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The aim of this letter is to propose a theory of deep restricted kernel
machines offering new foundations for deep learning with kernel ma-
chines. From the viewpoint of deep learning, it is partially related to
restricted Boltzmann machines, which are characterized by visible and
hidden units in a bipartite graph without hidden-to-hidden connections
and deep learning extensions as deep belief networks and deep Boltz-
mann machines. From the viewpoint of kernel machines, it includes least
squares support vector machines for classification and regression, kernel
principal component analysis (PCA), matrix singular value decomposi-
tion, and Parzen-type models. A key element is to first characterize these
kernel machines in terms of so-called conjugate feature duality, yielding
a representation with visible and hidden units. It is shown how this is
related to the energy form in restricted Boltzmann machines, with con-
tinuous variables in a nonprobabilistic setting. In this new framework
of so-called restricted kernel machine (RKM) representations, the dual
variables correspond to hidden features. Deep RKM are obtained by cou-
pling the RKMs. The method is illustrated for deep RKM, consisting of
three levels with a least squares support vector machine regression level
and two kernel PCA levels. In its primal form also deep feedforward neu-
ral networks can be trained within this framework.

1 Introduction

Deep learning has become an important method of choice in several
research areas including computer vision, speech recognition, and lan-
guage processing (LeCun, Bengio, & Hinton, 2015). Among the existing
techniques in deep learning are deep belief networks, deep Boltzmann
machines, convolutional neural networks, stacked autoencoders with pre-
training and fine-tuning, and others (Bengio, 2009; Goodfellow, Bengio, &
Courville, 2016; Hinton, 2005; Hinton, Osindero, & Teh, 2006; LeCun et al.,
2015; Lee, Grosse, Ranganath, & Ng, 2009; Salakhutdinov, 2015; Schmid-
huber, 2015; Srivastava & Salakhutdinov, 2014; Chen, Schwing, Yuille, &
Urtasun, 2015; Jaderberg, Simonyan, Vedaldi, & Zisserman, 2014; Schwing
& Urtasun, 2015; Zheng et al., 2015). Support vector machines (SVM) and
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kernel-based methods have made a large impact on a wide range of appli-
cation fields, together with finding strong foundations in optimization and
learning theory (Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995; Ras-
mussen & Williams, 2006; Scholkopf & Smola, 2002; Suykens, Van Gestel,
De Brabanter, De Moor, & Vandewalle, 2002; Vapnik, 1998; Wahba, 1990).
Therefore, one can pose the question: Which synergies or common founda-
tions could be developed between these different directions? There has al-
ready been exploration of such synergies— for example, in kernel methods
for deep learning (Cho & Saul, 2009), deep gaussian processes (Damianou &
Lawrence, 2013; Salakhutdinov & Hinton, 2007), convolutional kernel net-
works (Mairal, Koniusz, Harchaoui, & Schmid, 2014), multilayer support
vector machines (Wiering & Schomaker, 2014), and mathematics of the neu-
ral response (Smale, Rosasco, Bouvrie, Caponnetto, & Poggio, 2010), among
others.

In this letter, we present a new theory of deep restricted kernel ma-
chines (deep RKM), offering foundations for deep learning with kernel
machines. It partially relates to restricted Boltzmann machines (RBMs),
which are used within deep belief networks (Hinton, 2005; Hinton et al.,
2006). In RBMs, one considers a specific type of Markov random field, char-
acterized by a bipartite graph consisting of a layer of visible units and
another layer of hidden units (Bengio, 2009; Fisher & Igel, 2014; Hinton
et al., 2006; Salakhutdinov, 2015). In RBMs, which are related to harmoni-
ums (Smolensky, 1986; Welling, Rosen-Zvi, & Hinton, 2004), there are no
connections between the hidden units (Hinton, 2005), and often also no
visible-to-visible connections. In deep belief networks, the hidden units of
a layer are mapped to a next layer in order to create a deep architecture.
In RBM, one considers stochastic binary variables (Ackley, Hinton, & Se-
jnowski, 1985; Hertz, Krogh, & Palmer, 1991), and extensions have been
made to gaussian-Bernoulli variants (Salakhutdinov, 2015). Hopfield net-
works (Hopfield, 1982) take continuous values, and a class of Hamiltonian
neural networks has been studied in DeWilde (1993). Also, discriminative
RBMs have been studied where the class labels are considered at the level
of visible units (Fisher & Igel, 2014; Larochelle & Bengio, 2008). In all of
these methods the energy function plays an important role, as it also does
in energy-based learning methods (LeCun, Chopra, Hadsell, Ranzato, &
Huang, 2006).

Representation learning issues are considered to be important in deep
learning (Bengio, Courville, & Vincent, 2013). The method proposed in this
letter makes a link to restricted Boltzmann machines by characterizing sev-
eral kernel machines by means of so-called conjugate feature duality. Dual-
ity is important in the context of support vector machines (Boser et al., 1992;
Cortes & Vapnik, 1995; Vapnik, 1998; Suykens et al., 2002; Suykens, Alzate,
& Pelckmans, 2010), optimization (Boyd & Vandenberghe, 2004; Rockafel-
lar, 1987), and in mathematics and physics in general. Here we consider
hidden features conjugated to part of the unknown variables. This part of
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the formulation is linked to a restricted Boltzmann machine energy expres-
sion, though with continuous variables in a nonprobabilistic setting. In this
way, amodel can be expressed in both its primal representation and its dual
representation and give an interpretation in terms of visible and hidden
units, in analogy with RBM. The primal representation contains the feature
map, while the dual model representation is expressed in terms of the ker-
nel function and the conjugated features.

The class of kernel machines discussed in this letter includes least
squares support vector machines (LS-SVM) for classification and regres-
sion, kernel principal component analysis (kernel PCA), matrix singular
value decomposition (matrix SVD), and Parzen-type models. These have
been previously conceived within a primal and Lagrange dual setting in
Suykens and Vandewalle (1999b), Suykens et al. (2002), Suykens, Van Ges-
tel, Vandewalle, and De Moor (2003), and Suykens (2013, 2016). Other exam-
ples are kernel spectral clustering (Alzate & Suykens, 2010; Mall, Langone,
& Suykens, 2014), kernel canonical correlation analysis (Suykens et al.,
2002), and several others, which will not be addressed in this letter, but can
be the subject of future work. In this letter, we give a different characteriza-
tion for these models, based on a property of quadratic forms, which can be
verified through the Schur complement form. The property relates to a spe-
cific case of Legendre-Fenchel duality (Rockafellar, 1987). Also note that in
classical mechanics, converting a Lagrangian into Hamiltonian formulation
is by Legendre transformation (Goldstein, Poole, & Safko, 2002).

The kernel machines with conjugate feature representations are used
then as building blocks to obtain the deep RKM by coupling the RKMs. The
deep RKM becomes unrestricted after coupling the RKMs. The approach is
explained for a model with three levels, consisting of two kernel PCA lev-
els and a level with LS-SVM classification or regression. The conjugate fea-
tures of level 1 are taken as input of level 2 and, subsequently, the features
of level 2 as input for level 3. The objective of the deep RKM is the sum of
the objectives of the RKMs in the different levels. The characterization of
the stationary points leads to solving a set of nonlinear equations in the un-
knowns, which is computationally expensive. However, for the case of lin-
ear kernels, in part of the levels it reveals how kernel fusion is taking place
over the different levels. For this case, a heuristic algorithm is obtained with
level-wise solving. For the general nonlinear case, a reduced-set algorithm
with estimation in the primal is proposed.

In this letter, we make a distinction between levels and layers. We use
the terminology of levels to indicate the depth of the model. The terminol-
ogy of layers is used here in connection to the feature map. Suykens and
Vandewalle (1999a) showed how a multilayer perceptron can be trained by
a support vector machine method. It is done by defining the hidden layer
to be equal to the feature map. In this way, the hidden layer is treated at
the feature map and the kernel parameters level. Suykens et al. (2002) ex-
plained that in SVM and LS-SVM models, one can have a neural networks
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interpretation in both the primal and the dual. The number of hidden
units in the primal equals the dimension of the feature space, while in the
dual representation, it equals the number of support vectors. In this way,
it provides a setting to work with parametric models in the primal and
kernel-based models in the dual. Therefore, we also illustrate in this letter
how deep multilayer feedforward neural networks can be trained within
the deep RKM framework. While in classical backpropagation (Rumelhart,
Hinton, & Williams, 1986), one typically learns the model by specifying a
single objective (e.g., unless imposing additional stability constraints to ob-
tain stable multilayer recurrent networks with dynamic backpropagation;
(Suykens, Vandewalle, & De Mooz, 1995), in the deep RKM the objective
function consists of the different objectives related to the different levels.

