
MNRAS 000, 1–8 (2016) Preprint 13 November 2016 Compiled using MNRAS LATEX style file v3.0

Firehose constraints of the bi-Kappa distributed electrons: a
zero-order approach for the suprathermal electrons in the solar wind

M. Lazar,1,2? S.M. Shaaban,2,3S. Poedts2 and Š. Štverák4,5
1 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
2 Center for Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
3 Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, 35516, Egypt
4Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
5Astronomical Institute, Czech Academy of Sciences, Ondrejov, Czech Republic

Accepted MM DD. Received 2016 MM DD; in original form 2016

ABSTRACT

The increase of temperature predicted by the solar wind expansion in the direction parallel
to the interplanetary magnetic field is already notorious for not being confirmed by the
observations. In hot and dilute plasmas from space particle-particle collisions are not efficient
in constraining large deviations from isotropy, but the resulting firehose instability provides
itself plausible limitations for the temperature anisotropy of both the electron and proton
species. The present paper takes into discussion the suprathermal (halo) electrons, which are
ubiquitous in the solar wind, and may be highly anisotropic and susceptible to the firehose
instability. Suprathermals enhance the high-energy tails of the velocity distributions making
them well described by the Kappa distribution functions, with the advantage that these are
power-laws suitable to reproduce either the entire distribution or only the suprathermal halo
tails. New features of the instability are captured from a linear stability analysis of bi-Kappa
distributed electrons with the temperature depending on the power-index κ. This approach
enables a realistic interpretation of nonthermal electrons and their effects on the instability:
growth rates are systematically stimulated and thresholds are lowered with decreasing the
power-index κ. In a zero-order limiting approach of the halo component (minimizing the
effects of a cooler and less anisotropic core population) the instability thresholds align to the
limits of the temperature anisotropy reported by the observations. These results provide new
and valuable support for an extended implication of the firehose instability in the relaxation of
temperature anisotropy in collisionless plasmas from space.
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1 INTRODUCTION

In collisionless plasmas from space large deviations from ther-
modynamic equilibrium cannot be relaxed by the particle-particle
(Coulomb) collisions, but can presumably be constrained by the
resulting kinetic instabilities. Thus, if the solar wind expands adia-
batically the CGL invariants conserve (Chew et al. 1956) leading
to an indefinite increase of temperature (T) in the direction parallel
to the inteplanetary magnetic field, i.e., T‖ > T⊥, where ‖ and ⊥
denote directions relative to the magnetic field. However, the in-
situ measurements do not confirm such an increase of the parallel
temperature with heliocentric distance, but indicate bounds of the
temperature anisotropy of plasma particles (Kasper et al. 2002;
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Hellinger et al. 2006; Štverák et al. 2008). Because collisions are
not efficient, the most invokedmechanism that can limit the increase
of parallel temperature is the firehose instability (Eviatar & Schulz
1970; Kasper et al. 2002; Hellinger et al. 2006; Štverák et al.
2008; Lazar et al. 2014a). For anisotropies exceeding the instability
thresholds thresholds, the free energy is dissipated by the resulting
growing fields, which may also scatter particles back towards quasi-
equilibrium states and prevent the anisotropy to grow (Gary & Lee
1994; Gary et al. 1998).

Driven by the anisotropic electrons with an excess of parallel
temperature A ≡ T⊥/T‖ < 1, the electron firehose instability (EFHI)
may play an important role in mediating the (free) energy transfer
from anisotropic electrons to protons (Paesold & Benz 1999; Mess-
mer 2002). This energy transfer from small to large scales is facili-
tated by the quasi-parallel EFH modes, which are left-handed (LH)
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circularly polarized and have characteristic frequencies and growth
rates in the range of the proton cyclotron frequency. Besides the peri-
odic (non-zero frequency) modes predominant in direction parallel
to the magnetic field, the same firehose mechanism may destabi-
lize an additional aperiodic branch which exists only for oblique
directions (Gary & Nishimura 2003; Camporeale & Burgess 2008;
Hellinger et al. 2014).

