
Towards a container-based architecture for multi-tenant
SaaS applications

Eddy Truyen, Dimitri Van Landuyt, Vincent Reniers, Ansar Rafique, Bert Lagaisse, Wouter Joosen
iMinds-DistriNet, KU Leuven

firstname.lastname@cs.kuleuven.be

ABSTRACT
SaaS providers continuously aim to optimize the cost-
efficiency, scalability and trustworthiness of their offer-
ings. Traditionally, these concerns have been addressed
by application-level middleware platforms that implement
a multi-tenant architecture.

However, the recent uprise and industry adoption of con-
tainer technology such as Docker and Kubernetes, exactly
for the purpose of improving the cost-efficiency, elasticity
and resilience of cloud native services, triggers the unan-
swered question whether and how container technology may
affect such multi-tenant architectures.

To answer this question, we outline our ideas on a
container-based multi-tenant architecture for SaaS applica-
tions. Subsequently, we make an assessment of the tech-
nical Strengths, Weaknesses, Opportunities, and Threats
(SWOT) which should be taken into account by a SaaS
provider when considering the adoption of such container-
based architecture.

1. INTRODUCTION
Recently, there has been an increasing industry adoption

of Docker containers for simplifying the deployment of soft-
ware [7, 24, 10]. Almost in parallel, container orchestration
middleware, such as Kubernetes [3], Docker Swarm, Mesos
and Openshift 3.0 [10] have arisen which provide support for
automated container deployment, scaling and management.

Docker offers a user-friendly command line interface for
running multiple, isolated application instances on the same
node by means of user-level virtualization. As such, these
different application instances run on a shared linux ker-
nel, but have isolated file systems, namespaces and com-
puting resources [8]. Kubernetes builds upon and extends
Docker with additional support for deploying and managing
a multi-tiered distributed application as a set of containers
on a cluster of nodes. One of the strengths of Kubernetes
is improved cost-efficiency which means that less machines
are needed for running a certain workload within a certain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARM 2016, December 12-16, 2016, Trento, Italy
c© 2016 ACM. ISBN 978-1-4503-4662-7/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3008167.3008173

quality-of-service level [3, 18].
SaaS providers are faced with the increasingly relevant

question whether and how this container technology can play
a significant architectural role in the development and op-
eration of multi-tenant SaaS applications. This question is
not trivial because multiple factors are at play. For exam-
ple, the popular shared-everything multi-tenant architecture
is more cost-efficient than containers: tenants run not only
on a shared OS, but also within a shared application in-
stance. However, such shared-everything architectures trade
the gain in efficiency for a weaker security isolaton between
tenants. Another consideration is that multi-tenant SaaS
applications typically rely on complex application-level mid-
dleware services for performance isolation [20], tenant data
management [14] and multi-cloud deployments [22]. In prin-
ciple, it is possible to simplify these middleware services
by shifting some functionality to a container orchestration
layer. Of course, container orchestration middleware is no
silver bullet: hard problems such as unified configuration
management and automated management of service depen-
dencies remain an open challenge [3]. In summary, there
does not exist a simple answer to whether container technol-
ogy supports a strengthening or weakening of multi-tenant
SaaS architectures.

In this paper, we present our initial ideas and an in-depth
analysis of the Strengths, Weaknesses, Opportunities, and
Threats (SWOT) of a container-based architecture for multi-
tenant SaaS applications. Section 2 presents an overview of
the contemporary requirements of multi-tenant SaaS appli-
cations, and Section 3 subsequently provides the necessary
background on Docker and Kubernetes. Subsequently, Sec-
tion 4 outlines our ideas on a container-based multi-tenant
architecture for SaaS applications and Section 5 presents
the SWOT assessment with respect to the outlined SaaS re-
quirements. Section 6 then outlines related work, whereas
Section 7 concludes the paper.

