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SUMMARY

In industrial experimentation there is growing interest in studies that span more than one pro-
cessing step. Convenience often dictates restrictions in randomization in passing from one pro-
cessing step to another. When the study encompasses three processing steps, this leads to split-
split-plot designs. We provide an algorithm for computing D-optimal split-split-plot designs and
several illustrative examples.

Some key words: D-optimality; coordinate-exchange algorithm; hard-to-change factors; multi-stratum design; split-
plot design; split-split-plot design; tailor-made design.

1. INTRODUCTION

Split-plot designs are commonplace in industrial applications because there are often system
level, set-up or processing factors that are difficult, expensive, or time-consuming to change
between successive processing runs. When this happens there is a natural inclination to perform
all the runs of a particular level combination of such hard-to-change factors in succession. Such
an ordering of the runs is clearly not random and many completely randomized designs have
been re-ordered after the randomization to become split-plot designs inadvertently. Clearly it
is preferable to design the few changes of the hard-to-change factorsrather than to discover
an after the fact run re-ordering or, even worse, fail to notice the re-ordering at all. Including
this grouping of runs as a part of the design problem allows the researcher to maximize the
information obtained about the statistical model given this restriction in randomization. Webb et
al. (2004) have shown the cost in efficiency due to inadvertent split plotting.

The split-plot structure divides the experimental runs into two strata. The topstratum contains
the whole plots. A whole plot is a group of runs where the hard-to-changefactor combinations
remain constant. The lower stratum contains the individual subplot runs.

The practical need for more than two strata in a design arises when experimenting on processes
with multiple steps or stages. If the experimental units can be re-ordered between stages, then a
split-lot or strip-plot design results (see, for example, Mee and Bates 1998). In many cases it is
either too complicated or even impossible to re-order the experimental units between strata. This
leads to the split-split-plot design structure.

Schoen (1999) provides an example of multi-stage processing leading to a split-split-plot de-
sign in his case study involving the production of cheese. Cheese processing starts with milk
storage. Typically milk from one storage facility provides the raw material forseveral curds
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2 BRADLEY JONES, PETER GOOS

processing units - the second processing stage. Then the curds are further processed to yield
individual cheeses.

Split-split-plot designs are a three-stratum extension of split-plot designs.They divide into
whole plots, subplots within whole plots, and individual runs within each subplot. The top stra-
tum remains the whole-plot stratum. Over the course of the experiment, the whole-plot or very-
hard-to-change factors’ levels are changed the fewest times. The levels of subplot factors or
hard-to-change factors are changed more frequently. Also the levels of these factors must change
whenever the whole-plot factor levels change in order to preserve the nested unit structure that
characterizes the split-split-plot design. The sub-subplot factors or easy-to-change factors should
be reset between each run regardless of whether their level changes.

Typically, the number of subplots is an integer multiple of the number of whole plotsand the
total number of runs is an integer multiple of the number of subplots. In this article, we assume
that kind of structure although it is, however, not a requirement in general.

The extension from two-stratum to three-stratum experiments is not a trivialone. There is not
much literature on the design of such studies. Edmondson (1991) pointed out that various levels
of splitting experimental plots or units are often required in agricultural and horticultural studies,
but did not go beyond split-plot designs (with one level of splitting) in his article. Trinca and
Gilmour (2001) considered both the design and analysis of multi-stratum experiments including
nonorthogonal designs. Their design approach attempts as much as possible to orthogonalize
each stratum of the design with respect to the higher strata. Schoen (1999) constructed an or-
thogonal two-level split-split-plot design by joining fractional factorial designs in order to create
the desired nesting structure. Brien and Bailey (2006) provided a diagrammatic method for de-
scribing complex nesting and crossed structures with many practical examples.

This article describes an algorithm for creating D-optimal split-split-plot designs and provides
several specific examples of these designs to demonstrate their utility for screening experimen-
tation. It builds on Goos (2002, 2006), who introduced an optimal design approach to construct
split-plot designs and provided algorithms for finding optimal split-plot designs that exchange
points from a starting design with points from a candidate set, and on Jones and Goos (2007a),
who showed how to avoid the construction of a candidate set in the search for optimal split-plot
designs. Their candidate-set-free algorithm runs in polynomial time in the number of factors thus
allowing construction of designs with many more factors and runs than was previously feasible.

2. MODEL AND DESIGN CRITERION

For a split-split-plot experiment withb1 whole plots,b2 subplots per whole plot andk runs per
subplot, and thus sample sizen = b1b2k, the model can be written as

Y = Xβ + Z1γ1 + Z2γ2 + ε, (1)

whereY is then-dimensional vector of the responses arranged per whole plot and persubplot,
X represents then × p model matrix containing the settings of the very-hard-to-change factors,
w, the hard-to-change factors,s, the easy-to-change factors,t, and their model expansions,β is
ap-dimensional vector containing thep fixed effects in the model, and

Z1 = Ib1 ⊗ 1b2k

is ann × b1 matrix of zeroes and ones. A one in rowj of columni of Z1 means that runj is in
theith whole plot. Furthermore,

Z2 = Ib1 ⊗ Ib2 ⊗ 1k = Ib1b2 ⊗ 1k
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D-optimal design of split-split-plot experiments 3

is ann × b1b2 matrix of zeroes and ones indicating how then runs have been assigned to theb2

subplots within each of theb1 whole plots. Theb1- andb1b2-dimensional vectorsγ1 andγ2 are
the random effects associated with the whole plots and the subplots, respectively. Finally,ε is the
n-dimensional vector containing the random errors. It is assumed that

E(ε) = 0n and cov(ε) = σ2
εIn, (2)

E(γ1) = 0b1 and cov(γ1) = σ2
γ1

Ib1 , (3)

E(γ2) = 0b1b2 and cov(γ2) = σ2
γ2

Ib1b2 , (4)

and

cov(γ1, ε) = 0b1×n, cov(γ2, ε) = 0b1b2×n and cov(γ1, γ2) = 0b1×b1b2 . (5)

