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Abstract—A compressive sampling (CS) photoplethysmographic
(PPG) readout with embedded feature extraction to estimate heart
rate (HR) directly from compressively sampled data is presented.
It integrates a low-power analog front end together with a digital
back end to perform feature extraction to estimate the average HR
over a 4 s interval directly from compressively sampled PPG data.
The application-specified integrated circuit (ASIC) supports uni-
form sampling mode (1x compression) as well as CS modes with
compression ratios of 8x, 10x, and 30x. CS is performed through
nonuniformly subsampling the PPG signal, while feature extrac-
tion is performed using least square spectral fitting through Lomb–
Scargle periodogram. The ASIC consumes 172 µW of power from
a 1.2 V supply while reducing the relative LED driver power con-
sumption by up to 30 times without significant loss of relevant
information for accurate HR estimation.

Index Terms—Compressive sampling (CS), heart rate (HR),
Lomb–Scargle periodogram (LSP), low power, photoplethysmog-
raphy.

I. INTRODUCTION

PHOTOPLETHYSMOGRAPHY (PPG)-based heart rate
(HR) monitoring is receiving great attention recently, as

it does not require electrodes and elaborate skin preparation
as is the case with electrocardiography-based HR monitors
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[1], [2]. PPG acquisition, being a single point measurement
and the absence of electrodes increases patient comfort which
is crucial for continuous monitoring of HR. However, PPG ac-
quisition requires the tissue to be optically stimulated using a
LED and this leads to the LED driver being the dominant power
consumer, with the power consumption often ranging from the
mW range to tens of mWs [3].

A high sensitivity, LED-less PPG acquisition system that uti-
lizes ambient light as the source for stimulating the tissue has
been proposed in [4]. However, its applicability is limited par-
ticularly under low ambient light and low perfusion conditions,
which necessitate the use of LED as light source. Compres-
sive sampling (CS)-based PPG acquisition has emerged as an
attractive alternative for reducing the LED driver power con-
sumption in PPG acquisition systems [3]. Random stimulation
and sampling at sub-Nyquist rate is employed in CS-based PPG
acquisition systems instead of conventional uniform stimula-
tion and sampling at Nyquist rate, thereby reducing the effec-
tive duty cycle of the LED driver, which results in a proportional
reduction in its power consumption. CS-based acquisition, how-
ever, suffers from the drawback of requiring a computationally
intensive convex optimization process to recover the signal.
In conventional CS-based acquisition systems, acquired data
are transmitted over a wireline/wireless link to a base station,
where the reconstruction is performed [5]. This approach how-
ever has the following drawbacks. 1) For systems where real-
time analysis of the features in the signal is important, such
as continuous HR monitors, near sensor reconstruction/feature
extraction is desirable. 2) The need for wireless/wireline link
restricts the power budgets of energy-scarce sensor interfaces.
To overcome the aforesaid limitations, a hardware accelerator
capable of performing signal reconstruction on the sensor node
has been implemented in [6]. While this accelerator achieves
real-time reconstruction, it consumes up to 10 mW of power,
which can potentially outweigh the reduction in LED driver
power consumption obtained through CS.

In this paper, a fully integrated CS PPG acquisition
application-specified integrated circuit (ASIC) [7] is presented
for low-power HR estimation. As illustrated in Fig. 1, the
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Fig. 1. System overview of the compressively sampled (CS) photoplethys-
mography (PPG) readout for heart rate monitoring. Integrated digital back end
(DBE) performs feature extraction to estimate heart rate directly from compres-
sively sampled data.

implemented ASIC comprises of a readout and signal pro-
cessing chain which is interfaced to an off-chip photodiode
(PD), which is excited through an off-chip LED. The presented
ASIC not only employs CS for LED driver power consumption
reduction but also embeds a low-power digital back end (DBE)
capable of extracting the HR information directly from the
CS PPG signal without requiring complex reconstruction
techniques. This advances the state-of-the-art by reducing the
relative LED driver power consumption by up to 30x, while
retaining the information relevant for the reliable extraction of
HR. Furthermore, the integrated DBE extracts HR information
directly from CS data through least square spectral fitting tech-
nique, while incurring a power penalty of only 7.2 μW, thereby
circumventing the need for embedded complex reconstruction.

This paper is organized as follows. Section II gives an
overview of CS and its application to PPG acquisition. It also
describes the extraction of relevant features for HR estima-
tion directly from CS data through least square spectral fitting
technique. Section III describes the ASIC architecture and im-
plementation details, including the design of the analog front
end (AFE), which includes a transimpedance amplifier (TIA),
switched integrator (SI), and a 12-bit SAR Analog-to-digital
converter (ADC), and the detailed description of the DBE, which
accelerates the feature extraction. Section IV summarizes ASIC
measurement results. Finally, Section V concludes the paper.

