translation is problematic
when the source language is not strong enough to embed an encoding of
the target language. For instance, when compiling from the simply-typed
λ-calculus (λτ) to the untyped λ-calculus (λu), the lack of recursive types
in λτ prevents such a back-translation.

We propose a general and elegant solution for this problem. The key
insight is that it suffices to construct an approximate back-translation.
The approximation is only accurate up to a certain number of steps and
conservative beyond that, in the sense that the context generated by the
back-translation may diverge when the original would not, but not vice
versa. Based on this insight, we describe a general technique for proving
compiler full-abstraction and demonstrate it on a compiler from λτ to
λu. The proof uses asymmetric cross-language logical relations and makes
innovative use of step-indexing to express the relation between a context
and its approximate back-translation. The proof extends easily to com-
mon compiler patterns such as modular compilation and it, to the best of
our knowledge, it is the first compiler full abstraction proof to have been
fully mechanised in Coq. We believe this proof technique can scale to
challenging settings and enable simpler, more scalable proofs of compiler
full-abstraction.

1

This report contains the technical appendix for a companion article
by the same title.

Contents
1 The Source Language λτ 4

1.1 Syntax . 4
1.2 Static Semantics . 4
1.3 Dynamic Semantics . 5
1.4 Program contexts . 6
1.5 Contextual equivalence . 7

2 The Target Language λu 8
2.1 Syntax . 8
2.2 Well-scopedness . 8
2.3 Dynamic Semantics . 8
2.4 Program contexts . 10
2.5 Contextual equivalence . 11

3 Language and World Specifications 12
3.1 General Language Specification 12
3.2 General World Specification . 13
3.3 Language Specification for λτ . 14
3.4 Language Specification for λu . 15
3.5 World Specification . 16

4 Logical Relations 18

5 Compiler 22
5.1 Compiler definition: erase and protect 22
5.2 Properties of erasure . 23

5.2.1 Compatibility lemmas . 24
5.3 Properties of dynamic type wrappers 32
5.4 Contextual equivalence reflection 37

6 Equivalence preservation and emulation 39
6.1 n-approximate UVal . 39
6.2 EmulDV specification . 40
6.3 Upgrade/downgrade . 41
6.4 Injecting λτ into UVal . 49
6.5 Emulating λu in UVal . 63
6.6 Approximate back-translation . 76
6.7 Contextual equivalence preservation 76

7 Compiler full abstraction 78

2

8 Modular Full Abstraction 79
8.1 Linking . 79
8.2 Compiler . 79
8.3 Additional Theorems and Proofs 79

8.3.1 Proofs about Modularity 82

3

Important note: as mentioned in the companion article, many of the logical
relation definitions in this technical appendix are simplifications of the corre-
sponding definitions in a paper by Hur and Dreyer [2011].

1 The Source Language λτ

This Section presents the syntax, static semantics and dynamic semantics of
λτ (Sections 1.1 to 1.3, respectively). Then it defines program contexts and
contextual equivalence for λτ (Sections 1.4 and 1.5). This calculus features
Unit and Bool primitive types. We will use b to indicate values of those types
and B to indicate those types when it is obvious.

1.1 Syntax
The syntax of λτ is presented below.

Termsλ
τ

t ::= unit | true | false | λx : τ. t | x | t t | t.1 | t.2 | 〈t, t〉
| inl t | inr t | case t of inl x1 7→ t | inr x2 7→ t | t; t

| if t then t else t | fixτ→τ t

Valsλ
τ

v ::= unit | true | false | λx : τ. t | 〈v,v〉 | inl v | inr v

Typesλ
τ

τ ::= Unit | Bool | τ → τ | τ × τ | τ] τ
Γ ::= ∅ | Γ,x : τ

C ::= [·] | C t | v C | C.1 | C.2 | 〈C, t〉 | 〈v,C〉
| inl C | inr C | case C of inl x1 7→ t1 | inr x2 7→ t2 | C; t

| if C then t else t | fixτ→τ C

1.2 Static Semantics
The static semantics of λτ is given according to the following type judgements.
There, Γ is the environment binding variables to types.

Γ ` � Well-formed environment Γ

Γ ` t : τ Well-typed term t of type τ

The type rules for λτ are given below.

(λτ -Env-base)

∅ ` �

(λτ -Env-ind)

Γ ` � x /∈ dom(Γ)

Γ, (x : τ) ` �

(λτ -unit)

Γ ` unit : Unit

(λτ -true)

Γ ` true : Bool

(λτ -false)

Γ ` false : Bool

(λτ -Type-var)

Γ ` � (x : τ) ∈ Γ

Γ ` x : τ
(λτ -Type-fun)

Γ, (x : τ) ` t : τ ′

Γ ` λx : τ. t : τ → τ ′

(λτ -Type-pair)
Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` 〈t1, t2〉 : τ1 × τ2

4

(λτ -Type-app)

Γ ` t : τ ′ → τ Γ ` t′ : τ ′

Γ ` t t′ : τ

(λτ -Type-proj1)
Γ ` t : τ1 × τ2

Γ ` t.1 : τ1

(λτ -Type-proj2)
Γ ` t : τ1 × τ2

Γ ` t.2 : τ2
(λτ -Type-inl)
Γ ` t : τ

Γ ` inl t : τ] τ ′

(λτ -Type-inr)
Γ ` t : τ

Γ ` inr t : τ ′] τ
(λτ -Type-case)

Γ ` t : τ1] τ2
Γ, (x1 : τ1) ` t1 : τ Γ, (x2 : τ2) ` t2 : τ

Γ ` case t of inl x1 7→ t1 | inr x2 7→ t2 : τ
(λτ -Type-if)

Γ ` t : Bool
Γ ` t1 : τ Γ ` t2 : τ

Γ ` if t then t1 else t2 : τ

(λτ -Type-seq)
Γ ` t1 : Unit Γ ` t2 : τ

Γ ` t1; t2 : τ

(λτ -Type-fix)

Γ ` t : (τ1 → τ2)→ (τ1 → τ2)

Γ ` fixτ1→τ2 t : τ1 → τ2

1.3 Dynamic Semantics
The dynamic semantics of λτ is given as a relation ↪→ ⊆ Termsλ

τ

× Termsλ
τ

.
The semantics relies on the definition of evaluation contexts C, which model
where the next primitive reduction is taking place. Additionally, the seman-
tics relies on the (standard) capture-avoiding substitution function t[v/x] that
replaces all occurrences of x in t with v.

true[v/x] = true false[v/x] = false

unit[v/x] = unit x[v/x] = v

y[v/x] = y if x 6= y

(λy : τ. t)[v/x] = λy : τ. t[v/x] if x 6= y and y /∈ FV(v)

〈t1, t2〉[v/x] = 〈t1[v/x], t2[v/x]〉 t1 t2[v/x] = t1[v/x] t2[v/x]

t.1[v/x] = t[v/x].1 t.2[v/x] = t[v/x].2

(inl t)[v/x] = inl (t[v/x]) (inr t)[v/x] = inr (t[v/x])

(t1; t2)[v/x] = t1[v/x]; t2[v/x]

(fixτ1→τ2 t)[v/x] = fixτ1→τ2 t[v/x]

(if t then t1 else t2)[v/x] = if t[v/x] then t1[v/x] else t2[v/x]

case t of inl x1 7→ t1 | inr x2 7→ t2[v/x] = if x1 6= x ∧ x2 6= x ∧ x1,x2 /∈ FV(v)

case t[v/x] of inl x1 7→ t1[v/x] | inr x2 7→ t2[v/x]

Define a substitution mapping m as a mapping between a variable and a value,
formally m ::= [v/x]. A list of substitution mappings is denoted with γ. Define
the application of a list of substitution mappings γ to a term t as follows:

t(∅) = t t([x/v]; γ) = t[v/x](γ)

5

(λτ -Eval-ctx)

t ↪→ t′

C[t] ↪→C[t′]

(λτ -Eval-beta)

(λx : τ. t) v ↪→ t[v/x]

(λτ -Eval-proj1)

〈v1,v2〉.1 ↪→v1

(λτ -Eval-proj2)

〈v1,v2〉.2 ↪→v2

(λτ -Eval-case-inl)

case inl v of inl x1 7→ t1 | inr x2 7→ t2 ↪→ t1[v/x1]
(λτ -Eval-case-inr)

case inr v of inl x1 7→ t1 | inr x2 7→ t2 ↪→ t2[v/x2]
(λτ -Eval-if-v)

v ≡ true⇒ t′ ≡ t1 v ≡ false⇒ t′ ≡ t2
if v then t1 else t2 ↪→ t′

(λτ -Eval-seq-next)

unit; t ↪→ t
(λτ -Eval-fix)

fixτ1→τ2 (λx : τ1 → τ2. t) ↪→ t[(λ y : τ1.fixτ1→τ2 (λx : τ1 → τ2. t) y)/x]

1.4 Program contexts
We define program contexts C as expressions with a single hole.

We define a typing judgement for program contexts ` C : Γ′, τ ′→Γ, τ by
the following rules:

(λτ -Type-Ctx-Lam)

` C : Γ′′, τ ′′→ (Γ,x : τ ′), τ

` λx : τ ′.C : Γ′′, τ ′′→Γ, τ ′ → τ

(λτ -Type-Ctx-Hole)

` · : Γ, τ→Γ, τ

(λτ -Type-Ctx-Pair1)

` C : Γ′, τ ′→Γ, τ1 Γ ` t2 : τ2
` 〈C, t2〉 : Γ′, τ ′→Γ, τ1 × τ2

(λτ -Type-Ctx-Pair2)

Γ ` t1 : τ1 ` C : Γ′, τ ′→Γ, τ2
` 〈t1,C〉 : Γ′, τ ′→Γ, τ1 × τ2

(λτ -Type-Ctx-Inl)

` C : Γ′′, τ ′′→Γ, τ

` inl C : Γ′′, τ ′′→Γ, τ] τ ′
(λτ -Type-Ctx-Inr)

` C : Γ′′, τ ′′→Γ, τ ′

` inr C : Γ′′, τ ′′→Γ, τ] τ ′

(λτ -Type-Ctx-App1)

` C : Γ′, τ ′→Γ, τ1 → τ2 Γ ` t2 : τ1
` C t2 : Γ′, τ ′→Γ, τ2

(λτ -Type-Ctx-App2)

Γ ` t1 : τ1 → τ2 ` C : Γ′, τ ′→Γ, τ1
` t1 C : Γ′, τ ′→Γ, τ2

(λτ -Type-Ctx-Proj1)

` C : Γ′, τ ′→Γ, τ1] τ2
` C.1 : Γ′, τ ′→Γ, τ1

(λτ -Type-Ctx-Proj2)

` C : Γ′, τ ′→Γ, τ1] τ2
` C.2 : Γ′, τ ′→Γ, τ2

(λτ -Type-Ctx-Case1)

` C : Γ′, τ ′→Γ, τ1] τ2 Γ,x1 : τ1 ` t1 : τ3 Γ,x2 : τ2 ` t2 : τ3
` case C of inl x1 7→ t1 | inr x2 7→ t2 : Γ′, τ ′→Γ, τ3

6

(λτ -Type-Ctx-Case2)

Γ ` t : τ1] τ2 ` C : Γ′, τ ′→ (Γ,x1 : τ1), τ3 Γ,x2 : τ2 ` t2 : τ3

` case t of inl x1 7→ C | inr x2 7→ t2 : Γ′, τ ′→Γ, τ3
(λτ -Type-Ctx-Case3)

Γ ` t : τ1] τ2 Γ,x1 : τ1 ` t1 : τ3 ` C : Γ′, τ ′→ (Γ,x2 : τ2), τ3

` case t of inl x1 7→ t1 | inr x2 7→ C : Γ′, τ ′→Γ, τ3
(λτ -Type-Ctx-If1)

` C : Γ′, τ ′→Γ, Bool Γ ` t1 : τ Γ ` t2 : τ

` if C then t1 else t2 : Γ′, τ ′→Γ, τ
(λτ -Type-Ctx-If2)

Γ ` t : Bool ` C : Γ′, τ ′→Γ, τ Γ ` t2 : τ

` if t then C else t2 : Γ′, τ ′→Γ, τ
(λτ -Type-Ctx-If3)

Γ ` t : Bool Γ ` t1 : τ ` C : Γ′, τ ′→Γ, τ

` if t then t1 else C : Γ′, τ ′→Γ, τ
(λτ -Type-Ctx-Seq1)

C : Γ′, τ ′→Γ, Unit Γ ` t : τ

` C; t : Γ′, τ ′→Γ, τ

(λτ -Type-Ctx-Seq2)

Γ ` t : Unit C : Γ′, τ ′→Γ, τ

` t;C : Γ′, τ ′→Γ, τ

Lemma 1. If ` C : Γ′, τ ′→Γ, τ and Γ′ ` t : τ ′, then Γ ` C[t] : τ .

Proof. Easy induction on ` C : Γ′, τ ′→Γ, τ .

1.5 Contextual equivalence
Definition 1 (Termination). For a closed term ∅ ` t : τ , we say that t⇓ iff
there exists a v such that t↪→∗v.

Definition 2 (Contextual equivalence for λτ). If Γ ` t1 : τ and Γ ` t2 : τ ,
then we define that Γ ` t1'ctx t2 : τ iff for all C such that ` C : Γ, τ→∅, τ ′,
we have that C[t1]⇓ iff C[t2]⇓.

7

2 The Target Language λu

This Section presents the syntax and the dynamic semantics of λu (Section 2.1
and 2.3, respectively). It also define well-scopedness of terms (Section 2.2), pro-
gram contexts (Section 2.4) and it defines contextual equivalence (Section 2.5).

2.1 Syntax
The syntax of λu is presented below.

t ::= unit | true | false | λx. t | x | t t | t.1 | t.2 | 〈t, t〉 | inl t | inr t | wrong

| case t of inl x1 7→ t | inr x2 7→ t | t; t | if t then t else t

v ::= unit | true | false | λx. t | 〈v, v〉 | inl v | inr v

Γ ::= ∅ | Γ, x

C ::= [·] | C t | v C | C.1 | C.2 | 〈C, t〉 | 〈v,C〉
| inl C | inr C | case C of inl x1 7→ t1 | inr x2 7→ t2 | C; t | if C then t else t

2.2 Well-scopedness
We define a well-scopedness judgement for λu in terms of contexts Γ that are a
list of in-scope variables.

The rules for the well-scopedness judgement are unsurprising:

(λu-Wf-Base)

Γ ` b

(λu-Wf-Lam)
Γ, x ` t

Γ ` λx. t

(λu-Wf-Var)
x ∈ Γ
Γ ` x

(λu-Wf-Pair)
Γ ` t1 Γ ` t2

Γ ` 〈t1, t2〉

(λu-Wf-Inl)
Γ ` t

Γ ` inl t

(λu-Wf-Inr)
Γ ` t

Γ ` inr t

(λu-Wf-App)
Γ ` t1 Γ ` t2

Γ ` t1 t2

(λu-Wf-Proj1)
Γ ` t

Γ ` t.1

(λu-Wf-Proj2)
Γ ` t

Γ ` t.2

(λu-Wf-Case)
Γ ` t Γ, x1 ` t1 Γ, x2 ` t2

Γ ` case t of inl x1 7→ t1 | inr x2 7→ t2

(λu-Wf-Wrong)

Γ ` wrong

(λu-Wf-If)
Γ ` t Γ ` t1 Γ ` t2

Γ ` if t then t1 else t2

(λu-Wf-Seq)
Γ ` t1 Γ ` t2

Γ ` t1; t2

2.3 Dynamic Semantics
The dynamic semantics of λu is given as a relation ↪→ ⊆ Termsλ

u

×Termsλ
u

. The
semantics relies on the definition of evaluation contexts C, which model where
the next primitive reduction is taking place. Additionally, the semantics relies
on the capture-avoiding substitution function t[v/x] that replaces all occurrences

8

of x in t with v.

true[v/x] = true false[v/x] = false

unit[v/x] = unit x[v/x] = v

y[v/x] = y if x 6= y

(λy. t)[v/x] = λy. t[v/x] if x 6= y and y /∈ FV(v)

〈t1, t2〉[v/x] = 〈t1[v/x], t2[v/x]〉 t1 t2[v/x] = t1[v/x] t2[v/x]

t.1[v/x] = t[v/x].1 t.2[v/x] = t[v/x].2

wrong[v/x] = wrong

inl t[v/x] = inl (t[v/x]) inr t[v/x] = inr (t[v/x])

(t1; t2)[v/x] = t1[v/x]; t2[v/x] (if t then t1 else t2)[v/x] = if t[v/x] then t1[v/x] else t2[v/x]

case t of inl x1 7→ t1 | inr x2 7→ t2[v/x] = if x1 6= x ∧ x2 6= x ∧ x1, x2 /∈ FV(v)

case t[v/x] of inl x1 7→ t1[v/x] | inr x2 7→ t2[v/x]

Define a substitution mapping m as a mapping between a variable and a value,
formally m ::= [x/v]. A list of substitution mappings is denoted with γ. Define
the application of a list of substitution mappings γ to a term t as follows:

t(∅) = t t([x/v]; γ) = t[v/x](γ)

9

(λu-Eval-ctx)

t ↪→ t′

C[t] ↪→C[t′]

(λu-Eval-ctx-wrong)

C 6= [·]
C[wrong] ↪→wrong

(λu-Eval-beta)

(λx. t) v ↪→ t[v/x]

(λu-Eval-proj1)

〈v1, v2〉.1 ↪→ v1

(λu-Eval-proj2)

〈v1, v2〉.2 ↪→ v2

(λu-Eval-case-inl)

case inl v of inl x1 7→ t1 | inr x2 7→ t2 ↪→ t1[v/x1]

(λu-Eval-case-inr)

case inr v of inl x1 7→ t1 | inr x2 7→ t2 ↪→ t2[v/x2]

(λu-Eval-beta-w)
@t. v ≡ λx. t

v v′ ↪→wrong

(λu-Eval-case-w)

@v′. v ≡ inl v′ ∨ v ≡ inr v′

case v of inl x1 7→ t1 | inr x2 7→ t2 ↪→wrong

(λu-Eval-proj-wrong)

j ∈ {1, 2} @v1, v2. v ≡ 〈v1, v2〉
v.j ↪→wrong

(λu-Eval-if-v)

v ≡ true⇒ t′ ≡ t1 v ≡ false⇒ t′ ≡ t2

(v 6≡ true ∧ v 6≡ false)⇒ t′ ≡ wrong

if v then t1 else t2 ↪→ t′

(λu-Eval-seq-next)

unit; t ↪→ t

(λu-Eval-seq-wrong)
v 6≡ unit

v; t ↪→wrong

Since λu is untyped, some reduction can result in a stuck term wrong, e.g., ap-
plying a non-lambda value to an argument (Rule λu-Eval-beta-w) or projecting
over a function (Rule λu-Eval-proj-wrong).

2.4 Program contexts
We define program contexts C as expressions with a single hole.

We define a well-scopedness judgement for program contexts C : Γ′→ Γ in-
ductively by the following rules:

10

(λu-Wf-Ctx-Lam)

` C : Γ′→ (Γ, x)

` λx.C : Γ′→ Γ

(λu-Wf-Ctx-Hole)

` · : Γ→ Γ

(λu-Wf-Ctx-Pair1)

` C : Γ′→ Γ Γ ` t2

` 〈C, t2〉 : Γ′→ Γ

(λu-Wf-Ctx-Pair2)

Γ ` t1 ` C : Γ′→ Γ

` 〈t1,C〉 : Γ′→ Γ

(λu-Wf-Ctx-Inl)

` C : Γ′→ Γ
` inl C : Γ′→ Γ

(λu-Wf-Ctx-Inr)

` C : Γ′→ Γ
` inr C : Γ′→ Γ

(λu-Wf-Ctx-App1)

` C : Γ′→ Γ Γ ` t2

` C t2 : Γ′→ Γ

(λu-Wf-Ctx-App2)

Γ ` t1 ` C : Γ′→ Γ

` t1 C : Γ′→ Γ

(λu-Wf-Ctx-Proj1)

` C : Γ′→ Γ
` C.1 : Γ′→ Γ

(λu-Wf-Ctx-Proj2)

` C : Γ′→ Γ
` C.2 : Γ′→ Γ

(λu-Wf-Ctx-Case1)

` C : Γ′→ Γ Γ, x1 ` t1 Γ, x2 ` t2

` case C of inl x1 7→ t1 | inr x2 7→ t2 : Γ′→ Γ

(λu-Wf-Ctx-Case2)

Γ ` t ` C : Γ′→ (Γ, x1) Γ, x2 ` t2

` case t of inl x1 7→ C | inr x2 7→ t2 : Γ′→ Γ

(λu-Wf-Ctx-Case3)

Γ ` t Γ, x1 ` t1 ` C : Γ′→ (Γ, x2)

` case t of inl x1 7→ t1 | inr x2 7→ C : Γ′→ Γ

(λu-Type-Ctx-If1)

` C : Γ′→ Γ Γ ` t1 Γ ` t2

` if C then t1 else t2 : Γ′→ Γ

(λu-Type-Ctx-If2)

Γ ` t ` C : Γ′→ Γ Γ ` t2

` if t then C else t2 : Γ′→ Γ

(λu-Type-Ctx-If3)

Γ ` t Γ ` t1 ` C : Γ′→ Γ

` if t then t1 else C : Γ′→ Γ

(λu-Type-Ctx-Seq1)

C : Γ′→ Γ Γ ` t
` C; t : Γ′→ Γ

(λu-Type-Ctx-Seq2)

Γ ` t C : Γ′→ Γ
` t;C : Γ′→ Γ

2.5 Contextual equivalence
Definition 3 (Contextual equivalence for λu). If Γ ` t1 and Γ ` t2, then we
define that Γ ` t1'ctx t2 iff for all C such that ` C : Γ→∅, we have that C[t1]⇓
iff C[t2]⇓.

11

3 Language and World Specifications
This Section defines general language and world specifications LSpec and WSpec
(Section 3.1 and Section 3.2, respectively). Then, a concrete language specifica-
tions for both λτ and λu is provided (Sections 3.3 to 3.4), as well as a concrete
world specification (Section 3.5).

3.1 General Language Specification
The general language specification is presented below.

LSpec
def
= {Val,Ter,Con,Conf,

plugv, plugc, step, oftype, bool,

unit, pair, appl, inl, inr |
Val,Ter,Con,Conf ∈ Set ∧ plugv ∈ Val× Con→ P(Conf)

∧ plugc ∈ Ter × Con→ P(Conf) ∧ step ∈ Conf → Conf] {halt, fail}

∧ oftype ∈ Typesλ
τ

→ P(Val) ∧ unit ∈ Unit→ P(Val)

∧ bool ∈ Bool→ P(Val) ∧ pair ∈ Val× Val→ P(Val)

∧ appl ∈ Val× Val→ P(Ter)

∧ inl ∈ Val→ P(Val) ∧ inr ∈ Val→ P(Val)}

For a language to implement the language specifications, it must provide values
(Val), terms (Ter), continuations (also known as contexts, Con) and configura-
tions (Conf). Then, it must provide functions to plug a value in a continuation
(plugv), to plug a term in a continuation (plugc), to perform a reduction step
(step), to identify the values of a type (oftype), to identify primitive values (base),
to build pairs (pair) and to apply functions to arguments (appl). This specifica-
tion will need to be enriched in case either the source or the target languages
are enriched (i.e., when references are added, memories must be modelled).

Define a configuration t ∈ Conf performing k reduction, denoted as t
k
↪→ t′

steps as follows:

t
0
↪→ t

t
k+1
↪→


fail if step(t) = fail

halt if step(t) = halt

t′ if step(t) = t′′ and t′′
k
↪→ t′

Define the set of possible statuses of a computation after some steps as CS =
{fail, halt, running}. Define the set of possible endings of a computation as
CE = {fail, halt, diverge}.

Define the function observe-k(·) : N × Conf → CS, which tells whether a

12

configuration can be observed for k steps, as follows:

observe-k(k, t) =


fail if t

k
↪→ fail

halt if t
k
↪→ halt

running if ∃t′.t k
↪→ t′

Define the function observe(·) : Conf → CE , which tells the ending outcome
of a configuration, as follows:

observe(t) =


fail if ∃k ∈ N.observe-k(k, t) = fail

halt if ∃k ∈ N.observe-k(k, t) = halt

diverge otherwise (∀k ∈ N, observe-k(k, t) = running)

3.2 General World Specification
The general world specification is presented below.

WSpec
def
= {World, lev, .,O,w |

World ∈ Set ∧ lev ∈World → N
∧ . ∈World →World ∧ O ∈ P(L1.Conf × L2.Conf)

∧ w ∈ P(World ×World) ∧ w is a preorder
∧ ∀W′wW. .W′w .W

∧ ∀W. .WwW ∧ ∀W′wW.lev(W′) ≤ lev(W)

∧ ∀W.lev(W) > 0⇒ lev(.W) = lev(W)− 1}

A world specification must define what a world is (World), how many steps are
left for the computation (lev, this is a trick needed for defining step-indexed
logical relations that hide the step in the world), how to derive a ‘later’ world
with smaller steps (.), how to observe configurations (O), how to define future
worlds (w) and public versions of future worlds (w). This specification is given
in general terms w.r.t. language specifications L1 and L2. It will be made
concrete in Section 3.5 with instantiations of concrete language specifications
LSpecλ

τ

and LSpecλ
u

that are defined later on.
Define the strictly-future world relation, denoted with =. , as follows:

=.
def
= {(W′,W) | lev(W) > 0 ∧W′w .W}

Use R to denote an arbitrary relation, i.e., a set of tuples of elements of set.
Define the set of world-value relations WVRel as follows: {R ∈ P(World,L1.Val,L2.Val)}.
Define the values of a world-value relation R based on a world W as follows:

R(W) = {(v1, v2) | (W, v1, v2) ∈ R} for R ∈WVRel

Define the monotonic closure of a world-value relation R, denoted with �(·),
as follows:

�(R)
def
= {(W, v1, v2) | ∀W′wW.(W′, v1, v2) ∈ R} for R ∈WVRel

13

Define the function for building of a world-value relation, denoted with
WVRel(·), as follows:

WVRel(R1, R2)
def
= {(W, v1, v2) | ∀W, v1 ∈ R1, v2 ∈ R2}

for R1 ⊆ L1.Val, R2 ⊆ L2.Val

Note that function WVRel(·), works on sets now, but it can be extended to work
on relations as well.