The variancesσ2
γ1

, σ2
γ2

andσ2
ε in these expressions are referred to as the whole-plot vari-

ance, the subplot variance and the error variance, respectively. Under the assumptions (2)-(5),
the covariance matrix of the reponses, var(Y ), is

V = σ2
εIn + σ2

γ1
Z1Z

′

1 + σ2
γ2

Z2Z
′

2. (6)

This matrix is of the form

V = diag(V1, . . . , Vb1), (7)

where each

Vi = σ2
εIb2k + σ2

γ1
1b2k1

′

b2k + σ2
γ2

(Ib2 ⊗ 1k1
′

k),

= σ2
ε{Ib2k + η11b2k1

′

b2k + η2(Ib2 ⊗ 1k1
′

k)},
(8)

andη1 = σ2
γ1

/σ2
ε andη2 = σ2

γ2
/σ2

ε . These two variance ratios measure the extent to which ob-
servations are correlated. The correlation between two observations in the same subplot is equal
to (η1 + η2)/(1 + η1 + η2). The correlation between two observations from the same whole plot
but a different subplot isη1/(1 + η1 + η2). It is clear that larger values forη1 andη2 result in
more correlated observations within the whole plots and subplots.

When the random error terms as well as the whole-plot and subplot effects are normally dis-
tributed, the maximum likelihood estimator of the unknown model parameterβ in (1) is the
generalized least squares (GLS) estimator

β̂ = (X ′V −1X)−1X ′V −1Y, (9)

with covariance matrix

var(β̂) = (X ′V −1X)−1. (10)

The use of that estimator requires the estimation of the variance componentsσ2
γ1

, σ2
γ2

andσ2
ε ,

which can be substituted inV . This leads to the feasible generalized least squares estimator.
For the variance component estimation, we recommend restricted maximum likelihood (REML)
estimation because of its generality. The unbiasedness and variance of theresulting estimator
are discussed in Kackar and Harville (1984) and Harville and Jeske (1992). For the purpose
of statistical inference, we advocate the use of the method of Kenward andRoger (1997) for
determining the standard errors and the denominator degrees of freedomfor the hypothesis tests
concerning the fixed effects. When limitations on the number of whole plots, subplots or runs
do not allow the variance components to be estimated, we would either use the method of Lenth
(1989) or the permutation test approach of Loughin and Noble (1997), adapted for split-split-plot
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4 BRADLEY JONES, PETER GOOS

experiments in a way similar to that in which Loeppky and Sitter (2002) adapted these methods
for split-plot experiments.

Under the model assumptions made, the information matrix on the unknown fixed parameters
β is given by

M = X ′V −1X. (11)

A commonly used criterion to select experimental designs is the D-optimality criterion which
seeks designs that maximize the determinant of the information matrix,|M | = |X ′V −1X|. The
D-optimality criterion has been used for constructing split-plot designs by Goos and Vandebroek
(2001, 2003, 2004) and Goos and Donev (2007) and it is also the criterion which is implemented
in the candidate-set-free algorithm described in Jones and Goos (2007a). We use D-efficiency
to compare the quality of two designs with information matricesM1 andM2. D-efficiency is
defined as

(

|M1|

|M2|

)1/p

.

In general, the optimal split-plot design will depend on the variance ratiosη1 andη2 through
V . The sensitivity of the D-optimal designs to the choice ofη1 andη2 is discussed in Section 5.

3. DESIGN CONSTRUCTION ALGORITHM

This section first provides a rough general description of a modified coordinate-exchange al-
gorithm for generating D-optimal split-split-plot designs. Next, we show howto substantially re-
duce the computational work by using a fast procedure to evaluate the change in the D-criterion
value when making changes to a design. In the appendix, a fast update for the inverse of the
information matrix after exchanging one point for another is provided too.

3·1. Algorithm outline
The algorithm requires the prior specification of the following:

1. for each factor whether it is continuous, categorical or a mixture ingredient,
2. designation of the factors that are very hard to change (i.e. the factors applied to the whole-

plot stratum),
3. designation of the factors that are hard to change (i.e. the factors applied to the subplot stra-

tum),
4. any additional constraints on factor combinations,
5. the number,b1, of independent resettings of the very-hard-to-change factors (i.e.the number

of whole plots),
6. the number,b2, of independent resettings of the hard-to-change factors for each setting of the

very-hard-to-change factors (i.e. the number of subplots within each whole plot),
7. the number of observations,k, in each subplot,
8. the ratioη1 of the variance associated with the very-hard-to-change factors,σ2

γ1
, to the error

variance,σ2
ε ,

9. the ratioη2 of the variance associated with the hard-to-change factors,σ2
γ2

, to the error vari-
ance,σ2

ε ,
10. thea priori model,
11. the number of random starting designs or tries,nT , to consider.
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D-optimal design of split-split-plot experiments 5

Given this information, the body of the algorithm has two parts. The first is thecreation
of a starting design. The second is the iterative improvement of this design until no further
improvement is possible. Improvements are measured by increases in the objective function,
|M | = |X ′V −1X|. The two parts are performednT times. Each time the final value of|M |
found in the current iterate is compared to the maximum value of|M | from all the previous iter-
ates. If the current value is higher, then it becomes the new maximum and the current design is
stored.

The starting design is formed column by column. For whole-plot factor columns, b1 random
numbers are chosen. For subplot factor columns,b1b2 random numbers are chosen. For sub-
subplot factor columns, the values for each of then rows are chosen randomly. All the rows
in a given whole plot have the same value for each whole-plot factor. If there is more than one
whole-plot factor, however, the factors may have different values. Similarly, all the rows in a
given subplot have the same value for each subplot factor. Differentsubplot factors may also
have different values inside a subplot. This procedure gives the starting design the desired split-
split-plot structure.