II. BACKGROUND

A. Overview of CS for Photoplethysmography

CS is an alternate signal acquisition paradigm which asserts
that certain class of signals can be faithfully recovered from far
fewer samples or measurements of the signal compared to tra-
ditional Nyquist-based sampling [8]. This acquisition protocol
relies on the inherent structure of the signal which is related to
its sparsity on a given basis and its incoherence of the sampling
scheme. In mathematical terms, the process of signal acquisition
can be described as follows. Let X be the N-dimensional signal
vector, which is K-sparse on a basis Ψ. A linear transformation
of X through Ψ results in an N-dimensional K-sparse vector

S = ΨX (1)

where S is the sparse representation of X on Ψ. Instead of
acquiring X , a lower dimensional projection of X , obtained by
linearly transforming X through a measurement matrix Φ, Y ,

Fig. 2. Measurement matrix structure (partial) for CS PPG acquisition.

Fig. 3. LED and sampling pulse structure for conventional and compressive
sampled PPG acquisition.

is acquired in CS

Y = ΦX (2)

where Y is an M-dimensional measurement vector (M � N ).
The amount of data reduction is quantified through the com-
pression ratio (CR) defined as

CR =
N

M
. (3)

As described earlier, for faithful signal recovery, the basis
transform Ψ and the measurement matrix Φ need to be
incoherent.

PPG signals are shown to be sparse on frequency basis in gen-
eral and discrete cosine transform basis in particular [9]. Since
frequency basis is maximally incoherent with canonical basis,
the measurement matrix simplifies to a reduced order identity
matrix. Figure 2 shows a partial measurement matrix structure.
Uniform sampling can be viewed as a linear transformation of
the input signal vector X with an N × N identity matrix. An
M × N reduced order identity matrix is formed by choosing
M rows from the N × N identity matrix at random. The M
rows chosen at random, correspond to the M sampling instants
in time-domain (with the row index corresponding to the sam-
ple index). Since the rows and hence the sampling instants are
chosen at random, CS of PPG signal is equivalent to randomly
subsampling the signal. In practice, pseudorandom subsampling
schemes are used, showing on par performance with fully ran-
dom samplers. The same pseudorandom sequence can be reused
for every discrete window of length Tacq s (see Fig. 3). Com-
pared to the conventional PPG sampling scheme as shown in
Fig. 3, where signal is uniformly sampled at fs,N , CS-based
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Fig. 4. Time domain (top) and frequency domain (bottom) representation of
PPG signal.

PPG acquisition acquires signal at an average sampling rate of
fs,CS given by

fs,CS =
fs,N

CR
. (4)

Conventional PPG acquisition systems have an LED driver
duty cycle, D = TON × fs,N and power consumption of the
LED driver proportional to the duty cycle. CS-based PPG ac-
quisition systems, on the other hand, have an LED driver duty
cycle of TON × fs,CS and hence enables the reduction of LED
driver power consumption by a factor of CR.

B. Information Extraction From Compressively Sampled
Signal

Traditional CS-based acquisition systems offload the acquired
samples to a base station, where signal recovery is performed.
However, as described in Section I, this approach has disadvan-
tages for applications where real-time continuous monitoring
is desirable. Moreover, in certain applications, complete signal
recovery is not required, provided the information required to
extract the key parameters can be recovered from the CS data.
This is the case for PPG acquisition systems for HR monitoring.
Fig. 4 shows a time domain PPG signal segment and its fre-
quency domain representation. HR is typically estimated from
the time domain PPG signal by estimating the time difference
between successive peaks in the signal amplitude. Alternatively,
average HR within a short observation interval (Tacq = 4 s in
current work) can be estimated in the frequency domain from
the frequency corresponding to the peak in the spectrum, fpk

given in beats per minute (bpm) by

HRavg = 60fpk . (5)

Typically fpk assumes a value between 0.5 and 5 Hz, which
corresponds to an average HR range of 30–300 bpm. Hence,
to estimate the average HR from a compressively sampled PPG
signals, it is sufficient to extract its power spectral density (PSD).

State-of-the-art feature extraction techniques that extract fre-
quency domain features directly from CS data have relied on

Johnson–Lindenstrauss (JL) lemma [10]. JL lemma asserts that
the inner products for a subset of vectors are preserved up to a
factor of 1 ± ε (ε < 1) under random projections [11]. This im-
plies that the PSD and hence the energy of the signal is preserved
under random projections within an accuracy of ε. However, for
accurate extraction of PSD from the projected data (equivalent
to CS data) using JL lemma-based approach, the factor ε needs
to be as small as possible (ε � 1). For PPG signals, where the
measurement matrix Φ is a reduced order identity matrix, it has
been shown in [11] that the PSD features are not well preserved
(ε ≈ 0.68 for a CR of 10x). Hence, the state-of-the-art feature
extraction techniques for CS data are not readily applicable for
accurate HR extraction from CS PPG signals.

In this work, the use of least squares spectral fitting techniques
is explored as an alternate approach for PSD estimation from CS
PPG signals. In particular, Lomb–Scargle periodogram (LSP) is
used as the PSD estimator for randomly subsampled PPG signal.
Let x(tj ), j = 1, 2, . . . ,M be the CS PPG samples. LSP esti-
mates the PSD P (ω) of x(tj ) as function of angular frequency
ω as

P (ω) =

⎡
⎢⎣

(∑M
j=1 (x(tj ) − μ) cos ω(tj − τ)

)2

∑M
j=1 cos2 ω(tj − τ)

+

(∑M
j=1 (x(tj ) − μ) sinω(tj − τ)

)2

∑M
j=1 sin2 ω(tj − τ)

⎤
⎥⎦ (6)

where μ is the mean of x(tj ) and τ is given by

tan(2ωτ) =

∑M
j=1 sin 2ωtj∑M
j=1 cos 2ωtj

. (7)

In context of CS, the measurement matrix Φ is known a priori
and hence the sampling instants tj are predetermined. Therefore,
from (7), for a given frequency ω, τ can be predetermined and
so are the quantities cos ω(tj − τ) and sinω(tj − τ) in (6).
These facts are utilized in simplifying the design of the feature
extraction unit (FEU), which is part of the DBE.