Although the suprathermal (halo) electrons are a constant pres-
ence in the solar wind (Lin 1998; Pierrard & Lazar 2010; Lazar et
al. 2012), enhancing the high-energy tails of their distributions, the
anisotropic temperature is in general quantified by a bi-Maxwellian
distribution function, which is relevant for the thermal core but can-
not describe the suprathermal tails of the observed distributions.
Instead, these suprathermal tails are well reproduced by the Kappa
distribution function (Vasyliunas 1968; Maksimovic et al. 2005;
Pierrard&Lazar 2010), which is nearlyMaxwellian at low energies
and decreases as a power-law at high energies (Meyer-Vernet 2007).
A Kappa power-law can therefore be applied in two distinct ways,
either as global model to incorporate both the thermal core and the
suprathermal halo, or to reproduce only the suprathermal tails sep-
arate from the core of the distribution (Leubner 2004; Maksimovic
et al. 2005; Štverák et al. 2008). Modelling the entire distribu-
tion with a global Kappa involves a lower number of parameters,
and it is therefore preferred in observational analyses (Vasyliunas
1968; Collier et al. 1996; Maksimovic et al. 1997) as well as
theoretical predictions, see reviews by Hellberg et al. (2005) and
Pierrard & Lazar (2010). Moreover, Leubner (2004) have shown
that core-halo structures are a natural ingredient of nonextensive
systems and at the same time global Kappa distribution functions
turn out as consequence of nonextensive statistics for such systems
subject to long-range interactions as solar wind plasmas. Complex
models combining a bi-Maxwellian core and a bi-Kappa halo are
difficult to manipulate but may be powerful in finding out details
about these two components (Maksimovic et al. 2005; Štverák et
al. 2008). Thus, statistical diagrams obtained for the temperature
anisotropies of these two components can be used to contrast with
the instability thresholds predicted by the linear theory. From a
bi-Maxwellian approach of the FHI, the aperiodic mode is found
to grow faster with thresholds approaching well enough the limits
of the core anisotropy (Štverák et al. 2008). For the suprathermal
halo the anisotropy limits are markedly departed from the insta-
bility thresholds predicted by a bi-Maxwellian, see Figure 6 and
the analysis in Štverák et al. (2008). To resolve this disagreement,
the instabilities conditions must be derived for the same bi-Kappa
model invoked in the parametrization of suprathermal electrons.

The bi-Kappa model is extensively invoked in theories of wave
dispersion and stability by adopting two alternative assumptions for
the temperature ofKappa populations to be either dependent or inde-
pendent of the power-index κ. The existing studies of the FHI (Lazar
& Poedts 2009; Lazar et al. 2011) assume κ-independent temper-
atures, and find, contrary to the expectations, that the instability is
inhibited by the suprathermals (i.e., with decreasing the power-index
κ) and the instability thresholds do not approach but depart even
more from the anisotropy bounds of the solar wind suprathermal
electrons. However, from a recent analysis on the applicability of
Kappa distributions (Lazar et al. 2015a, 2016) it becomes evident
that a representation with a κ-dependent temperature may provide
a more natural interpretation of the suprathermal populations for
three fundamental reasons: (1) it corresponds to a Maxwellian limit
which reproduces more accurately the thermal core of the distri-
bution enabling for a direct and realistic comparison (Lazar et al.
2015a); (2) the kinetic instabilities show a systematic stimulation in

the presence of suprathermal electrons (Lazar et al. 2015a; Viňas
et al. 2015; Shaaban et al. 2016a) as one may expect from the
excess of free energy acumulated by these populations; and (3) the
observations show strong evidence of κ-dependent temperatures,
which increase in the presence of suprathermal populations, i.e.,
temperatures increase with decreasing the power-index κ (Pierrard
et al. 2016). Such Kappa models with κ-dependent temperatures
have been introduced by Leubner & Schupfer (2000, 2001) in a
series of studies of the kinetic mirror instability, which is driven by
an opposite anisotropy, i.e., an excess of perpendicular temperature
T⊥ > T‖ .