Improvements are made to the starting design by considering changes in the design on an
element-by-element basis. This is inspired by the coordinate-exchange algorithm of Meyer and
Nachtsheim (1995). The procedure for changing any given element depends on whether that
element is an easy-to-change factor, a hard-to-change factor or a very-hard-to-change factor.

For an element in a sub-subplot factor column (easy-to-change factor), the objective function
is evaluated over a discrete number of values spanning the range of that factor. If the maximal
value of the objective function is larger than the current maximum, then the current maximum is
replaced and the current element in the design is replaced by the factor setting corresponding to
the maximal value.

The procedure is more involved for an element in a subplot factor column (hard-to-change
factor). If such an element changes, then all the corresponding elements for that column in the
same subplot must also change. A discrete number of values spanning the range of the subplot
factor are evaluated. If the maximal value of the objective function is largerthan the current
maximum, then the current maximum is replaced and all elements in the subplot factor column
in the subplot under consideration are replaced by the factor setting corresponding to the maximal
value.

For an element in a whole-plot factor column (very-hard-to-change factor) the procedure is the
most computationally expensive. If such an element changes, then all the corresponding elements
for that column in the same whole plot must also change. A discrete number of values spanning
the range of the factor are evaluated. Again, if the maximal value of the objective function is
larger than the current maximum, then the current maximum is replaced and all elements in the
whole-plot factor column in the whole plot under consideration are replaced by the factor setting
corresponding to the maximal value.

This element-by-element procedure continues until a complete cycle throughthe entire design
has been performed. Then, another complete cycle through the design is performed checking to
see if any element has been changed in the current pass. This continues until no changes are
made in a whole pass or until a specified maximum number of passes have beenexecuted.

3·2. Fast update procedures
Fast procedures can be used in the algorithm for evaluating the impact of a change of the

design on the objective function,|M |. Also, the inverseM−1 of the information can be updated
at a relatively low computational cost. The update procedures all build on the following theorem
which gives a simple analytical expression for the inverse of the covariance matrixV in (6).
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6 BRADLEY JONES, PETER GOOS

THEOREM 1. The inverse of the covariance matrixV is equal to

V −1 = σ−2
ε In − c1Z1Z

′

1 − c2Z2Z
′

2, (12)

where

c1 = σ−2
ε

η1 −
η1η2k
1+η2k

1 + η1b2k + η2k

and

c2 = σ−2
ε

η2

1 + η2k
.

A proof of this result is obtained by multiplying the right hand side of (12) with the right hand
side of (6) and observing that this produces the identity matrix. When doing so, the following
matrix results prove to be useful:Z ′

1Z1 = b2kIb1 , Z ′

2Z2 = kIb2 , andZ1Z
′

1Z2Z
′

2 = kZ1Z
′

1.
The theorem can be used to derive an alternative expression for the information matrix. As a

matter of fact, because of (12), we have that

V −1 = diag(V −1

1
, . . . , V −1

b1
), (13)

where each

V −1

i = σ−2
ε {Ib2k − c11b2k1

′

b2k − c2(Ib2 ⊗ 1k1
′

k)}. (14)

This makes it possible to rewrite the information matrix as follows:

M =

b1
∑

i=1

X ′

iV
−1

i Xi,

= σ−2
ε X ′X − c1

b1
∑

i=1

(X ′

i1b2k1
′

b2kXi) − c2

b1
∑

i=1

b2
∑

j=1

(X ′

ij1k1
′

kXij),

= σ−2
ε X ′X − c1

b1
∑

i=1

(X ′

i1b2k)(X
′

i1b2k)
′ − c2

b1
∑

i=1

b2
∑

j=1

(X ′

ij1k)(X
′

ij1k)
′,

(15)

whereXi is the part ofX corresponding to theith whole plot andXij is the part ofX corre-
sponding to thejth subplot within theith whole plot. If the power expansion of thelth design
point in thejth subplot of whole ploti is denoted byf(wi, sij , tijl), thenX ′X can be written
as
∑b1

i=1

∑b2
j=1

∑k
l=1

f(wi, sij , tijl)f
′(wi, sij , tijl). As a result, (15) can be written as a sum of

outer products of vectors. This opens the prospect of fast updates of the information matrix, its
determinant and its inverse.

Updating the determinant of the information matrix after changing the level of aneasy-to-
change factor, a hard-to-change factor or a very-hard-to-change factor can be done using a for-
mula of the form.

|M∗| = |M ||Idi
+ DiU

′

iM
−1Ui|, (16)

whereM andM∗ represent the information matrix before and after the change, respectively,
Di is adi-dimensional diagonal matrix andUi is ap × di matrix. This is shown in detail in the
appendix. The matricesDi andUi as well as the integerdi all depend on whether the factor level
that is modified corresponds to an easy-to-change, a hard-to-change, or a very-hard-to-change
factor.
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D-optimal design of split-split-plot experiments 7

For example, after a change in the level of an easy-to-change factor in the lth run of thejth
subplot within whole ploti, the matricesDi andUi needed for the update are given by

D1 = diag(−σ−2
ε , c1, c2, σ

−2
ε ,−c1,−c2) (17)

and

U1 =
[

f(wi, sij , tijl) X ′

i1b2k X ′

ij1k f(wi, sij , t
∗

ijl) X∗
′

i 1b2k X∗
′

ij 1k

]

′

. (18)

In this last expression,

X∗
′

i 1b2k = X ′

i1b2k − f(wi, sij , tijl) + f(wi, sij , t
∗

ijl) (19)

and

X∗
′

ij 1b2k = X ′

ij1b2k − f(wi, sij , tijl) + f(wi, sij , t
∗

ijl), (20)

with f ′(wi, sij , tijl) the original row ofX where the change took place,f ′(wi, sij , t
∗

ijl) the
modified row, andX∗

i and X∗

ij the updated versions ofXi and Xij , respectively. Note that
f ′(wi, sij , tijl) is different fromf ′(wi, sij , t

∗

ijl) only in the elements corresponding to the main
effect, the interactions and the higher-order effects the factor whose level was changed is involved
in. This simplifies the updating ofX∗

′

i 1b2k andX∗
′

i 1b2k.
For a change in the level of an easy-to-change factor, the value ofdi is 6. As a result of that,

computing the new determinant using the update formula requires calculating thedeterminant of
a6 × 6 matrix instead of the determinant of ap × p matrix. As split-split-plot designs involve at
least three factors, the number of model parameters,p, will often be substantially larger than 6,
so that the update formula will lead to substantial savings in the computational effort needed.