In summary, we aim at contributing to the following challenging ques-
tions in this letter:

» Canwe find new synergies and foundations between SVM and kernel
methods and deep learning architectures?

+ Can we extend primal and dual model representations, as occurring
in SVM and LS-SVM models, from shallow to deep architectures?

» Can we handle deep feedforward neural networks and deep kernel
machines within a common setting?

In order to address these questions, this letter is organized as follows.
Section 2 outlines the context of this letter with a brief introductory part on
restricted Boltzmann machines, SVMs, LS-SVMs, kernel PCA, and SVD. In
section 3 we explain how these kernel machines can be characterized by
conjugate feature duality with visible and hidden units. In section 4 deep
restricted kernel machines are explained for three levels: an LS-SVM regres-
sion level and two additional kernel PCA levels. In section 5, different algo-
rithms are proposed for solving in either the primal or the dual, where the
former will be related to deep feedfoward neural networks and the latter
to kernel-based models. Illustrations with numerical examples are given in
section 6. Section 7 concludes the letter.

2 Preliminaries and Context

In this section, we explain basic principles of restricted Boltzmann ma-
chines, SVMs, LS-SVMs, and related formulations for kernel PCA, and SVD.
These are basic ingredients needed before introducing restricted kernel ma-
chines in section 3.

2.1 Restricted Boltzmann Machines. An RBM is a specific type of
Markov random field, characterized by a bipartite graph consisting of a
layer of visible units and another layer of hidden units (Bengio, 2009; Fisher
& Igel, 2014; Hinton et al., 2006; Salakhutdinov, 2015), without hidden-to-
hidden connections. Both the visible and hidden variables, denoted by v
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Figure 1: Restricted Boltzmann machine consisting of a layer of visible units v
and a layer of hidden units k. They are interconnected through the interaction
matrix W, depicted in blue.

and /1, respectively, have stochastic binary units with value 0 or 1. A joint
state {v, h} is defined for these visible and hidden variables with energy (see
Figure 1),

E@w, h;0)=—0"Wh—c"v—a'h, (2.1)

where 6 = {W, c, a} are the model parameters, W is an interaction weight
matrix, and c, 4 contain bias terms.

One then obtains the joint distribution over the visible and hidden units
as

1
P(v,h;0) = % exp(—E(v, h; 6)) (2.2)

with the partition function

Z@©)=>_ > exp(—E(. h: 0))
h

v

for normalization.

Thanks to the specific bipartite structure, one can obtain an explicit
expression for the marginalization P(v; 0) = % > nexp(—E(v, h; 0)). The
conditional distributions are obtained as

P(hio; 0) = [ [ p(hylo),

]
Pl 0) = [ [ p(wlh).
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where p(l’l(j) = 1|1)) = O(Z[ I/Vi]'l)(i) —I—aj) and p(l)(l‘) = 1|h) = U(Zj V\’[/‘h(j) +
d;) with o (x) = 1/(1 + exp(—x)) the logistic function. Here v(;y and /) de-
note the ith visible unit and the jth hidden unit, respectively.

Because exact maximum likelihood for this model is intractable, a con-
trastive divergence algorithm is used with the following update equation
for the weights,

AW = a(Ep,, (0h") — Ep, (vh")), (2.4)

with learning rate « and Ep, ,, the expectation with regard to the data distri-
bution Pyaia (1, v; 0) = P(h|v; 0)Pgata(v), where Pyara (v) denotes the empirical
distribution. Furthermore, Ep, is a distribution defined by running a Gibbs
chain for T steps initialized at the data. Often one takes T = 1, while T — oo
recovers the maximum likelihood approach (Salakhutdinov, 2015).

In Boltzmann machines there are, in addition to visible-to-hidden, also
visible-to-visible and hidden-to-hidden interaction terms with

1 1
E(w,h;0)=—0"Wh — EDTLU — ihTGh (2.5)

and 6 = {W, L, G} as explained in Salakhutdinov and Hinton (2009).

In section 3 we make a connection between the energy expression, equa-
tion 2.1, and a new representation of least squares support vector machines
and related kernel machines, which will be made in terms of visible and
hidden units. We now briefly review basics of SVMs, LS-SVMs, PCA, and
SVD.

2.2 Least Squares Support Vector Machines and Related Kernel
Machines.

2.2.1 SVM and LS-SVM. Assume a binary classification problem with
training data {(x;, yi)}ﬁ , with input data x; € R? and corresponding class
labels y; € {—1, 1}. An SVM classifier takes the form

7= sign[wT(p(x) + b],

where the feature map ¢(-) : R? — R/ maps the data from the input space
to a high-dimensional feature space and 7 is the estimated class label for a
given input point x € RY. The training problem for this SVM classifier (Boser
etal., 1992; Cortes & Vapnik, 1995; Vapnik, 1998) is
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N
. 1
min —w w+C i
w,b,& 2 ; Sl

2.
subject to y;[wTe(x;)+b]>1-¢&, i=1,....,N 26)

§&>0, i=1...,N,

where the objective function makes a trade-off between minimization of the
regularization term (corresponding to maximization of the margin 2/||w|»)
and the amount of misclassifications, controlled by the regularization con-
stant ¢ > 0. The slack variables &; are needed to tolerate misclassifications
on the training data in order to avoid overfitting the data. The following
dual problem in the Lagrange multipliers «; is obtained, related to the first
set of constraints:

N N
1
max _EZ y,—yjK(xi,xj)aiocj—i-Zaj
i,j=1 j=1
N (2.7)
subject to Z aiyi=0
i=1

0<a;<c,i=1,...,N.

Here a positive-definite kernel K is used with K(x,z) = ¢(x)T ¢(z) =
Z']Z 19 j(x)ga j(z). The SVM classifier is expressed in the dual as

7 = sign Z iy K(x;, x)+b |, (2.8)

iESSV

where Sy denotes the set of support vectors, corresponding to the nonzero
a; values. Common choices are, for example, to take a linear K(x;, x;) =
xI'xj, polynomial K(x;, x;) = (v 4 x]x;)? with v > 0, or gaussian RBF kernel
K(xi, xj) = exp(—|x; — xj[3/0?).

The LS-SVM classifier (Suykens & Vandewalle, 1999b) is a modification
to it,

w,b,e;

1 1N
; T 2
min —ww+t+y-) e

subject to yi[quJ(x,') +bl=1-—e¢, i=1,...,N,

where the value 1 in the constraints is taken as a target value instead
of a threshold value. This implicitly corresponds to a regression on the
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class labels +1. From the Lagrangian £(w, b, e; @) = 1w w +y 1 YN €2 —

SN @i{yilwTe(x;) +b] — 1+ e;), one takes the conditions for optimality
0L/0w =0,0L/db=0,9L/9e; =0, 0L/da; = 0. Writing the solution in «, b
gives the square linear system

Q+I/vininN | [o In
vl o L’} B [0} ’ 210
1N

where Qi = yiyj o(xi) o(xj) = yiyj K(xi, xj) and yin = [y1;...;yn] In =
[1; ...; 1] with, as classifier in the dual,

N
§ = sign [Z aiyiK(x;, x) + b:| . (2.11)

i=1

This formulation has also been extended to multiclass problems in Suykens
et al. (2002).

In the LS-SVM regression formulation (Suykens et al., 2002) one per-
forms ridge regression in the feature space with an additional bias term b,

w,b,e;

1 1N
: T 2
min —wwt+y=-) ¢

subject to y; = wlp(x;)+b+e, i=1,....N,

which gives

K+I/j/ 11\] o B yl:N 13
7l | FlT L (213)

with the predicted output
§=) aK(x,x)+b, (2.14)

where Kij = K(xi, xj) = ¢(x;)"¢(x;). The classifier formulation can also be
transformed into the regression formulation by multiplying the constraints
in equation 2.9 by the class labels and considering new error variables
(Suykens et al., 2002). In the zero bias term case, this corresponds to ker-
nel ridge regression (Saunders, Gammerman, & Vovk, 1998), which is also
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related to function estimation in reproducing kernel Hilbert spaces, regular-
ization networks, and gaussian processes, within a different setting (Poggio
& Girosi, 1990; Wahba, 1990; Rasmussen & Williams, 2006; Suykens et al.,
2002).

2.2.2 Kernel PCA and Matrix SVD. Within the setting of using equality
constraints and the L; loss function, typical for LS-SVMs, one can character-
ize the kernel PCA problem (Scholkopf, Smola, & Miiller, 1998) as follows,
as shown in Suykens et al. (2002, 2003):

= _ 2
min w w—y - Zel (2.15)

w,b,e;

subject to ¢; = w (p(x1)+b, i=1,...,N.