Lemma 2 (Well-founded =.). =. is well-founded.

Proof. Because the level of the worlds strictly decrease.

Lemma 3 (Properties of future worlds).

∀W,W′,W′′.W′′=. W′ and W′=. W then W′′=. W

∀W,W′,W′′.W′′=. W′ and W′wW then W′′=. W

∀W,W′,W′′.W′′wW′ and W′=. W then W′′=. W

Proof. By definition of =. and ., lev, w.

3.3 Language Specification for λτ

LSpecλ
τ

is the language specification for λτ .

Val
def
= {v} Ter

def
= {t}

Con
def
= {C} Conf

def
= {t}

plugv(v,C)
def
= C[v] plugc(t,C)

def
= C[t]

step(t)
def
=


t′ if t ↪→ t′

halt if t ∈ Val

fail otherwise
oftype(τ)

def
= {v | ∅ ` v : τ}

unit(v)
def
= {unit}

bool(v)
def
= {true, false} pair(v1,v2)

def
= {〈v1,v2〉}

appl(v1,v2)
def
= {t ∈ Ter | ∃t′,x, τ .v1 ≡ λx : τ.t′ ∧ t ≡ t′[x 7→ v2]}

inl(v)
def
= {v′ | v′ ≡ inl v} inr(v)

def
= {v′ | v′ ≡ inr v}

LSpecλ
τ def

= (Val,Ter,Con,Conf ,plugv(·),plugc(·), step(·),
oftype(·),unit(·),bool(·),pair(·),appl(·), inl(v), inr(v))

To ensure this definition is correct, LSpecλ
τ

must be included in the general
language specification LSpec (Theorem 1).

Theorem 1 (Correctness of LSpecλ
τ

). LSpecλ
τ

∈ LSpec

Proof of Theorem 1. Trivial.

14

3.4 Language Specification for λu

LSpecλ
u

is the language specification for λu.

Val
def
= {v} Ter

def
= {t}

Con
def
= {C} Conf

def
= {t}

plugv(v,C)
def
= C[v] plugc(t,C)

def
= C[t]

step(t)
def
=


t′ if t ↪→ t′

halt if t ∈ Val

fail otherwise

oftype(τ)
def
=


v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃t′.v ≡ λx. t′ if τ ≡ τ1 → τ2

∃v1, v2.v ≡ 〈v1, v2〉∧
v1 ∈ oftype(τ1) ∧ v2 ∈ oftype(τ2)

if τ ≡ τ1 × τ2

∃v1.v ≡ inl v1 ∧ v1 ∈ oftype(τ1) or
∃v2.v ≡ inr v2 ∧ v2 ∈ oftype(τ2)

if τ ≡ τ1] τ2

v ≡ unit if τ ≡ Unit

v ≡ true∨
v ≡ false

if τ ≡ Bool


unit(v)

def
= {unit}

bool(v)
def
= {true, false}

pair(v1, v2)
def
= {〈v1, v2〉}

appl(v1, v2)
def
= {t ∈ Ter | ∃t′, x.v1 ≡ λx.t′ ∧ t ≡ t′[x 7→ v2]}

inl(v)
def
= {v′ | v′ ≡ inl v}

inr(v)
def
= {v′ | v′ ≡ inr v}

LSpecλ
u def

= (Val,Ter,Con,Conf, plugv(·), plugc(·), step(·),
oftype(·), unit(·), bool(·), pair(·), appl(·), inl(v), inr(v))

To ensure this definition is correct, LSpecλ
u

must be included in the general
language specification LSpec (Theorem 2).

Theorem 2 (Correctness of LSpecλ
u

). LSpecλ
u

∈ LSpec

Proof of Theorem 2. Trivial.

15

3.5 World Specification
This Section presents W, a concrete instantiation of the WSpec of Section 3.2
to be used by the logical relation between concrete language specifications.

WorldW
def
= {W = (k) | k ∈ N}

lev(W)
def
= W.k

. (0)
def
= (0)

. (k + 1)
def
= (k)

O(W).
def
=

{
(t, t)

∣∣∣∣ (LSpecλ
τ

.observe-k(lev(W), t) = halt⇒
∃k.LSpecλ

u

.observe-k(k, t) = halt)

}
O(W)&

def
=

{
(t, t)

∣∣∣∣ (LSpecλ
u

.observe-k(lev(W), t) = halt⇒
∃k.LSpecλ

τ

.observe-k(k, t) = halt)

}
O(W)≈

def
= O(W). ∩ O(W)&

(k)w(k′)
def
= k ≤ k′

W ∈ {WorldW , levW , .,OW ,w}

To ensure this definition is correct, W must be included in the general lan-
guage specification WSpec (Theorem 3).

Theorem 3 (Correctness of W). W ∈WSpec

Proof of Theorem 3. Trivial.

In subsequent sections, we will regularly use ., & and ≈ as subscripts on
logical relations and so on, to indicate that they should be interpreted w.r.t.
the worldspec with the corresponding O(W). We will use � as a meta-variable
that can be instantiated to either .,&, or ≈ for those theorems or definitions
that work for all three.

Lemma 4 (Observation relation closed under antireduction). If t ↪→i t′ and
t ↪→j t′, (t′, t′) ∈ O(W′)�, W′wW, lev(W′) ≥ lev(W)−min(i, j), i.e. lev(W) ≤
lev(W′) + min(i, j), then (t, t) ∈ O(W)�.

Proof. If t′ and t′ halt, then so do t and t. Otherwise, if t′ and t′ take at least
lev(W′) steps, then t and t take at least lev(W′) + min(i, j) steps.

Lemma 5 (No observation with 0 steps). If lev(W) = 0, then for all t, t, we
have that (t, t) ∈ O(W)�.

Proof. Just a bit of definition unfolding.

Lemma 6 (Source divergence is target divergence or failure). If t ⇑ and either
t ⇑ or t ↪→∗ wrong, i.e. t diverges and t either diverges or fails, then we have
that (t, t) ∈ O(W)�.

16

Proof. Just a bit of definition unfolding.

Lemma 7 (No steps means relation). If LSpecλ
τ

.observe-k(lev(W), t) = running

and LSpecλ
u

.observe-k(lev(W), t) = running, i.e. both t and t run out of steps
in world W, then we have that (t, t) ∈ O(W)�.

Proof. Just a bit of definition unfolding.

17

4 Logical Relations
This Section defines the logical relations used to prove properties of the compiler.
Instead of giving general logical relations as Hur and Dreyer, a specific logical
relations is given, between source and target language specifications.

The logical relations between LSpecλ
τ

and LSpecλ
u

are defined based on a
relation on values VJ·K�, continuations KJ·K�, terms (also called computations)
EJ·K� and based on an interpretation for typing environments GJ·K�. These
logical relations are used to relate LSpecλ

u

and LSpecλ
τ

, so their definition
contains terms of the two language specifications in place of elements of abstract
language specifications and elements of W in place of elements of an abstract
world specification.

Pseudo-type τ̂ .

τ̂ ::= Bool | Unit | τ̂ × τ̂ | τ̂] τ̂ | τ̂ → τ̂ | EmulDVn;p

Γ̂ ::= ∅ | Γ̂,x : τ̂

Helper functions for EmulDV.

toEmul(∅)n;p = ∅ toEmul(Γ, x)n;p = toEmul(Γ)n;p, (x : EmulDVn;p)

repEmul(∅) = ∅ repEmul(Γ, (x : τ̂)) = repEmul(Γ), (x : repEmul(τ̂))

repEmul(τ̂ × τ̂ ′) = repEmul(τ̂)× repEmul(τ̂ ′)

repEmul(τ̂] τ̂ ′) = repEmul(τ̂)] repEmul(τ̂ ′)

repEmul(τ̂ → τ̂ ′) = repEmul(τ̂)→ repEmul(τ̂ ′)

repEmul(EmulDVn;p) = UValn

repEmul(Bool) = Bool

repEmul(Unit) = Unit

oftype(·) definition.

oftype(τ̂)
def
= {v | ∅ ` v : repEmul(τ̂)}

oftype(τ̂)
def
=


v

∣∣∣∣∣∣∣∣∣∣∣∣

v = unit if τ̂ = Unit

v = true or v = false if τ̂ = Bool

∃t. v = λx. t if ∃τ̂1, τ̂2. τ̂ = τ̂1 → τ̂2

∃v1 ∈ oftype(τ̂1), v2 ∈ oftype(τ̂2). v = 〈v1, v2〉 if ∃τ̂1, τ̂2. τ̂ = τ̂1 × τ̂2
∃v1 ∈ oftype(τ̂1). v = inl v1 or ∃v2 ∈ oftype(τ̂2). v = inr v2 if ∃τ̂1, τ̂2. τ̂ = τ̂1] τ̂2


oftype(τ̂)

def
= {(v, v) | v ∈ oftype(τ̂) and v ∈ oftype(τ̂)}

Logical relations for values (VJ·K�), contexts (KJ·K�), terms (EJ·K�) and

18

environments (GJ·K�).

. R
def
= {(W,v, v) | lev(W) > 0⇒ (.W,v, v) ∈ R}

VJUnitK�
def
= {(W,v, v) | (W,v, v) ∈ �(WVRel(unit(unit), unit(unit)))}

VJBoolK�
def
= {(W,v, v) | ∃v ∈ JBoolK. (W,v, v) ∈ �(WVRel(bool(v), bool(v)))}

VJτ̂ ′ → τ̂K�
def
=

(W,v, v)

∣∣∣∣∣∣∣∣∣
(v, v) ∈ oftype(τ̂ ′ → τ̂) and
∀(W′,W) ∈ =. ,∀(W′,v′, v′) ∈ VJτ̂ ′K�,

∀t ∈ appl(v,v′),

∀t ∈ appl(v, v′), (W′, t, t) ∈ EJτ̂K�


VJτ̂1 × τ̂2K�

def
=

(W,v, v)

∣∣∣∣∣∣∣∣
(v, v) ∈ oftype(τ̂1 × τ̂2) and

∃(W,v1, v1) ∈ . VJτ̂1K�,
∃(W,v2, v2) ∈ . VJτ̂2K�,

(W,v, v) ∈ �(WVRel(pair(v1,v2), pair(v1, v2)))



VJτ̂1] τ̂2K�
def
=


(W,v, v)

∣∣∣∣∣∣∣∣∣∣∣∣

(v, v) ∈ oftype(τ̂1 × τ̂2) and
∃v′, v′. ((W,v′, v′) ∈ . VJτ̂1K� and
(W,v, v) ∈ �(WVRel(inl(v′), inl(v′)))) or
∃v′, v′. ((W,v′, v′) ∈ . VJτ̂2K� and
(v, v) ∈ �(WVRel(W, inr(v′), inr(v′))))


VJEmulDV0;pK�

def
= {(W,v, v) | v = unit and p = imprecise}

VJEmulDVn+1;pK�
def
=



(W,v, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v ∈ oftype(UValn+1) and one of the following holds:

v = inunk;n and p = imprecise

∃v′.v = inUnit;n v′ and (W,v′, v) ∈ VJUnitK�
∃v′.v = inBool;n v′ and (W,v′, v) ∈ VJBoolK�
∃v′.v = in×;n v′ and

(W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�
∃v′.v = in];n v′ and

(W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�
∃v′.v = in→;n v′ and

(W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�


KJτ̂K�

def
= {(W,C,C) | ∀W′wW,∀(W′,v, v) ∈ VJτ̂K�,∀t ∈ plugv(v,C),

∀t ∈ plugv(v,C), (t, t) ∈ O(W′)}

EJτ̂K�
def
= {(W, t, t) | ∀(W,C,C) ∈ KJτ̂K�,∀t′ ∈ plugc(t,C),

∀t′ ∈ plugc(t,C), (t′, t′) ∈ O(W)}

GJ∅K�
def
= {(W, ∅, ∅)}

GJΓ̂, (x : τ̂)K�
def
= {(W, γ[x 7→ v], γ[x 7→ v]) | (W, γ, γ) ∈ GJΓ̂K� and (W,v, v) ∈ VJτ̂K�}

19

Define relatedness of open terms when closing them with related substitu-
tions produces closed terms that are related by the expression relation.

Definition 4 (Logical relation up to n steps).

Γ̂ ` t �n t : τ̂
def
= repEmul(Γ̂) ` t : repEmul(τ̂) and dom(Γ̂) ` t

and ∀W. lev(W) ≤ n⇒ ∀(W, γ, γ) ∈ GJΓ̂K�. (W, tγ, tγ) ∈ EJτ̂K�

Definition 5 (Logical relation).

Γ̂ ` t � t : τ̂
def
= Γ̂ ` t �n t : τ̂ for all n

We also define a logical relation for program contexts:

Definition 6 (Logical relation for contexts).

` C � C : Γ̂′, τ̂ ′ → Γ̂, τ̂
def
=

` C : repEmul(Γ̂′), repEmul(τ̂ ′)→ repEmul(Γ̂), repEmul(τ̂)

and ` C : dom(Γ̂′)→ dom(Γ̂)

and for all t, t. if Γ̂′ ` t � t : τ̂ ′,

then Γ̂ ` C[t] � C[t] : τ̂

Lemma 8 (Closedness under antireduction). If C[t] ↪→i C[t′] and C[t] ↪→j C[t′]
for any C and C, (W′, t′, t′) ∈ EJτ̂K�, W′wW, lev(W′) ≥ lev(W) − min(i, j),
i.e. lev(W) ≤ lev(W′) + min(i, j), then (W, t, t) ∈ EJτ̂K�.

Proof. Take an arbitrary (W,C,C) ∈ KJτ̂K�. Then we need to prove that
(C[t],C[t]) ∈ O(W). By Lemma 4, it suffices to prove that (C[t′],C[t′]) ∈ O(W′).
By Lemma 12, we have that (W′,C,C) ∈ KJτ̂K�, so that the result follows from
(W′, t′, t′) ∈ EJτ̂K�.

Lemma 9 (Later operator preserves monotonicity). ∀R,R ⊆ �(R) ⇒ . R ⊆
�(. R)

Proof. By definition and assumptions on . and lev.

Lemma 10 (Term relations include value relations). ∀τ̂ ,VJτ̂K� ⊆ EJτ̂K�.

Proof. Simple induction on τ̂ .

Lemma 11 (Monotonicity for environment relation). If W′wW, then (W, γ, γ) ∈
GJΓK� implies that (W′, γ, γ) ∈ GJΓK�.

Proof. By definition.

Lemma 12 (Monotonicity for continuation relation). If W′wW, then (W,C,C) ∈
KJτ̂K� implies that (W′,C,C) ∈ KJτ̂K�.

Proof. By definition.

20

Lemma 13 (Monotonicity for value relation). VJτ̂K� ⊆ �(VJτ̂K)�

Proof. By induction on τ̂ . Definitions for all cases are monotone. The inductive
cases follow by Lemma 9 and Lemma 3.

Lemma 14 (Adequacy for .). If ∅ ` t .n t : τ , and if t ↪→m v with n ≥ m,
then also t⇓.

Proof. We have directly that (W, t, t) ∈ EJτK. for a world W such that lev(W) =

n. Since (W, ·, ·) ∈ KJτK., we have that (t, t) ∈ O(W).. Since LSpecλ
τ

.observe-k(lev(W), t) =

halt, we have by definition of O(W). that LSpecλ
u

.observe-k(k, t) = halt for
some k, i.e. t⇓.

Lemma 15 (Adequacy for &). If ∅ ` t &n t : τ and if t ↪→m v with n ≥ m,
then also t⇓.

Proof. We have directly that (W, t, t) ∈ EJτK& for a world W such that lev(W) =

n. Since (W, ·, ·) ∈ KJτK&, we have that (t, t) ∈ O(W)&. Since LSpecλ
u

.observe-k(lev(W), t) =

halt, we have by definition of O(W)& that LSpecλ
τ

.observe-k(k, t) = halt for
some k, i.e. t⇓.

Lemma 16 (Adequacy for . and &). If ∅ ` t .n t : τ , and if t ↪→m v with
n ≥ m, then also t ⇓.

If ∅ ` t &n t : τ and if t ↪→m v with n ≥ m, then also t ⇓.

Proof. By Lemma 14 and Lemma 15.

Lemma 17 (Value relation implies oftype). VJτ̂K� ⊆ oftype(τ̂)

Proof. Simple induction on τ̂ .

21

5 Compiler
This section defines type erasure and protection for terms (Section 5.1), the
two functions that constitute the compiler. Then it presents properties for
erasure (Section 5.2) and for protection (Section 5.3). Finally it concludes with
contextual equivalence reflection (Section 5.4).

Recall that we will use b to refer to unit / unit, true / true and false /
false when it is not necessary to specify or when it is obvious. Analogously,
we use B to mean Unit or Bool.

The compiler J·Kλ
τ

λu is a function of type Termsλ
τ

→ Termsλ
u

defined as
follows:

if Γ ` t : τ , then JtKλ
τ

λu
def
= protectτ erase(t)

Where erase(·) is a function of type Termsλ
τ

→ Termsλ
u

and protectτ is a λu

term for any type τ .

5.1 Compiler definition: erase and protect
Function erase(·) takes a λτ term and strips it of type annotations, effectively
turning it into a λu term.

erase(b) = b erase(λx : τ . t) = λx. erase(t)

erase(x) = x erase(〈t1, t2〉) = 〈erase(t1), erase(t2)〉
erase(t1 t2) = erase(t1) erase(t2)

erase(t.1) = erase(t).1 erase(t.2) = erase(t).2

erase(inl t) = inl erase(t) erase(inr t) = inr erase(t)

erase(t1; t2) = erase(t1);erase(t2)

erase(case t of inl x1 7→ t1 | inr x2 7→ t2) =

case erase(t) of inl x1 7→ erase(t1) | inr x2 7→ erase(t2)

erase(if t then t1 else t2) =

if erase(t) then erase(t1) else erase(t2)

erase(fixτ1→τ2 t) = fix erase(t)

For fixτ1→τ2 we use a strict fix combinator fix (Plotkin’s Z combinator, see
TAPL §5.2). We define

fix
def
= λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix f
def
= (λx. f (λy. x x y)) (λx. f (λy. x x y))

and we already note that if v is a value then

fix v ↪→fix v

22

and we also have that

fix (λx.e) ↪→ (λx. e) (λy.fixλx.e y) ↪→ e[(λy.fixλx.e y)/x]

Function protect takes a λτ type to a function that wraps a term so that
it behaves according to the type. The definition of protect relies on another
function confine that is used to wrap externally-supplied parameters with the
right checks that ensure no violation of source-level abstractions. Both functions
are defined inductively on the type as presented below.

protectB
def
= λx. x

protectτ1×τ2

def
= λy. 〈protectτ1 y.1, protectτ2 y.2〉

protectτ1]τ2

def
= λy. case y of inl x1 7→ inl (protectτ1 x1) | inr x2 7→ inr (protectτ2 x2)

protectτ1→τ2

def
= λy. λx.protectτ2 (y (confineτ1 x))

confineUnit
def
= λy. y; unit

confineBool
def
= λy. if y then true else false

confineτ1×τ2

def
= λy. 〈confineτ1 y.1, confineτ2 y.2〉

confineτ1]τ2

def
= λy. case y of inl x1 7→ inl (confineτ1 x1) | inr x2 7→ inr (confineτ2 x2)

confineτ1→τ2

def
= λy. λx. confineτ2 (y (protectτ1 x))

The compiler security checks appear in the function type τ ′ → τ case for protect.
There, we know that the term t will take an input and continue as a function.
Therefore, the compiler wraps t in a function that takes the input, checks that
it complies to τ ′, and then it supplies that input to t. To check that an input
complies to a type, confine is used. Dually, the function case for confine must
call protect on the argument that in this case is supposedly coming from the
compiled term.

The checks inserted for base types appear in the base type case Bool and
Unit for confine. The returned argument, applied to the arguments supplied in
the case of confineB ensures that if the argument t is not of base type, then the
compiled term will diverge at runtime. If the argument t is of base type, then
the execution will proceed normally.

5.2 Properties of erasure
This section presents required results (Lemmas 18 to 20). Then it presents
compatibility lemmas (Lemmas 21 to 31 in Section 5.2.1). Finally, it concludes
by proving semantics preservation of erase Theorems 4 and 5.

Lemma 18 (Erased contexts bind the same variables). If ` C : Γ′, τ ′→Γ, τ ,
then ` erase(C) : dom(Γ′)→ dom(Γ).

23

Proof. Trivial induction on Γ.

Lemma 19 (Related terms plugged in related contexts are still related). If
(W, t, t) ∈ EJτ̂ ′K� and if for all W′wW, (W′,v, v) ∈ VJτ̂ ′K�, we have that
(W′,C[v],C[v]) ∈ EJτ̂K� then (W,C[t],C[t]) ∈ EJτ̂K�.

Proof. Take (W,C′,C′) ∈ KJτ̂K�. It suffices to show that (C′[C[t]],C′[C[t]]) ∈
O(W). This follows from (W, t, t) ∈ EJτ̂ ′K� if (W,C′[C[·]],C′[C[·]]) ∈ KJτ̂ ′K�.
So, take W′wW, (W′,v, v) ∈ VJτ̂ ′K�. We need to show that (C′[C[v]],C′[C[v]]) ∈
O(W′). But this follows from (W′,C[v],C[v]) ∈ EJτ̂K�, since from (W,C′,C′) ∈
KJτ̂K�, we get (W′,C′,C′) ∈ KJτ̂K� by Lemma 12.

Lemma 20 (Related functions applied to related arguments are related terms).
If (W,v, v) ∈ VJτ̂ ′ → τ̂K� and (W,v′, v′) ∈ VJτ̂ ′K� then (W,v v′, v v′) ∈ EJτ̂K�.

Proof. Take (W,C,C) ∈ KJτ̂K�, then we need to show that (C[v v′],C[v v′]) ∈
O(W).

From (W,v, v) ∈ VJτ̂ ′ → τ̂K�, we get that v ≡ λx : τ̂ ′. t′ and v ≡ λx. t′ for
some t′ and t′. We then know that C[v v′] ↪→C[t′[v′/x]] and C[v1 v2] ↪→C[t′[v2/x]]
and by Lemma 8, it suffices to show that (C[t′[v2/x]],C[t′[v′/x]]) ∈ O(.W).

Since (W,C,C) ∈ KJτ̂K�, .WwW, we have by Lemma 12 that (.W,C,C) ∈
KJτ̂K�. It then suffices to prove that (.W, t′[v′/x], t′[v′/x]) ∈ EJτ̂K�. This fol-
lows from (W,v, v) ∈ VJτ̂ ′ → τ̂K�, since .W=. W, if we show that (.W,v′, v′) ∈
VJτ̂ ′K�. The latter follows from (W,v′, v′) ∈ VJτ̂ ′K� by Lemma 13 since .WwW.

5.2.1 Compatibility lemmas

Lemma 21 (Compatibility lemma for lambda). If Γ,x : τ ′ ` t �n t : τ , then
Γ ` λx : τ ′. t �n λx.t : τ ′ → τ .

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` λx : τ ′.t : τ ′ → τ and (2) for all W, (W, γ, γ) ∈ GJΓK� (HG), we
have that (W, λx : τ ′.tγ, λx.tγ) ∈ EJτ ′ → τK�.

Part 1 holds by the typing rule rule λτ -Type-fun combined with the fact
Γ,x : τ ′ ` t : τ which we get from Γ,x : τ ′ ` t �n t : τ .

Let us now prove part 2.
By Lemma 10, it suffices to prove that (W, λx : τ ′.tγ, λx.tγ) ∈ VJτ ′ → τK.
Take W′=. W, (W′,v′, v′) ∈ VJτ ′K (HV), then we need to show that (W′, tγ[v′/x], tγ[v′/x]) ∈

EJτK.
The thesis follows from Γ,x : τ ′ ` t �n t : τ if we show that (W′, [v′/x]γ, [v′/x]γ) ∈

GJΓ, (x : τ ′)K.
Unfold the definition of GJΓ, (x : τ ′)K�, so the thesis becomes: (1) (W′, γ,

γ) ∈ GJΓK� and (2) (W′,v′, v′) ∈ VJτ ′K�.
Part 1 holds due to HG and Lemma 11, as HG holds in W and here we need

it in a future world W′.
Part 2 holds due to HV.

24

Lemma 22 (Compatibility lemma for pair). If Γ ` t1 �n t1 : τ1 and IH2:
Γ ` t2 �n t2 : τ2, then Γ ` 〈t1, t2〉 �n 〈t1, t2〉 : τ1 × τ2.

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` 〈t1, t2〉 : τ1 × τ2 and (2) for all W, (W, γ, γ) ∈ GJΓK�, we have
that (W, 〈t1, t2〉γ, 〈t1, t2〉γ) ∈ EJτ1 × τ2K�.

Part (1) holds by typing rule rule λτ -Type-pair and the facts that Γ ` t1 : τ1
and Γ ` t2 : τ2, which follow from Γ ` t1 �n t1 : τ1 and Γ ` t2 �n t2 : τ2
respectively.

Let us now prove part (2). We have that (W, t1γ, t1γ) ∈ EJτ1K� from
Γ ` t1 �n t1 : τ1. By Lemma 19, it then suffices to show that for all W′wW,
(W′,v1, v1) ∈ VJτ1K�, we have that (W′, 〈v1, t1γ〉, 〈v1, t2γ〉) ∈ EJτ1× τ2K�.

From Γ ` t2 �n t2 : τ2, we also have that (W′, t2γ, t2γ) ∈ EJτ2K�. Again by
Lemma 19, it then suffices to show that for all W′′wW′, (W′′,v2, v2) ∈ VJτ2K�,
we have that (W′′, 〈v1,v2〉, 〈v1, v2〉) ∈ EJτ1× τ2K�.