Updating the determinant of the information matrix after a change in either a hard-to-change
factor or a very-hard-to-change factor is more involved. It requiresthe computation of the de-
terminant of a2(k + 2) × 2(k + 2) matrix and a2(b2k + b2 + 1) × 2(b2k + b2 + 1) matrix,
respectively. Therefore, the update formulas for changes in hard-to-change and very-hard-to-
change factor levels are advantageous whenk andb2 are small compared to the number of model
parameters,p.

4. DESIGNS FOR MAIN-EFFECTS MODELS

Using the modified coordinate-exchange algorithm sketched in Section 3, wehave been able to
construct orthogonal split-split-plot designs with diagonal information matrices for many nesting
structures for which the numbers of whole plots and subplots within the whole plots are powers
of two or multiples of four. Table 1 shows such a design with 16 runs, two whole plots and two
subplots per whole plot accommodating one very-hard-to-change factorw, one hard-to-change
factors and twelve easy-to-change factors,t1-t12. The information matrix of that design, which
is a projection of a Hall type IV orthogonal array (see Sun and Wu 1993), equals

diag(1.2308 I2, 3.2, 16 I12)

whenσ2
γ1

, σ2
γ2

andσ2
ε are all one. This demonstrates that no information on the easy-to-change

factors is lost because of the nested unit structure of the design. Note, however, that this design
does not allow for the estimation of the whole plot error variance,σ2

γ1
, because it only has two

whole plots. Also, it is impossible to estimate the error variance,σ2
ε , because the twelve degrees

of freedom at the sub-subplot level are used up for estimation the main effects of the twelve
easy-to-change factors.
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8 BRADLEY JONES, PETER GOOS

Table 1.D-optimal 16-run split-split-plot design with two whole plots each consisting
of two subplots for estimating a main-effects model in one very-hard-to-change factor

w, one hard-to-change factors and twelve easy-to-change factorst1-t12.
Whole plot Subplot w s t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 1 -1 -1 1 1 1 1 -1 1 1 1 1 1 -1 -1
1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1
1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 1
1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 1
1 2 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1
1 2 -1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1
1 2 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 1 1
1 2 -1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 1
2 3 1 1 1 1 -1 1 1 1 1 -1 1 -1 1 1
2 3 1 1 -1 1 1 -1 -1 1 -1 -1 -1 1 -1 1
2 3 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1
2 3 1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 -1
2 4 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 -1
2 4 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1
2 4 1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 1
2 4 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1

A main-effects design that allowsσ2
γ1

to be estimated but notσ2
ε is displayed in Table 2. The

design has six whole plots each consisting of two subplots with two observations and, like the
design in Table 1, accommodates one very-hard-to-change factorw, one hard-to-change factor
s and twelve easy-to-change factors,t1-t12. For each pair of runs in a subplot, the levels of the
easy-to-change factors are each other’s opposites. The information matrix of that design equals

diag(3.4286 I2, 8, 24 I12)

whenσ2
γ1

, σ2
γ2

andσ2
ε are all one, so that, here too, no information is lost for estimating the

easy-to-change factor effects due to the nested unit structure of the design.
Of course, D-optimal split-split-plot designs with identical nesting structuresand fewer easy-

to-change factors can easily be obtained from Tables 1 and 2 by removingcolumns correspond-
ing to easy-to-change factors. Dropping one or more easy-to-changefactor columns from the
design makes the error variance,σ2

ε , estimable, so that it is possible to test the significance of the
remaining sub-subplot factors.

5. DESIGNS FOR INTERACTION MODELS

In completely randomized two-level designs, a diagonal information matrix guarantees an
optimal design. In this section, we provide an example with a counter-intuitive result indicating
that, for two-level split-split-plot designs, a diagonal information matrix may not be optimal.

Consider the D-optimal 32-run split-split-plot design with eight whole plots consisting of two
subplots each in Table 3. This design is the best one obtained using our algorithm for estimating
all the parameters of an interaction model in two very-hard-to-change factors w1 andw2, one
hard-to-change factors and three easy-to-change factorst1, t2 andt3 whenη1 = η2 = 1. It has
a D-criterion value of4.80132 × 1026 whenσ2

γ1
, σ2

γ2
andσ2

ε are all one.
Although the design is orthogonal, its information matrix is not diagonal (i.e.,X ′X is diagonal

butX ′V −1X is not). The design, however, has a lot of attractive features. First, allmain effects
are estimated independently. Only one of the six main effects, namely one corresponding to
an easy-to-change factor, is not estimated independently of the two-factor interaction effects.
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Table 2.D-optimal 24-run split-split-plot design with six whole plots each consisting
of two subplots for estimating a main-effects model in one very-hard-to-change factor

w, one hard-to-change factors and twelve easy-to-change factorst1-t12.
Whole plot Subplot w s t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1
1 1 -1 1 1 1 -1 1 -1 1 1 -1 -1 -1 1 -1
1 2 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1 1
1 2 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1
2 3 1 -1 1 1 1 1 1 1 -1 1 -1 1 -1 -1
2 3 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1
2 4 1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1
2 4 1 1 1 -1 -1 1 1 1 1 -1 1 1 -1 1
3 5 1 1 1 1 1 1 -1 -1 1 1 1 1 1 1
3 5 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1
3 6 1 -1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 -1
3 6 1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 1
4 7 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1
4 7 1 1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1
4 8 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 1
4 8 1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 -1
5 9 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 -1 1 1
5 9 -1 -1 -1 1 -1 -1 -1 1 1 1 1 1 -1 -1
5 10 -1 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 1
5 10 -1 1 -1 -1 -1 1 1 -1 1 1 -1 1 1 -1
6 11 -1 -1 1 1 -1 -1 1 -1 -1 -1 1 1 1 -1
6 11 -1 -1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 1
6 12 -1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1
6 12 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 -1