2. SAAS APPLICATIONS: CHALLENGES
AND OPPORTUNITIES

This section summarizes our analysis of the main chal-
lenges and opportunities SaaS providers are facing, which
is based on our extensive and frequent interaction with
industry-level SaaS providers in a wide range of applica-
tion domains. The top-level objective is to optimize cost-
efficiency. The [service level/price] ratio determines the
competitiveness of the SaaS offering, and the continued ef-
forts to maximize this ratio has led to a number of trends in
how SaaS applications are built and deployed:

1. Cloud deployment: SaaS applications are increasingly
hosted on top of scalable cloud infrastructure, for exam-
ple on top of Platform-as-a-Service (PaaS) offerings [21], to
avoid large investments in on-premise resources. This ac-
complishes a number of benefits: (i) Resilience: failure of
a node can be recovered with minimum data loss and or
data synchronization; (ii) Scalability: Performance remains
when usage load increases; (iii) Elasticity: new nodes are
added dynamically based on user load.

2. Multi-tenancy is an architectural tactic aimed at in-
creasing cost-efficiency by sharing the available resources
maximally among many customer organizations (tenants).
Multi-tenancy introduces a number of additional challenges:
(i) Customization: multi-tenant SaaS applications must
be adapted towards tenant-specific and user-specific require-
ments; (ii) Performance isolation [20]: performance can
be guaranteed for different types of workloads and perfor-
mance can be guaranteed per tenant. Agressive tenants can-
not impact loyal tenants; (iii) Manageability: the SaaS
application remains manageable, also in the context of an
increasing number of tenants and co-existing tenant cus-
tomizations.

3. Multi-cloud and hybrid cloud deployment: By
leveraging the combined benefits of different cloud resources,
both private and/or public, and having the ability to dynam-
ically add resources offered by different providers, a number
of additional benefits can be attained: (i) Cloud porta-
bility: SaaS applications must be able to run on different
cloud providers, which is not straightforward due to the high
degree of heterogeneity between cloud technologies; (ii) Dy-
namic reconfiguration: by observing the underlying cloud
platforms and offerings, SaaS applications can be built that
support varying degrees of dynamicity, for example to auto-
matically migrate the application (or parts thereof) to dif-
ferent cloud providers [22, 14].

As indicated by many surveys on cloud adoption, Secu-
rity and Privacy remain the number one concerns for SaaS
providers who outsource part of their operations to third-
party cloud providers. Also, security isolation between
tenants is important when multiple tenants are served by
the same application instance. These concerns become even
more stringent in light of the trends outlined above.

SaaS applications increasingly rely on complex middle-
ware solutions to support the above requirements [22, 20,
14]. These solutions involve complex policy engines [14, 22],
etc.

This paper highlights and discusses the potential of ad-
dressing some of these requirements differently, by lever-
aging container technology, and outlines the main research
challenges and gaps.

3. DOCKER AND KUBERNETES
The recent popularity of container technology such as

Docker, LXC and OpenVZ is in part attributable to the fact
that it makes a different trade-off between cost-efficiency and
security isolation when compared to virtual machine tech-
nology such as Xen, VMWare and KVM [7, 24].

One key difference between containers and virtual ma-
chines is that containers run on a shared Linux kernel,
whereas virtual machines run on a hypervisor which ab-
stracts computer hardware architecture and connected de-
vices. As a result, virtual machine images consist of a sepa-

rate operating system on top of which the application runs,
and these are therefore more heavy-weight. In contrast, con-
tainers only need to contain the application with its depen-
dent libraries. The isolation between virtual machines is
performed by the hypervisor, whereas the isolation between
containers is achieved by means of different mechanisms of
the Linux kernel. Resource isolation is achieved by means
of cgroups, file system isolation is achieved with chroot,
and finally, isolation between process ids, IPC mechanisms,
network stack and mount spaces is achieved by means of ker-
nel namespaces. Xavier et al. [8] present a comprehensive
overview of these technologies.