From the KKT conditions, one obtains the following in the Lagrange multi-
pliers «;,

K9 = ra with 2 =1/y, (2.16)

where K( = (p(xi) — f1,) (p(x j) — i,) are the elements of the centered ker-

nel matrlxK 9, i, = (1/N) Zz 1¢(x)and o = [o; ....; an]. Inequation 2.15,
maximizing instead of minimizing also leads to equation 2.16. The center-
ing of the kernel matrix is obtained as a result of taking a bias term b in the
model. The y value is treated at a selection level and is chosen so as to cor-
respond to A = 1/y, where 1 are eigenvalues of K). In the zero bias term
case, K becomes the kernel matrix K = [¢(x;)T ¢ (x j)]. Also, kernel spectral
clustering (Alzate & Suykens, 2010) was obtained in this setting by consid-
ering a weighted version of the L loss part, weighted by the inverse of the
degree matrix of the graph in the clustering problem.

Suykens (2016) showed recently that matrix SVD can be obtained from
the following primal problem:

1Y 1Y
i —wT Z 2 Z 2
oy v D+sz;el+yzz;rf
= j=

subject to ¢, =w p(x;), i=1,...,N (2.17)

Tj = DTW(Z]‘), ]: 1, ...,M,

where {x,}N ;and {z ]}M , are data sets related to two data sources, which in
the matrix SVD (Golub & Van Loan, 1989; Stewart, 1993) case correspond to
the sets of rows and columns of the given matrix. Here one has two fea-

ture maps ¢(-) and ¥ (-). After taking the Lagrangian and the necessary
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conditions for optimality, the dual problem in the Lagrange multipliers o;
and f;, related to the first and second set of constraints, results in

NN

where A = [p(x) ¥ (z j)] denotes the matrix with ijth entry <p(x,-)T1/f(zj),
A =1/y corresponding to nonzero eigenvalues, and o = [a1; ....; an], B =
[Bi; ....: Bm]. For a given matrix A, by choosing the linear feature maps
o(x) =CTx;, ¥ (z j) = zj with a compatibility matrix C that satisfies ACA =
A, this eigenvalue problem corresponds to the SVD of matrix A (Suykens,
2016) in connection with Lanczos’s decomposition theorem. One can also
see that for a symmetric matrix, the two data sources coincide, and the
objective of equation 2.17 reduces to the kernel PCA objective, equation
2.15 (Suykens, 2016), involving only one feature map instead of two feature
maps.

3 Restricted Kernel Machines and Conjugate Feature Duality

3.1 LS-SVM Regression as a Restricted Kernel Machine: Linear Case.
A training data set D = {(x;, y;)}, is assumed to be given with input data
x; € RY and output data y; € R? (now with p outputs), where the data are
assumed to be identical and independently distributed and drawn from an
unknown but fixed underlying distribution P(x,y), a common assumption
made in statistical learning theory (Vapnik, 1998).

We will explain now how LS-SVM regression can be linked to the en-
ergy form expression of an RBM with an interpretation in terms of hid-
den and visible units. In view of these connections with RBMs and the
fact that there will be no hidden-to-hidden connections, we will call it a
restricted kernel machine (RKM) representation, when this particular in-
terpretation of the model is made. For LS-SVM regression, the part in the
RKM interpretation that will take a similar form as the RBM energy function
is

—oTWh
—(x"Wh+bTh —yTh) (3.1)

=eTh,

Rrxm(v, h)

with a vector of hidden units & € R? and a vector of visible units v € R™
withn, =d + 1+ pequal to
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X w
v=| 1| and W=|b" |, (3.2)
-y I

and e = y — § with § = WTx + b the estimated output vector for a given in-
put vector x where e, y, € R?, W € R¥*P, b € R”. Note that b is treated as
part of the interconnection matrix by adding a constant 1 within the vector
v, which is also frequently done in the area of neural networks (Suykens
etal., 1995). While in RBM the units are binary valued, in the RKM, they are
continuous valued. The notation R in Rrxm(v, k) refers to the fact that the
expression is restricted; there are no hidden-to-hidden connections.

For the training problem, the sum is taken over the training data

{(xi, y))Y, with

N
Rizain — ZRRKM(Dia hi)

N
= " Whi + 5" — y i) (3.3)
i=1

T
Z € h,‘.
i=1

Note that we will adopt the following notation /;) ; to denote the value of
the jth unit for the ith data point, and ¢;, h; € RP fori=1,...,N.

We start now from the LS-SVM regression training problem, equation
2.12, but for the multiple outputs case. We express the objective in terms
of REaN and show how the hidden units can be introduced. Defining A =
1/y > 0, we obtain

J= Tr(WTW —l——Zee,ste, Yi— WTx; — b, Vi

> ZeTh - thTh + Tr(WTW) st.e; =y — WTx; — b, Vi

i=1

N
=Y ] —x]W —b")h ZhTh + Tr(wTW) ]
i=1
Y R
= Ruain _ > > b+ Tr(WTW) (3.4)

i=1
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where A, 7 are positive regularization constants and the first term corre-
sponds to REan . T denotes the lower bound on J.! This is based on the prop-

erty that for twoﬁrbitrary vectors e, h, one has
ieTe >elh— &hTh, Ve, h € RP. (3.5)
2 - 2

The maximal value of the right-hand side in equation 3.5 is obtained for h =

e/x, which follows from d(e"h — 5h"h)/oh = 0 and 9*(e"h — 5h"h)/oh* =

—Al < 0. The maximal value that can be obtained for the right-hand side
1

equals the left-hand side, 5-e’e. The property 3.5 can also be verified by

writing it in quadratic form,

1 i1 e
5 [e" n] [*I u] [h} >0, Ve,h e RP, (3.6)

which holds. This follows immediately from the Schur complement form,?
which results in the condition %(M — I(ADI) > 0, which holds. Writing equa-
tion 3.5 as

| T A
_ ot 1 7
)\ee-l— hh>eh (3.7)

gives a property that is also known in Legendre-Fenchel duality for the case
of a quadratic function (Rockafellar, 1987). Furthermore, it also follows from
equation 3.5 that

Uor, _ T, AT
¢ € = max (e h 2h h). (3.8)

We will call the method of introducing the hidden features /; into equation
3.4 conjugate feature duality, where the hidden features h; are conjugated to
the ¢;. Here, RE3" = 3" el h; will be called an inner pairing between the e;
and the hidden features #; (see Figure 2).

!Note that also the term —% Zfil hIh; appears. This would in a Boltzmann machine
energy correspond to matrix G equal to the identity matrix. The term %Tr(WTW) is an
additional regularization term.

2This states that for a matrix Q = [ ]Q" g], one has Q > 0 if and only if A > 0 and the

Schur complement C — BTA™1B > 0 (Boyd & Vandenberghe, 2004).
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Figure 2: Restricted kernel machine (RKM) representation for regression. The
feature map ¢(x) maps the input vector x to a feature space (possibly by mul-
tilayers, depicted in yellow), and the hidden features are obtained through an
inner pairing ¢”h where ¢ = y — § compares the given output vector y with the
predictive model output vector § = WTp(x) + b, where the interconnection ma-
trix W is depicted in blue.

We proceed now by looking at the stationary points of J(i;, W, b):?

] T .
a—h—O:>y, W x; + b+ Ahy, Vi
Ul [

]

w0

The first condition yields h; = ¢;/2, which means that the maximal value of
| is reached. Therefore, y; = ; + ¢; = ; + Ah;. Also note the similarity be-
tween the condition W = % Y, xh! and equation 2.4 in the contrastive di-
vergence algorithm. Elimination of ; from this set of conditions gives the
solution in W, b:

3The following properties are used throughout this letter: % BX + BTX,

(iaTXb abT, ()aTXTb — pal BTr())(:A)_A STr(/)\(XT — A aTrXA) — AT, dxa_ 0ax
> T 9 =44 73 = Tox

=a,
ala = Tr(aaT) for matrices A, B, X and vectors a, b (Petersen & Pedersen, 2012).
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Sixa] k[ [wW Xy
A . (3.10)
ix? ‘ N bt Zi y?

Elimination of W from the set of conditions gives the solution in /;, b:

%[x?xj]HIN\lN HT YT
— = (3.11)
i ol ] Lo

with [x]x;] denoting the matrix with ij-entry x]x;, H = [hy...hy] € RPN,
Y =[y1..yn] € RP*N_ From this square linear system, one can solve {/;} and
b. 1y denotes a vector of all ones of size N and Iy the identity matrix of size
N x N.