Second, only six of the 462 off-diagonal elements of the information matrix and of the variance-
covariance matrix of the parameter estimates are not equal to zero. The information matrix is
thus very nearly diagonal. The six non-zero off-diagonal elements of the variance-covariance
matrix of the parameter estimates are all equal to±1/96 = ±0.01042 whenσ2

γ1
, σ2

γ2
andσ2

ε

are all one. They correspond to the covariances between the estimates ofthe main effect of one
of the easy-to-change factors and its interactions with the two very-hard-to-change factorsw1

andw2. These covariances are small compared to the variances of the fixed parameter estimates,
which are displayed in the column labelled “D-optimal” in Table 4. A third attractivefeature
of the design is that eight of the fifteen effects involving easy-to-change factors are estimated
with variance1/32 = 0.03125, which is best possible variance for a design involving 32 runs.
Only the interactions involving pairs of easy-to-change factors are estimated substantially less
precisely. The least precise of these interaction estimates has variance3/32 = 0.09375, just like
the main effect of the hard-to-change factors and the two interactions between that factor and
the very-hard-to-change factorsw1 andw2.

The literature on minimum aberration two-level split-plot designs provides no ready-to-use
alternative to the D-optimal 32-run split-split-plot design, but it does provide building blocks
for generating 32-run designs with the desired split-split-plot structure witheight whole plots
consisting of two subplots of size two. Some of these possess the attractive feature that their
information matrix is diagonal, so that, unlike with the D-optimal design, the main effects and
the two-factor interaction effects can be estimated independently. One suchdesign can be con-
structed starting from a minimum aberration 32-run two-level split-plot designwith two whole-
plot factors, four subplot factors and eight whole plots of size four given in Bingham, Schoen
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Table 3.D-optimal 32-run split-split-plot design with eight wholeplots each consisting of two
subplots for estimating an interaction model in two very-hard-to-change factorsw1 andw2, one

hard-to-change factors and three easy-to-change factorst1, t2 andt3.
Whole plot Subplot w1 w2 s t1 t2 t3 Whole plot Subplot w1 w2 s t1 t2 t3

1 1 1 1 1 -1 -1 1 5 9 -1 -1 1 1 1 -1
1 1 1 1 1 1 1 -1 5 9 -1 -1 1 -1 -1 -1
1 2 1 1 -1 1 -1 -1 5 10 -1 -1 -1 1 -1 1
1 2 1 1 -1 -1 1 1 5 10 -1 -1 -1 -1 1 1
2 3 -1 1 -1 -1 -1 1 6 11 1 -1 -1 1 1 -1
2 3 -1 1 -1 1 1 -1 6 11 1 -1 -1 -1 -1 1
2 4 -1 1 1 1 -1 -1 6 12 1 -1 1 1 -1 1
2 4 -1 1 1 -1 1 1 6 12 1 -1 1 -1 1 -1
3 5 1 -1 -1 -1 -1 -1 7 13 -1 1 1 1 -1 1
3 5 1 -1 -1 1 1 1 7 13 -1 1 1 -1 1 -1
3 6 1 -1 1 1 -1 -1 7 14 -1 1 -1 -1 -1 -1
3 6 1 -1 1 -1 1 1 7 14 -1 1 -1 1 1 1
4 7 -1 -1 -1 -1 1 -1 8 15 1 1 -1 -1 1 -1
4 7 -1 -1 -1 1 -1 -1 8 15 1 1 -1 1 -1 1
4 8 -1 -1 1 1 1 1 8 16 1 1 1 1 1 1
4 8 -1 -1 1 -1 -1 1 8 16 1 1 1 -1 -1 -1

and Sitter (2004). The design’s defining relation ist3 = w1w2st1t2 and the contrast column
w1st2 is used to obtain the desired number of eight whole plots. The minimum aberrationdesign
can be used as a 32-run split-split-plot design by using one of its four subplot columns for the
hard-to-change factors.

A better alternative, however, can be constructed by arranging a half fraction of a factorial
design with defining relationt2 = w1w2st1 in the desired split-split-plot structure using the con-
trast columnsw1, w2 andw2t1t3 to partition the 32 runs in eight whole plots. The variances
of the parameter estimates for this combinatorially constructed alternative design are displayed
in Table 4. Desirable features of the design, which has a diagonal information matrix, are that
all whole-plot and subplot effects are estimated with maximum precision, and that all but three
sub-subplot effects are estimated with the best possible variance,1/32 = 0.03125. However, this
is at the expense of the three two-factor interaction effects between the easy-to-change factors,
which are raised to one of the higher strata. Two of these interaction effects are raised to the
subplot stratum and thus estimated with variance3/32 = 0.09375, while the third one is even
raised to the whole-plot stratum. This results in a variance of7/32 = 0.21875. As a consequence
of all this, the D-criterion value of the alternative design, whenσ2

γ1
, σ2

γ2
andσ2

ε are all one, is
3.17836 × 1026. The D-efficiency of the combinatorially constructed design, relative to theD-
optimal design, is98.14%. Thus the algorithmically constructed design has a higher determinant
than the alternative despite its having a non-diagonal information matrix. This isachieved by
sacrificing some of the precision of the estimates of three subplot effects and the independence
between these estimates in order to obtain reasonably small variances for theestimates of the
two-factor interaction effects between the easy-to-change factors.