Motivated by these premises, in the present paper we pro-
pose a refined analysis of the EFHI by modeling the anisotropic
electrons with a bi-Kappa distribution function with κ-dependent
temperatures. Our present analysis restricts to the same parallel
(non-zero frequency) modes studied before by Lazar & Poedts
(2009) and Lazar et al. (2011) for a plasma of isotropic protons and
anisotropic electrons (with Te, ‖ > Te,⊥). In section 2 we introduce
the velocity distribution functions assuming Maxwellian protons
and bi-Kappa distributed electrons, and derive the dispersion rela-
tion for the FHI modes. The main features of the instability, e.g.,
growth rates, wave-frequency, the unstable wave-numbers and the
anisotropy thresholds, are examined in section 3. These results are
intended to provide a straightforward characterization of the EFH
instability driven by the anisotropic electrons, when these are well
described by a global bi-Kappa distribution function. In this case a
confrontation of the instability thresholds with the observations in
space plasmas is not possible because statistical diagrams of temper-
ature anisotropy vs. plasma beta (determined with a global Kappa)
do not exist. However, thresholds predicted by our (bi-)Kappa ap-
proach are compared in section 3.2 with the anisotropy limits of the
solar wind halo electrons, considering our simplified model (with
only one electron component) as a zero-order approach that captures
only the kinetic effects of the suprathermal halo and minimizes the
influence of the thermal core (usually cooler and less anisotropic
than the halo). Further contrast is provided with the results obtained
by Štverák et al. (2008), who invoked a similar zero-order approach
to compare the same observations with the less realistic thresholds
predicted by a bi-Maxwellianmodel. The results of the present work
are discussed and summarized in section 4.

2 BI-KAPPA ELECTRONS. DISPERSION RELATIONS

We first introduce the analytical model for the velocity distribu-
tions of an electron-proton plasma, typical for the solar wind con-
ditions in the absence of energetic events (e.g., fast winds or coro-
nal mass ejections). The particle distributions may be assumed
gyrotropic, i.e., isotropic in the plane transverse to the magnetic
field, with a bi-axis temperature anisotropy T⊥ , T‖ , where ‖
and ⊥ denote directions relative to the magnetic field. In the ab-
sence of beams, suprathermal populations enhance the tails of ve-
locity distributions, and in velocity space with polar coordinates
(v⊥ cos φ, v⊥ sin φ, v‖ ) = (vx, vy, vz ) these distributions are well
reproduced by the family of bi-Kappa distribution functions (see,
for instance, the reviews by Pierrard & Lazar (2010); Lazar et al.
(2012))

Fκ (v‖, v⊥) =
1

π3/2θ ‖θ
2
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Γ[κ]
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which is normalized to unity, and where θ ‖,⊥ are thermal velocities
defined by, respectively, the parallel and perpendicular temperatures
as moments of second order

Tκ
‖
=

m
kB

∫
dvv2

‖
Fκ (v‖, v⊥) =

κ
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‖

2kB
, (2)
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2kB
. (3)

The bi-Kappa simply reduces to a bi-Maxwellian, used in Štverák
et al. (2008), only in the limit of a very large κ → ∞
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with
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2kB
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‖
, (5)
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2kB

∫
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⊥FM (v‖, v⊥) =

mθ2
⊥

2kB
< Tκ⊥. (6)

Notice in this case that the temperature of Kappa electrons decreases
with increasing the power-index κ and reaches a minimum for the
Maxwellian limit. Leubner&Schupfer (2000, 2001) have originally
invoked such Kappa models with κ-dependent temperatures to in-
vestigate the instability conditions for the kinetic mirror modes. The
parallel plasma beta parameter becomes function of power-index κ

βKe, ‖ (κ) =
8πnekBTK

e, ‖

B2
0

=
2κ

2κ − 3
βMe, ‖ > βMe, ‖ (7)

In the direction parallel to the magnetic field (k ‖ B), the
electromagnetic (EM) modes are decoupled from the electrostatic
oscillations, and are described by the following linear dispersion
relation (Gary 1993)

k2c2

ω2 =1 +
4π
ω2

∑
a

ea
ma

∫ ∞

−∞

dv‖
ω − kv‖ ±Ωa

∫ ∞

0
dv⊥

× v2
⊥

[
(ω − kv‖ )