III. ASIC IMPLEMENTATION

Fig. 5 shows the architecture of the single channel CS PPG
acquisition ASIC. The ASIC embeds an AFE which performs
nonuniformly subsampled acquisition of the PPG signal and
a DBE which performs the HR estimation directly from the
CS PPG signal and also doubles as the timing controller that
synchronizes the building blocks. The AFE integrates a pro-
grammable gain TIA, the output of which is interfaced to an
SI, which improves the SNR. The output of the SI is buffered
and digitized through a 12-bit SAR ADC. A sub-1V bandgap
reference is integrated on-chip to provide stable bias and ref-
erence signals. The DBE comprises of a control unit (CU) that
generates the necessary control signals required for the LED
driver, AFE, and the ADC, and also the required internal tim-
ing and synchronizing signals. Direct memory access (DMA)
is integrated into the DBE, which transfers the incoming data
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Fig. 5. Architecture of a single channel CS PPG acquisition ASIC which
embeds a DBE for feature extraction.

Fig. 6. Transimpedance amplifier (TIA) used in the CS PPG ASIC and the
OTA used to realize the same.

from the ADC into one of the data memory (DMEM) banks.
The FEU, also part of the DBE, accelerates the process of LSP
to enable extraction of HR directly from the CS PPG signal. The
DBE is clocked through an external clock at 32 kHz. The ASIC
also provides wide scale programmability both for the gain and
bandwidth settings of the AFE and CR, and therefore it can be
tailored for a wide range of signals.

A. AFE Architecture

The first stage of the readout channel is a TIA that is interfaced
to an off-chip PD. The TIA converts the PPG signal that is
acquired as a current signal at the output of the PD into a voltage
signal, which is further processed by the signal processing chain
in voltage domain. The TIA is realized by employing resistive
feedback (Rf ) around a two-stage Miller compensated OTA
as shown in Fig. 6. When connecting a TIA to a PD, stability
issues can arise due to the reverse bias junction capacitance
(Cp ) of the PD. Fig. 7 shows the measured reverse bias junction
capacitance of the PD that forms the part of the commercial
Nellcor compatible transmission type finger probe used in the
current work. As it can be seen, the PD offers a large Cp ranging
from 145 to 155 pF across the channel reference voltage (Vref)
range and hence a compensation capacitor (Cf ) is added in
parallel to Rf to introduce an LHP zero and thus improve the
stability margin of the TIA. The TIA in the current work has a
programmable transimpedance gain of 10, 50, 100, and 250 kΩ,
while the feedback capacitance (Cf ) can be programmed from

Fig. 7. Measured reverse bias junction capacitance of the photodiode used in
the current work as a function of reverse bias voltage.

Fig. 8. Schematic of the 5-bit current DAC (IDAC) used to subtract static
component of photocurrent.

2 to 22 pF, thus allowing the ASIC to be interfaced with a wide
range of PDs.

PPG signal, measured as the current at the input of the TIA,
consists of a large static component of current on top of which,
a relative small pulsatile (AC) component rides. This AC com-
ponent of current is typically 1%–4% of the static component
and contains the information relevant for HR extraction. In or-
der to relax the channel dynamic range requirements, the static
component of the current has to be rejected early in the signal
processing chain. This is achieved by interfacing a 5-bit current
DAC (IDAC) (see Fig. 8), capable of sourcing up to 10 μA of
current at the input of the TIA.

The OTA used to realize the TIA is shown in Fig. 6. It uses
a standard two-stage Miller compensated topology with PMOS
input pair with two modifications. 1) The NMOS active load is
source degenerated with a resistor Rs , the resistance of which is
12.5 kΩ. 2) Enable switches (En) are added to turn OFFthe OTA
in optional power down mode. Degenerating the active load has
advantages from the noise point of view as follows. The input
referred PSD of thermal voltage noise of the first stage of the
OTA without active load degeneration is given by

v2
n,rti =

8kTγ

gmp

(
1 +

gmn

gmp

)
. (8)
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With the NMOS active load degenerated, the input referred
noise PSD is given by

v2
n,rti =

8kTγ

gmp

(
1 +

1
(1 + gmn

Rs)2 · gmn

gmp

+
g2

mn

γ(1 + gmn
Rs)2 · 1

gmp
Rs

)
. (9)

When properly degenerated (gmnRs � 1) the noise contri-
bution of Mn1 and Mn2 is negligible and given that the noise
contribution of Rs is smaller compared to the contribution of
Mn1 , 2 and negligible flicker noise contribution due to Rs , the
overall input referred voltage noise is reduced for the OTA used
in the current work [12]. The flicker noise contribution of the
input pair is minimized by the use of PMOS devices with rela-
tively large area (160 μm/1 μm) for the input pair. As described
in Section II, a CS-based PPG acquisition system operates with
a very low duty cycle and hence additional power savings in the
readout chain can be obtained by disabling the OTA between
successive sampling instances through enable switches.

