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SUMMARY

In industrial experimentation there is growing interest in studies that spag timam one pro-
cessing step. Convenience often dictates restrictions in randomizationsingp#®m one pro-
cessing step to another. When the study encompasses three proctegsnthss leads to split-
split-plot designs. We provide an algorithm for computing D-optimal split-sjdit-geesigns and
several illustrative examples.

Some key wordD-optimality; coordinate-exchange algorithm; hard-to-change factoulti-stratum design; split-
plot design; split-split-plot design; tailor-made design.

1. INTRODUCTION

Split-plot designs are commonplace in industrial applications because teepéien system
level, set-up or processing factors that are difficult, expensive, or¢onsuming to change
between successive processing runs. When this happens therausad inalination to perform
all the runs of a particular level combination of such hard-to-chander&am succession. Such
an ordering of the runs is clearly not random and many completely randdrdezgigns have
been re-ordered after the randomization to become split-plot designsemaaly. Clearly it
is preferable to design the few changes of the hard-to-change faatber than to discover
an after the fact run re-ordering or, even worse, fail to notice thardering at all. Including
this grouping of runs as a part of the design problem allows the resgai@hmaximize the
information obtained about the statistical model given this restriction in randdionz Webb et
al. (2004) have shown the cost in efficiency due to inadvertent split pjottin

The split-plot structure divides the experimental runs into two strata. Thettajum contains
the whole plots. A whole plot is a group of runs where the hard-to-chéaer combinations
remain constant. The lower stratum contains the individual subplot runs.

The practical need for more than two strata in a design arises when expgnignen processes
with multiple steps or stages. If the experimental units can be re-ordereddrestages, then a
split-lot or strip-plot design results (see, for example, Mee and Bate®) 18Pmany cases it is
either too complicated or even impossible to re-order the experimental unitsdrestrata. This
leads to the split-split-plot design structure.

Schoen (1999) provides an example of multi-stage processing leadinglit-gpéit-plot de-
sign in his case study involving the production of cheese. Cheese piogesarts with milk
storage. Typically milk from one storage facility provides the raw materialsteral curds
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processing units - the second processing stage. Then the curdsther farocessed to yield
individual cheeses.

Split-split-plot designs are a three-stratum extension of split-plot desigrey; divide into
whole plots, subplots within whole plots, and individual runs within each lsabphe top stra-
tum remains the whole-plot stratum. Over the course of the experiment, tHe-plod or very-
hard-to-change factors’ levels are changed the fewest times. The &veubplot factors or
hard-to-change factors are changed more frequently. Also the ldvblsse factors must change
whenever the whole-plot factor levels change in order to preservesttedunit structure that
characterizes the split-split-plot design. The sub-subplot factorsgrteachange factors should
be reset between each run regardless of whether their level changes

Typically, the number of subplots is an integer multiple of the number of whole atatghe
total number of runs is an integer multiple of the number of subplots. In this amiel@ssume
that kind of structure although it is, however, not a requirement in géner

The extension from two-stratum to three-stratum experiments is not a tivéalThere is not
much literature on the design of such studies. Edmondson (1991) poirttdthouarious levels
of splitting experimental plots or units are often required in agricultural antidultural studies,
but did not go beyond split-plot designs (with one level of splitting) in his kxti€rinca and
Gilmour (2001) considered both the design and analysis of multi-straturiqres including
nonorthogonal designs. Their design approach attempts as much #@depts®orthogonalize
each stratum of the design with respect to the higher strata. Schoen ¢@#ructed an or-
thogonal two-level split-split-plot design by joining fractional factoriasiggs in order to create
the desired nesting structure. Brien and Bailey (2006) provided a disgatic method for de-
scribing complex nesting and crossed structures with many practical example

This article describes an algorithm for creating D-optimal split-split-plot dessignd provides
several specific examples of these designs to demonstrate their utility é@ngeyg experimen-
tation. It builds on Goos (2002, 2006), who introduced an optimal degigroach to construct
split-plot designs and provided algorithms for finding optimal split-plot desifyat exchange
points from a starting design with points from a candidate set, and on Jodé3sas (2007a),
who showed how to avoid the construction of a candidate set in the seairgptimal split-plot
designs. Their candidate-set-free algorithm runs in polynomial time in the @uwohactors thus
allowing construction of designs with many more factors and runs than easpsly feasible.