It is remarkable to see here that the hidden features I; take the same role
as the Lagrange dual variables «; in the LS-SVM formulation based on La-
grange duality, equation 2.13, when taking n =1 and p = 1. For the esti-
mated values ; on the training data, one can express the model in terms
of W, b or in terms of h;, b. In the restricted kernel machine interpretation
of the LS-SVM regression, one has the following primal and dual model
representations:

(P)rxvt : §=WTx+b
/!
M
Ny

1
(D)rxm = J = ;Zhjx]rx +b
j

(3.12)

evaluated at a point x where the primal representation is in terms of W, b
and the dual representation is in the hidden features #;. The primal repre-
sentation is suitable for handling the “large N, small 4" case, while the dual
representation for “small N, large 4" (Suykens et al., 2002).

3.2 Nonlinear Case. The extension to the general nonlinear case goes
by replacing x; by ¢(x;) where ¢(x;) : R? — R" denotes the feature map,
with 7 the dimension of the feature space. Therefore, the objective function
for, the RKM interpretation becomes

N N
_ T T — BTV — 2 ST o DT
J=Y ] —o()"W —b")hy zghim S TEVTW), (3.13)

i=1
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with the vector of visible units v € R™ with n, =ny+ 1+ pequal to

»(x)
o= 1 |[. (3.14)

-y

Following the same approach as in the linear case, one then obtains as a
solution in the primal

3o + Ay X 00) | [ W pICH
‘ . e | (3.15)

> el S

In the conjugate feature dual, one obtains the same linear system as equa-
tion 3.11, but with the positive-definite kernel K(x;, x;) = <p(xi)T<p(xj) in-
stead of the linear kernel x x;:

(3.16)

We also employ the notation [K(x;, x;)] to denote the kernel matrix K with
the ijth entry equal to K(x;, x;).

The primal and dual model representations are expressed in terms of the
feature map and kernel function, respectively:

(Prem = J=WTg(x) +b
/
M

3.17
N (5.17)

1
(D)rxm = § = ;Zhﬂ((xj, x) +b.
j

One can define the feature map in either an implicit or an explicit way.
When employing a positive-definite kernel function K(:, -), according to
the Mercer theorem, there exists a feature map ¢ such that K(x;, x;) =
(p(xi)T<p(xj) holds. On the other hand, one could also explicitly define an
expression for ¢ and construct the kernel function according to K(x;, x;) :=
o(x)To(x j)- For multilayer perceptrons, Suykens and Vandewalle (1999a)
showed that the hidden layer can be chosen as the feature map. We can let it
correspond to
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¢pp(x) = o (Uyo (..o (Upo (Urx + B1) + B2)...) + By) (3.18)

related to a feedforward (FF) neural network with multilayers, with hidden
layer matrices Uy, Uy, ..., U, and bias term vectors p, fa, ..., B;. By con-
struction, one obtains Ky (x;, X;) := @ ()T pp(x ;). Note that the activation
function o might be different also for each of the hidden layers. A common
choice is a sigmoid or hyperbolic tangent function. Within the context of
this letter, Uy, ..., Uy, 1, ..., B, are treated at the feature map and the kernel
parameter levels.

As Suykens et al. (2002) explained, one can also give a neural network
interpretation to both the primal and the dual representation, with a num-
ber of hidden units equal to the dimension of the feature space for the
primal representation and the number of support vectors in the dual rep-
resentation, respectively. For the case of a gaussian RBF kernel, one has a
one-hidden-layer interpretation with an infinite number of hidden units in
the primal, while in the dual, the number of hidden units equals the number
of support vectors.

3.3 Classifier Formulation. In the multiclass case, the LS-SVM classifier
constraints are

D, (W p(x;)+b)=1,—e,i=1,....N, (3.19)

where y; € {—1, 1}¥, ¢; € R? with p outputs encoding the classes and diago-
nal matrix Dy1 = diag{ YA)is - y(p),i}-
In this case, starting from the LS-SVM classifier objective, one obtains

N

1 .

J= gTr(WTW) + 2 E ele st e = 1, — Dy, WTo(x;) + b), Vi
i=1

N N
A 0
> ZejThi 3 ZhiThi + ETI‘(WTW) ste=1,
i=1 i=1
— Dy, (W' (xi) + D). Vi
Y n
- (1; — (o)W + bT)Dy,.) hi— 23 hhi 4+ ST WTW) 2.

- 2 4 2 -
i=1 =1

(3.20)

The stationary points of J(h;, W, b) are given by
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=0 = 1, =Dy, (W p(x;) + b) + Ah;, Vi

a]
ah;
af 1
=== Z‘P(xi)hiTDyi (3.21)
3]

ob

=0 :>2Dy,h =0.

The solution in the conjugate features follows then from the linear system:

(3.22)

with HD = [Dy] hl, ey DyNhN]~
The primal and dual model representations are expressed in terms of the
feature map and the kernel function, respectively:

(P)rim : § = sign[WTp(x) + b]
/!
M
N (3.23)

(D)RKMIﬁzsign|: ZD jK(xj, x +b:|

3.4 Kernel PCA. In the kernel PCA case we start from the objective in
equation 2.15 and introduce the conjugate hidden features:

N
1
J= QTr(wTW) - Ze?ei s.t. e; = WTo(x;), Vi

IA

_ZeTh + = ZhTh + Tr(WTW) s.t. e = Wlo(x;), Vi
= (3.24)
_Z‘p(xl YIWh; + = ZhTh + Tr(WTW) ]

i=1

_Rtralllc/l_i_ ZhTh +2TF(WTW),
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where the upper bound ] is introduced now by relying on the same property
as used in the regression/classification case, 5-e’e + 5h™h > e"h, but in a

o
different way. Note that

L Ty o AT
ZAE e_mhm( e h+ 2h h). (3.25)

The minimal value for the right-hand side is obtained for & = e/, which
equals the left-hand side in that case. -
We then proceed by characterizing the stationary points of J(h;, W):

% =0 = WTlo(x;) = Al Vi

- (3.26)
o 1 T
Sy =0= W= nxi:w(xl)hi.

Note that the first condition yields /; = e;/A. Therefore, the minimum value
of | is reached. Elimination of W gives the following solution in the conju-
gated features,

1
—KHT = HTA, (3.27)
n

where H = [h...hy] € RN and A = diag{A1, ..., As} with s < N the number
of selected components. One can verify that the solutions corresponding to
the different eigenvectors /; and their corresponding eigenvalues ; all lead
to the value ] = 0.

The primal and dual model representations are

(Prim = € =WTg(x)

/
M

N

1
(D)rim : €= o Zth(xj, x).
j

(3.28)

Here the number of hidden units equals s with /1 € R® and the visible
units v € R with v = ¢(x), and Rrxm (v, ) = —0TWh.

3.5 Singular Value Decomposition. For the SVD case, we start from
the objective in equation 2.17 and introduce the conjugated hidden features.
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The model is characterized now by matrices W, V:
1M
T T
] = —fTr(V W)+ o Ze e+ 5 > i
j=1

st.ei=WTlo(x), Vi & rj= VTw(zj), vj

N

N M M

The — 2 ST T~ AN Tt
Zei e; 22 e e,+Z7’j ri ZZ rit T 5 r( )
i1 j=1

i=1 j=1

A%

s.t.e; =WTlo(x;), Vi & rp = VTW(z]-),Vj
N

N M
A
= () Whe, — > > hlhe + Y W(z) Vhy,
i=1 j=1

i=1

——ZhT = 5 Te(VIW) 2. (3.29)

In this case, RN = SN o(x) Wh,, + ijvi 1 ¥ (zj)"Vh,,. The stationary
points of ] (he,, W, h,/., V) are given by

o =0= WTo(x;)) = Ah,, Vi

o @(xi) = Ah,,

9] 1 T

Gy =0=V= ;Z(p(xi)hel

o] i (3.30)
= =0=Vy(z) =, Vj

ohy, / ’

0] 1 r

5 =0=W= 5ijlp(z,)hrl

Elimination of W,V gives the solution in the conjugated dual features
hB,‘! hr]:

0 Ho) @l | [ HY H;
= A, 3.31
L) o] 0 H H &30

with H, = [h, ... hey] € RN, H, = [h, ... h,,] € R*M and A = diag{),
., s} with s < N 4+ M a specified number of nonzero eigenvalues.
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The primal and dual model representations are

(P)rin : &= WTg(x)
/ F=VTy(@)
M
N

(D)rxm = € = % > b (z) o)
j

1
P= oD o)V (@),

(3.32)

which corresponds to matrix SVD in the case of linear compatible fea-
ture maps and if an additional compatibility condition holds (Suykens,
2016).