∂Fa
∂v⊥

+ kv⊥
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]
, (8)

where ω and k are respectively, the frequency and the wavenumber
of the plasma modes, c is the speed of light in vacuum, Ωa =

qaB0/(mac) is the gyrofrequency for the particles of sort a, e.g., a =
e for electrons and a = p for protons, respectively, and "±" describes
the circularly polarized EM modes with right-hand (RH) and left-
hand (LH) polarizations, respectively. For the model introduced in
equation (1) the dispersion relation becomes

k2c2

ω2 = 1 +
∑
a

ω2
a,h

ω2

[
Aa − 1

+
(Aa − 1)(ω ±Ωa) + ω

kθa, ‖
Zκ

(
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) ]
, (9)

where Aa = Ta,⊥/Ta, ‖ is the temperature anisotropy,

Zκ ( f ) =
1
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Γ(κ)

Γ
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2
)

×
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−∞
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x − f
, =( f ) > 0 (10)

is the Kappa plasma dispersion function (Lazar et al. 2008) of
argument

fκ =
ω ±Ωa

kθa, ‖
. (11)

In theMaxwellian limit this function reduces to the standard plasma
dispersion function (Fried & Conte 1961)

Z ( f ) =
1

π1/2

∫ +∞

−∞

dx
exp(−x2)

x − f
, =( f ) > 0 (12)

of argument

f =
ω ±Ωa

kwa
. (13)

Note that for our model introduced in Eqs. (1)–(6), the anisotropy
does not depend on κ, i.e., A = Tκ⊥/T

κ
‖
= TM
⊥ /TM

‖
.

We investigate the EFHI, which is a LH EM mode driven
unstable by an excess of electron temperature in parallel direction
Te, ‖ > Te,⊥, i.e., Ae < 1. According to (9), the dispersion relation
describing these modes can be rewritten with normalized quantities
as follows

µ
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where protons are assumed Maxwellian and isotropic Ap = 1, and
ω̃ = ω/Ωp , k̃ = kc/ωp,p , µ = mp/me is the proton/electron mass
ratio, Θ = TM

e, ‖
/TM

p, ‖
is the electron/ proton parallel temperature

ratio, and βM
e, ‖
= 8πnekBTM

e, ‖
/B2

0 is the parallel electron beta
parameter in the Maxwellian limit κ → ∞. The dispersion relation
for bi-Maxwellian distributed electrons is obtained from Eq. (14) by
changing Zκ with the Maxwellian plasma dispersion function from
(12).

3 EFHI SOLUTIONS

We have solved the dispersion relation (14) numerically, and ana-
lyzed the unstable firehose solutions for a wide variety of plasma
regimes susceptible to this instability. In this section we present the
main features of the EFHI, namely, growth rates, wave-frequencies
and wave-numbers, as well as the anisotropy thresholds, and restrict
our discussions only to a number of representative cases. However,
the anisotropy thresholds displayed and analyzed in the second part
of this section cover extended conditions encountered in space plas-
mas, for instance, in the solar wind and planetary magnetospheres.
Since only the electrons are anisotropic, in the next analysis we
omit the labeling subscript "e" for the anisotropy, A, and the plasma
beta parameter, β ‖ . The effects of Kappa distributed electrons are
triggered by their temperature anisotropy and the abundance of
suprathermal populations, which is quantified by the finite (low)
values of the power-index κ.

3.1 Unstable solutions

Firstly, we examine the growth rates and the wave-frequency of the
EFH instability for different plasma regimes conditioned in princi-
pal by the parallel plasma beta parameter β ‖ , the electron anisotropy
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Figure 1. Effects of the suprathermal electrons quantified by the power-
index κ =2, 2.2, 3, 6, ∞, on the growth rates of EFHI for different plasma
beta explicitly given in each panel. Here β‖ ≡ βM

‖
is the one used in Eq. 14.