2. MODEL AND DESIGN CRITERION

For a split-split-plot experiment withy, whole plots b, subplots per whole plot arfdruns per
subplot, and thus sample size= b, b2k, the model can be written as

Y = X3+ Ziy1 + Zoya + ¢, 1)

whereY is then-dimensional vector of the responses arranged per whole plot arslipgiot,

X represents the x p model matrix containing the settings of the very-hard-to-change factors,

w, the hard-to-change factors,the easy-to-change factotsand their model expansions,is
ap-dimensional vector containing thefixed effects in the model, and

Z1 = I, @ 1y,

is ann x b; matrix of zeroes and ones. A one in rgvef columni of Z; means that rug is in
theith whole plot. Furthermore,

Zoy =1y @1Ip, @1 = Iy p, @ 1
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D-optimal design of split-split-plot experiments 3

is ann x b1by matrix of zeroes and ones indicating how theuns have been assigned to the
subplots within each of thig, whole plots. Thé,- andb, b>-dimensional vectors; and~- are
the random effects associated with the whole plots and the subplots,tiresiyeEinally, ¢ is the
n-dimensional vector containing the random errors. It is assumed that

E(e) = 0, and covye) = 021, 2)
E(FYI) = 0b1 and CO\(’VI) = U»le Ib17 (3)
E(y2) = Oy, and co\y2) = 02, Iy, (4)
and
COV(717 5) = Ob1 XN COV('YQa 5) = Ob1b2 xn and CO\(’Ylv '72) = Obl xb1ba- (5)

The variances?,, 02, ando? in these expressions are referred to as the whole-plot vari-
ance, the subplot variance and the error variance, respectivetieriine assumptions (2)-(5),
the covariance matrix of the reponses,(¥ay, is

V =02l + 02 2171 + 03, %2 7). (6)
This matrix is of the form
V =diagVy,..., Vi), (7)
where each
Vi = 02 Ipgk + 02 LpgiLpp + 02, (I, ® 141%,),
= 02 {Ipok + M Lopr iy, + 12(ly, ® 1413)},

andn, = o2, /o? andn, = 02, /oZ. These two variance ratios measure the extent to which ob-
servations are correlated. The correlation between two observatioressarte subplot is equal
to (m +n2)/(1 + n1 + n2). The correlation between two observations from the same whole plot
but a different subplot ig; /(1 4+ m1 + n2). It is clear that larger values fap; andn; result in
more correlated observations within the whole plots and subplots.

When the random error terms as well as the whole-plot and subplotse#ez normally dis-
tributed, the maximum likelihood estimator of the unknown model paramgier(1) is the
generalized least squares (GLS) estimator

f=XVIX)Ix'vly, (9)

(8)

with covariance matrix
var(f) = (X'V1x) (10)

The use of that estimator requires the estimation of the variance comperients’, ando?,
which can be substituted ilr. This leads to the feasible generalized least squares estimator.
For the variance component estimation, we recommend restricted maximum lilkke(IREML)
estimation because of its generality. The unbiasedness and variancerestitteng estimator

are discussed in Kackar and Harville (1984) and Harville and Jesli@2)18or the purpose

of statistical inference, we advocate the use of the method of Kenwar&Reger (1997) for
determining the standard errors and the denominator degrees of fréediha hypothesis tests
concerning the fixed effects. When limitations on the number of whole plotglatis or runs

do not allow the variance components to be estimated, we would either use thasroeltenth
(1989) or the permutation test approach of Loughin and Noble (198&ptead for split-split-plot
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4 BRADLEY JONES, PETER GOOS

experiments in a way similar to that in which Loeppky and Sitter (2002) adapésé thethods
for split-plot experiments.

Under the model assumptions made, the information matrix on the unknown &ixecheters
£ is given by

M=XV1Xx. (11)

A commonly used criterion to select experimental designs is the D-optimality critedidch
seeks designs that maximize the determinant of the information m@tfix= | X'V -1 X|. The
D-optimality criterion has been used for constructing split-plot designs ms@ond Vandebroek
(2001, 2003, 2004) and Goos and Donev (2007) and it is also theamnitghich is implemented
in the candidate-set-free algorithm described in Jones and Goos §200F aise D-efficiency
to compare the quality of two designs with information matridés and M. D-efficiency is

defined as
1/p
| M|
M| ]
In general, the optimal split-plot design will depend on the variance rati@ndr, through
V. The sensitivity of the D-optimal designs to the choiceypfinds, is discussed in Section 5.