Containers have become popular thanks to Docker which
offers a daemon and a user-friendly command line interface
for running and managing containers. The application and
libraries which are run in Docker containers are packaged
in images. These images are stored in a local or a remote
Docker registry. To speed up download from such registry,
an image is built as a set of incremental layers which can be
separately transmitted and stored.

Kubernetes is an open-source container orchestration mid-
dleware created by Google [3] that offers a uniform API
for deploying and managing distributed multi-tiered appli-
cations as sets of containers on a cluster of physical or vir-
tual machines. Kubernetes offers many concepts and ab-
stractions for constructing and managing complex applica-
tions [16, 1], the most notable of which are:
Nodes: a Node is a physical host or virtual machine on top
of which containers can be scheduled. The scale of a Kuber-
netes cluster can range from two to thousands of Nodes.
Pods: a Pod is a set of containers that logically belong
together and are therefore always deployed together on the
same node. It is therefore a unit of failure. Since Pods do not
hold persistent state, all changes to its running containers
are lost when a Pod fails or crashes. An example of a Pod
is an instance of a web server.
Volumes contain persistent state. They can be imple-
mented by services for attaching block storage devices to
guest virtual machines such as Cinder, distributed file sys-
tems such as NFS, or simply a directory in the path of the
local host. Volumes are linked to a container where they
become available as mounted directories.
Services: a set of Pods is exposed to a customer via a Ser-
vice which embodies a stable IP address, a network proto-
col and one or more ports. All Pods and Services have a
unique cluster IP address. Services can also have external
IP addresses that are either supported by an external load
balancer or by so-called NodePorts. The latter means that
each service is accessible on all physical nodes of the cluster
via a unique port number.
Replication controller: Replication controllers ensure
that the amount of replicated Pods keeps up with the de-
sired number of replicas. The Replication Controller keeps
track of the total amount of replicas per Pod by monitoring
each Node in the cluster.
Deployment: a Deployment provides declarative updates
to Pods and Replication Controllers. Deployments can be
gradually performed at the desired pace (e.g. to support ca-
nary testing where one deploys a new release of a service
only to one replica of a Pod). They can be monitored for
success and can be rolled-back to a previous deployment.
Namespaces: a Namespace is a mechanism to partition
resources created by different users into a logically named

Figure 1: A concrete Kubernetes architec-
ture (based on the portable docker-multinode
project [2]).

group. A single cluster should be able to satisfy the needs
of multiple user communities. Each user community has its
own resources (Pods, Services, etc.), policies and resource
quotas [11].
Request and Limits: Computational resources can be al-
located to Pods and Containers by defining a <request,

limit> pair for each resource. A Request defines the min-
imal resource quantity that should be reserved at all times
for the container (i.e. 1 cpu and 512 MB of RAM), while a
Limit specifies the maximum resource quantity that can be
used by this container (e.g. 1.5 cpu and 1.5 GB of RAM).
Request and Limits associated to containers are enforced
at runtime in Docker using the Linux cgroups kernel fea-
ture. They are also used by Kubernetes to determine on
which Node a Pod is best placed. Currently, this resource
allocation model is only supported for CPU and memory
resources, but support for other resources is planned in the
near future [1].