By Lemma 10, it suffices to show that (W′′, 〈v1,v2〉, 〈v1, v2〉) ∈ VJτ1× τ2K�,
and the result follows by definition with (W′′,v2, v2) ∈ VJτ2K�, (W′,v1, v1) ∈
VJτ1K� and using Lemma 13.

Lemma 23 (Compatibility lemma for application). If Γ ` t1 �n t1 : τ ′ → τ
and IH2: Γ ` t2 �n t2 : τ ′, then Γ ` t1 t2 �n t1 t2 : τ .

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` t1 t2 : τ and (2) for all W, (W, γ, γ) ∈ GJΓK�, we have that
(W, t1γ t2γ, t1γ t2γ) ∈ EJτK�.

Part (1) holds because of the typing rule rule λτ -Type-app and the facts
that Γ ` t1 : τ ′ → τ and Γ ` t2 : τ ′ which follow from Γ ` t1 �n t1 : τ ′ → τ
and Γ ` t2 �n t2 : τ ′ respectively.

Let us now prove part (2). We have that (W, t1γ, t1γ) ∈ EJτ ′ → τK� from
Γ ` t1 �n t1 : τ ′ → τ . By Lemma 19, it suffices to show that for all W′wW,
(W′,v1, v1) ∈ VJτ ′ → τK�, that (W′,v1 t2γ, v1 t2γ) ∈ EJτK�.

We also have that (W′, t2γ, t2γ) ∈ EJτ ′K� from Γ ` t1 t2 �n t1 t2 : τ . Again
by Lemma 19, it suffices to show that for all W′′wW′, (W′′,v2, v2) ∈ VJτ ′K�,
that (W′′,v1 v2, v1 v2) ∈ EJτK�.

From (W′,v1, v1) ∈ VJτ ′ → τK�, we get (W′′,v1, v1) ∈ VJτ ′ → τK� by Lemma 13
and the result then follows by Lemma 20.

Lemma 24 (Compatibility lemma for left projection). If Γ ` t1 �n t1 :
τ1 × τ2, then Γ ` t1.1 �n t1.1 : τ1.

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` t1.1 : τ1 and (2) for all W, (W, γ, γ) ∈ GJΓK�, we have that
(W, t1.1γ, t1.1γ) ∈ EJτ1K�.

Part (1) holds because of rule λτ -Type-proj1, and the fact that Γ ` t1 :
τ1 × τ2, which follows from Γ ` t1 �n t1 : τ1 × τ2.

25

Let us now prove part (2). We have that (W, t1γ, t1γ) ∈ EJτ1 × τ2K� from
Γ ` t1 �n t1 : τ1 × τ2. By Lemma 19, the result follows if we prove that for all
W′wW, (W′,v, v) ∈ VJτ1 × τ2K�, we have that (W′,v.1, v.1) ∈ EJτ1K�.

So, take (W′,C,C) ∈ KJτ1K�, then we need to prove that (C[v.1],C[v.1]) ∈
O(W′).

From (W′,v, v) ∈ VJτ1 × τ2K�, we know that v = 〈v1,v2〉 and that v =
〈v1, v2〉 for some v1,v2, v1, v2 with (W′′,v1, v1) ∈ VJτ1K� (HV) and (W′′,v2, v2) ∈
VJτ2K� for any W′′=. W′.

We have that C[v.1] ↪→C[v1] and C[v.1] ↪→C[v1], so by Lemma 8, it suffices
to prove that (C[v1],C[v1]) ∈ O(.W′). This follows because we know that
(.W′,C,C) ∈ KJτ1K� from (W,C,C) ∈ KJτ1K� and .W′wW by Lemma 12
and because we have that (.W′,v1, v1) ∈ VJτ1K� (HV).

Lemma 25 (Compatibility lemma for right projection). If Γ ` t1 �n t1 :
τ1 × τ2, then Γ ` t1.2 �n t1.2 : τ2.

Proof. Simple adaptation of the proof of Lemma 24.

Lemma 26 (Compatibility lemma for inl). If Γ ` t �n t : τ then Γ ` inl t �n
inl t : τ] τ ′.

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` inl t : τ] τ ′ and (2) for all W,(W, γ, γ) ∈ GJΓK�, we have that
(W, inl tγ, inl tγ) ∈ EJτ] τ ′K�.

Part (1) holds by rule λτ -Type-inl and the fact that Γ ` t : τ which follows
from Γ ` t �n t : τ .

Let us now prove part (2). Expand the definition of �n. The thesis becomes
∀(W, γ, γ) ∈ GJΓK�, (W, inl tγ, inl tγ) ∈ EJτ] τ ′K�.

Expand the definition of EJτ] τ ′K�. The thesis becomes ∀(W,C,C) ∈
KJτ] τ ′K� (HK), (C[inl tγ],C[inl tγ]) ∈ O(W).

Take the hypothesis, expand the defintion of EJτK� in it. We have that
∀(W′, γ′, γ′) ∈ GJΓK�,∀(W′,C′,C′) ∈ KJτK�, (C′[tγ′],C′[tγ′]) ∈ O(W′).

Instantiate W′ with W, C′ with C[inl ·] and C′ with C[inl ·].
The thesis is now proven, if we prove that (W,C[inl ·],C[inl ·]) ∈ KJτK�.
Unfold the definition of KJτK�.
The thesis becomes ∀W′wW,∀(W′,v, v) ∈ VJτK� (HV), (C[inl v],C[inl v]) ∈

O(W′).
Take HK and unfold the definition of KJτ] τ ′K�.
We get that ∀W′wW,∀(W′′,v′, v′) ∈ VJτ] τ ′K� , (C[v′],C[v′] ∈ O(W′′).
Instantiate W′′ with W′ and v′ with inl v and v′ with inl v.
The thesis is now proven if we prove that (W′, inl v, inl v) ∈ VJτ] τ ′K�.
This follows from the definition of VJτ] τ ′K�, given HV and Lemma 13

applied to HV.

Lemma 27 (Compatibility lemma for inr). If Γ ` t �n t : τ ′ then Γ ` inr t �n
inr t : τ] τ ′.

Proof. Simple adaptation of the proof of Lemma 26.

26

Lemma 28 (Compatibility lemma for case). If Γ ` t �n t : τ1] τ2 (H),
Γ, (x1 : τ1) ` t1 �n t1 : τ (H1) and Γ, (x2 : τ2) ` t2 �n t2 : τ (H2), then Γ `
case t of inl x1 7→ t1 | inr x2 7→ t2 �n case t of inl x1 7→ t1 | inr x2 7→ t2 : τ .

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` case t of inl x1 7→ t1 | inr x2 7→ t2 : τ and (2) for all W,(W, γ, γ) ∈
GJΓK�, we have that (W, case t of inl x1 7→ t1 | inr x2 7→ t2γ, case t of inl x1 7→ t1 | inr x2 7→ t2γ) ∈
EJτK�.

Part (1) holds by rule λτ -Type-case and the fact that Γ ` t : τ1] τ2 and
Γ, (x1 : τ1) ` t1 : τ and Γ, (x2 : τ2) ` t2 : τ which follow from Γ ` t �n t :
τ1] τ2, Γ, (x1 : τ1) ` t1 �n t1 : τ and Γ, (x2 : τ2) ` t2 �n t2 : τ .

Let us now prove part (2). Expand the definition of �n. The thesis becomes
∀W,∀(W, γ, γ) ∈ GJΓK�,∀(W,C,C) ∈ KJτK, (C[case t of inl x1 7→ t1 | inr x2 7→ t2],
C[case t of inl x1 7→ t1 | inr x2 7→ t2]) ∈ O(W).

Expand H, we have that: ∀W′,∀(W′, γ′, γ′) ∈ GJΓK� (HG) ,∀(W′,C′,C′) ∈
KJτ1] τ2K�, (C′[t],C′[t]) ∈ O(W′).

Instantiate W′ with W, C′· with C[case · of inl x1 7→ t1 | inr x2 7→ t2] and
C′· with C[case · of inl x1 7→ t1 | inr x2 7→ t2].

The thesis holds if we prove that (W,C[case · of inl x1 7→ t1 | inr x2 7→ t2],
C[case · of inl x1 7→ t1 | inr x2 7→ t2]) ∈ KJτ1] τ2K�.

Unfold the definition of KJτ1] τ2K�.
The thesis becomes: ∀W′′wW,∀(W′′,v, v) ∈ VJτ1] τ2K� (HV)
, (C[case v of inl x1 7→ t1 | inr x2 7→ t2], C[case v of inl x1 7→ t1 | inr x2 7→ t2]) ∈

O(W′′).
Unfold HV and the definition of VJτ1] τ2K�.
HV becomes v ∈ oftype(τ ′] τ) ∧ ∃v′, v′. ((W,v′, v′) ∈ . VJτ1K� (HV1)

∧(W,v, v) ∈ �(WVRel(inl(v′), inl(v′)))) or ∃v′, v′. ((W,v′, v′) ∈ . VJτ2K� ∧
(v, v) ∈ �(WVRel(W, inr(v′), inr(v′)))).

There are now 2 cases to consider: v and v being both inl or both inr .

inl Expand H1, we get: ∀W1,∀(W1, γ1, γ1) ∈ GJΓ, (x : τ1)K,∀(W1,C1,C1) ∈
KJτK�, (C1[t1γ1],C1[t1γ1]) ∈ O(W1).

By definition of GJK, HG, Lemma 11, and HV1, we have that (.W, [v′/x1]γ, [v′/x1]γ) ∈
GJΓ, (x : τ1)K.

Therefore, we have that (C1[t1[v′/x1]γ],C1[t1[v′/x1]γ]) ∈ O(W1).

We can apply Lemma 8 to prove the thesis.

In fact, rule λτ -Eval-case-inl tells us that C[case inl v′ of inl x1 7→ t1 | inr x2 7→ t2] ↪→
C[t1[v/x1]], given that v ≡ inl v′.

And rule λu-Eval-case-inl tells us that C[case inl v′ of inl x1 7→ t1 | inr x2 7→ t2] ↪→
C[t1[v/x1]], given that v ≡ inl v′.

inr Analogous.

27

Lemma 29 (Compatibility lemma for if). If Γ ` t1 �n t1 : Bool (H1) and Γ `
t2 �n t2 : τ (H2) and Γ ` t3 �n t3 : τ (H3), then Γ ` if t1 then t2 else t3 �n
if t1 then t2 else t3 : τ .

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` if t1 then t2 else t3 : τ and (2) for all W,(W, γ, γ) ∈ GJΓK�, we
have that (W, t1γ; t2γ, t1γ; t2γ) ∈ EJτK�.

Part (1) holds by rule λτ -Type-if and the fact that Γ ` t1 : Bool which
follows from H1 and that Γ ` t2 : τ and Γ ` t3 : τ which follow from H2 and
H3.

Let us now prove part (2). Expand the definition of �n and of EJK�. The the-
sis becomes ∀W, ∀(W, γ, γ) ∈ GJΓK�, ∀(W,C,C) ∈ KJτK, then (C[if t1γ then t2γ else t3γ],
C[if t1γ then t2γ else t3γ]) ∈ O(W).

Unfold H1: ∀W1, ∀(W1, γ1, γ1) ∈ GJΓK�, ∀(W1,C1,C1) ∈ KJBoolK�, (C1[t1γ1],C1[t1γ1]) ∈
O(W1).

The thesis follows by instantiating W1 with W, γ1 with γ, γ1 with γ and C1

with C[if [·] then t2γ else t3γ] and C1 with C[if · then t2γ else t3γ] if we prove
that (W,C[if [·] then t2γ else t3γ],C[if · then t2γ else t3γ]) ∈ KJBoolK�.

We expand the definition ofKJK� and the thesis becomes: ∀Wf wW,∀(Wf ,v, v) ∈
VJBoolK�, (C[if v then t2γ else t3γ],C[if v then t2γ else t3γ])O(Wf).

We now have two cases: v ≡ true ≡ v or v ≡ false ≡ v. We prove only
the first, the second is analogous using H3 in place of H2.

Unfold H2. ∀W2, ∀(W2, γ2, γ2) ∈ GJΓK�, ∀(W2,C2,C2) ∈ KJτK�, (C2[t2γ2],C2[t2γ2]) ∈
O(W2).

The thesis follows from Lemma 4 by rule λτ -Eval-if-v and rule λu-Eval-if-v
since v ≡ true ≡ v.

Lemma 30 (Compatibility lemma for sequence). If Γ ` t1 �n t1 : Unit (H1)
and Γ ` t2 �n t2 : τ (H2) then Γ ` t1; t2 �n t1; t2 : τ .

Proof. By definition of �n, the thesis consists of two parts, which both must
hold: (1) Γ ` t1; t2 : τ and (2) for all W,(W, γ, γ) ∈ GJΓK�, we have that
(W, t1γ; t2γ, t1γ; t2γ) ∈ EJτK.

Part (1) holds by rule λτ -Type-seq and the fact that Γ ` t1 : Unit which
follows from Γ ` t1 �n t1 : Unit.

Let us now prove part (2). Expand the definition of �n and of EJK�. The the-
sis becomes ∀W, ∀(W, γ, γ) ∈ GJΓK� (HK), ∀(W,C,C) ∈ KJτK�, (C[t1γ; t2γ],C[t1γ; t2γ]) ∈
O(W).

Unfold H1.
∀W1, ∀(W1, γ1, γ1) ∈ GJΓK�, ∀(W1,C1,C1) ∈ KJUnitK�, (C[t1γ1],C[t1γ1]) ∈

O(W1).
The thesis holds by instiating W1 with W, γ1 with γ, γ1 with γ, C1 with

C[·; t2γ] and C1 with C[·; t2γ].
We need to prove that (W,C[·; t2γ],C[·; t2γ]) ∈ KJUnitK�. The thesis is:

∀Wf wW, ∀(Wf ,v, v) ∈ VJUnitK�, (C[v; t2γ],C[v; t2γ]) ∈ O(Wf).

28

Assume A = (C[t2γ],C[t2γ]) ∈ O(.Wf), the thesis follows from Lemma 4
because of rule λτ -Eval-seq-next and rule λu-Eval-seq-next and because v ≡
unit and v ≡ unit.

Prove A.
Unfold H2. ∀W2, ∀(W2, γ2, γ2) ∈ GJΓK�, ∀(W2,C2,C2) ∈ KJτK�, (C[t2γ2],C[t2γ2]) ∈

O(W2).
The thesis follows by instantiating W2 with .W, γ2 with γ, γ2 with γ and

due to Lemma 12 applied to HK.

Lemma 31 (Compatibility lemma for fix). If Γ ` t �n t : (τ1 → τ2)→ τ1 → τ2,
then Γ ` fixτ1→τ2t �n fix t : τ1 → τ2.

For easy reference, we repeat the definition of fix :

fix
def
= λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

Proof. Take (W,C,C) ∈ KJτ1 → τ2K�. Then we need to prove that (C[fixτ1→τ2 tγ],C[fix tγ]) ∈
O(W)�. Define C′ def

= C[fixτ1→τ2 ·] and C′ def
= C[fix ·]. The result follows from

Γ ` t �n t : (τ1 → τ2)→ τ1 → τ2 if we prove that (W,C′,C′) ∈ KJ(τ1 → τ2)→ (τ1 → τ2)K�.
So, take W′wW, (W′,v, v) ∈ VJ(τ1 → τ2)→ (τ1 → τ2)K�. Then we need

to show that

(C′[v],C′[v]) = (C[fixτ1→τ2 v],C[fix v]) ∈ O(W′)�.

We have that C[fix v] ↪→C[fix v], so by Lemma 4, it suffices to prove that

(C[fixτ1→τ2 v],C[fix v]) ∈ O(W′)�

or, sufficiently, (W′,fixτ1→τ2 v,fix v) ∈ EJτ1 → τ2K�. We prove the latter for an
arbitrary W′, by induction on lev(W′), assuming that (W′,v, v) ∈ VJ(τ1 → τ2)→ (τ1 → τ2)K�.

Take (W′,C′′,C′′) ∈ KJτ1 → τ2K�, then we need to prove that (C′′[fixτ1→τ2 v],C′′[fix v]) ∈
O(W′)�. If lev(W′) = 0, then by Lemma 5, this is okay, so we assume that
lev(W′) > 0. From (W′,v, v) ∈ VJ(τ1 → τ2)→ (τ1 → τ2)K�, we get t and t
such that v = λx : τ1 → τ2. t and v = λx. t. We have that C′′[fixτ1→τ2 v] ↪→
C′′[t[(λ y : τ1. fixτ1→τ2 v y)/x]] and C′′[fix v] ↪→C′′[(λx. t) (λy.fix v y)] ↪→C′′[t[(λy.fix v y)/x]],
and by Lemma 4, it suffices to prove that (C′′[t[(λ y : τ1. fixτ1→τ2 v y)/x]],C′′[t[(λy.fix v y)/x]]) ∈
O(.W′)�. Note that since lev(W′) > 0, we have that lev(.W′) < lev(W′).

First, we prove that

(.W′, λ y : τ1.fixτ1→τ2 v y, λy.fix v y) ∈ VJτ1 → τ2K�.

By definition, this means proving, first, that ∅ ` λ y : τ1.fixτ1→τ2 v y : τ1 → τ2.
We know from (W′,v, v) ∈ VJ(τ1 → τ2)→ (τ1 → τ2)K� that ∅ ` v : (τ1 → τ2)→ (τ1 → τ2),
from which this easily follows. Secondly, we need to prove that for all W′′=. .W′,
for all (W′′,v′, v′) ∈ VJτ1K�, that (W′′,fixτ1→τ2 v v′,fix v v′) ∈ EJτ2K�. By in-
duction on lev(W′), we have that (W′′,fixτ1→τ2 v,fix v) ∈ EJτ1 → τ2K�, since
by monotonicity of VJ(τ1 → τ2)→ (τ1 → τ2)K�, we know that (W′′,v, v) ∈
VJ(τ1 → τ2)→ (τ1 → τ2)K�. The result now follows directly by Lemmas 10
and 23.

29

Now that we have shown

(.W′, λ y : τ1.fixτ1→τ2 v y, λy.fix v y) ∈ VJτ1 → τ2K�,

we still need to show that (C′′[t[(λ y : τ1. fixτ1→τ2 v y)/x]],C′′[t[(λy.fix v y)/x]]) ∈
O(.W′)�. Since .W′wW′, we have that (.W′,C′′,C′′) ∈ KJτ1 → τ2K� by
Lemma 12. Therefore, it suffices to prove that (.W′, t[(λ y : τ1. fixτ1→τ2 v y)/x], t[(λy. fix v y)/x]) ∈
EJτ1 → τ2K�. However, by definition of VJ(τ1 → τ2)→ (τ1 → τ2)K�, this fol-
lows directly from (W′,v, v) ∈ VJ(τ1 → τ2)→ (τ1 → τ2)K�, v = λx : τ1 → τ2. t
and v = λx. t and

(.W′, λ y : τ1.fixτ1→τ2 v y, λy.fix v y) ∈ VJτ1 → τ2K�.

Theorem 4 (Erase is semantics-preserving). If Γ ` t : τ , then Γ ` t �n erase(t) :
τ for all n.

Proof. The proof proceeds by induction on the type derivation of Γ ` t : τ . The
hypothesis H1 is that Γ ` t : τ .

Rules λτ -unit to λτ -false Here, t is a primitive value b inhabiting type B.
The thesis is: Γ ` b �n erase(b) : B.
By applying erase(·), the thesis becomes: Γ ` b �n b : B.
By definition of �n, the thesis consists of 2 parts, which both must hold:
(1)Γ ` b : B ∧ (2)∀W,∀(W, γ, γ) ∈ GJΓK�, (W, bγ, bγ) ∈ EJBK�
Part 1 holds because of hypothesis H1.
For part 2, note that substitutions (γand γ) do not affect b.
Part 2 becomes: ∀W, (W, b, b) ∈ EJBK�.
By Lemma 10, it suffices to prove that (W, b, b) ∈ VJBK�, which is true
by definition.

Rule λτ -Type-var Here, t is a variable x.
The thesis is: Γ ` x �n erase(x) : τ .
By applying erase(·), the thesis becomes: Γ ` x �n x : τ .
By definition of �n, the thesis consists of 2 parts, which both must hold:
(1)Γ ` x : τ ∧ (2)∀W,∀(W, γ, γ) ∈ GJΓK�, (W,xγ, xγ) ∈ EJτK�.
Part 1 holds because of hypothesis H1.
Let us now prove part 2.
By H1 we know that x ∈ dom(Γ).
By the definition of GJΓK�, we know that x ∈ dom(γ), that x ∈ dom(γ),
that we can replace xγ with v and xγ with v and that (W,v, v) ∈ VJτK�
(HV).
This case holds by applying Lemma 10 to HV.

30

Rule λτ -Type-fun Here, t is a lambda-abstraction of the form λx : τ ′.t while
τ is an arrow type of the form τ ′ → τ .
The thesis is: Γ ` λx : τ ′.t �n erase(λx : τ ′.t) : τ ′ → τ .
The inductive hypothesis IH is Γ, (x : τ ′) ` t �n erase(t) : τ .
The result follows from Lemma 21, since erase(λx : τ ′.t) = λx. erase(t).

Rule λτ -Type-pair Here, t is a pair of the form 〈t1, t2〉 while τ is a product
type of the form τ1 × τ2.
The thesis is: Γ ` 〈t1, t2〉 �n erase(〈t1, t2〉) : τ1 × τ2.
There are two inductive hypotheses IH1: Γ ` t1 �n erase(t1) : τ1 and
IH2: Γ ` t2 �n erase(t2) : τ2.
The result follows from Lemma 22, since erase(〈t1, t2〉) = 〈erase(t1), erase(t2)〉.

Rule λτ -Type-app Here, t is t1 t2.
The thesis is Γ ` t1 t2 �n erase(t1 t2) : τ .
We have two inductive hypotheses: IH1 = Γ ` t1 �n erase(t1) : τ ′ → τ
and IH2 = Γ ` t2 �n erase(t2) : τ ′.
The result follows from Lemma 23, since erase(t1 t2) = erase(t1) erase(t2).

Rule λτ -Type-proj1 Here, t is t1.1 while τ is τ1.
The thesis is Γ ` t1.1 �n erase(t1.1) : τ1.
There is one inductive hypothesis IH: Γ ` t1 �n erase(t1) : τ1 × τ2.
The result follows from Lemma 24, since erase(t1.1) = erase(t1).1.

Rule λτ -Type-inl Here, t is inl t1 while τ is τ1.
The thesis is Γ ` inl t1 �n erase(inl t1) : τ1] τ2.
There is one inductive hypothesis IH: Γ ` t1 �n erase(t1) : τ1.
The result follows from Lemma 26, since erase(inl t1) = inl erase(t1).

Rule λτ -Type-inr Here, t is inr t2 while τ is τ2.
The thesis is Γ ` inr t2 �n erase(inr t2) : τ1] τ2.
There is one inductive hypothesis IH: Γ ` t2 �n erase(t2) : τ2.
The result follows from Lemma 27, since erase(inr t2) = inl erase(t2).

Rule λτ -Type-case Here, t is case t of inl x1 7→ t1 | inr x2 7→ t2 while τ is
τ1] τ2.
The thesis is Γ ` case t of inl x1 7→ t1 | inr x2 7→ t2 �n erase(case t of inl x1 7→ t1 | inr x2 7→ t2) :
τ1] τ2.
There are three inductive hypotheses: Γ ` t �n erase(t) : τ1] τ2,
Γ, (x1 : τ1) ` t1 �n erase(t1) : τ1 and Γ, (x2 : τ2) ` t2 �n erase(t2) :
τ2.
The result follows from Lemma 28, since erase(case t of inl x1 7→ t1 | inr x2 7→ t2) =
case erase(t) of inl x1 7→ erase(t1) | inr x2 7→ erase(t2).

31

Rule λτ -Type-fix We have that t = fixτ1→τ2 e′. erase(fixτ1→τ2 e′) = fix erase(e′).
The result follows from the induction hypothesis and Lemma 31.

Rule λτ -Type-if We have that t = if t′ then t1 else t2. erase(if t′ then t1 else t2) =
if erase(t′) then erase(t1) else erase(t2)

The result follows from the induction hypotheses and Lemma 29.

Rule λτ -Type-seq : We have that t = t; t′. erase(t; t′) = erase(t);erase(t′)

The result follows from the induction hypotheses and Lemma 30.

Theorem 5 (Erasure is semantics preserving for contexts). For all C, if ` C :
Γ′, τ ′ → Γ, τ then ` C �n erase(C) : Γ′, τ ′ → Γ, τ .

Proof. Take t,t with Γ′ ` t �n t : τ ′. Then we need to show that Γ ` C[t] �n
erase(C)[t] : τ . We do this by induction on ` C : Γ′, τ ′ → Γ, τ .

The case for λτ -Type-Ctx-Hole is tautological. The other cases follow easily
using the compatibility lemmas: Lemmas 21 to 31.

5.3 Properties of dynamic type wrappers
This section proves additional results and then that protect is semantics pre-
serving Theorem 6.

Lemma 32 (Protected and confineed terms reduce). If v ∈ oftype(τ), then there
exists a v′ such that C[protectτ v] ↪→∗ C[v′] for any C and v′ ∈ oftype(τ) and
there exists a v′′ such that C[confineτ v] ↪→∗ C[v′′] for any C and v′′ ∈ oftype(τ).

Proof. By induction on τ .

• τ = B for some B: For any C, we have that C[protectB v] ↪→C[v]. We
already know that v ∈ oftype(Bool).
For B = Unit, we have that

C[confineUnit v] ↪→C[v; unit]

From v ∈ oftype(Unit), we get that v = unit, from which we get that

C[v; unit] ↪→C[v]

We already know that v ∈ oftype(Unit).
For B = Bool, we have that

C[confineBool v] ↪→C[if v then true else false]

From v ∈ oftype(Bool), we get that v = true or v = false, from which
we get that

C[if v then true else false] ↪→C[v]

We already know that v ∈ oftype(Bool).

32

• τ = τ1 × τ2: By definition of oftype(τ1 × τ2), we have that v = 〈v1, v2〉
with v1 ∈ oftype(τ1) and v2 ∈ oftype(τ2).