3. DESIGN CONSTRUCTION ALGORITHM

This section first provides a rough general description of a modifiecdotaie-exchange al-
gorithm for generating D-optimal split-split-plot designs. Next, we show twsubstantially re-
duce the computational work by using a fast procedure to evaluate thgehathe D-criterion
value when making changes to a design. In the appendix, a fast update fmverse of the
information matrix after exchanging one point for another is provided too.

3-1. Algorithm outline
The algorithm requires the prior specification of the following:

1. for each factor whether it is continuous, categorical or a mixture éemnég
2. designation of the factors that are very hard to change (i.e. the daaqtpiied to the whole-
plot stratum),
3. designation of the factors that are hard to change (i.e. the factdiscfipthe subplot stra-
tum),
4. any additional constraints on factor combinations,
5. the numberb, of independent resettings of the very-hard-to-change factorsh@eumber
of whole plots),
6. the numbelb,, of independent resettings of the hard-to-change factors for edtitgsof the
very-hard-to-change factors (i.e. the number of subplots within eackevtot),
7. the number of observations, in each subplot,
8. the ration; of the variance associated with the very-hard-to-change fa@tﬁ)lrsto the error
varianceg?,
9. the ration, of the variance associated with the hard-to-change faoﬁ{sto the error vari-
ance?,
10. thea priori model,
11. the number of random starting designs or tnigs,to consider.
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D-optimal design of split-split-plot experiments 5

Given this information, the body of the algorithm has two parts. The first iscthation
of a starting design. The second is the iterative improvement of this destgmarfurther
improvement is possible. Improvements are measured by increases in thtvebjenction,
|M| = |X'V~tX|. The two parts are performed times. Each time the final value oM |
found in the current iterate is compared to the maximum valyé/ffrom all the previous iter-
ates. If the current value is higher, then it becomes the new maximum andrtieatodesign is
stored.

The starting design is formed column by column. For whole-plot factor colummandom
numbers are chosen. For subplot factor colundas; random numbers are chosen. For sub-
subplot factor columns, the values for each of theows are chosen randomly. All the rows
in a given whole plot have the same value for each whole-plot factoretetls more than one
whole-plot factor, however, the factors may have different valugsil&@ly, all the rows in a
given subplot have the same value for each subplot factor. Diffetgnplot factors may also
have different values inside a subplot. This procedure gives the gtadiign the desired split-
split-plot structure.

Improvements are made to the starting design by considering changes insthe de an
element-by-element basis. This is inspired by the coordinate-exchargéhatyof Meyer and
Nachtsheim (1995). The procedure for changing any given elemegerdis on whether that
element is an easy-to-change factor, a hard-to-change factor oy-aal-to-change factor.

For an element in a sub-subplot factor column (easy-to-change fattedbjective function
is evaluated over a discrete number of values spanning the range ochdkat f the maximal
value of the objective function is larger than the current maximum, then therdumaximum is
replaced and the current element in the design is replaced by the faitiiog serresponding to
the maximal value.

The procedure is more involved for an element in a subplot factor coluemd-flo-change
factor). If such an element changes, then all the corresponding dlefeetthat column in the
same subplot must also change. A discrete number of values spanniramgfeeaf the subplot
factor are evaluated. If the maximal value of the objective function is lattgar the current
maximum, then the current maximum is replaced and all elements in the subplotdalctmn
in the subplot under consideration are replaced by the factor settiregpomnding to the maximal
value.

For an element in a whole-plot factor column (very-hard-to-chandergihe procedure is the
most computationally expensive. If such an element changes, then alrtkemonding elements
for that column in the same whole plot must also change. A discrete numbaluelsvspanning
the range of the factor are evaluated. Again, if the maximal value of thetolgidanction is
larger than the current maximum, then the current maximum is replaced anenadirdgs in the
whole-plot factor column in the whole plot under consideration are reglagéhe factor setting
corresponding to the maximal value.

This element-by-element procedure continues until a complete cycle thtioeightire design
has been performed. Then, another complete cycle through the desigfoismed checking to
see if any element has been changed in the current pass. This contiiille® (changes are
made in a whole pass or until a specified maximum number of passes havexeeated.