3.6 Kernel pmf. For the case of kernel probability mass function (kernel
pmf) estimation (Suykens, 2013), we start from the objective

N N
J=Y (pi— o) whi =Y p; + ngw (3.33)
i=1

i=1

in the unknowns w € R", p; € R, and i; € R. Suykens (2013) explained how
a similar formulation is related to the probability rule in quantum measure-
ment for a complex valued model.

The stationary points are characterized by

aJ T .

o, 0=pi=w o), Vi

aJ 1

o=0=w= ; Z(p(xi)hi (3.34)
a] )

— =0=h;=1, Vi.

ap,'

The regularization constant 7 can be chosen to normalize ) ; p; =1 (p; > 0
is achieved by the choice of an appropriate kernel function), which gives
then the kernel pmf obtained in Suykens (2013). This results in the repre-
sentations
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(P)rrm : pi = wlo(x;)
Ve
M

N\
1
(D)rkM : pi = ;ZK(% xi).
j

(3.35)

4 Deep Restricted Kernel Machines

In this section we couple different restricted kernel machines within a deep
architecture. Several coupling configurations are possible at this point. We
illustrate deep restricted kernel machines here for an architecture consisting
of three levels. We discuss two configurations:

1. Two kernel PCA levels followed by an LS-SVM regression level
2. LS-SVM regression level followed by two kernel PCA levels

In the first architecture, the first two levels extract features that are used
within the last level for classification or regression. Related types of archi-
tectures are stacked autoencoders (Bengio, 2009), where a pretraining phase
provides a good initialization for training the deep neural network in the
fine-tuning phase. The deep RKM will consider an objective function jointly
related to the kernel PCA feature extractions and the classification or regres-
sion. We explain how the insights of the RKM kernel PCA representations
can be employed for combined supervised training and feature selection.
A difference with other methods is also that conjugated features are used
within the layered architecture.

In the second architecture, one starts with regression and then lets two
kernel PCA levels further act on the residuals. In this case connections will
be shown with deep Boltzmann machines (Salakhutdinov, 2015; Salakhut-
dinov & Hinton, 2009) when considering the special case of linear feature
maps, though for the RKMs in a nonprobabilistic setting.

4.1 Two Kernel PCA Levels Followed by Regression Level. We focus
here on a deep RKM architecture consisting of three levels:

* Level 1 consists of kernel PCA with given input data x; and is char-
acterized by conjugated features hfl).

* Level 2 consists of kernel PCA by taking h;l) as input and is charac-
terized by conjugated features hl@.

2)

* Level 3 consists of L5-SVM regression on hl( with output data y; and

is characterized by conjugated features h,(.S).
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As predictive model is taken,
&M =Wl g1 (x),
¢ = Wlg(A['eD), (4.1)
9= Wlps(A,'6@) +1,

evaluated at point x € R?. The level 1 part has feature map ¢; : R? — R"4,
Wi € R s the level 2 part ¢, : Rt — R"2, W, € R”fzxsm; and the level
3 part g3 : R" — R":, W3 € R":*F. Note that A7'é() and A,'é® (with
e e R 6@ ¢ Rs”) are taken as input for levels 2 and 3, respectively,
where A1, A, denote the diagonal matrices with the corresponding eigen-
values. The latter is inspired by the property that for the uncoupled kernel
PCA levels, the property h; = e;/A holds on the training data according to
equation 3.26, which is then further extended to the out-of-sample case in
equation 4.1.
The objective function in the primal is

Jaeeppr =N +2+]3 (4.2)
with
N
hi=-— Z Ty I > (W W)
;
Jo =~ Z P+ DT W) (4.3)
y— O
]3 27)% + ZTI'(W3 W3)

with &0 = Wl g1(x:), 6@ = W] 02(AT'6W), 9 = WS 03(A5"¢?) + b. How-
ever, this objective functlon is not d1rectly usable for minimization due to

T
the minus sign terms —i N 1(1) e ) and —i >N eEZ) e,(.z). For direct
minimization of an objective in the primal, we will use the following stabi-

lized version,

1
Jacep.Py =1 + 2+ 3 + Ecstab(]% +713). (44)

with cgap a positive constant. The role of this stabilization term for the kernel
PCA levels is explained in the appendix. While in stacked autoencoders
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Figure 3: Example of a deep restricted kernel machine consisting of three levels
with kernel PCA in levels 1 and 2 and LS-SVM regression in level 3.

<

OO000O0

one has an unsupervised pretraining and a supervised fine-tuning phase
(Bengio, 2009), here we train the whole network at once.
For a characterization of the deep RKM in terms of the conjugated

features h;l), h;z), hl@ (see Figure 3), we will study the stationary points
of

]deep :71 +72 +]3’ (45)

where the objective Jdeep (hgl), Wi, hgz), Ws, hl@, W3, b) for the deep RKM con-
sists of the sum of the objectives of levels 1,2,3 given by fl, 72,] , respectively.
This becomes

N N
A T
_ Toar (D), M oo, m T
Jdeep = — ?:1 e1(xi) Wik + > ?:1 B R+ ?Tr(Wl W)

N N
A T
(DyT ) 2 @@ M T
_;m(hi ) Wah +E;hi I+ ST (Wy W)
N

+ Y — s () W5 — 6"

i=1

N
23 N7 0 L BT
-5 ?_1 B b+ ?Tr(W3 Ws), (4.6)
with the following inner pairings at the three levels:

N N
T
Level1: Zefl) hz(l) = Zﬁﬂl(xi)TWlhz(l)’
i=1

i=1
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Level2: Z @ h(z) Z @ hl TWZh (4.7)
N
Level3: Z e® hm Z(y —¢3 (hEZ))TWS - bT)hz@)'
i=1

The stationary points of ]deep(h( ) W, h; @ W, h(3 W3, b) are given by

a]clee a .
T =0= W) =ah — —<le(") Wh®], vi,
a]cleep 1 (1)T
W, 0=W o Zi:%(x) ;
a]deep T 1) (2) @\T
7)) =0= W2 (Pz(hi ) = )‘-Zhi (2) [QDS(h ) W3h ] Vi,
oh oh
a]deep 1 My,
=0=W,=— hi Db
. =W, = — sz( i (4.8)
8]«Jleep — 0=y —WT (h(Z)) b= k9 Vi
Bh(3) - Yi 3 ¢3 i = A3l
3]deep 1 @)y;,T
=0=> W3 =— e
W, = Ws " Xi:%( SO
3]deep 3)
=0 k™ =0.

The primal and dual model representations for the deep RKM are then

e =W g (x)
(P)peeprcm : 6@ = W[ o (A eD)
/ 7 =W{p3(A;'é@) +b
M (4.9)
N &0 = L5 hVK (x), %)

A ) 1 L
(D)DeepRKM : 6(2) = 7’1—2 2] h; )KZ(hE )’ A] 16(1))

~ 3 2 —1a
9= 2 X hIK (P, AS1e®) +b.
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By elimination of Wi, W, W3, one obtains the following set of nonlinear
equations in the conjugated features h;l), hfz), hz(.e’) and b:

1) 74,1
1 oKa(h; " b)Y r
M M Z il ol e
g h K1 x],x,) —)\.1]’1 — a Th} hi , Vi
2) 1,2
1 1 0Ks (h h ) 3T
— > Ko (h D hD) = aoh® — = —— LD ) i,
m / / ns < i

1
yi=— Yy WK W) + b+ ash, vi
ns &
]

> Y =o.

i

(4.10)

Solving this set of nonlinear equations is computationally expensive. How-
ever, for the case of taking linear kernels K, and K3 (and Kjin, K2 1in, K3 1in
denoting linear kernels) equation 4.10 simplifies to

1 1
Level1 : (E[Kl (xj, )] + E[1<hn(h§2>, h§2>)]) H =H A
1 1
Level 2 : (a[KZJin(h?), h] + %[Klm(hf), h,@)]) HI = HI A,

,}j[Kann(h;z), hP) + )LSIN‘lN HI YT

Level 3 : " .
1y ‘ 0 b 0

(4.11)

Here we denote H; = [I; @), h(l)] [h(2 2)], H; = [h§3)...h§3)]. One sees
that atlevels 1 and 2, a data fu510n is taking place between K; and Kji, and
between Kj 1, and Kijipn, where -+ ol % L are specifying the relative weight
given to each of these kernels. In this way, one can choose for emphasizing

or deemphasizing the levels with respect to each other.