As shown in Figure 1, the overall architecture of Kuber-
netes features a master node that offers a REST-based API
for deploying and managing all the entities discussed above,
and multiple worker nodes on top of which Pods are de-
ployed. The master node consists of the following compo-
nents: an API Server for processing the API requests, a
policy-based scheduler for allocating Pods to nodes and a
controller for checking the status of a deployment, for ex-
ample whether the actual replica count of a Pod matches the
desired replica count. Master node and worker nodes also
encapsulate a local kubelet agent for deploying and manag-
ing the containers on the local node and a service proxy that
acts as a client-side load-balancer for forwarding service re-
quests to Pods. Each Pod and Service is assigned a unique
virtual cluster IP address. To manage the mapping between
cluster IP addresses and real host IP addresses, overlay net-
work software (e.g. Flannel) is used. When a Pod dies and
is rescheduled to a new Node, any attached Volumes should
be migrated to the new Node and remounted with the new
Pod. To achieve this, Kubernetes can be configured to use
a specific distributed volume management system such as
Flocker [19]. In addition, the master and worker nodes use
a distributed key-value store (e.g. etcd) for registration and
discovery of services and nodes. A single Kubernetes clus-
ter is meant to be run within the scope of a private data
center or an availability zone of a public cloud provider. To
support managing multiple Kubernetes clusters across mul-

Figure 2: Container-based architecture for multi-
tenant SaaS applications

tiple cloud providers or availability zones, the Federation
Controller Service can be used [9].

Kubernetes provides many tools for governing a dis-
tributed deployment of containers onto a pool of heteroge-
neous resources.

4. A CONTAINER-BASED ARCHITEC-
TURE FOR MULTI-TENANT SAAS

Multi-tenant SaaS applications typically adopt a multi-
tiered architecture with a front-end load balancer. In recent
work, we have extended such architecture with an additional
tier of application-level middleware services [14, 22, 20].
These services provide support for specific non-functional
requirements across multiple cloud providers that cannot be
fully supported by a single third-party PaaS provider. We
now illustrate how this tier can be simplified and strength-
ened by relying on a container orchestration middleware
such as Kubernetes.

A possible high-level architecture for the application-level
middleware tier is presented in Figure 2. It consists of three
services: (i) the Tenant SLA Manager service for tenant
SLA management and performance isolation [20], (ii) the
Tenant Data Manager service for adaptive data manage-
ment across multiple database technologies (e.g. MongoDB
and Cassandra) and cloud providers [14] and (iii) the Multi-
Cloud Deployer service for deploying SaaS application com-
ponents across multiple cloud providers [22]. Each of these
middleware services implement a policy-based architecture,
possibly extended with application-centric montoring and
an autonomic control loop. Figure 2 shows a collaboration
diagram for requesting the deployment of a new tenant to
an already-running SaaS application (see message (1) in Fig-
ure 2). This request consists of a tenantID, tenant-specific
SLA requirements and policies, and one of more workload
models1. This request is then handled as follows: (2) se-
lect a suitable deployment strategy for the tenant, (3) get
the URLs of the relevant Kubernetes clusters, (4) retrieve or
create the Namespace for the tenant in each cluster, (5) get
updates for the Requests and Limits of the containers and

1
These workload models describe various dimensions such as the ex-

pected number of users and usage volume, whether the computations

are cpu-, memory or i/o-bound.

Pods running in each Namespace, (6) get updates for the
configuration of the database nodes, (7) execute the selected
deployment strategy, (8) create a new Deployment with up-
dated Services and Replication Controllers for the applica-
tion and data tiers of the SaaS application, (9.1) add new
Pods and/or reconfigure the running Pods, (9.2) update the
external load balancer with Service and Pod IP routing info,
and (10) retrieve admission control data for the tenant.

Alternative SaaS deployment strategies. We envision
three different alternative deployment strategies that can be
selected in step (2). In essence, each strategy represents a
different trade-off between cost-efficiency and security isola-
tion.
1. Shared container: in this deployment strategy, one in-
stance of the existing multi-tenant application is allocated
to and executed in one Container and one Pod per Node,
and so each Node of the cluster runs an application instance
which is able to process requests from any tenant. These
application instances are stateless in the sense that tenant
data and tenant features are activated at run time, based on
run-time parameters such as tenant identifiers associated to
service requests. To deploy these Pods, a single Service and
single Replication Controller configuration file is specified.