The output of the TIA is fed into an SI, which is realized by
incorporating a switched capacitor in feedback around the OTA
in Fig. 6. The output of the TIA is converted into a current signal
through Rint , which is then integrated onto Cint for a duration
of Tint . This results in a voltage gain is given by (10) for the SI
stage

AV,SI =
Tint

Rint · Cint
. (10)

In the current work, Rint and Tint are fixed to 30 kΩ and
30.5 μs (1 period of the 32 kHz clock), respectively, while Cint
is 3-bit programmable and has a range between 50 and 250 pF,
thus providing programmable gain for the SI stage.

SI stage, apart from providing additional gain, also acts as a
noise limiting filter [13]. This is particularly important in pulsed
PPG acquisition systems, where the thermal noise originating
from the OTA of the TIA exhibits noise peaking at high frequen-
cies. This noise peaking is due to the large reverse bias junction
capacitance of PD (Cp ) coupled with relatively lower values of
TIA feedback capacitance (Cf ), which leads to a high-frequency
OTA noise transfer function given by

NTFOTA,TIA ≈
(

1 +
Cp

Cf

)
� 1. (11)

This high-frequency noise folds back into the baseband upon
sampling, thereby increasing the effective noise bandwidth
(ENBW). The presence of the SI, which provides sinc filter-
ing, introduces zeros in the signal as well as the noise transfer
functions at frequencies that are integral multiples of 1

T in t
and

thus reduces the ENBW and the noise that would be aliased
back into the baseband (see Fig. 9).

The output of the SI is then digitized using a 12-bit SAR ADC
shown in Fig. 10, which comprises of a split capacitor DAC to
reduce the area requirements, with a unit capacitance (Cu ) of
800 fF. A level-shifting sampling approach has been used to
enable rail-to-rail input range [14]. The sampling instants of the
ADC are controlled by the CU that forms part of the DBE. The

Fig. 9. Switched integrator (SI) as noise limiting filter in the PPG readout
channel.

Fig. 10. Schematic of the 12-bit SAR ADC used in the current work.

Fig. 11. Simplified architecture of the DBE.

digitized data, at the output of the ADC is fed into the DBE for
further processing to extract the HR.

B. DBE Architecture

The DBE, shown in Fig. 11, comprises of a CU, which further
consists of a timing control and an RISC controller. The timing
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Fig. 12. Key timing signals for AFE and LED driver control.

control generates the necessary timing signals for the proper
operation of LED drivers, AFE, ADC, and internal signals re-
quired for the synchronization of the DBE. The RISC controller
controls the subsystems in the DBE as per the settings stored
in the configuration and instruction registers. Two data memory
banks DMEM0 and DMEM1 store the incoming CS PPG data
in a ping-pong fashion. Each memory bank is 12-bit wide and
has a depth of 512 to enable storage of 4 s worth of PPG data
when uniformly sampled at 128 Hz. The data at the output of the
ADC are moved into one of the memory banks through a DMA
controller. An FEU accelerates the PSD estimation of CS PPG
data through LSP. The PSD coefficients are written back into a
data memory (DMEM) which is 18-bit wide with a depth of 64.
The DBE supports four different compression levels: uniform
sampling (1x), 8x, 10x, and 30x. An external clock of 32 kHz
provides the master clock for the DBE and the auxiliary clocks
required are internally generated.

The timing control block internally divides the 32 kHz clock
by 256 to generate a 128 Hz clock. In uniform sampling mode,
this 128 Hz clock acts as the sampling clock (o_samp), based
on which the rest of the control signals required for the LED
driver (LED_Pulse) and the AFE (PD_Act, INT_clk, CH_Samp
and INT_Rst) are generated as shown in Fig. 12. When CS
acquisition mode is enabled by selecting a non-unity CR, the
128 Hz clock drives a 9-bit counter, which references one of
the three 512-bit lookup tables (LUTs) (selected based on CR)
where the sampling instances, corresponding to the entries of the
measurement matrix are stored. The output of the LUT serves
as the sampling clock (o_samp) based on which the rest of
the control signals are generated as explained above. When the
optional power-down mode is enabled, the enable signal (see En
in Fig. 6) is generated by the timing control block, in addition
to the above signals. The enable signal is asserted at the rising
edge of PD_Act and deasserted at the falling edge of INT_Rst.

The FEU performs the PSD estimation of the CS PPG sig-
nal using the LSP described in Section II. The FEU performs
a 64-point LSP over a frequency range of 0.5–3.5 Hz, result-
ing in a frequency resolution of 0.047 Hz. This translates into
a resolution of 3 bpm in determination of HR over a range of
30–210 bpm, which is conformant to ANSI-AAMI standards
for HR meters [15]. Sum of absolute values is used instead of
squared values in (6) to simplify the hardware implementation.

Fig. 13. Eight-way multiply accumulate (MAC) unit for accelerating PSD
estimation.