4.2 Regression Level Followed by Two Kernel PCA Levels. In this
case, we consider a deep RKM architecture with the following three
levels:
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» Level 1 consists of LS-SVM regression with given input data x; and
output data y; and is characterized by conjugated features hfl).

 Level 2 consists of kernel PCA by taking hgl) as input and is charac-
terized by conjugated features h;z)

+ Level 3 consists of kernel PCA by taking h,@ as input and is charac-

terized by conjugated features hgs).

We look then for the stationary points of
]deep :ll +72 +73 (412)

where the objective ]deep( ) Wi, b, h(2 Wz, Wg) for the deep RKM con-

sists of the sum of the objectives of levels 1, 2 3 givenby ] , J», J3, respec-
tively. Deep RKM consists of coupling the RKMs.
This becomes

N

A T
]deep = E (]/ — ¢ (xl)TWl bT)h(l) = E h 1) 1) + = TI‘(WlTwl)
i=1 i=1

N N
1 2) , M »T @ , M
> () Woh® + > 2_1: W @ 4 ETr(w{ Ws)

i=1

N
=" @s (B Wah) + Zh Y+ TTW W),

i=1
(4.13)

with ¢; : R? — R"1, Wy € R"1*P, the level 2 part ¢ : R — R"™, W, €
]R"fzxsm, and the level 3 part @3 : R® — R"s, W3 € R"5” Note that in
Jdeep, the sum of the three inner pairing terms is similar to the energy in
deep Boltzmann machines (Salakhutdinov, 2015; Salakhutdinov & Hinton,
2009) for the particular case of linear feature maps ¢1, ¢2, ¢3 and symmetric
interaction terms. For the special case of linear feature maps, one has

Ugeep = —0"Wih® — kO Woh® — BT W1 ®), (4.14)

which takes the same form as equation 29 in Salakhutdinov (2015), with W;
defined in the sense of equation 3.1 in this letter. The “U” in Udeep refers
to the fact that the deep RKM is unrestricted after coupling because of the
hidden-to-hidden connections between layers 1 and 2 and between layers
2 and 3, while the uncoupled RKMs are restricted.
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The stationary points of ]deep(hfl), Wi, b, hgz), Wa, h,@, W3) are given by

]deep T (1) 0 (I\T (2)
o =0=v-W @1(xi) —b=»Ah; +—5 [wz(hi )" Wah; ] Vi
oh; oh;
a]deep 1 (l)T
=0 W, = — s
oW, = W " Xi:(ﬂl(xz) ;
8]deep (1)
=0 h’ =0
9Jdeep _ 0 = W () = a,h® — 0 [(p 12w h§3>] Vi (415
) 2 P24 21 @ | P3VE 3 s (4.15)
ah; ah;
0] deep 1 W7
=0=W, =— h
s = W, - ;fﬂz( PO
8]cleep —0= WT (h(Z)) = h(3) Vi
ah(g) 393 i 3t s
i
3]deep 1 2) (3)T
oWs = W3 n ij%( i ) i

As predictive model for this deep RKM case, we have

(P)peeprm : 71 = Wl 1(x) +b
/!
M

N 1 (4.16)
(D)DeepRKM : 9 = a Z hgl)Kl (Xj, x) + 0.
i

By elimination of Wi, W», W3, one obtains the following set of nonlinear
equations in the conjugated features hgl), hgz), hz@, and b:

1 1
= E hg-l)Kl(xj’ %) + b+ + . E
j j
1

i

@
) 1 OKs(n?, 1)
= WK, 1Y)y = gh® — — S
nzzj:hj Kol i) = 2™ = — j on®

1
— Y WK (0P 1) = b, Vi
n3 =

]

K (Y, hj.” )

T, @
0 h]. b, Vi
1

T
WO 1 i

(4.17)
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When taking linear kernels K, and K3, the set of nonlinear equations sim-
plifies to

LK (xj, )] + LK (2, W) + My ‘11\/ HT

Levell: | ™ 1 ! L
' T bT
1y \o

[YT}

Level 2 (—[Kﬂm WD K]+ LK Kiin (1, h@)]) = Hj A
73

Level 3 : (—[K31m(h(2) e )]) = HI A;

(4.18)

with a similar data fusion interpretation as explained in the previous sub-
section.

5 Algorithms for Deep RKM

The characterization of the stationary points for the objective functions in
the different deep RKM models typically leads to solving large sets of non-
linear equations in the unknown variables, especially for large given data
sets. Therefore, in this section, we outline a number of approaches and al-
gorithms for working with the kernel-based models (in either the primal or
the dual). We also outline algorithms for training deep feedforward neural
networks in a parametric way in the primal within the deep RKM setting.
The algorithms proposed in sections 5.2 and 5.3 are applicable also to large
data sets.

5.1 Levelwise Solving for Kernel-Based Models. For the case of linear
kernels in levels 2 and 3 in equation 4.11 and 4.18, we propose a heuristic
algorithm that consists of level-wise solving linear systems and eigenvalue
decompositions by alternating fixing different unknown variables.

For equation 4.18, in order to solve level 1 as a linear system, one needs
the input/output data X = [x;...xx] € RPN Y = [y;...yx] € RPN, but also
the knowledge of hz( ). Therefore, an initialization phase is required. One
can initialize h( ) as zero or at random at level 1, obtain H;, and propagate
it to level 2. At level 2, after initializing H3, one finds H,, which is then
propagated to level 3, where one computes Hj. After this forward phase,
one can go backward from level 3 to level 1 in a backward phase.
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Schematically this gives the following heuristic algorithm:

Forward phase (level 1 — level 3)

H,, Hj initialization
Levell: Hy := fi(X,Y, Hy) (forequation 4.18) or
H; := fi(X, Hy) (for equation4.11)
Level2 : Hy := f>(H1, H3)
Level 3 : H; := f3(H,) (for equation 4.18) or
H; := f1(Y, H,) (for equation 4.11)

Backward phase (level 3 — level 1)

Level 2 : Hz = fZ(Hl’ H3)
Levell: Hy := fi(X,Y, Hy) (forequation 4.18) or
H; := fi(X, Hy) (for equation 4.11).

One can repeat the forward and backward phases a number of times,
without the initialization step. Alternatively, one could also apply an algo-
rithm with forward-only phases, which can then be applied a number of
times after each other.

5.2 Deep Reduced Set Kernel-Based Models with Estimation in Pri-
mal. In the following approach, approximations Wy, W,, W are made to
Wi, Wy, Wit

1< T 1 &
Wi == o)) ~ W= =3 g7,
mis m S
1 M
Wo = =3 a7 (5.2)
j=1

M
. 1 ~ (D)«
Ws = — > @D,
N3 =t

where a subset of the training data set {;}7_;, C {xi}fi , is considered with

M
M « N. This approximation corresponds to]a reduced-set technique in ker-
nel methods (Scholkopf et al., 1999). In order to have a good representation
of the data distribution, one can take a fixed-size algorithm with subset se-
lection according to quadratic Renyi entropy (Suykens et al., 2002), or a ran-

dom subset as a simpler scheme.
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We proceed then with a primal estimation scheme by taking stabiliza-
tion terms for the kernel PCA levels. In the case of two kernel PCA levels
followed by LS-SVM regression, we minimize the following objective:

M
i 2: oD 1 (1)
min _ A
WO 59 bA A, ]deep’Pstab i
jott ot AL :
n 1 4
M T — = 5 @ A1 0
+ > Tr(W; Wh) 5 ?71 ¢ A

M
Mo Ty L N0 0, B o
+ 5 T (W W2) + e ];:ej e + - Tr(Wi Ws)
m 2 Tx
+ cstab Ze(l ! e?)—i—ETr(WlTWl)

+ cstab Ze<2 24 Tr(WzT W) | . (5.3)

The predictive model then becomes:

M

1 -

é‘(l) = — Zh(‘l)Kl(fja X),
m=
LM

6 = =S PR (Y, ATeD),
12 -
LM

y= . Zh?)Ks(h?), A6y +b. (5.4)
i=1

The number of unknowns in this caseis M x (s + 5@ + p) + s 5@ 4 1.
Alternatively, instead of the regularization terms Tr(W,'W,), one could also
take Tr(HOH®T) where H!) = [ftgl)..ﬁl(\l/l)] forl =1,2,3.