For any C, we have that

C[protectτ1×τ2 v] ↪→C[〈protectτ1 v.1, protectτ2 v.2〉] ↪→
C[〈protectτ1 v1, protectτ2 v.2〉] ↪→∗ C[〈v′1, protectτ2 v.2〉] ↪→

C[〈v′1, protectτ2 v2〉] ↪→∗ C[〈v′1, v′2〉]

where we use the induction hypotheses to obtain v′1 and v′2 such that
the relevant parts of the above evaluation hold. The fact that 〈v′1, v′2〉 ∈
oftype(τ1 × τ2) follows from the definition and the corresponding results
of the induction hypotheses.

The proof for confineτ1×τ2 is symmetric.

• τ = τ1] τ2: By definition of oftype(τ1] τ2), we have that v = inl v1 with
v1 ∈ oftype(τ1) or v = inr v1 with v2 ∈ oftype(τ2). We give the proof for
the first case, the other case is similar.

For any C, we have that

C[protectτ1]τ2 v] ↪→
C[case v of inl x1 7→ inl (protectτ1 x1) | inr x2 7→ inr (protectτ2 x2)] ↪→

C[inl (protectτ1 v1)] ↪→C[inl v′1]

where we use the induction hypotheses to obtain a v′1 such that the relevant
part of the above evaluation holds. The fact that inl v′1 ∈ oftype(τ1] τ2)
follows from the definition and the corresponding result of the induction
hypothesis.

The proof for confineτ1]τ2 is symmetric.

• τ = τ1 → τ2: For any C, we have that

C[protectτ1→τ2 v] ↪→C[λx.protectτ2 (v (confineτ1 x))]

and

C[confineτ1→τ2 v] ↪→C[λx.confineτ2 (v (protectτ1 x))].

The fact that λx.protectτ2 (v (confineτ1 x)) ∈ oftype(τ1 → τ2) and λx.confineτ2 (v (protectτ1 x)) ∈
oftype(τ1 → τ2) follows from the definition.

Lemma 33 (Related protected terms reduce and they are still related). For
any τ ,

If (W,v, v) ∈ VJτK�, then

33

• there exists a v′ such that C[protectτ v] ↪→∗ C[v′] for any context C and
(W,v, v′) ∈ VJτK�.

• there exists a v′′ such that C[confineτ v] ↪→∗ C[v′′] for any context C and
(W,v, v′′) ∈ VJτK�.

Proof. We prove this by induction on τ .

• τ = B: We have that protectB = λy. y and

confineUnit = λy. y; unit

confineBool = λy. if y then true else false

From (W,v, v) ∈ VJUnitK�, we get that v = v = unit and from (W,v, v) ∈
VJBoolK�, we get that v = v = v with v ∈ {true, false}.
For protectB, it’s clear that C[protectB v] ↪→C[v] and that (W,v, v) ∈
VJBK�.

For confineB, we can prove in all cases that

C[confineB v]↪→∗C[v]

and it is clear that (W,v, v) ∈ VJBK�.

• τ = τ1 → τ2: We have (by definition) that

protectτ1→τ2 = λy. λx.protectτ2 (y (confineτ1 x))

and

confineτ1→τ2 = λy. λx. confineτ2 (y (protectτ1 x)).

We do the proof for protectτ1→τ2 , the proof for confineτ1→τ2 is symmetric.

We have that C[protectτ1→τ2 v] ↪→C[λx. protectτ2 (v (confineτ1 x))]. Now
we need to prove that (W,v, λx. protectτ2 (v (confineτ1 x))) ∈ VJτ1 → τ2K�.

From (W,v, v) ∈ VJτ1 → τ2K�, we have that ∅ ` v : τ1 → τ2, and
that there exist t and t such that v = λx : τ1. t and v = λx. t. It re-
mains to prove that for any W′=. W, (W′,v′, v′) ∈ VJτ1K�, we have that
(W′, t[v′/x], protectτ2 (v (confineτ1 v′))) ∈ EJτ2K�.
So, take (W′,C,C) ∈ KJτ2K�, then we need to prove

(C[t[v′/x]],C[protectτ2 (v (confineτ1 v′))]) ∈ O(W′)�.

Since C[protectτ2 (v ·)] is an evaluation context and (W′,v′, v′) ∈ VJτ1K�,
we have by induction that

C[protectτ2 (v (confineτ1 v′))] ↪→∗ C[protectτ2 (v v′′)]

34

for some v′′ such that (W′,v′, v′′) ∈ VJτ1K�. By Lemma 4, it suffices to
prove that

(C[t[v′/x]],C[protectτ2 (v v′′)]) ∈ O(W′)�.

Furthermore, we have that

C[protectτ2 (v v′′)] ↪→C[protectτ2 (t[v′′/x])]

and again by Lemma 4, it suffices to prove that

(C[t[v′/x]],C[protectτ2 (t[v′′/x])]) ∈ O(W′)�.

From (W,v, v) ∈ VJτ1 → τ2K� and (W′,v′, v′′) ∈ VJτ1K�, we have that
(W′, t[v′/x], t[v′′/x]) ∈ EJτ2K�. It then suffices to prove that (W′,C,C[protectτ2 ·]) ∈
KJτ2K�.

So, take W′′wW′ and (W′′,v′′′, v′′′) ∈ VJτ2K�. Then it suffices to prove
that (C[v′′′],C[protectτ2 v′′′]) ∈ O(W′′)�. Again, we have by induction
that C[protectτ2 v′′′] ↪→∗ C[v′′′′] for some v′′′′ with (W′′,v′′′, v′′′′) ∈ VJτ2K�.
By Lemma 4, it suffices to prove that (C[v′′′],C[v′′′′]) ∈ O(W′′)�. We still
have (W′′,C,C) ∈ KJτ2K� by public world monotonicity, so that the result
follows in combination with (W′′,v′′′, v′′′′) ∈ VJτ2K�.

• τ = τ1 × τ2: We have (by definition) that

protectτ1×τ2 = λy. 〈protectτ1 y.1, protectτ2 y.2〉

and
confineτ1×τ2 = λy. 〈confineτ1 y.1, confineτ2 y.2〉.

We do the proof for protectτ1×τ2 , the proof for confineτ1×τ2 is symmetric.

We know from (W,v, v) ∈ VJτ1 × τ2K� that v = 〈v1,v2〉 and v = 〈v1, v2〉
for some v1,v2, v1, v2 and that (W,v1, v1) ∈ . VJτ1K� and (W,v2, v2) ∈
. VJτ2K�. We also have that v ∈ oftype(τ1 × τ2), which implies that
v1 ∈ oftype(τ1) and v2 ∈ oftype(τ2).

If lev(W) = 0, then we use Lemma 32 to obtain v′1 and v′2 such that for
any C

C[〈protectτ1 v1, protectτ2 v.2〉] ↪→∗ C[〈v′1, protectτ2 v.2〉]

and
C[〈v′1, protectτ2 v2〉] ↪→∗ C[〈v′1, v′2〉],

and v′1 ∈ oftype(τ1) and v′2 ∈ oftype(τ2). We then have for any C that

C[protectτ1×τ2 v] ↪→C[〈protectτ1 v.1, protectτ2 v.2〉] ↪→
C[〈protectτ1 v1, protectτ2 v.2〉] ↪→∗ C[〈v′1, protectτ2 v.2〉] ↪→

C[〈v′1, protectτ2 v2〉] ↪→∗ C[〈v′1, v′2〉],

35

We then also have that (W, 〈v1,v2〉, 〈v′1, v′2〉) ∈ VJτ1 × τ2K� by definition
and by the fact that (W,v1, v

′
1) must be in . VJτ1K because lev(W) = 0

and similarly (W,v2, v
′
2) ∈ . VJτ2K.

If lev(W) > 0, then we have that (.W,v1, v1) ∈ VJτ1K� and (.W,v2, v2) ∈
VJτ2K�. We have for any C that

C[protectτ1×τ2 v] ↪→C[〈protectτ1 v.1, protectτ2 v.2〉] ↪→
C[〈protectτ1 v1, protectτ2 v.2〉] ↪→∗ C[〈v′1, protectτ2 v.2〉] ↪→

C[〈v′1, protectτ2 v2〉] ↪→∗ C[〈v′1, v′2〉],

where we use the induction hypotheses to obtain v′1 and v′2 such that

C[〈protectτ1 v1, protectτ2 v.2〉] ↪→∗ C[〈v′1, protectτ2 v.2〉]

and
C[〈v′1, protectτ2 v2〉] ↪→∗ C[〈v′1, v′2〉].

The induction hypotheses also give us that (.W,v1, v
′
1) ∈ VJτ1K� and

(.W,v2, v
′
2) ∈ VJτ2K�.

It remains to prove that (W, 〈v1,v2〉, 〈v′1, v′2〉) ∈ VJτ1 × τ2K�, but this
follows easily by definition and by Lemma 17.

• τ = τ1] τ2: We have (by definition) that

protectτ1]τ2 = λy. case y of inl x1 7→ inl (protectτ1 x1) | inr x2 7→ inr (protectτ2 x2)

and

confineτ1]τ2 = λy. case y of inl x1 7→ inl (confineτ1 x1) | inr x2 7→ inr (confineτ2 x2).

We do the proof for protectτ1]τ2 , the proof for confineτ1]τ2 is symmetric.

We know from (W,v, v) ∈ VJτ1] τ2K� that either v = inl v1 and v =
inl v1 for some v1, v1 with (W,v1, v1) ∈ . VJτ1K� or v = inr v2 and
v = inr v2 for some v2, v2 with (W,v2, v2) ∈ . VJτ2K�. We complete the
proof for the first case, the other one is similar.

If lev(W) = 0, then we use Lemma 32 to obtain v′1 and v′2 such that for
any C

C[inl (protectτ1 v1)] ↪→∗ C[inl v′1],

and v′1 ∈ oftype(τ 1). We then have for any C that

C[protectτ1]τ2 v] ↪→
C[case v of inl x1 7→ inl (protectτ1 x1) | inr x2 7→ inr (protectτ2 x2)] ↪→

C[inl (protectτ1 v1)] ↪→∗ C[inl v′1],

We then also have that (W, 〈v1,v2〉, 〈v′1, v′2〉) ∈ VJτ1] τ2K� by definition
and by the fact that (W,v1, v

′
1) must be in . VJτ1K because lev(W) = 0.

36

If lev(W) > 0, then we have that (.W,v1, v1) ∈ VJτ1K� and (.W,v2, v2) ∈
VJτ2K�. We have for any C that

C[protectτ1]τ2 v] ↪→
C[case v of inl x1 7→ inl (protectτ1 x1) | inr x2 7→ inr (protectτ2 x2)] ↪→

C[inl (protectτ1 v1)] ↪→∗ C[inl v′1],

where we use the induction hypotheses to obtain v′1 such that

C[inl (protectτ1 v1)] ↪→∗ C[inl v′1]

The induction hypotheses also give us that (.W,v1, v
′
1) ∈ VJτ1K�. It

remains to prove that (W,v, inl v′1) ∈ VJτ1] τ2K�, but this follows easily
by definition and Lemma 17.

Theorem 6 (Protect and confine are semantics preserving). For any n, if
Γ ` t1 �n t2 : τ then Γ ` t1 �n protectτ t2 : τ and Γ ` t1 �n confineτ t2 : τ .

Proof. We only prove the part about protectτ , the result about confineτ is sim-
ilar.

Take W with lev(W) ≤ n, (W, γ, γ) ∈ GJΓK�. Then we need to show that
(W, tγ, protectτ tγ) ∈ EJτK�. From Γ ` t �n t : τ , we have that (W, tγ, tγ) ∈
EJτK�, so that by Lemma 19, it suffices to prove that for all W′wW, (W′,v, v) ∈
VJτK�, we have that (W′,v, protectτ v) ∈ EJτK�.

So, take (W′,C,C) ∈ KJτK�, then we need to show that (C[v],C[protectτ v]) ∈
O(W′)�. From Lemma 33, we get a v′ such that C[protectτ v] ↪→∗ C[v′] and
(W′,v, v′) ∈ VJτK�. By Lemma 4, it suffices to prove that (C[v],C[v′]) ∈
O(W′)�. This now follows directly from (W′,C,C) ∈ KJτK� with (W′,v, v′) ∈
VJτK�.

5.4 Contextual equivalence reflection

Theorem 7 (J·Kλ
τ

λu is semantics preserving). For all t, if Γ ` t : τ then Γ `
t �n JtKλ

τ

λu : τ .

Proof. By definition, we have that JtKλ
τ

λu = protectτ erase(t). From Γ ` t : τ ,
we get Γ ` t �n erase(t) : τ by Theorem 4. By Theorem 6, we get that
Γ ` t �n protectτ erase(t) : τ as required.

Theorem 8 (J·Kλ
τ

λu reflects equivalence). If ∅ ` t1 : τ , ∅ ` t2 : τ and ∅ `
protectτ erase(t1)'ctx protectτ erase(t2), then ∅ ` t1'ctx t2 : τ .

Proof. Take C so that ` C : ∅, τ→∅, τ ′. We need to prove that C[t1]⇓ iff C[t2]⇓.
By symmetry, it suffices to prove the ⇒ direction. So assume that C[t1]⇓, then
we need to prove that C[t2]⇓.

37

Define C
def
= erase(C), then Theorem 5 tells us that ` C �n C : ∅, τ→∅, τ ′.

From Theorem 7, we get that ∅ ` t1 �n Jt1K
λτ

λu : τ and ∅ ` t2 �n Jt2K
λτ

λu : τ .
By definition of ` C �n C : ∅, τ→∅, τ ′, we get that ∅ ` C[t1] �n C[Jt1K

λτ

λu] : τ ′

and ∅ ` C[t2] �n C[Jt2K
λτ

λu] : τ ′.
By Lemma 16, C[t1]⇓ and ∅ ` C[t1] �n C[Jt1K

λτ

λu] : τ ′ imply that C[Jt1K
λτ

λu]⇓.
From ∅ ` Jt1K

λτ

λu 'ctx Jt2K
λτ

λu and C[Jt1K
λτ

λu]⇓, we get that C[Jt2K
λτ

λu]⇓, since by
Lemma 18, we get ` C : ∅→∅ from ` C : ∅, τ→∅, τ ′.

By Lemma 16, we now get that C[t2]⇓ from ∅ ` C[t2] �n C[Jt2K
λτ

λu] : τ ′ and
C[Jt2K

λτ

λu]⇓.

38

6 Equivalence preservation and emulation
This section defines UVal (Section 6.1) and clarifies EmulDV (Section 6.2). Then
it introduces upgrade and downgrade (Section 6.3), inject and extract (Sec-
tion 6.4) and emulate (Section 6.5). Finally it defines the approximate back-
translation (Section 6.6) and it proves compiler security (Section 6.7).

6.1 n-approximate UVal

We define a family of λτ types UVal:

UVal0
def
= Unit

UValn+1
def
= Unit] Unit] Bool] (UValn ×UValn)] (UValn → UValn)] (UValn]UValn)

Note: in UValn+1, the first Unit represents an emulation of an unknown value
and the second Unit represents the emulation of an actual Unit value. We
define the following functions with the obvious implementations:

inunk;n : UValn+1

inUnit;n : Unit→ UValn+1

inBool;n : Bool→ UValn+1

in×;n : (UValn ×UValn)→ UValn+1

in];n : (UValn]UValn)→ UValn+1

in→;n : (UValn → UValn)→ UValn+1

We also define a convenience meta-level function for constructing an un-
known UValn for an arbitrary n:

unkn : UValn

unk0
def
= unit

unkn+1
def
= inunk;n

39

We also define the following functions:

omegaτ : τ

omegaτ
def
= fixunit→τ (λx : unit→ τ .x) unit

caseUnit;n : UValn+1 → Unit

caseBool;n : UValn+1 → Bool

case×;n : UValn+1 → (UValn ×UValn)

case];n : UValn+1 → (UValn]UValn)

case→;n : UValn+1 → UValn → UValn

caseUnit;n
def
= λx : UValn+1. case x of {inUnit;n x 7→ x;_ 7→ omegaUnit}

caseBool;n
def
= λx : UValn+1. case x of {inBool;n x 7→ x;_ 7→ omegaBool}

case×;n
def
= λx : UValn+1. case x of {in×;n x 7→ x;_ 7→ omega(UValn×UValn)}

case];n
def
= λx : UValn+1. case x of {in];n x 7→ x;_ 7→ omega(UValn]UValn)}

case→;n
def
= λx : UValn+1. λy : UValn. case x of {in→;n z 7→ z y;_ 7→ omegaUValn}

Lemma 34 (omega diverges). For any τ and any evaluation context C, C[omegaτ]⇑,
i.e. it diverges.

Proof. We have the following:

C[omegaτ] = C[fixunit→τ (λx : unit→ τ .x) unit] ↪→
C[(λy : unit.fixunit→τ (λx : unit.x) y) unit] ↪→

C[fixunit→τ (λx : unit.x) unit] = C[omegaτ]

In summary, C[omegaτ] ↪→2 C[omegaτ], so that it must diverge.

6.2 EmulDV specification
We use an indexed definition of EmulDVn;p that takes into account the fact that
we have a step-indexed UVal now. In fact, we need two indices n and p. The
first index n is a non-negative number which determines the type of the λτ term,
i.e. if (W,v, v) ∈ VJEmulDVn;pK, then we must have that ∅ ` v : UValn. The
index p must either be precise or imprecise and determines the level up to
which the term is accurate. If p is imprecise, the term may contain inunk;n

values corresponding to arbitrary λu values. However, if p is precise, it must
not contain inunk;n, at least up to the level determined by the amount of steps
in the world.

40

6.3 Upgrade/downgrade
We define the following functions:

downgraden;d : UValn+d → UValn

downgrade0;d
def
= λv : UVald.unit

downgraden+1;d
def
= λx : UValn+d+1. case x of

inunk;n+d 7→ inunk;n;

inUnit;n+d y 7→ inUnit;n y;

inBool;n+d y 7→ inBool;n y;

in×;n+d y 7→ in×;n 〈downgraden;d y.1,downgraden;d y.2〉;
in];n+d y 7→ in];n case y of inl x 7→ inl (downgraden;d x); inr x 7→ inr (downgraden;d x)

in→;n+d y 7→ in→;n (λz : UValn.downgraden;d (y (upgraden;d z)))

upgraden;d : UValn → UValn+d

upgrade0;d
def
= λx : UVal0.unkd

upgraden+1;d
def
= λx : UValn+1. case x of

inunk;n 7→ inunk;n+d;

inUnit;n y 7→ inUnit;n+d y;

inBool;n y 7→ inBool;n+d y;

in×;n y 7→ in×;n+d 〈upgraden;d y.1,upgraden;d y.2〉;
in];n y 7→ in];n+d case y of inl x 7→ inl (upgraden;d x); inr x 7→ inr (upgraden;d x)

in→;n y 7→ in→;n+d (λz : UValn.upgraden;d (y (downgraden;d z)))

Lemma 35 (Upgrade and downgrade are well-typed). For all n, d, upgraden;d :
UValn → UValn+d and downgraden;d : UValn+d → UValn.

Proof. Easily verified.

Lemma 36 (Upgrade and downgrade reduce). If ∅ ` v : UValn+d, then for any
C, C[downgraden;d v] ↪→∗ C[v′] for some v′.

If ∅ ` v : UValn, then for any C, C[upgraden;d v] ↪→∗ C[v′] for some v′.

Proof. Take ∅ ` v : UValn+d and an arbitrary C. We prove that C[downgraden;d v] ↪→∗
C[v′] by induction on the structure of v.

If n = 0, then we have that C[downgraden;d v] = C[(λx : UVald.unit) v] ↪→C[unit].
For n+1, we have by a standard canonicity lemma, that one of the following

holds:

• v = inunk;n+d. In this case, we have that

C[downgraden+1;d v] ↪→C[inunk;n]

41

• v = inUnit;n+d v′. In this case, we have that

C[downgraden+1;d v] ↪→C[inUnit;n v′]

• v = inBool;n+d v′. In this case, we have that

C[downgraden+1;d v] ↪→C[inBool;n v′]

• v = in×;n+d 〈v1,v2〉 with v1 ∈ oftype(UValn+d) and v2 ∈ oftype(UValn+d).
In this case, we have that

C[downgraden+1;d v] ↪→C[in×;n(〈downgraden;d v.1,downgraden;d v.2〉)] ↪→
C[in×;n(〈downgraden;d v1,downgraden;d v.2〉)] ↪→∗

C[in×;n(〈v′1,downgraden;d v.2〉)] ↪→
C[in×;n(〈v′1,downgraden;d v2〉)] ↪→∗ C[in×;n(〈v′1,v′2〉)]

where we use the fact that by induction C[downgraden;d v1] ↪→∗ C[v′1]
and C[downgraden;d v2] ↪→∗ C[v′2] for some v′1,v

′
2 for any C.

• v = in];n+d(inl v1) with v1 ∈ oftype(UValn+d) or v = in];n+d(inr v2)
with v2 ∈ oftype(UValn+d). We only treat the first case, the other is
similar. We then have that

C[downgraden+1;d v] ↪→ C[in];n(inl (downgraden;d v1))] ↪→∗ C[in];n(inl v′1)]

where we use the fact that by induction C[downgraden;d v1] ↪→∗ C[v′1] for
some v′1 for any C.

• v = in→;n+d(v′) with v ∈ oftype(UValn+d → UValn+d). We then have
that

C[downgraden+1;d v] ↪→
C[in→;n(λz : UValn.downgraden;d (y (upgraden;d z)))],

which is clearly a value.

Now take v ∈ oftype(UValn). We prove that C[upgraden;d v] ↪→∗ C[v′] by
induction on the structure of v.

If n = 0, then we have that C[upgraden;d v] = C[(λx : UVal0.unkd) v] ↪→C[unkd],
and we know that unkd is always a value.

For n+1, we have by a standard canonicity lemma, that one of the following
holds:

• v = inunk;n. In this case, we have that

C[upgraden+1;d v] ↪→C[inunk;n+d]

42

• v = inUnit;n(v′). In this case, we have that

C[upgraden+1;d v] ↪→C[inUnit;n+d(v′)]

• v = inBool;n(v′). In this case, we have that

C[upgraden+1;d v] ↪→C[inBool;n+d(v′)]

• v = in×;n(〈v1,v2〉) with v1 ∈ oftype(UValn) and v2 ∈ oftype(UValn).
In this case, we have that

C[upgraden+1;d v] ↪→C[in×;n+d(〈upgraden;d v.1,upgraden;d v.2〉)] ↪→
C[in×;n+d(〈upgraden;d v1,upgraden;d v.2〉)] ↪→∗

C[in×;n+d(〈v′1,upgraden;d v.2〉)] ↪→
C[in×;n+d(〈v′1,upgraden;d v2〉)] ↪→∗ C[in×;n+d(〈v′1,v′2〉)]

where we use the fact that by induction C[upgraden;d v1] ↪→∗ C[v′1] and
C[upgraden;d v2] ↪→∗ C[v′2] for some v′1,v

′
2 for any C.

• v = in];n(inl v1) with v1 ∈ oftype(UValn) or v = in];n(inr v2) with
v2 ∈ oftype(UValn). We only treat the first case, the other is similar.
We then have that

C[upgraden+1;d v] ↪→C[in];n+d(inl (upgraden;d v.1))] ↪→
C[in];n+d(inl (upgraden;d v1))] ↪→∗ C[in];n+d(inl v′1)]

where we use the fact that by induction C[upgraden;d v1] ↪→∗ C[v′1] for
some v′1 for any C.

• v = in→;n(v′) with v ∈ oftype(UValn → UValn). We then have that

C[upgraden+1;d v] ↪→
C[in→;n+d(λz : UValn+d.upgraden;d (y (downgraden;d z)))],

which is clearly a value.

Lemma 37 (Related upgraded terms reduce and they are still related). If
(lev(W) < n and p = precise) or (� =. and p = imprecise), and if
(W,v, v) ∈ VJEmulDVn+d;pK�, then there exists a v′ such that C[downgraden;d v] ↪→∗
C[v′] for any C and (W,v′, v) ∈ VJEmulDVn;pK�.

If (lev(W) < n and p = precise) or (� =. and p = imprecise), then if
(W,v, v) ∈ VJEmulDVn;pK�, then there exists a v′ such that C[upgraden;d v] ↪→∗
C[v′] for any C and (W,v′, v) ∈ VJEmulDVn+d;pK�.

43

Proof. We prove both results simultaneously by induction on n.
If n = 0, then take (W,v, v) ∈ VJEmulDVn+d;pK�. We have that downgrade0;d =

λv : UVald.unit, so that C[downgrade0;d v] ↪→C[unit] for any C. By definition
of VJEmulDV0;pK, we have that (W,unit, v) ∈ VJEmulDV0;pK�.

Still if n = 0, take (W,v, v) ∈ VJEmulDVn;pK�. We have that upgrade0;d =
λx : UVal0.unkd, so that C[upgrade0;d v] ↪→C[unkd] for any C. If p = imprecise,
then we have by definition that (W,unkd, v) ∈ VJEmulDVd;pK�. lev(W) < n = 0
is not possible.

So now let us prove the results for n+ 1. We have that

downgraden+1;d
def
= λx : UValn+d+1. case x of

inunk;n+d 7→ inunk;n;

inUnit;n+d y 7→ inUnit;n y;

inBool;n+d y 7→ inBool;n y;

in×;n+d y 7→ in×;n 〈downgraden;d y.1,downgraden;d y.2〉;
in];n+d y 7→ in];n case y of inl x 7→ inl (downgraden;d x); inr x 7→ inr (downgraden;d x)

in→;n+d y 7→ in→;n (λz : UValn.downgraden;d (y (upgraden;d z)))

and

upgraden+1;d
def
= λx : UValn+1. case x of

inunk;n 7→ inunk;n+d;

inUnit;n y 7→ inUnit;n+d y;

inBool;n y 7→ inBool;n+d y;

in×;n y 7→ in×;n+d 〈upgraden;d y.1,upgraden;d y.2〉;
in];n y 7→ in];n+d case y of inl x 7→ inl (upgraden;d x); inr x 7→ inr (upgraden;d x)

in→;n y 7→ in→;n+d (λz : UValn.upgraden;d (y (downgraden;d z)))

If (W,v, v) ∈ VJEmulDVn+d+1;pK�, then we have by definition that one of the
following must hold:

• v = inunk;n+d and p = imprecise. We know that C[downgraden+1;d inunk;n+d] ↪→∗
C[inunk;n]. It follows directly that (W, inunk;n, v) ∈ VJEmulDVn+1;pK�,
since p = imprecise.