The larger variances for the estimates of the main and interaction effects of some of the easy-
to-change factors seem very difficult to avoid in many split-plot type of design problems, espe-
cially when the number of runs in every subplot is as small as two. Optimal design construction
algorithms like ours, however, attempt to limit that increase by introducing some imbalance in
the levels of the easy-to-change factors within the subplots. This is illustratedby the design in
Table 3, where the low and the high level of the easy-to-change factort3 are unbalanced in each
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Table 4. Variance of estimates of fixed
model parameters for the D-optimal 32-
run split-split-plot design in Table 3 and
a combinatorially constructed alternative

whenσ2
γ1

, σ2
γ2

andσ2
ε are all one.

Stratum Effect D-optimal Alternative
WP Intercept 0.21875 0.21875
WP w1 0.21875 0.21875
WP w2 0.21875 0.21875
WP w1w2 0.21875 0.21875
SP s 0.09375 0.09375
SP w1s 0.09375 0.09375
SP w2s 0.09375 0.09375

SSP t1 0.03125 0.03125
SSP t2 0.03125 0.03125
SSP t3 0.04167 0.03125
SSP w1t1 0.03125 0.03125
SSP w1t2 0.03125 0.03125
SSP w1t3 0.04167 0.03125
SSP w2t1 0.03125 0.03125
SSP w2t2 0.03125 0.03125
SSP w2t3 0.04167 0.03125
SSP st1 0.03125 0.03125
SSP st2 0.03125 0.03125
SSP st3 0.03977 0.03125
SSP t1t2 0.09375 0.09375
SSP t1t3 0.07721 0.21875
SSP t2t3 0.06908 0.09375

of the subplots 7-10. This explains the small variance inflation for the main-effect estimate of
that factor when compared to the main-effect estimates fort1 and t2. Notice that, in all other
subplots, the levels of the easy-to-change factors are balanced.

6. SENSITIVITY TO η1 AND η2

As mentioned in Section 2, the D-optimal split-split-plot designs depend on the twovariance
ratios,η1 and η2. Goos (2002) studied the effect of the changing the ratio of the whole-plot
variance to the error variance on D-optimal split-plot designs. He showedthat, for given numbers
and sizes of whole plots, D-optimal split-plot designs for first-order models are in many standard
cases not a function of this ratio. Split-plot response surface designs did, however, show some
sensitivity to changes in this ratio. Sometimes as many as three different designs were found to
be D-optimal, each over mutually exclusive intervals of the variance ratio. Over practical ranges
of the variance ratio, the D-optimal design usually did not change.

Of course, the split-split-plot structure is more complicated than the split-plot structure, so it is
necessary to address this question again. We did studies to investigate the effect of changing the
two variance ratiosη1 andη2 over broad ranges, and report the results obtained for two different
design problems that are illustrative for the sensitivity of the D-optimal designs toη1 andη2.

The first design problem involved a main-effects model in three categorical factors each at
three levels. The first scenario had three whole plots, six subplots and a total sample size of
twelve. We computed designs for a 3 by 3 grid ofη1 andη2 values from 0.1 to 1 to 10. We found
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Table 5. D-optimal 12-run split-split-plot designs with
three whole plots each consisting of two subplots with two
runs for estimating a main-effects model in one very-hard-
to-change factorw, one hard-to-change factors and one
easy-to-change factort. The three factors are categorical.

t

Whole plot Subplot w s η2 = 0.1 η2 = 1 η2 = 10

1 1 A a 1 1 1
1 1 A a 2 2 2
1 2 A b 2 2 2
1 2 A b 3 3 1
2 3 B b 1 1 2
2 3 B b 2 3 3
2 4 B c 2 2 1
2 4 B c 3 3 3
3 5 C a 2 2 1
3 5 C a 3 3 3
3 6 C c 1 1 2
3 6 C c 2 2 3

three different D-optimal designs - one for each value ofη2. The three designs are shown in Table
5. For each design the whole plot and subplot structure is the same. Thereare four runs at each
level of both the whole-plot factor and the subplot factor. The differences in the designs come in
the sub-subplot factor levels. Forη2 = 0.1 there are three runs at two levels and six runs at the
other. Forη2 = 1 there are three runs at one level, four runs at another and five runs at the third.
For η2 = 10 there are four runs at each level. In this case, the arrangement of the three levels
of the easy-to-change factor in six subplots of two runs takes the form ofa duplicated balanced
incomplete block design for three treatments with three blocks of size two.

In order to investigate whether the information content of the three designs inTable 5 is very
different, we compare the objective function,|M |, for each of them assumingσ2

γ1
, σ2

γ2
andσ2

ε are
all one. The determinant of the information matrix of the D-optimal design forη2 = 1 is 3978.7
while the design with four runs at each level (obtained forη2 = 10) has a determinant of 3944.7.
The relative efficiency of this design is 99.88%. The determinant of the design with 3, 3 and 6
runs per level (obtained forη2 = 0.1) is 3672.6 with a relative efficiency of 98.86%. While the
easy-to-change factor levels look very different for the three designs, there is thus no substantial
difference among them for the purpose of estimating the parameters of the model.

The second design problem considered five continuous factors, amongwhich one very-hard-
to-change and one hard-to-change factor, with a model including all main effects and two-factor
interactions. There were six whole plots, 12 subplots and 24 runs in total. Wecomputed nine
D-optimal designs for this setting using the same 3 by 3 design inlog η1 andlog η2.

Here the story is more involved as the designs vary depending on bothη1 andη2. We found
four distinct designs over the nine possibilities where we distinguish betweendesigns based on
the determinant of their information matrix while holding the covariance matrix,V , fixed at one
value ofη1 andη2. One of the designs was optimal for all six scenarios whereη2 < 10. When
σ2

γ1
= σ2

γ2
= 0.1 andσ2

ε = 1, the D-efficiencies of the four distinct designs found, relative to the
optimal design forη1 = η2 = 0.1, range from 96.36% to 100%. Whenσ2

γ1
= σ2

γ2
= σ2

ε = 1, the
D-efficiencies of the designs found, relative to the optimal design forη1 = η2 = 1, range from
95.69% to 100%. The six designs that were the same all had full efficiency for these values of
the variance components. Whenσ2

γ1
= σ2

γ2
= 10 andσ2

ε = 1, the D-efficiencies of the designs
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Table 6.Comparative D-efficiencies for misspecifications ofη1 and η2 assumingσ2
ε is one

for a design problem involving one very-hard-to-change factor, one hard-to-change factor and
three easy-to-change factors and a model with main effects and two-factor interactions.