Each of the pods have a mutable cluster IP address. This
implies that if a single pod dies or is rescheduled to another
Node, the existing Pod is replaced by a new Pod and a new
Cluster IP address is created for this new Pod. This IP
address change is not visible for external users who access
the Pods via the stable service IP address.

If the Docker image is preloaded on each Node, it will only
take a few seconds to deploy the entire service configuration
and bring it into a running state. When a container crashes,
the Kubernetes master will detect this failure and schedule
the creation of a new Pod on the same or another Node.

2. No shared container/tenant namespaces: this de-
ployment strategy extends the above in the sense that one or
more tenants may be given a dedicated Service and Replica-
tion Controller. To ensure that computational and object re-
sources are spread across the different tenants in accordance
with tenant SLAs, each tenant is associated to a separate
Namespace. Within each Namespace, default container Re-
quests and Limits for a particular resource can be defined as
well as a quota on the total amount of Requests and Lim-
its . Finally, quota on the amount of Services, Replication
Controllers, Pods etc. can also be set2.

In comparison to the shared container strategy, the main
advantage is that this scheme realizes an improved secu-
rity isolation between tenants. Another advantage is that
the SaaS application can be optimized performance-wise for
a single tenant. First, resource constraints and replication
levels can be configured per tenant. Second, tenant-specific
customizations can be loaded when starting the container,
and therefore do not have to be activated at runtime. Opti-
mally, the dependency injection middleware, which is used
for loading and invoking the tenant-specific customizations,
should be easy configurable to switch from dynamic to static
dependency injection.

The disadvantage of this deployment strategy is reduced
cost-efficiency, especially for memory-bound workloads. For
example, if the aim is to divide the resources of a test cluster

2
More information on the resource allocation model of Kubernetes

can be found in [1].

with five 2GB nodes equally among tenants, it is possible to
host approximately at most 20 Pods of a Tomcat web server.
This implies that maximum 10 tenants can be hosted with
replication level 2.

3. Shared container or namespace per SLA class: The
third deployment strategy combines the above two by dis-
tinguishing between different SLA classes (e.g. gold, silver,
bronze). For each class, a separate Namespace is created
with a specific quota of resources and default Requests and
Limits for containers. In each Namespace, a single Service
and Replication Controller is created. Tenants are associ-
ated with a certain SLA class, and therefore connect to the
Service associated with the corresponding Namespace.

The main advantage of this strategy is that it combines
the benefits of the previous two: there is an improved secu-
rity isolation between different classes of tenants, and only
a single Service needs to be created per SLA class.

The main disadvantage is that within a specific SLA class,
there is no support for security isolation between tenants.

The next section discusses our in-depth SWOT analysis of
the adoption of container orchestration for supporting multi-
tenant SaaS applications. As the implementation and in-
depth validation of the architectural ideas sketched above is
currently ongoing work, this analysis is based on our ongoing
experiments and findings with Kubernetes in Openstack and
Google Cloud [17].

5. SWOT ANALYSIS
In a multi-tenant architecture, available resources are

cost-effectively multiplexed across tenants. All tenants share
the same application stack, and in some cases share ap-
plication instances. In general, containers do not provide
an improvement on the top-level objective of cost-efficiency.
However, when taking all SaaS requirements (outlined in
Section 2) into account, container technology can certainly
play a role.

Strengths.
Resilience: Automated volume migration drastically re-
duces the time to synchronize data from a failed Pod to a
newly-started Pod. Moreover, clients can continue to access
the new Pod via the existing Service IP address.
Elasticity: The amount of Pods behind a Service can be
scaled relatively easy when the container image is already
stored on all the Nodes. The time to add a new Node to a
Kubernetes cluster depends among other factors on the time
to install the Kubernetes Worker component. In our ongoing
experiments, a Worker Node is running within less than two
minutes in our test cluster (using the portable deployment
of Kubernetes). We found that installing Flocker natively in
Linux requires a lot of manual and error-prone work, how-
ever, and therefore should be automated by a configuration
management tool.
Dynamic reconfiguration: (1) Up- and downgrading a
service to a new version is simplified significantly using the
mechanism of Deployments. (2) It is easier to ensure config-
uration parameter consistency between development, testing
and production environments because a single Docker image
packages the entire application and libraries in a component
that is identified by a globally unique URL and version num-
ber. (3) Bootstrapping a Docker image is less error-prone
and generally takes less time than installing software via