Since the sampling instants are known a priori, further simpli-
fication of hardware is done by storing the pre-evaluated sine
and cosine coefficients in ROM, which are appropriately refer-
enced depending on the CR. With the above simplifications, a
modified LSP can be expressed as

�P = |CT · �X| + |ST · �X| (12)

where �P is the 64×1 vector of LSP coefficients, CT and ST are
pre-evaluated cosine and sine transformation matrices of dimen-
sion 512×64, respectively, and �X is the mean subtracted input
CS PPG data acquired over a duration of 4 s with a dimension of
512×1. Therefore, the process of LSP in this case reduces to a
matrix transformation process, with the transformation matrices
predetermined.

The mean of the incoming CS PPG data over a 4 s inter-
val is calculated by accumulating the samples as they arrive at
the input of the DBE and dividing by 4 × fs,CS, where fs,CS

is the average sampling frequency given by (4). The division
process is performed through nonrestoring divide algorithm.
The mean subtracted samples are then fed into an eight-way
multiply-accumulate (MAC) unit, shown in Fig. 13, which per-
forms the acceleration of the matrix multiplication operation in
(12). Of eight MAC units, four are assigned to accelerate the
multiplication with cosine coefficients, while the rest acceler-
ate the sine coefficient multiplications, thereby requiring 8192
clock cycles for the FEU to compute the LSP coefficients of
the 4 s PPG signal segment. The LSP coefficients are then trun-
cated to 18-bits and written to DMEM, where a linear search
is performed to determine the peak in the LSP coefficients and
the corresponding frequency bin, from which the 8-bit average
HR is estimated using (5). The HR thus estimated is then stored
into an internal register and HR_DONE signal is asserted to
indicate the availability of the result. In the measurement setup,
an external microcontroller (ARM Cortex M3) reads the HR
data and stores/wirelessly transmits the same. Low-power tech-
niques including clock gating are employed to reduce the power
consumption of the DBE given the low duty cycle operation of
the system.

IV. MEASUREMENT RESULTS

The ASIC is fabricated in a 0.18 μm process and occupies
an area of 10 mm2. Fig. 14 shows the chip micrograph of the
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Fig. 14. ASIC chip micrograph.

Fig. 15. (Top) Measured output of the channel for a dc current excitation of
LED in uniform sampling mode. (Bottom) Zoomed in view of response during
one sampling instant.

Fig. 16. Signal acquisition with CRs 8x and 30x when LED is stimulated with
a sinusoidal current at 1.2 Hz.

fabricated ASIC. To characterize the ASIC an external LED
is driven with a dc current and the response at the output of
the readout channel is recorded under uniform sampling mode.
Fig. 15 shows the output of the SI for one such stimulus along
with the ADC sampling clock (CH_samp) and the integrator clo-
ck (INT_clk), where it can be seen that the SI starts integrating
the output of the TIA when INT_clk is high, resulting in a ramp
for a dc current stimulation. The output of SI is then sampled

Fig. 17. Channel recovery from saturation when IDAC is enabled.

Fig. 18. In vivo acquired PPG signal through the ASIC under uniform sam-
pling mode and with a CR of 10x.

Fig. 19. Measured frequency corresponding to the peak in the PSD (fpk )
from the ASIC with LED modulated with a sinusoidal current whose frequency
is swept from 0.5 to 3.4 Hz.

Fig. 20. Measured power consumption breakdown of the ASIC and the off-
chip LED driver for different CRs.
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TABLE I
ASIC PERFORMANCE SUMMARY AND COMPARISON WITH THE STATE-OF-THE-ART

This Work TBCAS’10 [17] ISSCC’13 [4] TBCAS’08 [18] TBCAS’15 [19]

Tech. & Supply 0.18 μm CMOS 1.2 V 1.5 μm BiCMOS 5 V 0.18 μm CMOS 0.5 V 0.35 μm CMOS 2.5 V 0.18 μm CMOS 1.8 V
Sampling Frequency 128, 16, 13, and 4 Hz1 100 Hz 32 kHz 100 Hz 165 Hz
DC Current Cancellation Up to 10 μA NR Up to 4 μA 53.6 μA (Ext. HPF) 100 μA
Integrated Noise (RTI) 486 pA2

rms NR NR 2.2 nArms 600 pArms

Noise Bandwidth 10 Hz NR NR 6 Hz 10 Hz
Integrated Feature Extraction Yes (HR/HRV) Yes (SpO3

2 ) No No No
Data Compression Yes (8x, 10x, 30x) No No No No
Power Consumption (Readout) 172 μW4 400 μW 4 μW 600 μW 216 μW
Power Consumption (LED driver) 1200–43 μW5 4400 μW NA (ambient light) NR 1125–120 μW

1 Average sampling frequencies corresponding to CRs 8x, 10x, and 30x, respectively.
2 TIA setting: Rf = 50 kΩ and Cf = 6 pF.
3 Blood oxygenation saturation measurement.
4 Includes AFE, ADC, DBE (while executing feature extraction), and bias power consumption, with power down mode disabled.
5 Off-chip LED driver. LED power consumption is subject to the SNR, skin tone of the subject and the efficiency of the LED used in the setup
NA—Not applicable, NR—Not reported.

through a rising edge of CH_samp followed by the reset of
SI, thereby verifying the functionality of the timing control of
the DBE as well as the functionality of the AFE. To further
validate the functionality of the ASIC, the LED is modulated by
a sinusoidal current with a frequency of 1.2 Hz (corresponding
to 72 bpm HR) and the resulting PD current is read-out for CRs
of 8x and 30x at the output of SI as shown in Fig. 16. This
further validates the functionality of the timing control and the
AFE in the CS acquisition mode.