A, and the power-index κ. The regimes identified in Figures 1 and
2 are specific to the firehose instability, when a magnetized plasma
becomes penetrable by the LH electromagnetic fluctuations prop-
agating parallel to the magnetic field with frequencies higher than
the proton cyclotron frequency. All the unstable modes, i.e., with
γ > 0 in Figure 1, exhibit this property that becomes evident in Fig-
ure 2, where their wave-number dispersion extends to high frequen-
cies exceeding Ωp . Increasing the presence of suprathermals, i.e.,
lowering the power index κ, the range of unstable wave-numbers is
restrained, but the wave-frequencies and the instability growth-rates
are enhanced. These effects are in general stimulated by increasing
the plasma beta parameter β ‖ , the temperature anisotropy and the
electron-proton temperature contrast Θ. Plots evidencing the influ-
ence of Θ are not shown here, being less relevant for the scope of
the present paper. The unstable solutions displayed in Figures 1-4
are obtained for the same value of this parameter, namely, forΘ = 4
in accordance to the observations in the slow solar wind (Newbury
et al. 1998).

At higher values of κ the instability conditions may be not
satisfied and the electromagnetic modes are damped, e.g., γ < 0
for κ > 6 in Figure 1, middle and bottom panels. For these modes,
the wave-frequency dispersion curves displayed in Figure 2 have a
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Figure 2. Effects of the suprathermal electrons (κ =2, 2.2, 3, 6, ∞) on the
wave-frequency of EFHI for the same cases considered in Fig. 1.

different allure, showing an asymptotic increase similar to the ion
(proton) cyclotron modes with frequencies always smaller thanΩp .
These are LH modes damped by the protons and limited only to
the large (proton) scales. At lower scales controlled by the electrons
(higher wave-numbers) these modes change (mode conversion) to
RH polarization (i.e., the wave-frequency displayed in Figure 2
becomes negative) which is specific to the electron whistlers.

In Figures 3 and 4we show that these LH-polarizedmodeswith
a wave-number dispersion resembling that of the electromagnetic
ion cyclotron (EMIC) modes can be destabilized by the anisotropic
bi-Kappa distributed electrons, see middle and bottom panels. This
is a new regime of the EFHI destabilizing only the low-frequency
branch of the LH modes with wave-frequency showing an asymp-
totic increase of their wave-frequencies and remaining always below
Ωp . To establish this regime the kinetic effects of the electrons are
also tempered by considering lower values of plasma beta, but then
the instability is triggered only by the anisotropic distributions with
sufficiently low κ, e.g., κ < 3 in Figures 3 and 4. Furthermore, in
this case, both the (maximum) growth-rates and the range of the
unstable wave-numbers are considerably enhanced by increasing
the presence of suprathermals, i.e., lowering the values of κ. Again,
these features seem to be more specific to the instability of the cy-
clotron modes (Shaaban et al. 2016b). The transition between the
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Figure 3.Effects of the suprathermal electrons quantified by the power-index
κ =2, 2.2, 3, 6,∞, on the growth rates of EFHI for a lower βM

‖
= 0.6.

classical EFH solutions (exemplified in Figures 1 and 2) and the
new regime of a low-frequency EFHI is suggestively shown in Fig-
ures 3 and 4, top panels. In these panels we have displayed unstable
solutions specific to both these two regimes: the solid-line solution
obtained for κ = 2 is a classical firehose, while the next long-
dashed-line solution obtained for κ = 2.2 is already more specific
to the new regime of EFHI. In this case it is only the power-index
κ that may switch between these two regimes, but an extended di-
rect comparison of the other EFH solutions in Figures 1-4 clearly
shows that these regimes are also conditioned by the temperature
anisotropy and the plasma beta.