• ∃v′.v = inB;n+d(v′) and (W,v′, v) ∈ VJBK�. In this case, we have for
any C that

C[downgraden+1;d v] ↪→∗ C[inB;n(v′)],

for any C and it remains to prove that (W, inB;n(v′), v) ∈ VJEmulDVn+1;pK�,
but this follows immediately by definition of VJEmulDVn+1;pK�.

• ∃v′.v = in×;n+d(v′) and (W,v′, v) ∈ VJEmulDVn+d;p × EmulDVn+d;pK�.
The latter implies that v′ = 〈v1,v2〉 and v = 〈v1, v2〉 for v1,v2,v1, v2 with
(W,v1, v1) ∈ . VJEmulDVn+d;pK� and (W,v2, v2) ∈ . VJEmulDVn+d;pK�.

44

If lev(W) = 0, then we know by Lemma 17 that v′ ∈ oftype(EmulDVn+d;p × EmulDVn+d;p),
from which it follows that v1 ∈ oftype(EmulDVn+d;p) and v2 ∈ oftype(EmulDVn+d;p),
i.e. ∅ ` v1 : UValn+d and ∅ ` v2 : UValn+d. By Lemma 36, we
then get v′1,v

′
2 such that C[downgraden;d v1] ↪→∗ C[v′1] for any C and

C[downgraden;d v2] ↪→∗ C[v′2] for any C. It follows for any C that

C[downgraden+1;d v] ↪→∗

C[in×;n(〈downgraden;d v.1,downgraden;d v.2〉)] ↪→
C[in×;n(〈downgraden;d v1,downgraden;d v.2〉)] ↪→∗

C[in×;n(〈v′1,downgraden;d v.2〉)] ↪→
C[in×;n+d(〈v′1,downgraden;d v2〉)] ↪→∗

C[in×;n(〈v′1,v′2〉)]

and we have that (W, in×;n(〈v′1,v′2〉), 〈v1, v2〉) ∈ VJEmulDVn+1;pK� by def-
inition and by the fact that lev(W) = 0.

If lev(W) > 0, then we have that (.W,v1, v1) ∈ VJEmulDVn+d;pK� and
(.W,v2, v2) ∈ VJEmulDVn+d;pK�.

By induction, we have that C[downgraden;d v1] ↪→∗ v′1 and C[downgraden;d v2] ↪→∗
v′2 for some v′1,v

′
2 with (.W,v′1, v1) ∈ VJEmulDVn;pK� and (.W,v′2, v2) ∈

VJEmulDVn;pK�.

We then also have for any C that

C[downgraden+1;d v] ↪→∗

C[in×;n(〈downgraden;d v.1,downgraden;d v.2〉)] ↪→
C[in×;n(〈downgraden;d v1,downgraden;d v.2〉)] ↪→∗

C[in×;n(〈v′1,downgraden;d v.2〉)] ↪→
C[in×;n(〈v′1,downgraden;d v2〉)] ↪→∗

C[in×;n(〈v′1,v′2〉)]

and we have that (W, in×;n(〈v′1,v′2〉), 〈v1, v2〉) ∈ VJEmulDVn;pK� by defini-
tion and by the facts that (.W,v′1, v1) ∈ VJEmulDVn;pK� and (.W,v′2, v2) ∈
VJEmulDVn;pK�.

• ∃v′.v = in];n+d(v′) and (W,v′, v) ∈ VJEmulDVn+d;p] EmulDVn+d;pK�.
Similar to the previous case.

• ∃v′.v = in→;n+d(v′) and (W,v′, v) ∈ VJEmulDVn+d;p → EmulDVn+d;pK�.
We have that

C[downgraden+1;d v] ↪→∗

C[in→;n (λz : UValn.downgraden;d (v′ (upgraden;d z)))]

45

It remains to show that

(W, λz : UValn.downgraden;d (v′ (upgraden;d z)), v) ∈
VJEmulDVn;p → EmulDVn;pK�.

From (W,v′, v) ∈ VJEmulDVn+d;p → EmulDVn+d;pK�, we have that v′ =
λx : UValn+d. t and v = λx. t for some t, t.

We need to prove that λz : UValn.downgraden;d (v′ (upgraden;d z)) in oftype(EmulDVn;p → EmulDVn;p),
which follows from Lemma 35 and rule λτ -Type-fun.

Now take W′=. W, (W′,v′′, v′′) ∈ VJEmulDVn;pK�, then we need to show
that

(W′,downgraden;d (v′ (upgraden;d v′′)), t[v′′/x]) ∈ EJEmulDVn;pK�.

By induction, we get a v′′′ such that C[upgraden;d v′′] ↪→∗ C[v′′′] for any C
and (W′,v′′′, v′′) ∈ VJEmulDVn+d;pK�. We also have that C[v′ v′′′] ↪→C[t[v′′′/x]].
By Lemma 8, it suffices to prove that

(W′,downgraden;d (t[v′′′/x]), t[v′′/x]) ∈ EJEmulDVn;pK�.

Since we know that (W,v′, v) ∈ VJEmulDVn+d;p → EmulDVn+d;pK�, W′=. W
and (W′,v′′′, v′′) ∈ VJEmulDVn+d;pK�, it follows that

(W′, t[v′′′/x], t[v′′/x]) ∈ EJEmulDVn+d;pK�.

By Lemma 19, it now suffices to show that for all W′′wW′, (W′′,v4, v4) ∈
VJEmulDVn+d;pK�, we have that (W′′,downgraden;d v4, v4) ∈ EJEmulDVn;pK�.
By induction, we get that C[downgraden;d v4] ↪→∗ C[v5] for any C, for
some v5 with (W′′,v5, v4) ∈ VJEmulDVn+d;pK�. By Lemma 8, it suffices
to prove that (W′′,v5, v4) ∈ EJEmulDVn;pK�, but this follows directly using
Lemma 10.

Now take (W,v, v) ∈ VJEmulDVn+1;pK�. then we have by definition that one
of the following must hold:

• v = inunk;n and p = imprecise. We have that C[upgraden+1;d v] ↪→∗
C[inunk;n+d] for any C. It follows directly that (W,v′, v) ∈ VJEmulDVn+d+1;pK�,
since p = imprecise.

• ∃v′.v = inB;n(v′) and (W,v′, v) ∈ VJBK�. In this case, we have for any
C that

C[upgraden+1;d v] ↪→∗ C[inB;n+d(v′)],

for any C and it remains to prove that (W, inB;n+d(v′), v) ∈ VJEmulDVn+d+1;pK�,
but this follows immediately by definition of VJEmulDVn+d+1;pK�.

46

• ∃v′.v = in×;n(v′) and (W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�. The
latter implies that v′ = 〈v1,v2〉 and v = 〈v1, v2〉 for v1,v2,v1, v2 with
(W,v1, v1) ∈ . VJEmulDVn;pK� and (W,v2, v2) ∈ . VJEmulDVn;pK�.

If lev(W) = 0, then we know by Lemma 17 that v′ ∈ oftype(EmulDVn;p × EmulDVn;p),
from which it follows that v1 ∈ oftype(EmulDVn;p) and v2 ∈ oftype(EmulDVn;p),
which imply ∅ ` v1 : UValn and ∅ ` v2 : UValn. By Lemma 36, we then
get v′1,v

′
2 such that C[upgraden;d v1] ↪→∗ C[v′1] and C[upgraden;d v2] ↪→∗

C[v′2] for any C. It follows for any C that

C[upgraden+1;d v] ↪→∗

C[in×;n+d(〈upgraden;d v.1,upgraden;d v.2〉)] ↪→
C[in×;n+d(〈upgraden;d v1,upgraden;d v.2〉)] ↪→∗

C[in×;n+d(〈v′1,upgraden;d v.2〉)] ↪→
C[in×;n+d(〈v′1,upgraden;d v2〉)] ↪→∗

C[in×;n+d(〈v′1,v′2〉)]

and we have that (W, in×;n+d(〈v′1,v′2〉), 〈v1, v2〉) ∈ VJEmulDVn+d+1;pK� by
definition and by the fact that lev(W) = 0.

If lev(W) > 0, then we have that (.W,v1, v1) ∈ VJEmulDVn;pK� and
(.W,v2, v2) ∈ VJEmulDVn;pK�.

By induction, we have for any C that C[upgraden;d v1] ↪→∗ v′1 and C[upgraden;d v2] ↪→∗
v′2 for some v′1,v

′
2 with (.W,v′1, v1) ∈ VJEmulDVn+d;pK� and (.W,v′2, v2) ∈

VJEmulDVn+d;pK�.

We then also have for any C that

C[upgraden+1;d v] ↪→∗

C[in×;n+d(〈upgraden;d v.1,upgraden;d v.2〉)] ↪→
C[in×;n+d(〈upgraden;d v1,upgraden;d v.2〉)] ↪→∗

C[in×;n+d(〈v′1,upgraden;d v.2〉)] ↪→
C[in×;n+d(〈v′1,upgraden;d v2〉)] ↪→∗

C[in×;n+d(〈v′1,v′2〉)]

and we have that (W, in×;n+d(〈v′1,v′2〉), 〈v1, v2〉) ∈ VJEmulDVn+d+1;pK�
by definition and by the facts that (.W,v′1, v1) ∈ VJEmulDVn;pK� and
(.W,v′2, v2) ∈ VJEmulDVn;pK�.

• ∃v′.v = in];n(v′) and (W,v′, v) ∈ VJEmulDVn] EmulDVn;pK�. Similar to
the previous case.

• ∃v′.v = in→;n(v′) and (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�.

C[upgraden+1;d v] ↪→∗

C[in→;n+d (λz : UValn+d.upgraden;d (v′ (downgraden;d z)))]

47

It remains to show that

(W, λz : UValn+d.upgraden;d (v′ (downgraden;d z)), v) ∈
VJEmulDVn+d;p → EmulDVn+d;pK�.

From (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�, it follows that v′ = λx : UValn. t
and v = λx. t for some t, t. Take W′=. W, (W′,v′′, v′′) ∈ VJEmulDVn+d;pK�,
then we need to show that

(W′,upgraden;d (v′ (downgraden;d v′′)), t[v′′/x]) ∈ EJEmulDVn+d;pK�.

By induction, we get a v′′′ such that C[downgraden;d v′′] ↪→∗ C[v′′′] for any
C and (W′,v′′′, v′′) ∈ VJEmulDVn;pK�. We also have that C[v′ v′′′] ↪→C[t[v′′′/x]].
By Lemma 8, it suffices to prove that

(W′,upgraden;d (t[v′′′/x]), t[v′′/x]) ∈ EJEmulDVn;pK�.

Since we know that (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�, W′=. W and
(W′,v′′′, v′′) ∈ VJEmulDVn;pK�, it follows that

(W′, t[v′′′/x], t[v′′/x]) ∈ EJEmulDVn;pK�.

By Lemma 19, it now suffices to show that for all W′′wW′, (W′′,v4, v4) ∈
VJEmulDVn;pK�, we have that (W′′,upgraden;d v4, v4) ∈ EJEmulDVn+d;pK�.
By induction, we get that C[upgraden;d v4] ↪→∗ C[v5] for any C, for some
v5 with (W′′,v5, v4) ∈ VJEmulDVn+d;pK�. By Lemma 8, it suffices to
prove that (W′′,v5, v4) ∈ EJEmulDVn+d;pK�, but this follows directly us-
ing Lemma 10.

Theorem 9 (Upgrade and downgrade are semantics preserving). If (n < m and
p = precise) or (� =. and p = imprecise), and if Γ ` t �n t : EmulDVm+d;p,
then Γ ` downgradem;d t �n t : EmulDVm;p.

If (n < m and p = precise) or (� =. and p = imprecise), then if
Γ ` t �n t : EmulDVm;p, then Γ ` upgradem;d t �n t : EmulDVm+d;p.

Proof. Take Γ ` t �n t : EmulDVm+d;p, W with lev(W) ≤ n and (W, γ, γ) ∈
GJΓK�, then we need to prove that (W,downgradem;d tγ, tγ) ∈ EJEmulDVm;pK�.

From Γ ` t �n t : EmulDVm+d;p, we have that (W, tγ, tγ) ∈ EJEmulDVm+d;pK�.
By Lemma 19, it then suffices to prove that for all W′wW, (W′,v, v) ∈ VJEmulDVm+d;pK�,
we have that (W′,downgradem;d v, v) ∈ EJEmulDVm;pK�.

We have that lev(W′) ≤ lev(W) ≤ n. By Lemma 37, there exists a v′ such
that C[downgradem;d v] ↪→∗ C[v′] for any C and (W′,v′, v) ∈ VJEmulDVm;pK�.
By Lemma 8, it suffices to prove that (W′,v′, v) ∈ EJEmulDVm;pK�, but this
follows directly from (W′,v′, v) ∈ VJEmulDVm;pK� by Lemma 10.

48

Now take Γ ` t �n t : EmulDVm;p, W with lev(W) ≤ n and (W, γ, γ) ∈ GJΓK�,
then we need to prove that (W,upgradem;d tγ, tγ) ∈ EJEmulDVm+d;pK�.

From Γ ` t �n t : EmulDVm;p, we have that (W, tγ, tγ) ∈ EJEmulDVm;pK�. By
Lemma 19, it then suffices to prove that for all W′wW, (W′,v, v) ∈ VJEmulDVm;pK�,
we have that (W′,upgradem;d v, v) ∈ EJEmulDVm+d;pK�.

We have that lev(W′) ≤ lev(W) ≤ n. By Lemma 37, there exists a v′ such
that C[upgradem;d v] ↪→∗ C[v′] for any C and (W′,v′, v) ∈ VJEmulDVm+d;pK�.
By Lemma 8, it suffices to prove that (W′,v′, v) ∈ EJEmulDVm+d;pK�, but this
follows directly from (W′,v′, v) ∈ VJEmulDVm+d;pK� by Lemma 10.

6.4 Injecting λτ into UVal

extractτ ;n : UValn → τ

extractτ ;0
def
= λx : UVal0. omega

extractUnit;n+1
def
= λx : UValn+1. caseUnit;n x

extractBool;n+1
def
= λx : UValn+1. caseBool;n x

extractτ1→τ2;n+1
def
=
λx : UValn+1. λx : τ1. extractτ2;n

(case→;n x (injectτ1;n x))

extractτ1×τ2;n+1
def
=
λx : UValn+1. 〈extractτ1;n (case×;n x).1,

extractτ2;n (case×;n x).2〉

extractτ1]τ2;n+1
def
=

λx : UValn+1. case case];n x of∣∣∣∣∣ inl y→ inl (extractτ1;n y)

inr y→ inr (extractτ2;n y)

injectτ ;n : τ → UValn

injectτ ;0
def
= λx : τ. omega

injectUnit;n+1
def
= λx : Unit. inUnit;n x

injectBool;n+1
def
= λx : Bool. inBool;n x

injectτ1→τ2;n+1
def
=
λx : τ1 → τ2. in→;n (λx : UValn.

injectτ2;n (x (extractτ1;n x)))

injectτ1×τ2;n+1
def
=
λx : τ1 × τ2. in×;n〈injectτ1;n x.1,

injectτ2;n x.2〉

injectτ1]τ2;n+1
def
=

λx : τ1] τ2. in];n (case x of∣∣∣∣∣ inl y 7→ inr (injectτ1;n y)

inr y 7→ inr (injectτ2;n y)

)
Lemma 38 (Inject and extract are well-typed). For all n, τ , extractτ ;n :
UValn → τ and injectτ ;n : τ → UValn.

Proof. By definition.

49

Lemma 39 (Diverging terms and non-values are related with no steps or for
.). If lev(W) = 0 or � =., if C[t]⇑ for any C and t is not a value then
(C[t],C[t]) ∈ O(W)� for any C, C.

Proof. If lev(W) = 0, then the result follows from Lemma 7 because C[t] is not
a value and neither is C[t] since C[t]⇑ for any C.

If on the other hand � =., then we have that (C[t],C[t]) ∈ O(W)� by
definition and by the fact that C[t]⇑ for any C.

Lemma 40 (Inject/extract and protect/confine either relate at values or they
are observationally equivalent). Assume that one of the following two conditions
are fulfilled:

• n ≥ lev(W) and p = precise

• � =. and p = imprecise

If (W,v, v) ∈ VJτK�, then one of the following holds:

• there exist v′ and v′ such that C[injectτ ;n v] ↪→∗ C[v′] and C[protectτ v] ↪→∗
C[v′] for any C, C and (W,v′, v′) ∈ VJEmulDVn;pK�.

• (C[injectτ ;n v],C[protectτ v]) ∈ O(W)� for any C, C.

Also, if (W,v, v) ∈ VJEmulDVn;pK� then one of the following must hold:

• there exist v′ and v′ such that C[extractτ ;n v] ↪→∗ C[v′] and C[confineτ v] ↪→∗
C[v′] for any C and C and we have that (W,v′, v′) ∈ VJτK�.

• (C[extractτ ;n v],C[confineτ v]) ∈ O(W)� for any C, C.

Proof. We prove both results simultaneously, by induction on τ .
First, we consider the case that n = 0.

injectτ ;0 = λx : τ . omegaUVal0

extractτ ;0 = λx : UVal0. omegaτ

For injectτ ;0 and protectτ , we have that lev(W) ≤ n = 0 or � =., that
C[injectτ ;0 v]⇑ for any C and that protectτ v is not a value, so by Lemma 39,
it follows that (C[injectτ ;0 v],C[protectτ v]) ∈ O(W)� for any C, C.

For extractτ ;0 and confineτ , almost exactly the same reasoning applies as
for injectτ ;0 and protectτ .

Now consider the case for n+ 1. We do a case analysis on τ .

• τ = B: We have that

protectB = λx. x

confineUnit
def
= λy. y; unit

confineBool
def
= λy. if y then true else false

extractB;n+1 = λx : UValn+1. caseB;n x

injectB;n+1 = λx : b. inB;n x

50

For protectB, we directly have that C[protectB v] ↪→C[v] for any C. We also
have that C[injectB;n+1 v] ↪→C[inB;n v] for any C, so we can take v′ =
inB;n v, v′ = v. It remains to prove that (W, inB;n v, v) ∈ EmulDVn+1;p.
This follows directly from the definition of EmulDVn+1;p, since we have that
(W,v, v) ∈ VJBK�.

For confineB, we get from (W,v, v) ∈ EmulDVn+1;p that one of five cases
holds: 

v = inunk;n ∧ p = imprecise

∃v′.v = inB;n(v′) ∧ (W,v′, v) ∈ VJBK�
∃v′,m′.v = in×;n(v′) ∧ (m = m′ + 1 ∨m = m′ = 0)∧

(W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�
∃v′,m′.v = in];n(v′) ∧ (m = m′ + 1 ∨m = m′ = 0)∧

(W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�
∃v′.v = in→;n(v′)∧
∀m′ < m. (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�

In the first case, we know that� =. from the assumptions, C[extractτ ;n+1 v]⇑
for any C and confineτ v is not a value, so that by definition of O(W).,
we have that (C[extractτ ;n+1 v],C[confineτ v]) ∈ O(W)� for any C, C.
Next, we distinguish the second case and the three others. In fact, within
the second case, (where v = inB′;n(v′) and (W,v′, v) ∈ VJB′K�), there is
the case that B = B′ and B 6= B′. We treat the former specially and deal
with the latter together with the three other top-level cases.

So, first, assume that v = inB;n v′ and (W,v′, v) ∈ VJBK�. This implies
that v′ = v = unit if B = Unit and v′ = v = v for some v ∈ {true, false}
if B = Bool.

It follows for any C, C that

C[confineB v] ↪→C[v]

and

C[extractB;n+1 v] = C[caseB,n v] =

C[(λuv : UValn+1. case uv of {inB;n x 7→ x;_ 7→ omegaB}) v] ↪→
C[case v of {inB;n x 7→ x;_ 7→ omegaB}] =

C[case (inB;n v′) of {inB;n x 7→ x;_ 7→ omegaB}] ↪→C[v′]

Since we already know that (W,v′, v) ∈ VJBK�, this case is done.

Secondly, we assume that B 6= B′ or v = in×;n(v′) and (W,v′, v) ∈
VJEmulDVn;p × EmulDVn;pK� or v = in→;n(v′) and (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�
or v = in];n(v′) and (W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�. In the first
case, we have that B = Bool,B′ = Unit and v = unit or B = Unit,

51

B′ = Bool and v ∈ {true, false}. In the second case, we have that
v = 〈v1, v2〉 for some v1, v2, in the third case v = λx. t for some t and in
the fourth case v = inl v1 or v = inl v2 for some v1 or v2.

From this, it follows for any C and C that

C[confineB v] ↪→C[wrong] ↪→wrong

and
C[extractB;n+1 v] = C[caseB;n v] ↪→C[omegaB]

We know that C[omegaB]⇑ (by Lemma 34) for any evaluation contexts C,
so that we get by Lemma 6 that (C[extractB;n+1 v],C[extractB;n+1 v]) ∈
O(W) for any C, C.

• τ = τ1 → τ2: We have that

protectτ1→τ2 = λy. λx.protectτ2 (y (confineτ1 x))

confineτ1→τ2 = λy. λx. confineτ2 (y (protectτ1 x))

extractτ1→τ2;n+1 = λuv : UValn+1. λx : τ1. extractτ 2;n (case→;n uv (injectτ 1;n x))

injectτ1→τ2;n+1 = λv : τ1 → τ2. in→;n (λx : UValn. injectτ 2;n (v (extractτ 1;n x))).

• First, we consider protectτ1→τ2 and injectτ 1→τ 2;n+1. We have for
any C that

C[protectτ1→τ2 v] = C[(λy. λx.protectτ2 (y (confineτ1 x))) v] ↪→
C[λx. protectτ2 (v (confineτ1 x))]

and for any C

C[injectτ 1→τ 2;n+1 v] =

C[(λv : τ1 → τ2. in→;n (λx : UValn. injectτ 2;n (v (extractτ 1;n x)))) v] ↪→
C[in→;n (λx : UValn. injectτ 2;n (v (extractτ 1;n x)))].

We take
v′ = λx. protectτ2 (v (confineτ1 x))

and

v′ = in→;n (λx : UValn. injectτ 2;n (v (extractτ 1;n x)))

and it remains to prove that (W,v′, v′) ∈ VJEmulDVn+1;pK�. De-
fine v′′ = λx : UValn. injectτ 2;n (v (extractτ 1;n x)). By definition of
VJEmulDVn+1;nK�, it suffices to show that (W,v′′, v′) ∈ VJEmulDVn;p → EmulDVn;pK�.
We need to prove that v′′ is well typed (oftype() condition of the
logical relations), which follows from Lemma 38 and rule λτ -Type-
fun.

52

Now take W′=. W and (W′,v′′′, v′′′) ∈ VJEmulDVn;pK�. It suffices to
show that

(W′, injectτ 2,n (v (extractτ 1;n v′′′)),

protectτ2 (v (confineτ1 v′′′))) ∈ EJEmulDVn;pK�.

By induction, we have that one of the following cases holds:

• there exist v′′′′ and v′′′′ such that C[extractτ 1;n v′′′] ↪→∗ C[v′′′′]
and C[confineτ1 v′′′] ↪→∗ C[v′′′′] for any C, C and (W′,v′′′′, v′′′′) ∈
VJτ1K�

• (C[extractτ ;n v′′′],C[confineτ v′′′]) ∈ O(W)� for any C, C.
In the latter case, the result follows easily from the definition of
EJ· · ·K�. In the former case, by Lemma 4 it suffices to prove that

(W′, injectτ 2;n (v v′′′′), protectτ2 (v v′′′′)) ∈ EJEmulDVn;pK�.

By Lemma 20, we have that (W′,v v′′′′, v v′′′′) ∈ EJτ2K� since (W′,v′′′′, v′′′′) ∈
VJτ1K� and we get (W′,v, v) ∈ VJτ1 → τ2K� from (W,v, v) ∈ VJτ1 → τ2K�
by Lemma 13.
By Lemma 19, it then suffices to prove that for all W′′wW′, (W′′,v5, v5) ∈
VJτ2K�, we have that (W′′, injectτ 2;n v5, protectτ2 v5) ∈ EJEmulDVn;pK�.
Again by induction, we know that one of the following cases holds:

• there exist v6 and v6 such that C[injectτ 2;n v5] ↪→∗ C[v6] and
C[protectτ2 v5] ↪→∗ C[v6] and (W′′,v6, v6) ∈ VJEmulDVn;pK�. The
result then follows by Lemmas 8 and 10.

• (C[injectτ 2;n v5],C[protectτ2 v5]) ∈ O(W′′)� for any C, C. The
result follows by unfolding the definition of EJEmulDVn;pK�.

• Next, we consider confineτ1→τ2 and extractτ 1→τ 2;n+1. We have that

C[confineτ1→τ2 v] =

C[(λy. λx. confineτ2 (y (protectτ1 x))) v] ↪→
C[λx. confineτ2 (v (protectτ1 x))]

for any C and

C[extractτ 1→τ 2;n+1 v] =

C[(λuv : UValn+1. λx : τ1. extractτ 2;n (case→;n uv (injectτ 1;n x))) v] ↪→
C[λx : τ1. extractτ 2;n (case→;n v (injectτ 1;n x))]

for any C.
We take

v′ = λx. confineτ2 (v (protectτ1 x))

53

and

v′ = λx : τ1. extractτ 2;n (case→;n v (injectτ 1;n x))

and it suffices to prove that (W,v′, v′) ∈ VJτ1 → τ2K�.
We need to prove that v′ is well typed (oftype() condition of the
logical relations) that follows from Lemma 38 and rule λτ -Type-fun.
Now take W′=. W, (W′,v2, v2) ∈ VJτ1K�, then we need to prove
that

(W′, extractτ 2;n (case→;n v (injectτ 1;n v2)),

confineτ2 (v (protectτ1 v2))) ∈ EJτ2K�.