To demonstrate the recovery of channel from saturation event
arising due to increased optical coupling (for example due to
motion), a direct optical exposure event is triggered while mod-
ulating the LED with a sinusoidal current. Thanks to the pres-
ence of the IDAC, the channel can successfully recover from
the saturation event (see Fig. 17). An in vivo acquisition of PPG
signal is performed both in uniform sampling mode and CS
mode with a CR of 10x through transmission pulse oximetry on
index finger. The probe has been shielded while performing the
measurements to avoid interference from the ambient light. The
signal acquired in uniform sampling mode is low-pass filtered
digitally with a cut-off frequency of 5 Hz and is shown in Fig. 18.
The performance of the FEU is characterized by modulating the
LED with a sinusoidal current, the frequency of which is swept
from 0.5 to 3.4 Hz to cover the HR range of 30–204 bpm. The
LED modulation is carefully chosen so that the ac component of
the photocurrent is approximately 20 nApp. Sinusoidal modula-
tion is used instead of PPG signals from a standard database [16]
due to the following reason. 1) Signals in the database do not
have golden annotations for HR to benchmark the performance
of ASIC, and 2) PPG signals are extremely sparse on frequency
domain and therefore can be approximated with sinusoids. The
output of the readout is then compressively sampled with CRs
8x, 10x, and 30x and feature extraction is performed on the
acquired data. Since the feature extraction process estimates
the frequency corresponding to the peak in the PSD, under ideal
conditions, the estimated peak frequency (fpk ) is identical to the
input frequency. Fig. 19 shows the extracted peak frequency for
different CRs. The peak frequency serves as a proxy to estimate
the HR using (5). The HR thus measured exhibits a worst-
case error of 10 bpm at 30x compression for a nominal HR of

96 bpm. This error is still conformant to ANSI-AAMI standards
for HR meters [15].

The ASIC consumes a total power of 172 μW from a supply of
1.2 V for the entire system without power-down mode enabled.
The power consumption of the ASIC is dominated by the AFE
which consumes 158.8 μW, while the ADC and the DBE con-
sume 6 and 7.2 μW, respectively (see Fig. 20). On the other hand,
the LED driver power consumption scales from 1200 to 43 μW,
which corresponds to uniform sampling mode (1x CR) and 30x
CR respectively, thanks to the compressive sampled acquisi-
tion paradigm. The LED driver power consumption is measured
while acquiring the PPG signal of a healthy individual. At the
reported power levels, the resulting photocurrent is measured to
have an ac component of 45 nApp , while the dc component is
measured to be 1.6 μA. At lower CRs, the LED driver contin-
ues to dominate the power consumption of the system, while at
higher CRs the AFE limits the power consumption due to fun-
damental noise limitations. Table I summarizes the key perfor-
mance metrics for the implemented ASIC and compares against
the state-of-the-art PPG acquisition systems. Compared to the
state-of-the-art, CS-based PPG acquisition enables up to 30x
reduction in the power consumption of the LED driver, thanks
to the DBE, which accelerates LSP to enable feature extraction
directly from CS data to accurately estimate HR with minimum
power penalty. While [4] consumes lower power than the cur-
rent work, it does not describe the robustness and accuracy in
determination of the HR under low ambient light/low perfusion
conditions (low SNR condition). Under such conditions, it is
likely that an LED-based stimulation is required, in which case,
the proposed CS-based PPG acquisition enables the reduction
of LED driver power consumption proportional to the CR.

The robustness of the ASIC under varying SNR conditions
is demonstrated by performing in vivo acquisition of PPG un-
der four different conditions, changing the LED driver current
(drawn from a 5 V supply), while adjusting the IDAC setting to
cancel most of the dc component out. Table II shows excerpts
of the recorded PPG signals after being filtered, along with the
information of the different setups, the resulting ac component
on the acquired signals, and the HR value calculated by the
ASIC at a CR of 10x as well as with uniform sampling. The ac
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TABLE II
ASIC PERFORMANCE WITH DIFFERENT SNRS

component of the photocurrent varies from 3 nApp for a LED
driver peak current of 18 mA to 12 nApp when the LED driver
peak current is increased to 314 mA. The HR, estimated from
the uniformly sampled PPG signal using FFT, serves as the ref-
erence. The PPG signal is then compressively acquired at a CR
of 10x and the average HR estimated by the ASIC is compared
against the reference. As can be seen in Table II, the error in the
average HR estimated at 10x CR within 2 bpm under varying
SNR conditions. The LED driver power consumption, on the
other hand, scales proportional to the CR, from 6.1 mW to
615 μW for an acquired ac component of photocurrent of
12 nApp .