σ
2

γ1
= σ

2

γ2
= 0.1 σ

2

γ1
= σ

2

γ2
= 1 σ

2

γ1
= σ

2

γ2
= 10

η1 η1 η1

η2 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10
0.1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 89.63%89.63% 89.63%
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 89.63% 89.63% 89.63%
10 96.36% 96.37% 96.42% 95.69% 95.95% 96.05% 99.88% 99.99% 100.00%

found, relative to the optimal design forη1 = η2 = 10, range from 89.63% to 100%. Detailed
results are in Table 6.

For the second design problem in this sensitivity study, we also investigated whether a design
could be found that is more robust to the values of the variance ratiosη1 andη2 than the ones
generated using our algorithm, which assumes a point prior for their values. To this end, we im-
plemented a Bayesian approach in which we used independentχ2 distributions with two degrees
of freedom as priors forη1 andη2. The 2.5%, 50% and 97.5% percentiles of these prior distribu-
tions are 0.05, 1.39 and 7.38 respectively, so that we allowed for considerable uncertainty about
the variance ratios. It turns out that the Bayesian D-optimal split-split-plot design is equivalent
to the non-Bayesian design obtained forη2 = 0.1 andη2 = 1, so that the Bayesian approach did
not provide the desired robustness.

The concern is that misspecifyingη1 andη2 for the purpose of designing a split-split-plot
experiment with our algorithm might lead to the use of a design that is very inefficient. The
last study shows that it is better to choose large values forη2 since designs that were optimal
assuming small values did not perform well if the true values were larger, whereas designs that
were optimal assuming large values still perform reasonably well if the true values are smaller.
In both of the sensitivity studies reported here, it is more important to correctly specify the ratio
of the subplot variance to the error variance,η2.

7. DISCUSSION

We have provided an algorithmic approach to the construction of D-optimal split-split-plot
designs. We have shown how to use this approach to create screening designs. We have also
considered the effect that changing the two relevant variance ratios has on the D-optimal design.

For more examples of screening designs, some examples of split-split-plot response surface
designs and for a discussion of several attractive design options for the cheese production experi-
ment in Schoen (1999), we refer the reader to Jones and Goos (2007b), where it is also discussed
what approach can be used when economic considerations dictate a number of whole plots that
does not allow for the estimation of the whole-plot variance.

In this article, we have assumed that the number of subplots is an integer multiple of the num-
ber of whole plots, and that the total number of runs is an integer multiple of the number of
subplots,n = b1b2k. This scenario is perhaps the most common one in practice, where these
parameters are usually dictated by the logistics of the experiment and by time andcost con-
straints. Nevertheless, there exist experimental situations where there are no hard constraints on
the number of whole plots, the number of subplots within whole plots and/or the number of runs
within subplots. In such cases, experimenters may want to deviate from the scenario discussed
here and still use the algorithm we outlined above to generate a D-optimal split-split-plot design
for the unit structure that they have in mind. It should be noted, however,that in such cases the
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time-saving update formulas for the information matrix described in Section 3.2 canno longer
be used because Theorem 1 is valid only for the scenario we focused onin this article. Another
approach would be to modify our algorithm so that it generates the D-optimal numbers of whole
plots, subplots within whole plots, and runs within subplots, in addition to the optimaldesign
points. It seems likely that allowing for different sizes of whole plots and subplots might im-
prove the efficiency of D-optimal response surface designs. Similar research was done by Goos
and Vandebroek (2004), who presented an algorithm for determining theoptimal split-plot struc-
ture of an experimental design. The modified split-split-plot algorithm could also be extended
for computing D-optimal designs that do not just focus on the precise estimation of the factor
effects contained withinβ, but also on that of the variance componentsσ2

γ1
, σ2

γ2
andσ2

ε .
Apart from these extensions, some interesting research questions remain. More work could be

done to attempt to bound the effect of misspecification of the two variance ratios on which the
D-optimal design depends. Another potentially interesting topic for future research is the use of
Bayesian optimal design criteria. Such criteria could be used to prioritize the precise estimation
of the main effects when constructing optimal split-plot and split-split-plot designs. The fast
update formulas in the appendix for the inverse of the information matrix also suggest that it is
possible to compute A-optimal and V-optimal (also called I-optimal) split-split-plot designs at
an acceptable computational cost. Finally, the design of experiments involvinghard-to-change
factors and non-nested unit structures would be a useful topic for further investigation.

A version of the algorithm presented in this article is available in the commercial software
JMP. The algorithm can handle any scenario where the number of whole plots, the number of
subplots and the number of runs are fixed by the experimenter. The data sets contained in the
paper are available from the authors as either JMP data files or Excel files.
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APPENDIX

The update formulas derived here extensively use two matrix-algebraic results for matrices of the form
R + STU , whereR andT are nonsingularr × r andt × t matrices, respectively, andS andU arer × t
andt × r matrices, respectively. The first result is

|R + STU | = |R||T ||T−1 + UR−1S|,

= |R||It + TUR−1S|,
(A1)

while the second result is

(R + STU)−1 = R−1 − R−1S(T−1 + UR−1S)−1UR−1. (A2)

Detailed proofs of these results can be found in Harville (1997), for example. The results are especially
useful when|R|, |T |, R−1 andT−1 are easy to obtain. This is exactly the case in the construction of D-
optimal split-split-plot designs becauseT is a diagonal matrix and because|R| andR−1 are being stored
during the entire operation of the design construction algorithm.