configuration management tools such as Puppet or Chef.
Cloud portability: Several factors contribute to an im-
proved portability of applications: (1) in theory, Docker can
run on any Linux-based operating based system; in prac-
tice very few parts of the OS interface expose slight varia-
tions between different Linux distributions [3], (2) Kuber-
netes is offered as a service by several cloud providers, (3) a
portable deployment of Kubernetes, where the Kubernetes
components themselves are started inside Docker containers,
exists [2].

Weaknesses.
Security: There are two fundamental security weaknesses
to containers. (1) Containers run on the same host oper-
ating system, enlarging the attack surface considerably in
comparison to virtualization. So-called privileged contain-
ers even have root access to the host OS. This is one of the
reasons why public cloud providers offer containers that are
started inside virtual machines: the cloud providers rely on
the stronger security guarantees of VMs to protect their data
center assets against external customer code. (2) Another
security issue arises in multi-user environments where mul-
tiple users have the permission to deploy containers, and
thereby are able to run potentially malicious code that is
hidden inside a publicly available container image [24]. The
beta release of Kubernetes v1.4 supports security policies for
controlling access permissions of Pods.

Opportunities.
Configurable security isolation between tenants:
Even though the security isolation of containers is less strict
than in virtual machines, containerized applications are bet-
ter isolated from each other than multiple tenants are in a
traditional multi-tenant SaaS application. Each of the three
deployment strategies discussed in Section 4 in effect repre-
sent a different trade-off between security isolation of tenants
and cost-efficiency. As such, there lies a big opportunity for
SaaS providers to offer tenants a configurable trade-off be-
tween security isolation and cost-efficiency.
Simplified performance isolation: To enforce tenant-
specific SLAs and implement performance isolation, existing
multi-tenant SaaS applications depend on (1) application-
level monitoring, (2) request scheduling across all tiers,
and/or (3) admission control in the Load balancing tier [20].
The Kubernetes resource model of Requests and Limits and
the underlying cgroups implementation offers a flexible way
to enforce resource constraints across different workloads
with best-effort, bursty or hard resource demands [3, 1].
Moreover, Kubernetes offers application-centric monitoring
services [3]. These two mechanisms may drastically sim-
plify application-level monitoring of SaaS applications and
potentially make request schedulers obsolete. However, this
advantage only exists in the second and third deployment
strategies, since the first one involves executing all tenants
in the same Namespace.

More importantly, this opportunity depends on the as-
sumption that it is possible to map tenant SLAs to con-
tainer resources: given a certain workload type (which is
either CPU-, memory-, network-, or disk-bound), it should
be possible to determine a well-defined relation between a
service level target (e.g. request latency, availability) of a
tenant and the appropriate resource quota and default con-
tainer Request and Limits for the Namespace assigned to

that tenant. It seems logical that Namespaces with higher
default requests or limits can guarantee better service level
targets, which are typically expressed as percentiles. How-
ever, if the goal is to achieve both improved cost-efficiency
and performance isolation, it is not clear from existing liter-
ature if such correlations exist.