V. CONCLUSION

A CS PPG readout with embedded feature extraction to
estimate HR directly from compressively sampled data is
presented. The ASIC advances the state-of-the-art by reducing
the relative LED driver consumption by up to 30x while
retaining the relevant signal information. An integrated DBE
performs feature extraction to estimate the PSD and the average
HR over a 4 s interval of compressively acquired PPG signal
through LSP. The estimated HR conforms to the accuracy
requirements specified by ANSI-AAMI standards for HR
meters. The ASIC consumes 172 μW of power from a 1.2 V
supply, with the DBE consuming only 7.2 μW, thus avoiding
the energy penalties of wireless/wireline transmission and/or
embedded signal reconstruction.
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[6] F. Ren and D. Marković, “A configurable 12–237 kS/s 12.8 mW sparse-
approximation engine for mobile data aggregation of compressively sam-
pled physiological signals,” IEEE J. Solid-State Circuits, vol. 51, no. 1,
pp. 68–78, Jan. 2016.

[7] P. V. Rajesh et al., “A 172 μW compressive sampling photoplethysmo-
graphic readout with embedded direct heart-rate and variability extraction
from compressively sampled data,” in Proc. 2016 IEEE Int. Solid-State
Circuits Conf., 2016, pp. 386–387.

[8] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[9] V. R. Pamula, M. Verhelst, C. Van Hoof, and R. F. Yazi-
cioglu, “Computationally-efficient compressive sampling for low-power
pulseoximeter system,” in Proc. 2014 IEEE Biomed. Circuits Syst. Conf.,
2014, pp. 69–72.

[10] M. Shoaib, N. K. Jha, and N. Verma, “A compressed-domain processor
for seizure detection to simultaneously reduce computation and commu-
nication energy,” in Proc. IEEE 2012 Custom Integr. Circuits Conf., 2012,
pp. 1–4.

[11] V. R. Pamula, M. Verhelst, C. Van Hoof, and R. F. Yazicioglu, “A novel fea-
ture extraction algorithm for on the sensor node processing of compressive
sampled photoplethysmography signals,” in Proc. IEEE SENSORS,2015,
pp. 1–4.

[12] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, “An energy-efficient mi-
cropower neural recording amplifier,” IEEE Trans. Biomed. Circuits Syst.,
vol. 1, no. 2, pp. 136–147, Jun. 2007.

[13] K. N. Glaros and E. M. Drakakis, “A sub-mW fully-integrated pulse
oximeter front-end,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 3,
pp. 363–375, Jun. 2013.

[14] H. Wu and Y. P. Xu, “A 1V 2.3 μW biomedical signal acquisition ic,” in
Proc. IEEE Int. Solid State Circuits Conf., Feb. 2006, pp. 119–128.

[15] American National Standards for Cardiac Monitors, Hearth Rate Meters
and Alarms, ANSI/AAMI-EC13, 2002.

[16] A. L. Goldberger et al., “Physiobank, physiotoolkit, and physionet com-
ponents of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[17] M. Tavakoli, L. Turicchia, and R. Sarpeshkar, “An ultra-low-power pulse
oximeter implemented with an energy-efficient transimpedance amplifier,”
IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 1, pp. 27–38, Feb. 2010.

[18] A. K. Wong, K.-P. Pun, Y.-T. Zhang, and K. N. Leung, “A low-power
CMOS front-end for photoplethysmographic signal acquisition with ro-
bust DC photocurrent rejection,” IEEE Trans. Biomed. Circuits Syst.,
vol. 2, no. 4, pp. 280–288, Dec. 2008.

[19] E. S. Winokur, T. O’Dwyer, and C. G. Sodini, “A low-power, dual-
wavelength photoplethysmogram (PPG) SoC with static and time-varying
interferer removal,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 4,
pp. 581–589, Aug. 2015.

Venkata Rajesh Pamula (S’15) received the B.Tech.
degree in electrical engineering from the Indian Insti-
tute of Technology (BHU), Varanasi, India, in 2007,
and the M.Sc. degree in electrical and electronics en-
gineering from Imperial College London, London,
U.K., in 2010.

He is currently a Research Assistant at MI-
CAS/ESAT, KU Leuven, Leuven, Belgium, in col-
laboration with IMEC, Leuven. His research inter-
ests include low-power circuits and system design
for biomedical applications.

Mr. Pamula received the Government of Andhra Pradesh Gold Medal in 2003
and was awarded four Gold Medals by IIT (BHU) in 2007, he also received the
Analog Devices outstanding student designer award in 2016.



496 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 3, JUNE 2017

Jose Manuel Valero-Sarmiento (S’07–M’16) re-
ceived the B.S. degree in telecommunications engi-
neering from the Polytechnic University of Valencia,
Valencia, Spain, in 2011. He is currently working
toward the Ph.D. degree in the Integrated Bionic Mi-
croSystems Laboratory, Department of Electrical and
Computer Engineering, North Carolina State Univer-
sity, Raleigh, NC, USA.

His research interests include the design of low-
power readout circuits for continuous biopotential
monitoring, and the use of wireless power transfer

and injectable methods to deploy these recording systems in animals.

Long Yan (M’07) received the B.S. and M.S. degrees
in electrical engineering and the Ph.D. degree in elec-
trical engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, South
Korea, in 2007, 2009, and 2011, respectively.