Changes of the level of an easy-to-change factor

A change of the level of an easy-to-change factor in thelth run of thejth subplot within theith whole plot
only affects the corresponding row in the model matrixX. Such a change does not require the information
matrix to be recomputed from scratch. In order to see this, denote the original of the affected row by
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f ′(wi, sij , tijl) and its modified version byf ′(wi, sij , t
∗
ijl). The updated versions ofX ′

i1b2k andX ′
ij1k

can then be obtained using (19) and (20), and the informationmatrix (15) can be updated using

M∗ = M − σ−2
ε f(wi, sij , tijl)f

′(wi, sij , tijl) + c1(X
′
i1b2k)(X ′

i1b2k)′ + c2(X
′
ij1k)(X ′

ij1k)′

+ σ−2
ε f(wi, sij , t

∗
ijl)f

′(wi, sij , t
∗
ijl) − c1(X

∗′

i 1b2k)(X∗′

i 1b2k)′ − c2(X
∗′

ij 1k)(X∗′

ij 1k)′, (A3)

whereM andM∗ represent the information matrix before and after the change, respectively, andX∗
i and

X∗
ij represent the updated versions ofXi andXij , respectively. This can be rewritten as

M∗ = M +
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, (A4)

which is of the formR + STU so that the results in (A1) and (A2) can be used for computing|M∗| and
M∗−1. DefiningD1 andU1 as in (17) and (18), and substituting these into (A1) and (A2)leads to the
following update formulas for the determinant and the inverse of the information matrix:

|M∗| = |M ||I6 + D1U
′
1M

−1U1| = |M ||D1||D
−1
1 + U ′

1M
−1U1|,

and

M∗−1 = M−1 − M−1U1(D
−1
1 + U ′

1M
−1U1)

−1U ′
1M

−1.

The matrix productM−1U1 plays a key role in these updates formulas. Notice that the second expression
for updating the determinant is slightly less computationally involved than the first one asD1 is a constant
diagonal matrix for given values ofb1, b2, k and the three variance components.

Changes of the level of a hard-to-change factor

A change of the level of a hard-to-change factor cannot be made for a single run because the level of such
a factor has to be constant for all the runs in a given subplot.Such a change can therefore only be made
to all the runs in an entire subplot. Modifying the level of a hard-to-change factor level in thejth subplot
within whole ploti therefore results in the following information matrix:

M∗ = M − σ−2
ε X ′

ijXij + c1(X
′
i1b2k)(X ′

i1b2k)′ + c2(X
′
ij1k)(X ′

ij1k)′

+ σ−2
ε X∗′

ij X∗
ij − c1(X

∗′

i 1b2k)(X∗′

i 1b2k)′ − c2(X
∗′

ij 1k)(X∗′

ij 1k)′,
(A5)

where

X∗
ij = [ f(wi, s

∗
ij , tij1) . . . f(wi, s

∗
ij , tijk) ]′

is the modified version of

Xij = [ f(wi, sij , tij1) . . . f(wi, sij , tijk) ]′,

and

X∗′

i 1b2k = X ′
i1b2k − X ′

ij1k + X∗′

ij 1k,

Notice thatX∗
ij andXij only differ in the columns corresponding to the factor whoselevel is changed, its

interactions and higher-order terms involving it. Now, (A5) can be written as

M∗ = M + U2D2U
′
2, (A6)

where

D2 = diag(−σ−2
ε Ik, c1, c2, σ

−2
ε Ik,−c1,−c2),
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U2 =
[

X ′
ij X ′

i1b2k X ′
ij1k X∗′

ij X∗′

i 1b2k X∗′

ij 1k

]′

.

As a result,

|M∗| = |M ||I2(k+2) + D2U
′
2M

−1U2| = |M ||D2||D
−1
2 + U ′

2M
−1U2|,

and

M∗−1 = M−1 − M−1U2(D
−1
2 + U ′

2M
−1U2)

−1U ′
2M

−1.

Changes of the level of a very-hard-to-change factor

Finally, after a change in one of the levels of a very-hard-to-change factor, the update is even more involved
as such a change has an impact on allb2k runs in that stratum. If the change is performed in theith whole
plot, then the new information matrix can be computed as

M∗ = M − σ−2
ε X ′

iXi + c1(X
′
i1b2k)(X ′

i1b2k)′ + c2

b2
∑

j=1

(X ′
ij1k)(X ′

ij1k)′

+ σ−2
ε X∗′

i X∗
i − c1(X

∗′

i 1b2k)(X∗′

i 1b2k)′ − c2

b2
∑

j=1

(X∗′

ij 1k)(X∗′

ij 1k)′,

(A7)

where

X∗
ij = [ f(w∗

i , sij , tij1) . . . f(w∗
i , sij , tijk) ]′

is the modified version ofXij , and

X∗
i = [ f(w∗

i , si1, ti11) . . . f(w∗
i , sib2 , tib2k) ]′

is the modified version ofXi. Notice that eachX∗
ij andXij only differ in the columns corresponding to

the factor whose level is changed, its interactions and higher-order terms involving it. Now, (A7) can be
written as

M∗ = M + U3D3U
′
3, (A8)

where

D3 = diag(−σ−2
ε Ib2k, c1, c2Ib2 , σ

−2
ε Ib2k,−c1,−c2Ib2),

U3 =
[

X ′
i X ′

i1b2k X ′
i11k . . . X ′

ib2
1k X∗′

i X∗′

i 1b2k X∗′

i11k . . . X∗′

ib2
1k

]′
,

As a result,

|M∗| = |M | × |I2(b2k+b2+1) + D3U
′
3M

−1U3| = |M ||D3||D
−1
3 + U ′

3M
−1U3|,

and

M∗−1 = M−1 − M−1U3(D
−1
3 + U ′

3M
−1U3)

−1U ′
3M

−1.
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