One can also maximize Tr(A1) + Tr(A2) by adding a term —co(Tr(A1) +
Tr(A2)) to the objective, equation 5.3, with cy a positive constant. Note that
the components of HV, H? in levels 1 and 2 do not possess an orthogonal-
ity property unless this is imposed as additional constraints to the objective
function.
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5.3 Training Deep Feedforward Neural Networks within the Deep
RKM Framework. For training of deep feedforward neural networks
within this deep RKM setting, one minimizes J4eep,p,,,, in the unknown in-

terconnection matrices of the different levels. In case one takes one hidden
layer per level, the following objective is minimized

M
1 T
. (1 A —1,1)
min = —— E e’ A7e
W1.2,3qU1,2.3,/51.2.3-bqAlqu]deep’PStab 2 — ] L
n 1 M
1 T 1t T\ 1 (2)
+—2 Tr(W; Wh) 5 E e’ Ay

j=1
T
+%Tr(W2T Wo) + = Z e 4 Tr(W3T Ws)

2

i cstab Ze A e 4 Tr(WlTwl)

2

M
1 @T y-1,@)
+= cstab - 2_1: " ayte? + 2Tr<W2T wz) (5.5)

for the model

¢V = Wlo(Ux + ),
e® =W o (AT + By),
9 =Wl oUsA;'8? + B3) +b. (5.6)

Alternatively, one can take additional nonlinearities on A7 g,
A;'é@, which results in the model ¢V =Wlo(Ux+p1), é® =
Wi o (o (A7eD) + Bo), §=WIo(Uso(A;'6P)+ B3) +b. The number
of unknowns is 1y, x sV +d+1)+ny, x (s@ +sV +1) +my, x (p+
D +1) +sM 4 5@ + 1, where ny, ,, denote the number of hidden units.

In order to further reduce the number of unknowns, and partially in-
spired by convolutional operations in convolutional neural networks (Le-
Cun, Bottou, Bengio, & Haffner, 1998), we also consider the case where U;
and U, are Toeplitz matrices. For a matrix U € R"*"2, the number of un-
knowns is reduced then from nyn, to ny +n, — 1.
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Table 1: Comparison of Test Error (%) of Models M; and M, on UCI Data Sets.

pid bld ion adu

Mi, 19.53 [20.02(1.53)] 26.09 [30.96(3.34)]  0[0.68(1.60)]  16.99 [17.46(0.65)]
My, 18.75[19.39(0.89)] 25.22[31.48(4.11)]  0[5.38(12.0)]  17.08 [17.48(0.56)]
Mi ¢ 21.88[24.73(5.91)] 28.69[32.39(3.48)] 0[8.21(6.07)]  17.83[21.21(4.78)]
Mo, 21.09 [20.20(1.51)] 27.83 [28.86(2.83)] 1.71[5.68(2.22)] 15.07 [15.15(0.15)]
My 18.75 [20.33(2.75)] 28.69 [28.38(2.80)] 10.23 [6.92(3.69)] 14.91 [15.08 (0.15)]
Moyt 19.03 [19.16(1.10)] 26.08 [27.74(9.40)] 6.83 [6.50(8.31)]  15.71 [15.97(0.07)]
Mo 24.61[22.34(1.95)] 32.17 [27.61(3.69)] 3.42[9.66(6.74)] 15.21 [15.19(0.08)]
bestbmark 22.7(2.2) 29.6(3.7) 4.02.1) 14.4(0.3)

Notes: Shown first is the test error corresponding to the selected model with minimal
validation error from the different random initializations. Between brackets, the mean and
standard deviation of the test errors related to all initializations are shown. The lowest test
error is in bold.

6 Numerical Examples

6.1 Two Kernel PCA Levels Followed by Regression Level: Examples.
We define the following models and methods for comparison:

o [My]: Deep reduced set kernel-based models (with RBF kernel) with es-
timation in the primal according to equation 5.3 with the following
choices:

[Mi,]: with additional term —co(Tr(A1)+ Tr(Az))
Tr(HOAOT) (I =1, 2,3) regularization terms

[M3p]: without additional term —co(Tr(A1) + Tr(Az))
[M; c]: with objective function 2173 1}11 653)Te§3) + %Tr(W3T Ws),
that is, only the level 3 regression objective.

* [My]: Deep feedforward neural networks with estimation in the primal
according to equation 5.5 with the same choices in [My ], [M2],
[M; ] as above in [M;]. In the model [M;  v] Toeplitz matrices are
taken for the U matrices in all levels, except for the last level.

and

We test and compare the proposed algorithms on a number of UCI data
sets: Pima indians diabetes (pid) (d =8, p =1, N =400, Nya = 112, Niest =
256), Bupa liver disorder (bld) (d =6,p=1,N =170, Nya = 60, Niest =
115), Johns Hopkins University ionosphere (ion) (d=34,p=1,N =
170, Nya1 = 64, Niest = 117), adult (adu) (d =14, p =1, N = 22000, Ny, =
11000, Niest = 12222) data sets, where the number of inputs (d), outputs
(p), training (N), validation (Nya1), and test data (Niest) are indicated. These
numbers correspond to previous benchmarking studies in Van Gestel et al.
(2004). In Table 1, bestbmark indicates the best result obtained in the bench-
marking study of Van Gestel et al. (2004) from different classifiers, includ-
ing SVM and LS-SVM classifiers with linear, polynomial, and RBF kernel;
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linear and quadratic discriminant analysis; decision tree algorithm C4.5;
logistic regression; one-rule classifier; instance-based learners; and Naive
Bayes.

The tuning parameters, selected at the validation level, are

« pid: For My: s0:@-®) =2 2 1 M = 20; A3 = 107%; cgrap = 10 (M .4p);
co = 0.1 (My,). For Mp: s =42 p:py . =3,33, 43 =10"%
Cstab = 10 (Mo a); o =0.1 (Ma,). For Mppr: sV =4 4 p;
N,y = 3,3,3;, A3 = 10_2,‘ Cstab = 1.

* bld: For M;:sM@-®) =32 p; M = 20; A3 = 1073; cgap = 100 (M.43);
co = 0.1 (My,). For Myp: s =42 p: . =3,35 1 =103
Cstab = 1000 (M qp); co = 0.1 (M) For My s@O® =42 p;
My = 3.3.5; 23 = 1073; cyqp = 1000,

« ion: For M;:sM-®-®) =32 p; M = 30; A3 = 1073; cgap, = 100 (M 13);
co = 0.1 (My,). For Myp: s =33 p:my . =3,33; 43 =103
Cstab = 1000 (MZ’g‘b); Cop = 0.1 (M2,a) For Mziyhji S(l)’(2)’(3) = 3, 3, b,
M,y =3,3,3; A3 = 1073; cgap = 1000.

« adu: For M;: s@-® =20,10, p; M =15; A3 =1073; cgap = 107*
(Mi4p); o = 0.1 (My,). For Myp: sD-@-) =52 p:my, - =10,5,3;
A3z = 10_7,' Cstab = 0.1 (MZ,u,b); co=0.1 (Mz,a)- For My r: s-2).6) =
5,2, Py My ys = 10, 5, 3,' A3z = 10_7; Cstab = 10, n,23 = 1,1,1.

The other tuning parameters were selected as 113 = 1, 1, 1 for pid, bld,
ion and 71, = 10%, n3 = 1072 for adu, unless specified differently above. In
the M, and M, models, the H®)-@-®) matrices and the interconnection ma-
trices were initialized at random according to a normal distribution with
zero mean and standard deviation 0.1 (100, 20, 10, and 3 initializations for
pid, bld, ion, adu, respectively), the diagonal matrices A1, by the identity
matrix, and o723 = 1 for the RBF kernel models in M. For the training, a
quasi-Newton method was used with fminunc in Matlab.

The following general observations from the experiments are shown in
Table 1:

» Having the additional terms with kernel PCA objectives in levels 1
and 2, as opposed to the level 3 objective only, gives improved results
on all tried data sets.

¢ The best selected value for cs.p varies among the data sets. In case
this value is large, the value of the objective function terms related to
the kernel PCA parts is close to zero.

+ The use of Toeplitz matrices for the U matrices in the deep feedfor-
ward neural networks leads to competitive performance results and
greatly reduces the number of unknowns.

Figure 4 illustrates the evolution of the objective function (in logarithmic
scale) during training on the ion data set, for different values of csp and in
comparison with a level 3 objective function only.
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Figure 4: Illustration of the evolution of the objective function (logarithmic
scale) during training on the ion data set. Shown are training curves for the
model M, , for different choices of cy.» (equal to 1, 10, 100 in blue, red, and ma-
genta, respectively) in comparison with M, . (level 3 objective only, in black),
for the same initialization.