In 2010, he was with Microsystems Technology
Laboratories, Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA, as a Visiting Student,
where he developed a low-power EEG readout front-
end circuit for patient-specific seizure classification.
From 2011 to 2014, he has been with IMEC, Leuven,

Belgium, as a Senior Researcher. His research in IMEC focused on the develop-
ment of low-power analog front-end circuits for the next-generation biomedical
signal monitoring systems. Since December 2014, he joined Samsung Electron-
ics, Hwaseong, South Korea.

Dr. Yan serves in the technical program committee of International Solid
State Circuit Conference (ISSCC).

Alper Bozkurt (S’01–M’10) received the Master’s
degree in biomedical engineering from Drexel Uni-
versity, Philadelphia, PA, USA, and the Doctorate
degree in electrical and computer engineering from
Cornell University, Ithaca, NY, USA.

He is with the Department of Electrical and Com-
puter Engineering, North Carolina State University,
Raleigh, NC, USA. He is the Founder and the Direc-
tor of Integrated Bionic MicroSystems Laboratory,
NC State.

Dr. Bozkurt received the Calhoun Fellowship from
Drexel University, Donald Kerr Award at Cornell University, Chancellor’s Inno-
vation Award and William F. Lane Outstanding Teacher Award at North Carolina
State University, the best paper award from The U.S. Government Microcir-
cuit Applications & Critical Technology Conference and IEEE Body Sensor
Networks Conference, the National Science Foundation CAREER Award, IBM
Faculty Award and was included to the Popular Science Magazine 2015 Brilliant
10 list. He is also the testbed leader under The National Science Foundation
Nanosystems Engineering Research Center for Advanced Self-Powered Sys-
tems of Integrated Sensors and Technologies (ASSIST).

Chris Van Hoof (M’91) received the Ph.D. degree in
electrical engineering from the University of Leuven,
Leuven, Belgium, in 1992.

He is the Director of Wearable Healthcare at
IMEC, Leuven, and is also an IMEC Fellow. He has a
track record of over 20 years of initiating, executing,
and leading national and international contract R&D
at IMEC. His work resulted in three startups (two in
the healthcare domain) and he has delivered sensor
flight hardware to two cornerstone European Space
Agency missions. He was with IMEC as the Manager

and Director in diverse technical fields (sensors and imagers, MEMS and au-
tonomous microsystems, wireless sensors, and body-area networks, wearable
health). He has published more than 600 papers in journals and conference
proceedings and given over 60 invited talks. He is also a Full Professor with the
University of Leuven (KU Leuven).

Nick Van Helleputte (M’10) received the M.S. de-
gree in electrical engineering and the Ph.D. degree
(MICAS research group) in electrical engineering
from the Katholieke Universiteit Leuven, Leuven,
Belgium, in 2004 and 2009, respectively. His Ph.D.
research focused on low-power ultrawide-band ana-
log front-end receivers for ranging applications.

He joined IMEC, Leuven, in 2009, as an Ana-
log R&D Design Engineer. He is currently the Team
Leader of the biomedical circuits and systems team.
His research interests include ultralow-power circuits

for biomedical applications. He has been involved in analog and mixed-signal
ASIC design for wearable and implantable healthcare applications.

Dr. Helleputte has served on the technical program committee of VLSI cir-
cuits symposium.

Refet Firat Yazicioglu (M’06) received the Ph.D.
degree in electronics engineering from Katholieke
Universiteit Leuven, Leuven, Belgium, in 2008, in
collaboration with IMEC, Leuven.

He worked at IMEC as the R&D Team Leader
and a Principal Scientist, where he was leading
the Biomedical Integrated Circuits team focusing
on Analog and Mixed Signal Integrated Circuit de-
sign for wearable and implantable biomedical appli-
cations. He is currently working at GSK, London,
U.K., as the Head of Neuromodulation Devices. He

has (co)authored more than 70 publications, 3 book chapters, and a book on
ultralow-power circuit and system design for biomedical applications, and au-
thored several patents in this field. He has developed several generations of
integrated circuits for wearable and implantable healthcare applications.

Marian Verhelst (S’01–M’09–SM’14) received the
Ph.D. (cum ultima laude) degree in electrical engi-
neering from KU Leuven, Leuven, Belgium, in 2008.

She is an Assistant Professor in the MICAS Labo-
ratories (MICro-electronics And Sensors), Electrical
Engineering Department, KU Leuven, since 2012.
She was a Visiting Scholar with the Berkeley Wire-
less Research Center (BWRC), UC Berkeley in the
summer of 2005. From 2008 till 2011, she worked
in the Radio Integration Research Lab of Intel Labs,
Hillsboro OR, doing research on digital assistance of

configurable wireless radio front-ends. She has published more than 60 papers
in conferences and journals. Her research interests include self-adaptive circuits
and systems, and low-power sensing and processing for the internet-of-things.

Dr. Marian is a member of the Young Academy of Belgium, ISSCC, ES-
SCIRC, and DATE TPC, as well as a member of the executive committee of
DATE, and the EU committee of ISSCC. Marian is associate editor of TCAS-II
and JSSC, and has served as a reviewer for the EU for FP7 and H2020 projects.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