3.2 Thresholds: predictions vs. observations

In the second part of this section we analyze the anisotropy thresh-
olds of the instability. These thresholds represent plasma conditions
associated with given values of the maximum growth-rate, usually
small values, e.g., γm/Ωp = 10−2, 10−3, approaching the marginal
stability γm/Ωp → 0. In Figure 5 we display the instability thresh-
olds associated with γm/Ωp = 10−3 and derived for different values
of the electron power-index κ. These are isocontours of the elec-
tron temperature anisotropy A as a function of the parallel electron
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Figure 4. Effects of the suprathermal electrons (κ =2, 2.2, 3, 6, ∞) on the
wave-frequency of EFHI for the same cases considered in Fig. 3.

plasma beta β ‖ , fitted to an inverse correlation law of the form
(Gary & Lee 1994; Gary et al. 1998)

A = 1 −
a

βb
‖

. (15)

The values obtained for the fitting parameters a and b are given
in Table 1. Higher values of β ‖ , associated with hotter plasmas or
less intense magnetic fields, imply lower deviations from isotropy to
trigger the instability. For the plasma beta parameter we consider an
extended range of values 0.1 < β ‖ < 50 relevant for the electrons
in space plasma (Štverák et al. 2008). The effects of suprather-
mal electrons is reconfirmed here by a systematic stimulation of
the (maximum) growth-rates with decreasing κ. As a consequence,
the anisotropy thresholds are found to be markedly lowered in the
presence of suprathermals, and this effect may be enhanced by in-
creasing the temperature contrast between electrons and protons
(not shown here). Larger variations of the anisotropy thresholds
are obtained at lower values of κ. In the absence of collisions the
EFHI is expected to constrain the temperature anisotropy in the so-
lar wind, with thresholds approaching the anisotropy limits reported
by the observations. Unfortunately, statistical diagrams of tempera-
ture anisotropy vs. plasma beta determined with a global bi-Kappa
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Figure 5.Comparison of the anisotropy thresholds (15) formaximumgrowth
rates γm/Ωp = 10−3 with the electron halo temperature anisotropy mea-
sured in the solar wind and displayed using a scatter plot data in the top
panel and a histogram data in the bottom panel. The anisotropy is plotted
vs. the halo parallel plasma beta βK

‖
defined in Eq. (7).

model do not exist, making impossible a direct confrontation with
our instability thresholds.

At this stage we can compare the instability thresholds with the
anisotropy of the halo suprathermal electrons detected in the solar
wind and parameterizedwith the same bi-Kappamodel.As shown in
the Introduction, a bi-Kappa can be used to describe either the entire
distribution, or only the suprathermal halo component. To compare
our results with the observations of the halo electrons, our bi-Kappa
approach must be considered as a zero-order approach that captures
only the effects of the halo component and minimizes the influence
of the thermal core. The observational data for the halo electrons,
namely their anisotropy vs. their parallel beta, are displayed in Fig-
ure 5 as a scatter plot in the top panel, and as a histogram, counting
the number of events within a color logarithmic scale, in the bottom
panel. The data set is selected from more than 120 000 events de-
tected by three space missions, Helios 1, Cluster II, and Ulysses, at
different heliocentric distances (in the interval 0.3–3.95 AU) in the
ecliptic. In order to neglect the effects of the strahl which is not taken
into account in our present study, the observational data in Fig. 5 are

Table 1. Fitting parameters for thresholds γm/Ωp = 10−3

Fit κ = 1.6 κ = 2 κ = 2.2 κ = 3 κ → ∞

a 0.0999 0.4001 0.9256 1.9226 2.2303
b 0.9933 0.8708 0.8996 1.0004 1.0457

selected for specific conditions, for instance, in the slowwinds (with
bulk speeds less than 500 km/s), and beyond 1 AUwhere the density
of the strahl population is significantly diminished by comparison to
the nonstreaming halo population (Maksimovic et al. 2005). More
details about the electron analyzers on spacecraft, and the methods
of correction and reconstruction of the 3D velocity distributions can
be found in Štverák et al. (2008). These authors have used the same
set of events to analyze the temperature anisotropy of the main elec-
tron populations, namely, the thermal core and suprathermal halo,
and the most plausible constraints exercised on their temperature
anisotropy by different physical mechanisms, e.g., collisions and
kinetic instabilities.