6.2 Regression Level Followed by Two Kernel PCA Levels: Examples.

6.2.1 Regression Example on Synthetic Data Set. In this example, we com-
pare a basic LS-SVM regression with deep RKM consisting of three levels
with LS-SVM + KPCA + KPCA, where a gaussian RBF kernel K(x;, x;) =
exp(—|lx; — xj]13/0?) is used in the LS-SVM level and linear kernels in the
KPCA levels. Training, validation, and test data sets are generated from the
following true underlying function,

f(x) = sin(0.3x) + cos(0.5x) + sin(2x), (6.1)

where zero mean gaussian noise with standard deviation 0.1, 0.5, 1, and
2 is added to the function values for the different data sets. In this ex-
ample, we have a single input and single output d = p = 1. Training data
(with noise) are generated in the interval [—10, 10] with steps 0.1, valida-
tion data (with noise) in [-9.77, 9.87] with steps 0.11, and test data (noise-
less) in [-9.99, 9.99] with steps 0.07. In the experiments, 100 realizations for
the noise are made, for which the mean and standard deviation of the re-
sults are shown in Table 2. The tuning parameters are selected based on the
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Table 2: Comparison between Basic LS-SVM Regression and Deep RKM on the
Synthetic Data Set, for Different Noise Levels.

Noise Basic Deep (1+1) Deep (7+2)
0.1 0.0019 £4.310~* 0.0018 +4.210~* 0.0019 +4.410~*
0.5 0.0403 4 0.0098 0.0374 + 0.0403 0.0397 + 0.0089
1 0.1037 4 0.0289 0.0934 + 0.0269 0.0994 + 0.0301
2 0.3368 4 0.0992 0.2902 + 0.0875 0.3080 + 0.0954

validation set, which are o, y for the RBF kernel in the basic LS-SVM model
and o, A1, 2, 3 (11 = 1 has been chosen) for the complete deep RKM. The
number of forward-backward passes in the deep RKM is chosen equal to
10. For deep RKM, we take the following two choices for the number of
components s@ 50 in the KPCA levels: 1 and 1, 7 and 2 for level 2 and
level 3, respectively. For deep RKM, the optimal values for ,,17 % are 10°,
which means that the level 2 and 3 kernel PCA levels receive higher weight
in the kernel fusion terms. As seen in Table 2, deep RKM improves over the
basic LS-SVM regression in this example. The optimal values for (o, A1) are
(1, 0.001) for noise level 0.1 and (1, 0.01) for noise level 0.5, (1, 0.4) for noise
level 1, and (1, 1) for noise level 2.

6.2.2 Multiclass Example: USPS. In this example, the USPS handwritten
digits data set is taken from http://www.cs.nyu.edu/~roweis/data.html.
It contains 8-bit grayscale images of digits 0 through 9 with 1100 examples
of each class. These data are used without additional scaling or prepro-
cessing. We compare a basic LS-SVM model (with primal representation
7= WTo(x) +band W € R/, b € RP with p = 10, that is, one output per
class, and RBF kernel) with deep RKM consisting of LS-SVM + KPCA +
KPCA with RBF kernel in levels 1 and linear kernels in levels 2 and 3 (with
number of selected components s?, s in levels 2 and 3). In level 1 of deep
RKM, the same type of model is taken as in the basic LS-SVM model. In
this way, we intend to study the effect of the two additional KPCA layers.
The dimensionality of the input data is d = 256. Two training set sizes were
taken (N = 2000 and N = 4000 data points, thatis, 200 and 400 examples per
class), 2000 data points (200 per class) for validation, and 5000 data (500 per
class) for testing. The tuning parameters are selected based on the valida-
tion set: o, y for the RBF kernel in the basic LS-SVM model and o, A1, 2, 3
(m = 1 has been chosen) for deep RKM. The number of forward-backward
passes in the deep RKM is chosen equal to 2. The results are shown for
the case of 2000 training data in Figure 5, showing the results on training,
validation, and test data with the predicted class labels and the predicted
output values for the different classes. For the case N = 2000, the se-
lected values were 62 = 45,5@ = 10,5 =1, 1; =107, % = % = 10°. The
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Figure 5: Deep RKM on USPS handwritten digits data set. Left top: Training
data results (2000 data). Left Bottom: Validation data results (2000 data). Right
top: Test data results (5000 data). Right bottom: Output values for the 10 differ-
ent classes on the validation set.

misclassification error on the test data set is 3.18% for the deep RKM and
3.26% for the basic LS-SVM (with 62 =45 and y = 1/1;). For the case
N = 4000, the selected values were o2 =45, s@ =1, s® =1, 3, =107,

171_2 = ,]1—3 = 10°. The misclassification error on the test data set is 2.12% for the

deep RKM and 2.14% for the basic LS-SVM (with 02 =45 and y = 1/11).
This illustrates that for deep RKM, levels 2 and 3 are given high relative
. . 1 1

importance through the selection of large -, -~ values.

6.2.3 Multiclass Example: MNIST. The data set, which is used without
additional scaling or preprocessing, is taken from http://www.cs.nyu.
edu/~roweis/data.html. The dimensionality of the input data is d = 784
(images of size 28 x 28 for each of the 10 classes). In this case, we take
an ensemble approach where the training set (N = 50,000 with 10 classes)
has been partitioned into small nonoverlapping subsets of size 50 (5 data
points per class). The choice for this subset size resulted from taking the
last 10,000 points of this data set as validation data with the use of 40,000
data for training in that case. Other tuning parameters were selected in a
similar way. The 1000 resulting submodels have been linearly combined
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after applying the tanh function to their outputs. The linear combination is
determined by solving an overdetermined linear system with ridge regres-
sion, following a similar approach as discussed in section 6.4 of Suykens
et al. (2002). For the submodels, deep RKMs consisting of LSSVM + KPCA
+ KPCA with RBF kernel in levels 1 and linear kernels in levels 2 and
3, are taken. The selected tuning parameters are 02 =49, s? =1,50) =1,

M =10"%n =1, 1 = 1 =107°. The number of forward- backward passes
in the deep RKM i 1s chosen equal to 2. The training data set has been ex-
tended with another 50,000 training data consisting of the same data points
but corrupted with noise (random perturbations with zero mean and stan-
dard deviation 0.5, truncated to the range [0,1]), which is related to the
method with random perturbations in Kurakin, Goodfellow, and Bengio
(2016). The misclassification error on the test data set (10,000 data points) is
1.28%, which is comparable in performance to deep belief networks (1.2%)
and in between the reported test performances of deep Boltzmann machines
(0.95,1.01%) and SVM with gaussian kernel (1.4%) (Salakhutdinov, 2015)
(see http://yann.lecun.com/exdb/mnist/ for an overview and compari-
son of performances obtained by different methods).

7 Conclusion

In this letter, a theory of deep restricted kernel machines has been proposed.
It is obtained by introducing a notion of conjugate feature duality where the
conjugate features correspond to hidden features. Existing kernel machines
such as least squares support vector machines for classification and regres-
sion, kernel PCA, matrix SVD, and Parzen-type models are considered as
building blocks within a deep RKM and are characterized through the con-
jugate feature duality. By means of the inner pairing, one achieves a link
with the energy expression of restricted Boltzmann machines, though with
continuous variables in a nonprobabilistic setting. It also provides an inter-
pretation of visible and hidden units. Therefore, this letter connects, on the
one hand, to deep learning methods and, on the other hand, to least squares
support vector machines and kernel methods. In this way, the insights and
foundations achieved in these different research areas could possibly mu-
tually reinforce each other in the future. Much future work is possible in
different directions, including efficient methods and implementations for
big data, the extension to other loss functions and regularization schemes,
treating multimodal data, different coupling schemes, and models for clus-
tering and semisupervised learning.

Appendix: Stabilization Term for Kernel PCA

We explain here the role of the stabilization term in kernel PCA as a mod-
ification to equation 2.15. In this case, the objective function in the primal
is
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2
. 1 4 Y s Cstab (1 7 14 2
min - gule-g2 @t (v Xd) A

subject to ¢ = wlep(x;), i=1,...,N.

Denoting Jo = jw"w — %3 ;¢? the Lagrangian is L=Jo+ S22+

Y ai(ei — wle(x;)), from which it follows that

oL
Fy 0 = (14 csablo)w = D aip(x;)
oL
30 = 0 = (1 +csablo)ve = o
€
oL
— =0=¢= ng(J(x,').
30[,‘

Assuming that 1+ cgapfo # 0, elimination of w and ¢; yields ) jajKji =
(1/y)a; with Kj; = <p(x]-)T<p(x1-), which is the solution that is also obtained
for the original formulation (corresponding to cstap, = 0).
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