We have that

case→;n = λuv : UValn+1. λx : UValn. case uv of {in→;n y 7→ y x;_ 7→ omegaUValn},

so that

extractτ 2;n (case→;n v (injectτ 1;n v2)) =

extractτ 2;n ((λuv : UValn+1. λx : UValn. case uv of {in→;n y 7→ y x;
_ 7→ omegaUValn}) v (injectτ 1;n v2)) ↪→

extractτ 2;n ((λx : UValn. case v of {in→;n y 7→ y x;
_ 7→ omegaUValn}) (injectτ 1;n v2))

We call

v′
def
= λx : UValn. case v of {in→;n y 7→ y x;_ 7→ omegaUValn}

and by Lemma 4 and some definition unfolding, it suffices to prove
that

(W′, extractτ 2;n (v′ (injectτ 1;n v2)),

confineτ2 (v (protectτ1 v2))) ∈ EJτ2K�.

By induction, we have that one of the following holds:

• there exist v3,v3 such that C[injectτ 1;n v2] ↪→∗ C[v3] and C[protectτ1 v2] ↪→∗
C[v3] for any C, C and (W′,v3, v3) ∈ VJEmulDVn;pK�.

• (C[injectτ 1;n v2],C[protectτ1 v2]) ∈ O(W′)� for any C, C.
In the latter case, the result follows by unfolding the definition of
EJτ2K�.
In the former case, by Lemma 8 it suffices to prove that

(W′, extractτ 2;n (v′ v3), confineτ2 (v v3)) ∈ EJτ2K�.

54

We have that

extractτ 2;n (v′ v3) =

extractτ 2;n ((λx : UValn. case v of {in→;n y 7→ y x;
_ 7→ omegaUValn}) v3) ↪→

extractτ 2;n (case v of {in→;n y 7→ y v3;_ 7→ omegaUValn}) ↪→

and again by Lemma 8, it suffices to prove that

(W′, extractτ 2;n (case v of {in→;n y 7→ y v3;_ 7→ omegaUValn}),
confineτ2 (v v3)) ∈ EJτ2K�.

Now, from (W,v, v) ∈ VJEmulDVn+1;pK�, we get that one of the fol-
lowing must hold:
• v = inunk;n ∧ p = imprecise

• ∃v′.v = inB;n(v′) and (W,v′, v) ∈ VJBK�
• ∃v′.v = in×;n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�
• ∃v′.v = in];n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�
• ∃v′.v = in→;n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�

In the first case, we have that � =. and we know that

C[extractτ 2;n (case v of {in→;n y 7→ y v3;_ 7→ omegaUValn})] ↪→
C[extractτ 2;n omegaUValn]

which diverges for any C. It follows by definition of O(W). and
EJτ2K� that

(W′, extractτ 2;n (case v of {in→;n y 7→ y v3;_ 7→ omegaUValn}),
confineτ2 (v v3)) ∈ EJτ2K�.

In the second, third and fourth case, we have that

C[extractτ 2;n (case v of {in→;n y 7→ y v3;_ 7→ omegaUValn})] ↪→
C[extractτ 2;n omegaUValn]

for any C and C[confineτ2 (v v3)] ↪→C[confineτ2 wrong] for any C.
This means that C[extractτ 2;n omegaUValn]⇑ for any C and C[confineτ2 (v v3)] ↪→∗
wrong for any C. By Lemma 6, we have that (C[extractτ 2;n omegaUValn],
C[confineτ2 (v v3)]) ∈ O(W′) for any C, C. The result follows from
the above evaluations, Lemma 4 and the definition of EJτ2K�.
In the last case, we have that

extractτ 2;n (case v of {in→;n y 7→ y v3;_ 7→ omegaUValn}) ↪→
extractτ 2;n (v′′ v3)

55

with (W,v′′, v) ∈ VJEmulDVn;p → EmulDVn;pK�. Again by Lemma 8,
it suffices to prove that

(W′, extractτ 2;n (v′′ v3), confineτ2 (v v3)) ∈ EJτ2K�.

By the facts that (W,v′′, v) ∈ VJEmulDVn;p → EmulDVn;pK�, (W′,v3, v3) ∈
VJEmulDVn;pK�, by Lemmas 13 and 20, we have that (W′,v′′ v3, v v3) ∈
EJEmulDVn;pK�. By Lemma 19, it suffices to prove for W′′wW′,
(W′′,v4, v4) ∈ VJEmulDVn;pK� that

(W′′, extractτ 2;n v4, confineτ2 v4) ∈ EJτ2K�.

By induction, we have that one of the following must hold:
• there exist v5 and v5 such that C[extractτ 2;n v4] ↪→∗ C[v5] and
C[confineτ2 v4] ↪→∗ C[v5] for any C and C and (W,v5, v5) ∈
VJτ2K�

• (C[extractτ 2;n v4],C[confineτ2 v4]) ∈ O(W)� for any C, C.
In the latter case, the result follows directly by definition of EJτ2K�.
In the former case, the result follows by Lemma 8 and Lemma 10.

• τ = τ1 × τ2: We have that

injectτ 1×τ 2;n+1 = λv : τ1 × τ2. in×;n〈injectτ 1;n v.1, injectτ 2;n v.2〉
extractτ 1×τ 2;n+1 = λuv : UValn+1. 〈extractτ 1;n case×;n uv .1, extractτ 2;n case×;n uv .2〉

protectτ1×τ2 = λy. 〈protectτ1 y.1, protectτ2 y.2〉

confineτ1×τ2

def
= λy. 〈confineτ1 y.1, confineτ2 y.2〉

If (W,v, v) ∈ VJτ1 × τ2K�, then we have that v = 〈v1,v2〉 and v = 〈v1, v2〉
for some v1,v2, v1, v2 with (W,v1, v1) ∈ . VJτ1K� and (W,v2, v2) ∈
. VJτ2K�.
If lev(W) = 0, then we know by Lemma 7 that (C[injectτ 1×τ 2;n+1 v],C[protectτ1×τ2 v]) ∈
O(W)� for any C, C, since injectτ 1×τ 2;n+1 v and protectτ1×τ2 v are not
values.
If lev(W) > 0, then we know that (.W,v1, v1) ∈ VJτ1K� and (.W,v2, v2) ∈
VJτ2K�. We have for any C that

C[injectτ 1×τ 2;n+1 v] ↪→
C[in×;n〈injectτ 1;n v.1, injectτ 2;n v.2〉] ↪→

C[in×;n〈injectτ 1;n v1, injectτ 2;n v.2〉]

and for any C that

C[protectτ1×τ2 v] ↪→
C[〈protectτ1 v.1, protectτ2 v.2〉] ↪→

C[〈protectτ1 v1, protectτ2 v.2〉].

56

By the induction hypothesis for τ1, we have that one of the following must
hold:

• there are v′1 and v′1 such that C[injectτ 1;n v1] ↪→∗ C[v′1] and C[protectτ1 v1] ↪→∗
C[v′1] for any C and C and that (.W,v′1, v

′
1) ∈ VJEmulDVn;pK�.

• (C[injectτ 1;n v1],C[protectτ1 v1]) ∈ O(.W)� and for any C, C.

In the latter case, we have by the above evaluation and by Lemma 4 that
(C[injectτ 1×τ 2;n+1 v],C[protectτ1×τ2 v]) ∈ O(W)� for any C, C.
In the former case, we can continue the evaluations for any C and for any
C as follows:

C[in×;n〈injectτ 1;n v1, injectτ 2;n v.2〉] ↪→∗

C[in×;n〈v′1, injectτ 2;n v.2〉] ↪→
C[in×;n〈v′1, injectτ 2;n v2〉]

and

C[〈protectτ1 v1, protectτ2 v.2〉] ↪→∗

C[〈v′1, protectτ2 v.2〉] ↪→C[〈v′1, protectτ2 v2〉]

By the induction hypothesis for τ2, we have that one of the following must
hold:

• there are v′2 and v′2 such that C[injectτ 2;n v2] ↪→∗ C[v′2] and C[protectτ2 v2] ↪→∗
C[v′2] for any C and C and that (.W,v′2, v

′
2) ∈ VJEmulDVn;pK�.

• (C[injectτ 2;n v2],C[protectτ2 v2]) ∈ O(.W)� for any W′=. W and
for any C, C.

In the latter case, we have by the above evaluations and by Lemma 4 that
(C[injectτ 1×τ 2;n+1 v],C[protectτ1×τ2 v]) ∈ O(W)� for any C, C.
In the former case, we can continue the evaluations for any C and for any
C as follows:

C[in×;n〈v′1, injectτ 2;n v2〉] ↪→∗ C[in×;n〈v′1,v′2〉]

and
C[〈v′1, protectτ2 v2〉] ↪→∗ C[〈v′1, v′2〉].

It remains to prove that (W, [in×;n〈v′1,v′2〉], [〈v′1, v′2〉]) ∈ EmulDVn+1;p, but
this follows directly by definition of EmulDVn+1;p, by the facts that (.W,v′1, v

′
1) ∈

. VJEmulDVn;pK� and (.W,v′2, v
′
2) ∈ . VJEmulDVn;pK�.

Now if (W,v, v) ∈ VJEmulDVn+1;pK�, then we have that one of the following
cases must hold:

• v = inunk;n ∧ p = imprecise

57

• ∃v′.v = inB;n(v′) ∧ (W,v′, v) ∈ VJBK�
• ∃v′.v = in×;n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�
• ∃v′.v = in];n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�
• ∃v′.v = in→;n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�

In the first case, we know that � =. and we have that

C[extractτ 1×τ 2;n+1 v] ↪→
C[〈extractτ 1;n case×;n v.1, extractτ 2;n case×;n v.2〉] ↪→∗

C[〈extractτ 1;n omega(UValn×UValn).1, extractτ 2;n case×;n v.2〉]

By definition of O(W)., we have that (C[extractτ 1×τ 2;n+1 v],C[confineτ1×τ2 v]) ∈
O(W) for any C, C.
We repeat the definition of case×;n for easy reference:

case×;n = λuv : UValn+1. case uv of {in×;n x 7→ x;_ 7→ omega(UValn×UValn)}

In the second, fourth and fifth case, we have that

C[extractτ 1×τ 2;n+1 v] ↪→
C[〈extractτ 1;n case×;n v.1, extractτ 2;n case×;n v.2〉] ↪→∗

C[〈extractτ 1;n omega(UValn×UValn).1, extractτ 2;n case×;n v.2〉]

(which diverges) and for any C that

C[confineτ1×τ2 v] ↪→C[〈confineτ1 v.1, confineτ2 v.2〉]
C[〈confineτ1 wrong, confineτ2 v.2〉] ↪→wrong

By Lemmas 4 and 6, we have that (C[extractτ 1×τ 2;n+1 v],C[confineτ1×τ2 v]) ∈
O(W) for any C, C.
In the third case (where v = in×;n(v′)) we have that v′ = 〈v1,v2〉, v =
〈v1, v2〉 with (W,v1, v1) ∈ . VJEmulDVn;pK� and (W,v2, v2) ∈ . VJEmulDVn;pK�,
by definition of VJEmulDVn;p × EmulDVn;pK�.
If lev(W) = 0, then by Lemma 5, (C[extractτ 1×τ 2;n v],C[confineτ1×τ2 v]) ∈
O(W)� for any C, C.
If lev(W) > 0, then we have that (.W,v1, v1) ∈ VJEmulDVn;pK� and
(.W,v2, v2) ∈ VJEmulDVn;pK�.
We already have for any C that

C[extractτ 1×τ 2;n+1 v] ↪→
C[〈extractτ 1;n case×;n v.1, extractτ 2;n case×;n v.2〉] ↪→

C[〈extractτ 1;n case v of {in×;n x 7→ x;_ 7→ omega(UValn×UValn)}.1,
extractτ 2;n case×;n v.2〉] ↪→

C[〈extractτ 1;n v′.1, extractτ 2;n case×;n v.2〉] ↪→
C[〈extractτ 1;n v1, extractτ 2;n case×;n v.2〉]

58

and for any C that

C[confineτ1×τ2 v] ↪→C[〈confineτ1 v.1, confineτ2 v.2〉] ↪→
C[〈confineτ1 v1, confineτ2 v.2〉]

By induction, we know that one of the following cases holds:

• there exist v′1 and v′1 such that C[extractτ 1;n v1] ↪→∗ C[v′1] and
C[confineτ1 v1] ↪→∗ C[v′1] for any C and C and (.W,v′1, v

′
1) ∈ VJτ1K�

• (C[extractτ 1;n v1],C[confineτ1 v1]) ∈ O(.W)� for any C, C.

In the latter case, by Lemma 4 and the above evaluation, we get that
(C[extractτ 1×τ 2;n v],C[confineτ1×τ2 v]) ∈ O(W)� for any C, C.
In the former case, the above evaluation judgements continue as follows
for any C and C:

C[〈extractτ 1;n v1, extractτ 2;n case×;n v.2〉] ↪→∗

C[〈v′1, extractτ 2;n case×;n v.2〉] ↪→
C[〈v′1, extractτ 2;n case v of {in×;n x 7→ x;_ 7→ omega(UValn×UValn)}.2〉] ↪→

C[〈v′1, extractτ 2;n v′.2〉] ↪→C[〈v′1, extractτ 2;n v2〉]

and

C[〈confineτ1 v1, confineτ2 v.2〉] ↪→∗

C[〈v′1, confineτ2 v.2〉] ↪→
C[〈v′1, confineτ2 v2〉]

Again by induction, we know that one of the following cases holds:

• there exist v′2 and v′2 such that C[extractτ 2;n v2] ↪→∗ C[v′2] and
C[confineτ2 v2] ↪→∗ C[v′2] for any C and C and (.W,v′2, v

′
2) ∈ VJτ2K�.

• (C[extractτ 2;n v2],C[confineτ2 v2]) ∈ O(.W)� for any C, C.

In the latter case, by Lemma 4 and the above (continued) evaluation, we
get that (C[extractτ 1×τ 2;n v],C[confineτ1×τ2 v]) ∈ O(W)� for any C, C.
In the former case, the evaluation judgements continue further as follows
for any C and C:

C[〈v′1, extractτ 2;n v2〉] ↪→∗ C[〈v′1,v′2〉]

and
C[〈v′1, confineτ2 v2〉] ↪→∗ C[〈v′1, v′2〉]

It now suffices to prove that (W, 〈v′1,v′2〉, 〈v′1, v′2〉) ∈ VJτ1 × τ2K�, but this
follows directly from (.W,v′1, v

′
1) ∈ VJτ1K� and (.W,v′2, v

′
2) ∈ VJτ2K�.

59

• τ = τ1] τ2: We have that

injectτ 1]τ 2;n+1 = λv : τ1] τ2. in];n

(
case v of

∣∣∣∣∣inl x→ inl (injectτ 1;n x)

inr x→ inr (injectτ 2;n x)

)

extractτ 1]τ 2;n+1 = λuv : UValn+1. case case];n uv of

∣∣∣∣∣inl x→ inl (extractτ 1;n x)

inr x→ inr (extractτ 2;n x)

protectτ1]τ2 = λy. case y of inl x→ inl (protectτ1 x) | inr x→ inr (protectτ2 x)

confineτ1]τ2

def
= λy. case y of inl x→ inl (confineτ1 x) | inr x→ inr (confineτ2 x)

If (W,v, v) ∈ VJτ1] τ2K�, then we have that either v = inl v1 and v =
inl v1 for some v1, v1 with (W,v1, v1) ∈ . VJτ1K� or v = inr v2 and
v = inr v2 for some v2, v2 with (W,v2, v2) ∈ . VJτ2K�. We prove the
result for the first case, the other case is completely similar.

If lev(W) = 0, then we know by Lemma 5 that (C[injectτ ;n v],C[protectτ v]) ∈
O(W)� for any C, C. If lev(W) > 0, then we have that (.W,v1, v1) ∈
VJτ1K�.

We have for any C that

C[injectτ 1]τ 2;n+1 v] ↪→
C[in];n (case v of inl x→ inl (injectτ 1;n x) | inr x→ inr (injectτ 2;n x))] ↪→

C[in];n (inl (injectτ 1;n v1))]

and for any C that

C[protectτ1]τ2 v] ↪→
C[case v of inl x→ inl (protectτ1 x) | inr x→ inr (protectτ2 x)] ↪→

C[inl (protectτ1 v1)]

By induction, we know that one of the following cases must hold:

• there are v′1 and v′1 such that C[injectτ 1;n v1] ↪→∗ C[v′1] and C[protectτ1 v1] ↪→∗
C[v′1] for any C and C and that (.W,v′1, v

′
1) ∈ VJEmulDVn;pK�.

• (C[injectτ 1;n v1],C[protectτ1 v1]) ∈ O(.W)� for all C and C.

In the latter case, it follows by the above evaluation and by Lemma 4 that
(C[injectτ 1]τ 2;n+1 v],C[protectτ1]τ2 v]) ∈ O(W)� for all C and C.
In the former case, we have for any C that

C[in];n (inl (injectτ 1;n v1))] ↪→∗ C[in];n (inl v′1)]

and for any C that

C[inl (protectτ1 v1)] ↪→∗ C[inl v′1]

60

It remains to prove that (W, [in];n (inl v′1)], [inl v′1]) ∈ EmulDVn+1;p, but
this follows directly by definition of EmulDVn+1;p, VJτ1] τ2K� and by the
fact that (.W,v′1, v

′
1) ∈ VJEmulDVn;pK�.

Now if (W,v, v) ∈ VJEmulDVn+1;pK�, then we have that one of the following
cases must hold:

• v = inunk;n ∧ p = imprecise

• ∃v′.v = inB;n(v′) ∧ (W,v′, v) ∈ VJBK�
• ∃v′.v = in×;n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�
• ∃v′.v = in];n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�
• ∃v′.v = in→;n(v′) ∧ (W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�

We repeat the definition of case];n for easy reference:

case];n = λuv : UValn+1. case uv of {in];n x 7→ x;_ 7→ omega(UValn]UValn)}

In the first case, we know that � =. and

C[extractτ 1]τ 2;n+1 v] ↪→

C[case omega(UValn]UValn) of
inl x→ inl (extractτ 1;n x)

inr x→ inr (extractτ 2;n x)
]

which diverges. By definition of O(W)., we know that (C[extractτ 1]τ 2;n+1 v],
C[confineτ1]τ2 v]) ∈ O(W) for any C, C.
In the second, third and fifth case, we have for any C that

C[extractτ 1]τ 2;n+1 v] ↪→

C[case omega(UValn]UValn) of
inl x→ inl (extractτ 1;n x)

inr x→ inr (extractτ 2;n x)
]

(which diverges) and for any C that

C[confineτ1]τ2 v] ↪→
C[case v of inl x→ inl (confineτ1 x) | inr x→ inr (confineτ2 x)] ↪→

C[wrong] ↪→wrong

By Lemmas 4 and 6, we have that (C[extractτ 1]τ 2;n+1 v],C[confineτ1]τ2 v]) ∈
O(W) for any C, C.
In the fourth case (where v = in];n(v′)) we have by definition of VJEmulDVn;p] EmulDVn;pK�
that either v′ = inl v1, v = inl v1 with (W,v1, v1) ∈ . VJEmulDVn;pK�, or
v′ = inr v2, v = inr v2 with (W,v2, v2) ∈ . VJEmulDVn;pK�. We prove the
result for the first case, the other case is completely similar.

61

If lev(W) = 0, then we know by Lemma 5 that (C[extractτ 1]τ 2;n v],C[confineτ1]τ2 v]) ∈
O(W)� for any C, C. If lev(W) > 0, then we have that (.W,v1, v1) ∈
VJEmulDVn;pK�.
We then already have for any C that

C[extractτ 1]τ 2;n+1 v] ↪→

C[case case];n v of

∣∣∣∣∣inl x→ inl (extractτ 1;n x)

inr x→ inr (extractτ 2;n x)
] ↪→

C[case v′ of

∣∣∣∣∣inl x→ inl (extractτ 1;n x)

inr x→ inr (extractτ 2;n x)
] ↪→

C[inl (extractτ 1;n v1)]

and for any C that

C[confineτ1]τ2 v] ↪→
C[case v of inl x→ inl (confineτ1 x) | inr x→ inr (confineτ2 x)] ↪→

C[inl (confineτ1 x)]

By induction, we know that one of the following cases holds:

• there exist v′1 and v′1 such that C[extractτ 1;n v1] ↪→∗ C[v′1] and
C[confineτ1 v1] ↪→∗ C[v′1] for any C and C and (.W,v′1, v

′
1) ∈ VJτ1K�

• (C[extractτ 1;n v1],C[confineτ1 v1]) ∈ O(.W)� for any C, C.

In the latter case, by Lemma 4 and the above evaluation, we get that
(C[extractτ 1]τ 2;n v],C[confineτ1]τ2 v]) ∈ O(W)� for any C, C.
In the former case, the above evaluation judgements continue as follows
for any C and C:

C[inl (extractτ 1;n v1)] ↪→∗ C[inl v′1]

and
C[inl (confineτ1 x)] ↪→∗ C[inl v′1]

It now suffices to prove that (W, inl v′1, inl v′1) ∈ VJτ1] τ2K�, but this
follows directly from (.W,v′1, v

′
1) ∈ VJτ1K�.

Theorem 10 (Inject is protect and extract is confine). If (m ≥ n and p =
precise) or (� =. and p = imprecise) and if Γ ` t �n t : τ , then

Γ ` injectτ ;m t �n protectτ t : EmulDVm;p.

If (m ≥ n and p = precise) or (� =. and p = imprecise) and if Γ `
t �n t : EmulDVm;p then

Γ ` extractτ ;m t �n confineτ t : τ .

62

Proof. Take W with lev(W) ≤ n. Take (W, γ, γ) ∈ GJΓK�. Then we need to
show that

(W, injectτ ;m tγ, protectτ tγ) ∈ EJEmulDVm;pK�.
We know that (W, tγ, tγ) ∈ EJτK�. By Lemma 19, it then suffices to show

that for all W′wW, (W′,v, v) ∈ VJτK�, we have that

(W, injectτ ;m v, protectτ v) ∈ EJEmulDVm;pK�.

So, take (W,C,C) ∈ KJEmulDVm;pK�. Then we need to show that

(C[injectτ ;m v],C[protectτ v]) ∈ O(W).

By Lemma 40, we get that one of the following cases must hold:

• v′ and v′ such that C[injectτ ;m v] ↪→∗ C[v′] and C[protectτ v] ↪→∗ C[v′]
and (W,v′, v′) ∈ VJEmulDVm;pK�. By Lemma 4, it suffices to prove that

(C[v′],C[v′]) ∈ O(W).

But this follows directly from (W,v′, v′) ∈ VJEmulDVm;pK� and (W,C,C) ∈
KJEmulDVm;pK�.

• (C[injectτ ;m v],C[protectτ v]) ∈ O(W)� for any C, C. The result follows
directly by definition of EJEmulDVm;pK�.

6.5 Emulating λu in UVal

emulaten(t) : UValn

emulaten(unit)
def
= downgraden;1 (inUnit;n unit)

emulaten(true)
def
= downgraden;1 (inBool;n true)

emulaten(false)
def
= downgraden;1 (inBool;n false)

emulaten(x)
def
= x

emulaten(λx. t)
def
= downgraden;1 (in→;n (λx : UValn. emulaten(t)))

emulaten(t1 t2)
def
= case→;n (upgraden;1 (emulaten(t1))) emulaten(t2)

emulaten(〈t1, t2〉)
def
= downgraden;1 (in×;n 〈emulaten(t1), emulaten(t2)〉)

emulaten(inl t)
def
= downgraden;1 (in];n (inl emulaten(t)))

emulaten(inr t)
def
= downgraden;1 (in];n (inr emulaten(t)))

emulaten(t.1)
def
= (case×;n (upgraden;1 (emulaten(t)))).1

emulaten(t.2)
def
= (case×;n (upgraden;1 (emulaten(t)))).2

emulaten(t; t′)
def
= (caseUnit;n (upgraden;1(emulaten(t)))); emulaten(t′)

emulaten(wrong)
def
= omega

63

emulaten(case t1 of inl x 7→ t2 | inr x 7→ t3)
def
=

case case];n (upgraden;1 (emulaten(t1))) of

inl x 7→ emulaten(t2) | inr x 7→ emulaten(t3)

emulaten(if t then t1 else t2)
def
=

if (caseBool;n(upgraden;1(emulatent))) then emulaten(t1) else

emulaten(t2)

emulaten(·) def
= ·

emulaten(λx.C)
def
= downgraden;1 (in→;n (λx : UValn. emulaten(C)))

emulaten(C t2)
def
= case→;n (upgraden;1 (emulaten(C))) emulaten(t2)

emulaten(t1 C)
def
= case→;n (upgraden;1 (emulaten(t1))) emulaten(C)

emulaten(C.1)
def
= (case×;n (upgraden;1 (emulaten(C)))).1

emulaten(C.2)
def
= (case×;n (upgraden;1 (emulaten(C)))).2

emulaten(〈C, t2〉)
def
= downgraden;1 (in×;n 〈emulaten(C), emulaten(t2)〉)

emulaten(〈t1,C〉)
def
= downgraden;1 (in×;n 〈emulaten(t1), emulaten(C)〉)

emulaten(inl C)
def
= downgraden;1 (in];n (inl emulaten(C)))

emulaten(inr C)
def
= downgraden;1 (in];n (inr emulaten(C)))

emulaten(case C of inl x 7→ t2 | inr x 7→ t3)
def
=

case case];n (upgraden;1 (emulaten(C))) of

inl x 7→ emulaten(t2) | inr x 7→ emulaten(t3)

emulaten(case t1 of inl x 7→ C | inr x 7→ t3)
def
=

case case];n (upgraden;1 (emulaten(t1))) of

inl x 7→ emulaten(C) | inr x 7→ emulaten(t3)

emulaten(case t1 of inl x 7→ t2 | inr x 7→ C)
def
=

case case];n (upgraden;1 (emulaten(t1))) of

inl x 7→ emulaten(t2) | inr x 7→ emulaten(C)

emulaten(if C then t1 else t2)
def
=

if (caseBool;n(upgraden;1(emulaten(C))))
then emulaten(t1) else emulaten(t2)

emulaten(if t then C else t2)
def
=

if (caseBool;n(upgraden;1(emulaten(t))))
then emulaten(C) else emulaten(t2)

emulaten(if t then t1 else C)
def
=

if (caseBool;n(upgraden;1(emulaten(t))))
then emulaten(t1) else emulaten(C)

emulaten(C; t′)
def
= (caseUnit;n (upgraden;1(emulaten(C)))); emulaten(t′)

emulaten(t;C)
def
= (caseUnit;n (upgraden;1(emulaten(t)))); emulaten(C)

64

Lemma 41 (Compatibility lemma of emulation for lambda). If (m > n and p =
precise) or (� =. and p = imprecise), then we have that if toEmul(Γ, x)m;p `
t �n t : EmulDVm;p, then

toEmul(Γ)m;p ` downgradem;1 (in→;m (λx : UValm. t)) �n λx.t : EmulDVm;p.