From a detailed investigation of the electron core anisotropy
Štverák et al. (2008) have found that particle-particle collisions
(from early ages in the solar corona) still may have an effect con-
straining low levels of anisotropy, while the kinetic instabilities
occur for larger deviations from isotropy exceeding their thresh-
olds. Indeed, the instability thresholds provided by a bi-Maxwellian
model were found to shape well the limits of the core anisotropy,
but not the limits of the halo anisotropy. This disagreement is ev-
ident in Figure 6 from Štverák et al. (2008), which compares the
observed halo anisotropy measured with a bi-Kappa and the insta-
bility thresholds provided by a zero-order approach which assumes
the halo electrons bi-Maxwellian distributed and neglects the ef-
fects of the core population. Here in Figure 5 we show that this
disagreement may be resolved by a more realistic comparison with
the instability thresholds provided by a bi-Kappa approach. The
instability threshold for the bi-Maxwellian limit (κ → ∞) invoked
by Štverák et al. (2008) is also displayed for reference with dot-
ted (black) lines. The instability thresholds are markedly lowered
with decreasing the power index κ and for low values of κ these
thresholds approach the limits of the temperature anisotropy ob-
served in the solar wind. The instability thresholds also shape very
well the isocontours counting the number of events in the bottom
panel. However, we should stress that our comparison in Figure 5 is
based on a similar zero-order approach that minimizes any influence
of the core electrons but assumes the suprathermal electrons more
realistically described by a bi-Kappa distribution function.

4 DISCUSSIONS AND CONCLUSIONS

In this paper we have proposed a refined theory of the EFHI in colli-
sionless plasmas with bi-Kappa distributed electrons, seeking new
and valuable evidences for an extended implication of this insta-
bility in the relaxation of temperature anisotropy in space plasmas.
Our present study is particularly motivated by the solar wind obser-
vations which do not confirm the indefinite increase of temperature
predicted by the solar wind expansion in the direction parallel to the
interplanetary magnetic field, but reveal very clear bounds for the
temperature anisotropy of plasma particles. Previous studies have
focused on the thermal (core) populations of electrons and protons,
developing standard bi-Maxwellian approaches and showing that
large deviations from isotropy may be constrained by the kinetic
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instabilities (Hellinger et al. 2006; Štverák et al. 2008). However,
the same bi-Maxwellian is not appropriate to describe suprathermal
populations and their anisotropy, and cannot prescribe accurately
the resulting instabilities and their back reaction on these popula-
tions.

Here we have assumed the anisotropic electrons well repro-
duced by a bi-Kappa distribution function, which has widely been
invoked as a global model to describe the entire distribution, in-
corporating both the core and halo components (Hellberg et al.
2005; Pierrard & Lazar 2010). The same bi-Kappa model can also
describe only the suprathermal tails of the electron halo observed
the solar wind (Maksimovic et al. 2005; Štverák et al. 2008). In ad-
dition, the Kappa approach considered here assumes a κ-dependent
temperature, thus enabling a realistic interpretation of the Kappa
populations and their effects (theoretical and observational argu-
ments are provided in the Introduction). The results of our present
study markedly contrast with those provided by Lazar & Poedts
(2009); Lazar et al. (2011), who studied the same EFHI but driven
by bi-Kappa electrons with a κ-independent temperature. Thus, we
have identified two distinct regimes of the EFHI (Section 3), which
are differentiated by the wave-number dispersion laws obtained for
the frequency and growth-rate. More specific to the EFHI are the
unstable modes exemplified in Figures 1 and 2 with frequencies
that can significantly exceed the proton cyclotron frequencyΩp . To
establish this regime the anisotropic electrons must have a signifi-
cant amount of kinetic free energy, implying electrons with a high
plasma beta or/and a large enough anisotropy. If damped, these
modes cannot extend above Ωp and their wave-number dispersion
keeps the aspect of low-frequency EMIC modes in the absence of
kinetic anisotropies. At higher wave-numbers (lower scales) these
damped modes can change their polarity converting to the branch
of RH-polarized modes (whistlers). These electromagnetic modes
with a wave-number dispersion resembling that of the EMICmodes,
i.e., with wave-frequency increasing asymptotically to Ωp , can be
destabilized by the EFHI for conditions approaching marginal sta-
bility. A few cases relevant for this new regime are presented in
Figures 3 and 4, with mention that top panels in these figures in-
clude unstable solutions representative for a transition between the
two distinct regimes of the EFHI.