Threats.
Hybrid virtualization technologies threaten cloud
portability: a number of hybrid virtualization solutions
have emerged that aim to offer different flavors between vir-
tualization and containers. Kubernetes currently provides
also support for the rkt container engine which is part of
CoreOS. Therefore a container image standard is needed
similar to the Open Virtualization Format [6].
Increased management complexity: Besides the man-
agement risks and costs of new technology adoption, there
are also a number of structural problems which increase en-
gineering complexity [3]:
(i) Uniform configuration management: while the REST-
based Kubernetes API is a big step towards uniform and
consistent service configuration, still a lot of hetereogeneous
and programmatic configuration is required for setting up
real applications. To illustrate, even the relatively common
scenario of adding a new MongoDB replica to an existing
replica set requires a complex sequence of actions [4], which
in practice involves creating a new Flocker volume, man-
ual scripts to generate YAML files, running javascript code
to update the replica set in the MongoDB primary node in
a so-called sidecar container. Existing configuration man-
agement systems such as Chef and Puppet, and cloud-based
server orchestration tools such as juju also seem to work only
for specific use cases and often need to be combined [23].
(ii) Management of service dependencies: the automated
management of service dependencies is considered a dif-
ficult problem because of various issues discussed in [3].
Application-level middleware services may resolve part of
this problem. For example, our existing work on policy-
based service dispatchers in hybrid cloud environments [22]
enable tenants to declaratively express which services should
be used for which service requests.

6. RELATED WORK
Existing studies of containers consistently report and con-
firm that containers trade improved cost-efficiency and per-
formance for reduced security isolation in comparison to vir-
tual machines [24, 15, 7]. Existing literature on container
orchestration systems [18] demonstrates improved resource
utilization in terms of number of machines needed for fitting
a certain workload on.

In terms of performance isolation, containers do not yet
provide complete isolation of resources as virtual machines
do [8, 7]. Verma et al. [18] report that the implementation
of the cgroups mechanism requires substantial tuning of the
standard Linux CPU scheduler in order to achieve both low
latency and high utilization for the typical latency-sensitive,
user-facing workloads at Google. Leverich et al. [12] also
propose an improved Linux CPU scheduler. An evalua-
tion of this scheduler shows that the 95th-percentile latency
is negatively affected by co-located workloads but this de-
crease does not devolve to asymptotic delays. Therefore,
more research is needed to evaluate the impact of container
orchestration middleware on 95th or 99th-percentile latency

in an experimental setting that compares software running
in containers on top of VMs versus the same software na-
tively installed in the Linux OS of the VMs.

Slominski et al. [5] present their findings on the useful-
ness of containers for migrating a legacy web application to
a multi-tenant application. Several works analyze the in-
fluence of container technology on the architecture of PaaS
clouds [10, 13].

7. CONCLUSION
This paper outlined our architectural vision on leverag-

ing container orchestration technology such as Kubernetes
to build flexible, cost-effective and trustworthy multi-tenant
SaaS applications, and included our in-depth SWOT analy-
sis of such an approach. We have contrasted this approach
to the existing state of the art of building multi-tenant archi-
tectures on top of complex application-level middleware ser-
vices, and highlight potential synergies (i) to strengthen and
simplify these middleware services by relying on container
orchestration platforms such as Kubernetes, and (ii) to help
addressing open problems in container orchestration middle-
ware such as the automated management of service depen-
dencies. As we report on our ongoing efforts, clearly more
research is required to better understand the true potential
and risks of container orchestration for multi-tenant SaaS
applications.

8. REFERENCES
[1] The kubernetes resource model.

https://github.com/kubernetes/kubernetes/blob/
release-1.3/docs/design/resources.md.

[2] Running multi-node kubernetes using docker.
https://github.com/kubernetes/kube-
deploy/tree/master/docker-multinode.

[3] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and
kubernetes. Commun. ACM, 59(5):50–57, 2016.

[4] Sandeep Dinesh. Mongodb replica sets with kubernetes,.
https://medium.com/google-cloud/mongodb-replica-
sets-with-kubernetes-d96606bd9474.

[5] Aleksander Slominski et al. Building a multi-tenant
cloud service from legacy code with docker containers.
Proceedings - 2015 IEEE International Conference on
Cloud Engineering, IC2E 2015, pages 394–396, 2015.