Proof. By Theorem 9, it suffices to prove that

toEmul(Γ)m;p ` in→;m (λx : UValm. t) �n λx.t : EmulDVm+1;p.

Take W such that lev(W) ≤ n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. Then we
need to show that

(W, in→;m (λx : UValm. t)γ, λx.tγ) ∈ EJEmulDVm+1;pK�,

or (by Lemma 10)

(W, in→;m (λx : UValm. tγ), λx.tγ) ∈ VJEmulDVm+1;pK�.

By definition of VJEmulDVm+1;pK�, it suffices to prove that λx : UValm. tγ is
in oftype(EmulDVm;p → EmulDVm;p), which holds since t is well-typed and

(W, λx : UValm. tγ, λx.tγ) ∈ VJEmulDVm;p → EmulDVm;pK�.

So, take W′=. W and (W′,v, v) ∈ VJEmulDVm;pK�. We then need to prove that

(W′, tγ[v/x], tγ[v/x]) ∈ EJEmulDVm;pK�.

By Lemma 11, we get that (W′, γ, γ) ∈ GJtoEmul(Γ)m;pK�. If we combine this
with (W′,v, v) ∈ VJEmulDVm;pK�, then we get that (W′, γ[x 7→ v], γ[x 7→ v]) ∈
GJtoEmul(Γ, x)m;pK�.

Since lev(W′) < lev(W) ≤ n, we have that lev(W′) ≤ n. It now follows from
toEmul(Γ, x)m;p ` t �n t : EmulDVm;p that

(W′, tγ[v/x], tγ[v/x]) ∈ EJEmulDVm;pK�,

as required.

Lemma 42 (Compatibility lemma of emulation for application). If (m > n
and p = precise) or (� =. and p = imprecise), then we have that if
toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p, and if toEmul(Γ)m;p ` t2 �n t2 :
EmulDVm;p, then

toEmul(Γ)m;p ` case→;m (upgradem;1 t1) t2 �n t1 t2 : EmulDVm;p.

Proof. Take W with lev(W) ≤ n. Take (W, γ, γ) ∈ GJtoEmul(Γ)m;pK. Then we
need to prove that

(W, case→;m (upgradem;1 t1γ) t2γ, t1γ t2γ) ∈ EJEmulDVm;pK�.

65

By Theorem 9, it follows from toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p that
toEmul(Γ)m;p ` upgradem;1 t1 �n t1 : EmulDVm+1;p.

This gives us that

(W,upgradem;1 t1γ, t1γ) ∈ EJEmulDVm+1;pK�.

By Lemma 19, it suffices to prove that for all W′wW, (W′,v1, v1) ∈ VJEmulDVm+1;pK�,
that then

(W′, case→;m v1 t2γ, v1 t2γ) ∈ EJEmulDVm;pK�.

From (W′,v1, v1) ∈ VJEmulDVm+1;pK�, we get by definition that one of the
following cases must hold:

• v1 = inunk;n ∧ p = imprecise

• ∃v′1.v1 = inB;n(v′1) ∧ (W′,v′1, v1) ∈ VJBK�

• ∃v′1.v1 = in×;n(v′1) ∧ (W′,v′1, v1) ∈ VJEmulDVn;p × EmulDVn;pK�

• ∃v′1.v1 = in];n(v′1) ∧ (W′,v′1, v1) ∈ VJEmulDVn;p] EmulDVn;pK�

• ∃v′1.v1 = in→;n(v′1) ∧ (W′,v′1, v1) ∈ VJEmulDVn;p → EmulDVn;pK�

In the first case, we know that � =. and C[case→;m v1 t2γ]⇑ for any C.
By definition of EJEmulDVm;pK� and by definition of O(W′)., the result follows.

In the second, third and fourth case, we also have that C[case→;m v1 t2γ]⇑
for any C. Additionally, we have that C[v1 t2γ] ↪→∗ wrong for any C. The result
follows by definition of EJEmulDVm;pK� and by Lemma 6.

In the fifth case, we have that C[case→;m v1 t2γ] ↪→∗ C[v′1 t2γ], so by
Lemma 8, it suffices to prove that

(W′,v′1 t2γ, v1 t2γ) ∈ EJEmulDVm;pK�.

From toEmul(Γ)m;p ` t2 �n t2 : EmulDVm;p, we have that

(W′, t2γ, t2γ) ∈ EJEmulDVm;pK�.

By Lemma 19, it suffices to prove that for all W′′wW′, (W′′,v2, v2) ∈ VJEmulDVm;pK�,
that then

(W′′,v′1 v2, v1 v2) ∈ EJEmulDVm;pK�.

By Lemma 13, we have that (W′′,v′1, v1) ∈ VJEmulDVn;p → EmulDVn;pK� and the
result follows by Lemma 20.

Lemma 43 (Compatibility lemma of emulation for case). If (m > n and p =
precise) or (� =. and p = imprecise), then we have that if toEmul(Γ)m;p `
t1 �n t1 : EmulDVm;p, toEmul(Γ, x])m;p ` t2 �n t2 : EmulDVm;p, and if toEmul(Γ, x])m;p `
t3 �n t3 : EmulDVm;p, then

toEmul(Γ)m;p ` case (case];m (upgraden;1 t1)) of inl x 7→ t2 | inr x 7→ t3 �n

case t1 of inl x 7→ t2 | inr x 7→ t3 : EmulDVm;p.

66

Proof. Take W with lev(W) ≤ n. Take (W, γ, γ) ∈ GJtoEmul(Γ)m;pK. Then we
need to prove that

(W, case (case];m (upgraden;1 t1γ)) of inl x 7→ t2γ | inr x 7→ t3γ,

case t1γ of inl x 7→ t2γ | inr x 7→ t3γ) ∈ EJEmulDVm;pK�.

By Theorem 9, it follows from toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p that
toEmul(Γ)m;p ` upgradem;1 t1 �n t1 : EmulDVm+1;p.

This gives us that

(W,upgradem;1 t1γ, t1γ) ∈ EJEmulDVm+1;pK�.

By Lemma 19, it suffices to prove that for all W′wW, (W′,v1, v1) ∈ VJEmulDVm+1;pK�,
that then

(W′, case (case];m v1) of inl x 7→ t2γ | inr x 7→ t3γ,

case v1 of inl x 7→ t2γ | inr x 7→ t3γ) ∈ EJEmulDVm;pK�.

From (W′,v1, v1) ∈ VJEmulDVm+1;pK�, we get by definition that one of the
following cases must hold:

• v1 = inunk;n ∧ p = imprecise

• ∃v′1.v1 = inB;n(v′1) ∧ (W′,v′1, v1) ∈ VJBK�

• ∃v′1.v1 = in×;n(v′1) ∧ (W′,v′1, v1) ∈ VJEmulDVm;p × EmulDVm;pK�

• ∃v′1.v1 = in];n(v′1) ∧ (W′,v′1, v1) ∈ VJEmulDVm;p] EmulDVm;pK�

• ∃v′1.v1 = in→;n(v′1) ∧ (W′,v′1, v1) ∈ VJEmulDVm;p → EmulDVm;pK�

In the first case, we know that� =. and C[case (case];m v1) of inl x 7→ t2γ | inr x 7→ t3γ]⇑
for any C. By definition of EJEmulDVm;pK� and by definition of O(W′)., the re-
sult follows.

In the second, third and fifth case, we also have that C[case (case];m v1) of inl x 7→ t2γ | inr x 7→ t3γ]⇑
for any C. Additionally, we have that C[case v1 of inl x 7→ t2γ | inr x 7→ t3γ] ↪→∗
wrong for any C. The result follows by definition of EJEmulDVm;pK� and by
Lemma 6.

In the fourth case, we get from (W′,v′1, v1) ∈ VJEmulDVm;p] EmulDVm;pK�
values v′′1 and v′′1 such that (W v′′1, v

′′
1) ∈ . VJEmulDVm;pK� and either (v′1 =

inl v′′1 and v1 = inl v′′1) or (v′1 = inr v′′1 and v1 = inr v′′1). We only consider the
first case further, the other case is completely similar.

We now have that

C[case (case];m v1) of inl x 7→ t2γ | inr x 7→ t3γ] ↪→
C[case v′1 of inl x 7→ t2γ | inr x 7→ t3γ] ↪→C[t2γ[v′′1/x]]

and
C[case v1 of inl x 7→ t2γ | inr x 7→ t3γ] ↪→ t2γ[v′′1 /x].

67

Now if lev(W′) = 0, then we have that

(W′, case (case];m v1) of inl x 7→ t2γ | inr x 7→ t3γ,

case v1 of inl x 7→ t2γ | inr x 7→ t3γ) ∈ EJEmulDVm;pK�,

by definition of EJEmulDVm;pK� and Lemma 7.
If lev(W′) > 0, then we have that (.W′,v′′1, v

′′
1) ∈ VJEmulDVm;pK�. By

Lemma 8, it suffices to prove that

(.W′, t2γ[v′′1/x], t2γ[v′′1 /x]) ∈ EJEmulDVm;pK�.

This follows from toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p since lev(.W′) ≤
lev(W′) ≤ lev(W) ≤ n if we show that (.W′, γ[x 7→ v′′1], γ[x 7→ v′′1]) ∈ GJtoEmul(Γ)m;pK�.

We know that (W, γ, γ) ∈ GJtoEmul(Γ)m;pK, and by Lemma 11, also (.W′, γ, γ) ∈
GJtoEmul(Γ)m;pK. Combined with (.W′,v′′1, v

′′
1) ∈ VJEmulDVm;pK�, this gives us

(.W′, γ[x 7→ v′′1], γ[x 7→ v′′1]) ∈ GJtoEmul(Γ)m;pK�, as required.

Lemma 44 (Compatibility lemma of emulation for pair). If (m > n and p =
precise) or (� =. and p = imprecise), then we have that if toEmul(Γ)m;p `
t1 �n t1 : EmulDVm;p and toEmul(Γ)m;p ` t2 �n t2 : EmulDVm;p, then

toEmul(Γ)m;p ` downgradem;1 (in×;m 〈t1, t2〉) �n 〈t1, t2〉 : EmulDVm;p.

Proof. By Theorem 9, it suffices to prove that

toEmul(Γ)m;p ` (in×;m 〈t1, t2〉) �n 〈t1, t2〉 : EmulDVm+1;p.

Take W such that lev(W) ≤ n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. Then we
need to show that

(W, in×;m 〈t1γ, t2γ〉, 〈t1γ, t2γ〉) ∈ EJEmulDVm+1;pK�.

From toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p, lev(W) ≤ n and (W, γ, γ) ∈
GJtoEmul(Γ)m;pK�, we get that

(W, t1γ, t1γ) ∈ EJEmulDVm;pK�.

By Lemma 19, it then suffices to prove that for all W′wW, (W′,v1, v1) ∈
VJEmulDVm;pK�, we have that

(W′, in×;m 〈v1, t2γ〉, 〈v1, t2γ〉) ∈ EJEmulDVm+1;pK�.

By Lemma 11, we have that (W′, γ, γ) ∈ GJtoEmul(Γ)m;pK� from W′wW.
From this, from toEmul(Γ)m;p ` t2 �n t2 : EmulDVm;p and lev(W′) ≤ lev(W) ≤ n,
we then get

(W′, t2γ, t2γ) ∈ EJEmulDVm;pK�.

68

By Lemma 19, it then suffices to prove that for all W′′wW′, (W′′,v2, v2) ∈
VJEmulDVm;pK�, we have that

(W′′, in×;m 〈v1,v2〉, 〈v1, v2〉) ∈ EJEmulDVm+1;pK�,

or (by Lemma 10)

(W′′, in×;m 〈v1,v2〉, 〈v1, v2〉) ∈ VJEmulDVm+1;pK�.

By definition of VJEmulDVm+1;pK�, it suffices to prove that 〈v1,v2〉 is oftype(EmulDVm;p × EmulDVm;p),
which follows from the hypotheses on v1 and v2 and by rule λτ -Type-pair, and

(W′′, 〈v1,v2〉, 〈v1, v2〉) ∈ VJEmulDVm;p × EmulDVm;pK�.

This follows by definition, by Lemma 13, and by the facts that (W′,v1, v1) ∈
VJEmulDVm;pK� and (W′′,v2, v2) ∈ VJEmulDVm;pK�.

Lemma 45 (Compatibility lemma of emulation for injection). If (m > n
and p = precise) or (� =. and p = imprecise), then we have that if
toEmul(Γ)m;p ` t �n t : EmulDVm;p, then

toEmul(Γ)m;p ` downgradem;1 (in];m (inl t)) �n inl t : EmulDVm;p.

and

toEmul(Γ)m;p ` downgradem;1 (in];m (inr t)) �n inr t : EmulDVm;p.

Proof. We only prove the result about inr , the other is completely similar.
By Theorem 9, it suffices to prove that

toEmul(Γ)m;p ` in];m (inl t) �n inl t : EmulDVm+1;p.

Take W such that lev(W) ≤ n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. Then we need
to show that

(W, in];m (inl tγ), inl tγ) ∈ EJEmulDVm+1;pK�.

From toEmul(Γ)m;p ` t �n t : EmulDVm;p, lev(W) ≤ n and (W, γ, γ) ∈
GJtoEmul(Γ)m;pK�, we get that

(W, tγ, tγ) ∈ EJEmulDVm;pK�.

By Lemma 19, it then suffices to prove that for all W′wW, (W′,v, v) ∈ VJEmulDVm;pK�,
we have that

(W′, in×;m (inl v), inl v) ∈ EJEmulDVm+1;pK�,

or, by Lemma 10,

(W′, in×;m (inl v), inl v) ∈ VJEmulDVm+1;pK�.

By definition of VJEmulDVm+1;pK�, it suffices to prove that inl v is oftype(),
which follows from the hypothesis on v and rule λτ -Type-inl, and

(W′, inl v, inl v) ∈ VJEmulDVm;p] EmulDVm;pK�.

This follows by definition and by the fact that (W′,v, v) ∈ VJEmulDVm;pK�.

69

Lemma 46 (Compatibility lemma of emulation for projection). If (m > n
and p = precise) or (� =. and p = imprecise), then we have that if
toEmul(Γ)m;p ` t �n t : EmulDVm;p, then

toEmul(Γ)m;p ` (case×;m (upgradem;1 t)).1 �n t.1 : EmulDVm;p.

and
toEmul(Γ)m;p ` (case×;m (upgradem;1 t)).2 �n t.2 : EmulDVm;p.

Proof. We only prove the result about t.1 and t.1, the other is completely
similar.

Take W such that lev(W) ≤ n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. Then we
need to show that

(W, (case×;m (upgradem;1 tγ)).1, (tγ).1) ∈ EJEmulDVm+1;pK�.

From toEmul(Γ)m;p ` t �n t : EmulDVm;p, we get by Theorem 9 that toEmul(Γ)m;p `
upgradem;1 t �n t : EmulDVm+1;p. From lev(W) ≤ n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�,
we then get that

(W,upgradem;1 tγ, tγ) ∈ EJEmulDVm+1;pK�.

By Lemma 19, it then suffices to prove that for all W′wW, (W′,v, v) ∈ VJEmulDVm+1;pK�,
we have that

(W′, (case×;m v).1, v.1) ∈ EJEmulDVm;pK�.

From (W′,v, v) ∈ VJEmulDVm+1;pK�, we get that one of the following cases
must hold:

• v = inunk;m ∧ p = imprecise

• ∃v′.v = inB;m(v′) ∧ (W′,v′, v) ∈ VJBK�

• ∃v′.v = in×;m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p × EmulDVm;pK�

• ∃v′.v = in];m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p] EmulDVm;pK�

• ∃v′.v = in→;m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p → EmulDVm;pK�

In the first case, we have that C[(case×;m v).1]⇑ for any C. We then also
know that � =., and by definition of EJEmulDVm;pK� and O(W′)., the result
follows.

In the second, fourth and fifth case, we have that C[(case×;m v).1]⇑ for any
C and C[v.1] ↪→∗ wrong for any C. By the definition of EJEmulDVm;pK� and
Lemma 6, the result follows.

In the third case, from (W′,v′, v) ∈ VJEmulDVm;p × EmulDVm;pK�, we get
v′1,v

′
2, v1, v2 such that v′ = 〈v′1,v′2〉 and v = 〈v1, v2〉, (W′,v′1, v1) ∈ . VJEmulDVm;pK�

and (W′,v′2, v2) ∈ . VJEmulDVm;pK�.
We then have that

C[(case×;m v).1] ↪→C[v′.1] ↪→C[v′1]

70

for any C and
C[v.1] ↪→C[v1]

for any C.
Now if lev(W′) = 0, then we have that

(W′, (case×;m v).1, v.1) ∈ EJEmulDVm;pK�

by definition of EJEmulDVm;pK� and Lemma 7.
If lev(W′) > 0, then we have that (.W′,v′1, v1) ∈ VJEmulDVm;pK� and

(.W′,v′2, v2) ∈ VJEmulDVm;pK�. By Lemma 8, it suffices to prove that

(.W′,v′1, v1) ∈ EJEmulDVm;pK�.

This follows directly using Lemma 10.

Lemma 47 (Compatibility lemma of emulation for if). If (m > n and p =
precise) or (� =. and p = imprecise), then we have that if toEmul(Γ)m;p `
t �n t : EmulDVm;p (H) and toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p (H1) and
toEmul(Γ)m;p ` t2 �n t2 : EmulDVm;p (H2), then

toEmul(Γ)m;p ` if (caseBool;n(upgraden;1(t))) then t1 else t2 �n

if t then t1 else t2 : EmulDVm;p.

Proof. Take W, lev(W) ≤ n (HN) and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK� (HG). We
need to show that (W, if (caseBool;n(upgraden;1(t))) then t1 else t2, if t then t1 else t2) ∈
EJEmulDVm;pK�.

Apply Theorem 9 to H to get that toEmul(Γ)m;p ` upgraden;1t �n t :
EmulDVm+1;p (HH). By HH, HN and HG, we have that (W,upgraden;1(tγ), tγ) ∈
EJEmulDVm+1;pK�.

Assume A = ∀Wf wW, ∀(Wf ,v, v) ∈ VJEmulDVm+1;pK� (HV), (C[if caseBool;n · then t1γ else t2γ],
C[if · then t1γ else t2γ]) ∈ KJEmulDVm+1;pK�.

The thesis follows from Lemma 8.
Prove A. Let C′· = C[if caseBool;n · then t1γ else t2γ] and C′· = C[if · then t1γ else t2γ]) ∈

KJEmulDVm+1;pK. We have these cases based on HV:

• v = inunk;m ∧ p = imprecise

• ∃v′.v = inUnit;m(v′) ∧ (W′,v′, v) ∈ VJUnitK�

• ∃v′.v = inBool;m(v′) ∧ (W′,v′, v) ∈ VJBoolK�

• ∃v′.v = in×;m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p × EmulDVm;pK�

• ∃v′.v = in];m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p] EmulDVm;pK�

• ∃v′.v = in→;m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p → EmulDVm;pK�

71

In the first case, we have that C′[v]⇑ for any C. We then also know that � =.,
and by definition of EJEmulDVm;pK� and O(W′)., the result follows.

In the seconfd, fourth, fifth and sixth case, we have that C′[v]⇑ for any C and
C′[v] ↪→∗ wrong for any C. By the definition of EJEmulDVm;pK� and Lemma 6,
the result follows.

In the third case we have two cases: v′ ≡ v′ ≡ true or v′ ≡ v′ ≡ false. We
consider the first only, the second is dual with H2 used in place of H1.

We have that C′[inBool;m(v′)] ↪→∗ C[t1γ] and C′[v] ↪→C[t1γ]. Assume B=
(C[t1γ],C[t1γ]) ∈ O(.Wf), the thesis follows from Lemma 8.

Prove B. Unfold H1 and we get ∀W1, ∀(W1, γ1, γ1) ∈ GJtoEmul(Γ)m;pK�,
∀(W1,C1,C1) ∈ KJEmulDVm;pK (HJ), (C1[t1γ1],C1[t1γ1]) ∈ O(.W1).

The thesis holds by instantiating W1 with .Wf , γ1 with γ, γ1 with γ, C1

with C and C1 with C and by Lemma 12 applied to HJ.

Lemma 48 (Compatibility lemma of emulation for sequence). If (m > n
and p = precise) or (� =. and p = imprecise), then we have that if
toEmul(Γ)m;p ` t �n t : EmulDVm;p and toEmul(Γ)m;p ` t1 �n t1 : EmulDVm;p,
then

toEmul(Γ)m;p(caseUnit;n (upgraden;1(t))); t1 �n t; t1 : EmulDVm;p.

Proof. Take W, lev(W) ≤ n (HN) and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK� (HG). We
need to show that (W, (caseUnit;n(upgraden;1(t))); t1, t; t1) ∈ EJEmulDVm;pK�.

Apply Theorem 9 to H to get that toEmul(Γ)m;p ` upgraden;1t �n t :
EmulDVm+1;p (HH). By HH, HN and HG, we have that (W,upgraden;1(tγ), tγ) ∈
EJEmulDVm+1;pK�.

Assume A = ∀Wf wW, ∀(Wf ,v, v) ∈ VJEmulDVm+1;pK� (HV), (C[caseUnit;n·; t1γ],
C[·; t1γ]) ∈ KJEmulDVm+1;pK�.

The thesis follows from Lemma 8.
Prove A. Let C′· = C[caseUnit;n·; t1γ] and C′· = C[·; t1γ]) ∈ KJEmulDVm+1;pK.

We have these cases based on HV:

• v = inunk;m ∧ p = imprecise

• ∃v′.v = inUnit;m(v′) ∧ (W′,v′, v) ∈ VJUnitK�

• ∃v′.v = inBool;m(v′) ∧ (W′,v′, v) ∈ VJBoolK�

• ∃v′.v = in×;m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p × EmulDVm;pK�

• ∃v′.v = in];m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p] EmulDVm;pK�

• ∃v′.v = in→;m(v′) ∧ (W′,v′, v) ∈ VJEmulDVm;p → EmulDVm;pK�

In the first case, we have that C′[v]⇑ for any C. We then also know that � =.,
and by definition of EJEmulDVm;pK� and O(W′)., the result follows.

In the third, fourth, fifth and sixth case, we have that C′[v]⇑ for any C and
C′[v] ↪→∗ wrong for any C. By the definition of EJEmulDVm;pK� and Lemma 6,
the result follows.

72

In the second case we have that: v′ ≡ v ≡ unit.
We have that C′[inUnit;m(v′)] ↪→∗ C[t1γ] and C′[v] ↪→C[t1γ]. Assume B=

(C[t1γ],C[t1γ]) ∈ O(.Wf), the thesis follows from Lemma 8.
Prove B. Unfold H1 and we get ∀W1, ∀(W1, γ1, γ1) ∈ GJtoEmul(Γ)m;pK�,

∀(W1,C1,C1) ∈ KJEmulDVm;pK� (HJ), (C1[t1γ1],C1[t1γ1]) ∈ O(.W1).
The thesis holds by instantiating W1 with .Wf , γ1 with γ, γ1 with γ, C1

with C and C1 with C and by Lemma 12 applied to HJ.

Theorem 11 (Emulate is semantics-preserving). If Γ ` t, and if (m > n and
p = precise) or (� =. and p = imprecise), then we have that toEmul(Γ)m;p `
emulatem(t) �n t : EmulDVm;p.

Proof. By induction on Γ ` t.

• rule λu-Wf-Base: We have that

emulatem(b)
def
= downgradem;1 (inB,m b)

By Theorem 9, it suffices to prove that toEmul(Γ)m;p ` inB;m b �n b :
EmulDVm+1;p.

So, take W with lev(W) ≤ n, (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. we need
to show that (W, inB;m(b), b) ∈ EJEmulDVm+1;pK�. This follows by the
definition of VJEmulDVm+1;pK� and VJBK�.

• rule λu-Wf-Lam: We have that

emulatem(λx. t)
def
= downgradem;1 (in→;m (λx : UValm. emulateΓ,x;m(t)))

We get by induction that toEmul(Γ, x])m;p ` emulatem(t) �n t : EmulDVm;p.
The result follows by Lemma 41.

• rule λu-Wf-Var: We have that emulatem(x) = x. So, take W with lev(W) ≤
n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. Then we need to show that (W, γ(x), γ(x)) ∈
EJEmulDVm;pK�. But since x ∈ Γ, this follows directly from Lemma 10 and
the definition of GJtoEmul(Γ)m;pK�.

• rule λu-Wf-Pair: We have that

emulatem(〈t1, t2〉) = downgradem;1 (in×;m 〈emulatem(t1), emulatem(t2)〉).

By induction, we have that toEmul(Γ)m;p ` emulatem(t1) �n t1 : EmulDVm;p

and toEmul(Γ)m;p ` emulatem(t1) �n t2 : EmulDVm;p. The result follows by
Lemma 44.