The values considered for the plasma parameters in Figures 1-4
are typically encountered in the solar wind, and for these conditions
the EFHI develops only in the presence of suprathermal electrons,
i.e., for finite values of κ, while for (bi-)Maxwellian limit κ → ∞
these modes are damped. Increasing the presence of suprathermal
populations (by lowering κ) has a non-uniform effect on the wave-
frequency of the unstable modes, which highly depends on the
regime of FHI, and this becomes evident if we compare for instance
Figures 2 and 4. Contrary to the previous results in Lazar & Poedts
(2009); Lazar et al. (2011) involving bi-Kappa electrons with a
κ-independent temperature, here the EFHI is systematically stimu-
lated by the suprathermal electrons, which enhance the (maximum)
growth-rates for any regime of this instability. This effect is the most
pronounced for conditions approaching the marginal stability (Fig-
ure 3), which also explains the significant decrease of the instability
thresholds in Figure 5 for lower values of κ.

These results provide a straightforward characterization of the
EFH instability driven by the anisotropic electrons, when their ve-
locity distribution is overall well described by a (global) bi-Kappa
distribution function. A natural confirmation of the role played by
this instability in constraining the temperature anisotropy of elec-
trons may be obtained from a direct comparison of the instability
thresholds with the limits of anisotropy measured in the solar wind.

Statistical diagrams of temperature anisotropy vs. plasma beta pa-
rameter determined with a global bi-Kappa fitting model are not
available and a confrontation with our threshold conditions is there-
fore not possible at this stage. However, such diagrams of statis-
tical data have been produced for the halo component, using the
same bi-Kappa fitting model to evaluate the main parameters of this
component, e.g., density, temperature, temperature anisotropy, etc.
(Štverák et al. 2008). We have used these diagrams in Figure 5
for a direct comparison of the instability thresholds with the limits
of the halo anisotropy reported by the observations, considering
the bi-Kappa approach developed here as a zero-order approach
of the halo electrons. To keep the analysis straightforward, in the
present analysis we have isolated only the instability effects of the
bi-Kappa electrons, and neglected the effects of the core popula-
tion. Although the model is simplified, the instability thresholds are
in surprisingly good agreement with the observations. Given that
solar wind electrons, and especially their suprathermal populations
are collisionless, such a good agreement between theory and ob-
servations represents a plausible confirmation on the role played by
the FHI in constraining the solar wind electron anisotropy. These
results should stimulate future studies to refine the instability con-
ditions for an even more realistic approach that includes the effects
of a (bi-)Maxwellian core. Such a complex model combining a
(bi-)Maxwellian core and a bi-Kappa halo was applied recently for
studies of cyclotron instabilities (Lazar et al. 2014b, 2015b; Shaaban
et al. 2016b).

To conclude, an agreement between the instability thresholds
and the bounds of the temperature anisotropy measured in the solar
wind is conditioned by a proper modelling of the velocity distribu-
tions in accord to the observations. In the present paper an impor-
tant progress is made by introducing the bi-Kappa modelling with
κ-dependent temperatures for the anisotropic suprathermal elec-
trons. Our present results strongly suggest that the EFHI may ef-
ficiently constrain the temperature anisotropy of the suprathermal
electrons in the slow wind, complementing the results by Štverák
et al. (2008), which showed similar effects of this instability on the
core electrons. This instability can therefore intermediate a transfer
of energy between parallel and perpendicular directions. From an
extended perspective, we can further claim that the resulting low-
frequency fluctuations may also establish an energy transfer from
small to large scales, namely from the electrons, mainly from their
energetic (suprathermal) populations which carry the main heat flux
in the solar wind, to the resonant protons. Although suprathermal
populations are not easily captured in numerical experiments, our
present results provide valuable premises and motivations for build-
ing new and advanced algorithms to confirm these mechanisms.
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