[6] Dana Petcu et al. Portable cloud applications - From
theory to practice. Future Generation Computer
Systems, 29(6):1417–1430, 2013.

[7] Miguel G. Xavier et al. A Performance Comparison of
Container-Based Virtualization Systems for
MapReduce Clusters. 2014 22nd Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing, pages 299–306, 2014.

[8] Miguel G. Xavier et al. A Performance Isolation
Analysis of Disk-Intensive Workloads on
Container-Based Clouds. 2015 23rd Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing, pages 253–260, 2015.

[9] Quinton Hoole. Kubernetes cluster federation,.
https://github.com/kubernetes/kubernetes/blob/
release-1.3/docs/proposals/federation.md.

[10] Nane Kratzke. A Lightweight Virtualization Cluster
Reference Architecture Derived from Open Source

PaaS Platforms. Open Journal of Mobile Computing
and Cloud Computing, 1(2):17–30, 2014.

[11] Kubernetes. Sharing a cluster with namespace,.
http://kubernetes.io/docs/admin/namespaces/.

[12] Jacob Leverich and Christos Kozyrakis. Reconciling
high server utilization and sub-millisecond
quality-of-service. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys
’14, pages 4:1–4:14, New York, NY, USA, 2014. ACM.

[13] Claus Pahl. Containerization and the paas cloud. IEEE
Cloud Computing, 2(3):24–31, 2015.

[14] Ansar Rafique, Dimitri Van Landuyt, Bert Lagaisse,
and Wouter Joosen. Policy-driven data management
middleware for multi-cloud storage in multi-tenant
saas. In 2nd IEEE/ACM International Symposium on
Big Data Computing, pages 78–84. IEEE, December
2015.

[15] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski,
Andy C. Bavier, and Larry L. Peterson.
Container-based operating system virtualization: a
scalable, high-performance alternative to hypervisors.
In Proceedings of the 2007 EuroSys Conference,
Lisbon, Portugal, March 21-23, 2007, pages 275–287.
ACM, 2007.

[16] MongoDB (TM). Running mongodb as a microservice
with docker and kubernetes,. https:
//www.mongodb.com/blog/post/running-mongodb-
as-a-microservice-with-docker-and-kubernetes.

[17] Eddy Truyen. Kubernetes on openstack. https:
//github.com/eddytruyen/kubernetes on openstack.

[18] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes.
Large-scale cluster management at Google with Borg.
Eurosys, 2015.

[19] Ryan Wallner. Tutorial: Deploying a replicated redis
cluster on kubernetes with flocker,
https://clusterhq.com/2016/02/11/kubernetes-redis-
cluster.

[20] Stefan Walraven, Wouter De Borger, Bart Vanbrabant,
Bert Lagaisse, Dimitri Van Landuyt, and Wouter
Joosen. Adaptive performance isolation middleware
for multi-tenant saas. In 2015 IEEE/ACM 8th
International Conference on Utility and Cloud
Computing (UCC), pages 112–121, December 2015.

[21] Stefan Walraven, Eddy Truyen, and Wouter Joosen.
Comparing paas offerings in light of saas development.
Computing, 96(8):669–724, August 2014.

[22] Stefan Walraven, Dimitri Van Landuyt, Ansar Rafique,
Bert Lagaisse, and Wouter Joosen. Paashopper:
Policy-driven middleware for multi-paas environments.
Journal of Internet Services and Applications, 6(1),
January 2015.

[23] Johannes Wettinger, Uwe Breitenbücher, Oliver Kopp,
and Frank Leymann. Streamlining DevOps
automation for Cloud applications using TOSCA as
standardized metamodel. Future Generation Computer
Systems, 2015.

[24] Mingwei Zhang, Daniel Marino, and Petros
Efstathopoulos. Harbormaster: Policy Enforcement for
Containers. 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science
(CloudCom), pages 355–362, 2015.