• rule λu-Wf-Inl: We have that

emulatem(inl t) = downgradem;1 (in];m (inl (emulatem(t1)))).

By induction, we have that toEmul(Γ)m;p ` emulatem(t) �n t : EmulDVm;p

The result follows by Lemma 45.

73

• rule λu-Wf-Inr: We have that

emulatem(inl t) = downgradem;1 (in];m (inl (emulatem(t1)))).

By induction, we have that toEmul(Γ)m;p ` emulatem(t) �n t : EmulDVm;p

The result follows by Lemma 45.

• rule λu-Wf-App: We have that

emulatem(t1 t2)
def
= case→;m (upgradem;1 emulatem(t1)) emulatem(t2).

By induction, we have that toEmul(Γ)m;p ` emulatem(t1) �n t1 : EmulDVm;p,
and toEmul(Γ)m;p ` emulatem(t2) �n t2 : EmulDVm;p. By Lemma 42, the
result follows.

• rule λu-Wf-Proj1: We have that

emulatem(t.1) = (case×;m (upgradem;1 (emulatem(t)))).1

By induction, we have that toEmul(Γ)m;p ` emulatem(t) �n t : EmulDVm;p.
The result follows by Lemma 46.

• rule λu-Wf-Proj2: We have that

emulatem(t.2) = (case×;m (upgradem;1 (emulatem(t)))).2

By induction, we have that toEmul(Γ)m;p ` emulatem(t) �n t : EmulDVm;p.
The result follows by Lemma 46.

• rule λu-Wf-Case: We have that

emulatem(case t1 of inl x 7→ t2 | inr x 7→ t3) =

case case];m (upgradem;1 (emulatem(t1))) of inl x 7→ emulatem(t2) | inr x 7→ emulatem(t3)

By induction, we have that toEmul(Γ)m;p ` emulatem(t1) �n t1 : EmulDVm;p,
toEmul(Γ, x])m;p ` emulatem(t2) �n t2 : EmulDVm;p and toEmul(Γ, x])m;p `
emulatem(t3) �n t3 : EmulDVm;p. The result follows by Lemma 43.

• rule λu-Wf-Wrong: We have that emulatem(wrong) = omegaUValm . So,
take W with lev(W) ≤ n and (W, γ, γ) ∈ GJtoEmul(Γ)m;pK�. Then we
need to show that (W, omegaUValm ,wrong) ∈ EJEmulDVm;pK�. This follows
easily by Lemma 6 and the definition of EJEmulDVm;pK�.

• rule λu-Wf-If We have that

emulatem(if t1 then t2 else t3) =

if (caseBool;n(upgraden;1(emulatent1))) then emulaten(t2) else emulaten(t3)

By induction, we have that toEmul(Γ)m;p ` emulatem(t1) �n t1 : EmulDVm;p,
toEmul(Γ, x])m;p ` emulatem(t2) �n t2 : EmulDVm;p and toEmul(Γ, x])m;p `
emulatem(t3) �n t3 : EmulDVm;p. The result follows by Lemma 47.

74

• rule λu-Wf-Seq We have that

emulatem(t1; t2) =

(caseUnit;n (upgraden;1(emulaten(t1)))); emulaten(t2)

By induction, we have that toEmul(Γ)m;p ` emulatem(t1) �n t1 : EmulDVm;p,
toEmul(Γ, x])m;p ` emulatem(t2) �n t2 : EmulDVm;p. The result follows by
Lemma 48.

Theorem 12 (Emulate is semantics preserving for contexts). If ` C : Γ′ → Γ, if
(m > n and p = precise) or (� =. and p = imprecise), then ` emulatem(C) �n

C : toEmul(Γ′)m;p, EmulDVm;p → toEmul(Γ)m;p, EmulDVm;p

Proof. We prove this by induction on the judgement ` C : Γ′ → Γ.

• rule λu-Wf-Ctx-Hole Follows trivially.

• rule λu-Wf-Ctx-Lam Follows by the induction hypothesis and Lemma 41.

• rule λu-Wf-Ctx-Pair1 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 44.

• rule λu-Wf-Ctx-Pair2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 44.

• rule λu-Wf-Ctx-Inl Follows by the induction hypothesis and by Lemma 45.

• rule λu-Wf-Ctx-Inr Follows by the induction hypothesis and by Lemma 45.

• rule λu-Wf-Ctx-App1 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 42.

• rule λu-Wf-Ctx-App2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 42.

• rule λu-Wf-Ctx-Proj1 Follows by the induction hypothesis and by Lemma 46.

• rule λu-Wf-Ctx-Proj2 Follows by the induction hypothesis and by Lemma 46.

• rule λu-Wf-Ctx-Case1 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 43.

• rule λu-Wf-Ctx-Case2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 43.

• rule λu-Wf-Ctx-Case3 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 43.

• rule λu-Type-Ctx-If1 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 47.

75

• rule λu-Type-Ctx-If2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 47.

• rule λu-Type-Ctx-If3 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 47.

• rule λu-Type-Ctx-Seq1 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 48.

• rule λu-Type-Ctx-Seq2 Follows by the induction hypothesis and by Theo-
rem 11 and Lemma 48.

6.6 Approximate back-translation
The n-approximate back-translation of a context C with a hole of type τ is
defined as follows.

〈〈C〉〉τ ;n
def
= emulaten+1(C)[injectτ ;n ·]

Lemma 49 (Correctness of 〈〈·〉〉τ ;n). If (m ≥ n and p = precise) or (� =. and
p = imprecise), then ` C : ∅→∅ and ∅ ` t �n t : τ implies ∅ ` 〈〈C〉〉τ ;m[t] �n

C[protectτ t] : EmulDVm;p.

Proof. Follows from Theorems 10 and 12

6.7 Contextual equivalence preservation
Theorem 13. If ∅ ` t1 : τ , ∅ ` t2 : τ and ∅ ` t1'ctx t2 : τ , then ∅ `
protectτ (erase(t1))'ctx protectτ (erase(t1)).

Proof. Note that protectτ (erase(t1)) = Jt1K by definition and similarly for t2.
Take a ` C : ∅→∅ and suppose that C[protectτ (erase(t1))]⇓, then by sym-

metry, it suffices to show that C[protectτ (erase(t2))]⇓.
Take n strictly larger than the number of steps in the termination of C[protectτ (erase(t1))]⇓.
By Theorem 4, we have that ∅ ` t1 &n erase(t1) : τ .
By Lemma 49, we then have (taking m = n ≥ n, p = precise and � = &)

that
∅ ` 〈〈C〉〉τ ;n[t1] &n C[protectτ (erase(t1))] : EmulDVn;precise.

Now by Lemma 15, by C[protectτ (erase(t1))]⇓, and by the choice of n, we
have that 〈〈C〉〉τ ;n[t1]⇓.

It now follows from ∅ ` t1'ctx t2 : τ and 〈〈C〉〉τ ;n[t1]⇓ that 〈〈C〉〉τ ;n[t2]⇓.
Now take n′ the number of steps in the termination of 〈〈C〉〉τ ;n[t2]⇓. We have

from Theorem 4 that ∅ ` t2 .n′ erase(t2) : τ .
By Lemma 49, we then have (taking m = n, n = n′, p = imprecise and

� = .) that

∅ ` 〈〈C〉〉τ ;n[t2] .n′ C[protectτ (erase(t2))] : EmulDVn;imprecise

76

Now by Lemma 14, by 〈〈C〉〉τ ;n[t2]⇓, and by the choice of n′, we have that
C[protectτ (erase(t2))]⇓ as required.

77

7 Compiler full abstraction
Theorem 14 (J·K is fully-abstract). If ∅ ` t1 : τ , ∅ ` t2 : τ then ∅ ` t1'ctx t2 :
τ iff ∅ ` protectτ (erase(t1))'ctx protectτ (erase(t1)).

Proof. Combine Theorems 16 and 17.

78

8 Modular Full Abstraction

8.1 Linking
If

x2 : τ ′2 → τ2 ` t1 : τ ′1 → τ1

x1 : τ ′1 → τ1 ` t2 : τ ′2 → τ2

then

t1 + t2
def
=


fixUnit→((τ ′

1→τ1)×(τ ′
2→τ2))

(λp : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)). λ_ : Unit.〈
λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,
λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2

〉
)

 unit

We can show that the this produces a well-typed term:

(λx′1 : τ ′1. t1) + (λx′2 : τ ′2. t2) : ((τ ′1 → τ1)× (τ ′2 → τ2))

If

x2 ` t1

x1 ` t2

then

t1 + t2
def
=

(
fix

(
λp. λ_.

〈
λx′1. ((λx2. t1) (p unit).2) x′1,
λx′2. ((λx1. t2) (p unit).1) x′2

〉))
unit

8.2 Compiler
The compiler changes as follows, provided that x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 :
τ ′1 → τ1, then:

Jλx′1 : τ ′1. t1K
λτ

λu = protectτ ′
1→τ1(λx′1. ((λx2. erase(t1))(confineτ ′

2→τ2 x2)))

8.3 Additional Theorems and Proofs
This section presents which additional theorems are needed for modular full
abstraction and which theorems replace which old ones.

Lemma 50 (An extra confine is just fine). If

• Γ,x : τ ′ ` t : τ (Ht),

then Γ,x : τ ′ ` t �n (λx. erase(t1))(confineτ ′ x) : τ

79

Proof. By Definition 5 we need to prove forall n:

∀W. lev(W) ≤ n⇒ ∀(W, γ, γ) ∈ GJΓ,x : τ ′K�.
(W, tγ, (λx. erase(t))(confineτ ′ x))γ) ∈ EJτK�

Take γ and γ to be [v/x]γ′ and [v/x]γ′ respectively.
So (W,v, v) ∈ VJτ ′K (Hv) and (W, γ′, γ′) ∈ GJΓK (Hg).
The thesis is:

∀W. lev(W) ≤ n⇒
(W, t[v/x]γ′, (λx. erase(t))(confineτ ′ x)[v/x]γ′) ∈ EJτK�

so

∀W. lev(W) ≤ n⇒
(W, t[v/x]γ′, (λx. erase(t))(confineτ ′ v)γ′) ∈ EJτK�

By Lemma 33 and Hv, we have that

(λx. erase(t))(confineτ ′ v)γ′

↪→(λx. erase(t))(v′)γ′

and that (Hvpp)

(W,v, v′) ∈ VJτ ′K

So we know that:

(λx. erase(t)) (confineτ ′ v)γ′

↪→(λx. erase(t)) v′γ′

↪→erase(t)[v′/x]γ′

By Lemma 8, it suffices to prove that

(W, t[v/x]γ′, erase(t)[v′/x]γ′) ∈ EJτK�

By Theorem 5 with Ht we know that (Htr)

Γ,x : τ ′ ` t �n erase(t) : τ

By Definition 5 we get

∀W′. lev(W′) ≤ n⇒ ∀(W′, γ′′, γ′′) ∈ GJΓ,x : τ ′K�.
(W′, tγ′′, erase(t)γ′′) ∈ EJτK�

We instantiate W′ with W, γ′′ with [v/x]γ′ and γ′′ with [v′/x]γ′

By Hvpp and Hg we have that (W′, [v/x]γ′, [v′/x]γ′) ∈ GJΓ,x : τ ′K�.
So the thesis holds.

80

Theorem 15 (Confining free variables is correct (aka, J·Kλ
τ

λu is correct)). If

• x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 : τ ′1 → τ1 (Ht),

then x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 �n protectτ ′
1→τ1(λx′1. ((λx2. erase(t1))(confineτ ′

2→τ2 x2))) :
τ ′1 → τ1

Proof. By Theorem 6 it is sufficient to prove that
x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 �n (λx′1. ((λx2. erase(t1))(confineτ ′

2→τ2 x2))) :
τ ′1 → τ1

By Lemma 21 it suffices to prove that:
x2 : τ ′2 → τ2; x′1 : τ ′1 ` t1 �n ((λx2. erase(t1))(confineτ ′

2→τ2 x2)) : τ1
This holds by Lemma 50.

Theorem 16 (J·Kλ
τ

λu reflects equivalence). If

• x : τ ′ → τ ` λx′1 : τ ′1. t1 : τ ′1 → τ1 (Ht1),

• x : τ ′ → τ ` λx′2 : τ ′1. t2 : τ ′1 → τ1 (Ht2),

• x ` Jλx′1 : τ ′1. t1K
λτ

λu 'ctx Jλx′2 : τ ′1. t2K
λτ

λu (Htc),

then x : τ ′ → τ ` λx′1 : τ ′1. t1'ctx λx′2 : τ ′1. t2 : τ ′1 → τ1.

Proof. In the following we shorten λx′1 : τ ′1. t1 to t1 and λx′2 : τ ′1. t2 to t2.
Take C so that ` C : x : τ ′ → τ , τ ′1 → τ1→∅, τ ′′ (Hk).
We need to prove that C[t1]⇓ iff C[t2]⇓.
By symmetry, it suffices to prove the ⇒ direction.
So assume that C[t1]⇓ (Ht1d).
Then we need to prove that C[t2]⇓.
Define C

def
= erase(C).

Theorem 5 tells us that ` C �n C : x : τ ′ → τ , τ ′1 → τ1→∅, τ ′′.
Theorem 15 with Ht1 yields x : τ ′ → τ ` t1 �n Jt1K

λτ

λu : τ (Ht1c).
Theorem 15 with Ht2 yields x : τ ′ → τ ` t2 �n Jt2K

λτ

λu : τ (Ht2c).
By definition of ` C �n C : x : τ ′ → τ , τ ′1 → τ1→∅, τ ′′ with Ht1c and Ht2c,

we get that

• ∅ ` C[t1] �n C[Jt1K
λτ

λu] : τ ′′ (Ht1r) and

• ∅ ` C[t2] �n C[Jt2K
λτ

λu] : τ ′′ (Ht2r).

By Lemma 16 with Ht1d and Ht1r imply that C[Jt1K
λτ

λu]⇓ (Hk1).
By Lemma 18 with Hk we get ` C : x→∅.
So, from Htc and Hk1, we get that C[Jt2K

λτ

λu]⇓ (Ht2t).
By Lemma 16 with Ht2r and Ht2t we now get that C[t2]⇓

Theorem 17 (J·Kλ
τ

λu preserves equivalence). If

81

• x : τ ′ → τ ` λx′1 : τ ′1. t1 : τ ′1 → τ1 (Ht1),

• x : τ ′ → τ ` λx′2 : τ ′1. t2 : τ ′1 → τ1 (Ht2),

• x : τ ′ ` λx′1 : τ ′1. t1'ctx λx′1 : τ ′2. t2 : τ (Htc),

then x ` Jλx′1 : τ ′1. t1K
λτ

λu 'ctx Jλx′2 : τ ′2. t2K
λτ

λu .

Proof. Take a ` C : x→∅.
Assume that C[Jλx′1 : τ ′1. t1K

λτ

λu]⇓ (Ht1d).
By symmetry, it suffices to show that C[Jλx′2 : τ ′2. t2K

λτ

λu]⇓.
Take n strictly larger than the number of steps in the termination of C[Jλx′1 : τ ′1. t1K

λτ

λu]⇓.
By Theorem 15 with Ht1 we have that x : τ ′ → τ ` λx′1 : τ ′1. t1 &n Jλx′1 : τ ′1. t1K

λτ

λu :
τ ′1 → τ1.

By Lemma 49 , taking m = n, so m ≥ n and p = precise and � = &, we
then have that ∅ ` 〈〈C〉〉τ ;n[λx′1 : τ ′1. t1] &n C[Jλx′1 : τ ′1. t1K

λτ

λu] : EmulDVn;precise.
By Lemma 15 with Ht1d, and by the choice of n, we have that 〈〈C〉〉τ ;n[λx′1 : τ ′1. t1]⇓

(Ht1t).
From Htc and Ht1t we have that 〈〈C〉〉τ ;n[λx′2 : τ ′2. t2]⇓.
Take n′ the number of steps in the termination of 〈〈C〉〉τ ;n[λx′2 : τ ′2. t2]⇓

(Ht2t).
From Theorem 15 with Ht2 we have that x : τ ′ → τ ` λx′2 : τ ′2. t2 .n′

Jλx′2 : τ ′2. t2K
λτ

λu : τ .
By Lemma 49 , taking m = n, n = n′, p = imprecise and � = . we then

have that ∅ ` 〈〈C〉〉τ ;n[λx′2 : τ ′2. t2] .n′ C[Jλx′2 : τ ′2. t2K
λτ

λu] : EmulDVn;imprecise

By Lemma 14 with Ht2t, and by the choice of n′, we have that C[Jλx′2 : τ ′2. t2K
λτ

λu]⇓.

Theorem 18 (Compiler Full Abstraction).

• x : τ ′ → τ ` λx′1 : τ ′1. t1 : τ ′1 → τ1 (Ht1),

• x : τ ′ → τ ` λx′2 : τ ′1. t2 : τ ′1 → τ1 (Ht2),

then x : τ ′ → τ ` λx′1. t1'ctx λx′2. t2 : τ ′1 → τ1 ⇐⇒ x ` Jλx′1. t1K
S
T 'ctx Jλx′2. t2K

S
T .

Proof. By Theorem 17 and Theorem 16.

8.3.1 Proofs about Modularity

Lemma 51 (Source linking is related to target liking). If

• x2 : τ ′2 → τ2 ` t1 : τ ′1 → τ1 (Ht1)

• x1 : τ ′1 → τ1 ` t2 : τ ′2 → τ2 (Ht2)

then ∅ ` t1 + t2 �n Jt1K
λτ

λu + Jt2K
λτ

λu : (τ ′1 → τ1)× (τ ′2 → τ2).

82

Proof. Unfold the definitions of linking. We need to prove that:

∅ `




fixUnit→((τ ′
1→τ1)×(τ ′

2→τ2))

(λp : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)). λ_ : Unit.

〈λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,

λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2〉)

 unit


�n((

fix

(
λp. λ_.

〈
λx′1. ((λx2. Jt1K

λτ

λu) (p unit).2) x′1,

λx′2. ((λx1. Jt2K
λτ

λu) (p unit).1) x′2

〉))
unit

)
: (τ ′1 → τ1)× (τ ′2 → τ2)

By Lemma 23 it suffices to show the following:

•

∅ `


fixUnit→((τ ′

1→τ1)×(τ ′
2→τ2))

(λp : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)). λ_ : Unit.

〈λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,

λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2〉)


�n(

fix

(
λp. λ_.

〈
λx′1. ((λx2. Jt1K

λτ

λu) (p unit).2) x′1,

λx′2. ((λx1. Jt2K
λτ

λu) (p unit).1) x′2

〉))
: Unit→ (τ ′1 → τ1)× (τ ′2 → τ2)

By Lemma 31 it suffices to show that:

∅ `

 (λp : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)). λ_ : Unit.

〈λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,

λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2〉)


�n(
λp. λ_.

〈
λx′1. ((λx2. Jt1K

λτ

λu) (p unit).2) x′1,

λx′2. ((λx1. Jt2K
λτ

λu) (p unit).1) x′2

〉)
: (Unit→ (τ ′1 → τ1)× (τ ′2 → τ2))→ (Unit→ (τ ′1 → τ1)× (τ ′2 → τ2))

83

By Lemma 21 it suffices to show that:

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)) ` (λ_ : Unit.

〈λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,

λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2〉)


�n(
λ_.

〈
λx′1. ((λx2. Jt1K

λτ

λu) (p unit).2) x′1,

λx′2. ((λx1. Jt2K
λτ

λu) (p unit).1) x′2

〉)
: Unit→ (τ ′1 → τ1)× (τ ′2 → τ2)

By Lemma 21 it suffices to show that:

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)) `(
〈λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,

λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2〉)

)
�n〈
λx′1. ((λx2. Jt1K

λτ

λu) (p unit).2) x′1,

λx′2. ((λx1. Jt2K
λτ

λu) (p unit).1) x′2

〉
: (τ ′1 → τ1)× (τ ′2 → τ2)

By Lemma 22 it suffices to show that:

•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)) `
λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1

�n

λx′1. ((λx2. Jt1K
λτ

λu) (p unit).2) x′1

: (τ ′1 → τ1)

By Lemma 21 it suffices to show that:

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1

�n

((λx2. Jt1K
λτ

λu) (p unit).2) x′1

: τ1

By Lemma 23 it suffices to show that:

84

•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
((λx2 : τ ′2 → τ2. t1) ((p unit).2))

�n

((λx2. Jt1K
λτ

λu) (p unit).2)

: τ ′1 → τ1

By Lemma 23 it suffices to show that:
•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
(λx2 : τ ′2 → τ2. t1)

�n

(λx2. Jt1K
λτ

λu)

: (τ ′2 → τ2)→ (τ ′1 → τ1)

By Lemma 21 it suffices to show:

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1; x2 : τ ′2 → τ2 `
(t1)

�n

(Jt1K
λτ

λu)

: (τ ′1 → τ1)

This holds by Theorem 15, and weakening, since p and x′1
are not in t1.

•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
(p unit).2

�n

(p unit).2

: τ ′2 → τ2

By Lemma 25 it suffices to show:

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
(p unit)

�n

(p unit)

: (τ ′1 → τ1)× (τ ′2 → τ2)

85

By Lemma 23 it suffices to show:
•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
(p)

�n

(p)

: Unit→ (τ ′1 → τ1)× (τ ′2 → τ2)

This holds by definition of the logical relation and by
Lemma 10 after the substitutions.

•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
(unit)

�n

(unit)

: Unit

This holds by definition of the value relation for unit.
•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)); x′1 : τ ′1 `
x′1

�n

x′1

: τ ′1

This holds by definition of the logical relation and by Lemma 10
after the substitutions.

•

p : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)) `(
λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2

)
�n

λx′2. ((λx1. Jt2K
λτ

λu) (p unit).1) x′2

: (τ ′2 → τ2)

Analogous to the previous point.

•

∅ ` unit �n unit : Unit

86

This holds by definition of the logical relation, and the definition of the
value relation for Unit.

Theorem 19 (Compiler Modularity). If

• x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 : τ ′1 → τ1 (Ht1)

• x1 : τ ′1 → τ1 ` λx′2 : τ ′2. t2 : τ ′2 → τ2 (Ht2)

then ∅ ` Jλx′1 : τ ′1. t1 + λx′2 : τ ′2. t2K
λτ

λu 'ctx Jλx′1 : τ ′1. t1K
λτ

λu +Jλx′2 : τ ′2. t2K
λτ

λu .

Proof. ⇒ direction: Take a ` C : ∅→∅.
Assume that C[Jλx′1 : τ ′1. t1 + λx′2 : τ ′2. t2K

λτ

λu]⇓ (Ht1d).

We need to prove that C[Jλx′1 : τ ′1. t1K
λτ

λu +Jλx′2 : τ ′2. t2K
λτ

λu]⇓.
Take n strictly larger than the number of steps in the termination of
C[Jλx′1 : τ ′1. t1 + λx′2 : τ ′2. t2K

λτ

λu]⇓.
By Theorem 7 with Ht1 and Ht2 we have that ∅ ` λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2 &n

Jλx′1 : τ ′1. t1 + λx′2 : τ ′2. t2K
λτ

λu : ((τ ′1 → τ1)× (τ ′2 → τ2)).
By Lemma 49 , taking m = n, so m ≥ n and p = precise and � = &, we
then have that ∅ ` 〈〈C〉〉τ ;n[λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2] &n C[Jλx′1 : τ ′1. t1 + λx′2 : τ ′2. t2K

λτ

λu] :
EmulDVn;precise.
By Lemma 15 with Ht1d, and by the choice of n, we have that 〈〈C〉〉τ ;n[λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2]⇓
(Ht1t).
Take n the number of steps in the termination of 〈〈C〉〉τ ;n[λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2]⇓
(Ht2t).

From Lemma 51 we have that ∅ ` λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2 .n Jλx′1 : τ ′1. t1K
λτ

λu +Jλx′2 : τ ′2. t2K
λτ

λu :
((τ ′1 → τ1)× (τ ′2 → τ2)).
By Lemma 49 , taking m = n, p = imprecise and � = . we then have
that ∅ ` 〈〈C〉〉τ ;n[λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2] .n′ C[Jλx′1 : τ ′1. t1K

λτ

λu +Jλx′2 : τ ′2. t2K
λτ

λu] :
EmulDVn;imprecise

By Lemma 14 with Ht2t, and by the choice of n, we have that C[Jλx′1 : τ ′1. t1K
λτ

λu +Jλx′2 : τ ′2. t2K
λτ

λu]⇓.

⇐ direction: Dual to the previous one.

Acknowledgements
Dominique Devriese holds a Postdoctoral mandate from the Research Foun-
dation Flanders (FWO). Marco Patrignani held a Ph.D. fellowship from the
Research Foundation Flanders (FWO) during the development of this work.
This research is partially funded by project grants from the Research Fund KU
Leuven, and from the Research Foundation Flanders (FWO).

87

References
C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and assembly.

In Principles of Programming Languages, pages 133–146. ACM, 2011. doi:
10.1145/1926385.1926402.

88

	The Source Language blackNavyBlue
	Syntax
	Static Semantics
	Dynamic Semantics
	Program contexts
	Contextual equivalence

	The Target Language blackWildStrawberryu
	Syntax
	Well-scopedness
	Dynamic Semantics
	Program contexts
	Contextual equivalence

	Language and World Specifications
	General Language Specification
	General World Specification
	Language Specification for blackNavyBlue
	Language Specification for blackWildStrawberryu
	World Specification

	Logical Relations
	Compiler
	Compiler definition: erase and protect
	Properties of erasure
	Compatibility lemmas

	Properties of dynamic type wrappers
	Contextual equivalence reflection

	Equivalence preservation and emulation
	n-approximate NavyBlueUVal
	EmulDV specification
	Upgrade/downgrade
	Injecting blackNavyBlue into NavyBlueUVal
	Emulating blackWildStrawberryu in NavyBlueUVal
	Approximate back-translation
	Contextual equivalence preservation

	Compiler full abstraction
	Modular Full Abstraction
	Linking
	Compiler
	Additional Theorems and Proofs
	Proofs about Modularity