3-2. Fast update procedures

Fast procedures can be used in the algorithm for evaluating the impacthainge of the
design on the objective functiop}/|. Also, the inversel/ ! of the information can be updated
at a relatively low computational cost. The update procedures all buildesfollowing theorem
which gives a simple analytical expression for the inverse of the cowaianatrixV” in (6).
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241 THEOREM 1. The inverse of the covariance matfixis equal to
§j§, VT =02, — a1 2175 — caZ2 7, (12)
244 where
245 _ mmnek
246 o = o2 Thmk
247 © 1+ mbok + 2k
248 and
249 R no
5;5,2 = 1tk
252 A proof of this result is obtained by multiplying the right hand side of (12) withright hand
253 side of (6) and observing that this produces the identity matrix. When doinifpesdollowing
254 matrix results prove to be usefll; Z, = bakly,, Z4Zs = kly,, andZ1 21 Z2 2}, = kZ, Z).
255 The theorem can be used to derive an alternative expression for tmmatfon matrix. As a
256 matter of fact, because of (12), we have that
gg; Vo =diagV; .V, (13)
259 where each
;gg Vil = 02Tk — c1 Ll — (T, @ 115) 1. (14)
262 This makes it possible to rewrite the information matrix as follows:
263 by
264 M= X/Vlx;
265 ; o
266 b1 b1 b2
32; =0 X'X — 1 ) (X Lyilpn Xi) — 2 > > (X[1514X (15)

i=1 i=1 j=1
269 b b

1 2

g;g —O'_QXX—ClzXh)Qk legk —CQZZ ),
272 e
273 whereX; is the part ofX corresponding to théh whole plot andX;; is the part ofX corre-
274 sponding to theith subplot within theith whole plot. If the power expansion of tiig design
275 point in thegth subplot of whole plot is denoted byf (w;, s, t;;), thenX’X can be written
276 aszlz J: 21:1 £ (wy, sw,_”l)f (wy, sij, tij1)- As a result, (15) can be written as a sum of
277 outer products of vectors. This opens the prospect of fast updfaties mformation matrix, its
278 determinant and its inverse.
279 Updating the determinant of the information matrix after changing the level &fasg-to-
280 change factor, a hard-to-change factor or a very-hard-to-ehfaugor can be done using a for-
281 mula of the form.
282 % -
283 |M*| = [M||I4, + D;U;M Uy, (16)
284 where M and M* represent the information matrix before and after the change, resggctiv
285 D; is ad;-dimensional diagonal matrix arid; is ap x d; matrix. This is shown in detail in the
286 appendix. The matrice®; andU; as well as the integef; all depend on whether the factor level
287 that is modified corresponds to an easy-to-change, a hard-to-chamgevery-hard-to-change

288 factor.
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289 For example, after a change in the level of an easy-to-change facta ithttun of thejth
290 subplot within whole plot, the matricedD; andU; needed for the update are given by

gg; D, = diag(—a;2, c1,C2, 0'5_27 —Cq, —02) (17)
293 and

294 , Y

295 U1 = f(wz, Sij’tijl) X;lek lejlk f(wl, Sijat;‘kﬂ) Xz* 1b2k Xz*] 1k: . (18)
296 : :

597 In this last expression,

298 X7 gk = X[k — fwi, sij, tijt) + f(wi, si, 1) (19)
299

300 and

28; X Lyt = XLy — fwi, sij, tig) + fwi, 845, 550), (20)
303 with f'(w;, sij,ti;1) the original row of X where the change took placﬁﬁ(wi,sij,tjjl) the
304 modified row, andX; and X7, the updated versions of; and X;;, respectively. Note that
305 f'(wi, si5, ti50) is different from ' (w;, sij, ;) only in the elements corresponding to the main
306 effect, the interactions and the higher-order effects the factor wheslevas changed is involved
307 in. This simplifies the updating oX; 15, and X' 15,

308 For a change in the level of an easy-to-change factor, the valdgi®®. As a result of that,
309 computing the new determinant using the update formula requires calculatidgtdreninant of
310 a6 x 6 matrix instead of the determinant opax p matrix. As split-split-plot designs involve at
311 least three factors, the number of model parametensill often be substantially larger than 6,
312 so that the update formula will lead to substantial savings in the computatidowirefeded.
313 Updating the determinant of the information matrix after a change in either attwatiange
314 factor or a very-hard-to-change factor is more involved. It requinescomputation of the de-
315 terminant of a2(k + 2) x 2(k + 2) matrix and a2(bak + ba + 1) x 2(bak + by + 1) matrix,
316 respectively. Therefore, the update formulas for changes in hathaonge and very-hard-to-
317 change factor levels are advantageous whandb, are small compared to the number of model
318 parametersp.

319

320

321 4. DESIGNS FOR MAIN-EFFECTS MODELS

322 Using the modified coordinate-exchange algorithm sketched in Sectiontiwedeen able to
323 construct orthogonal split-split-plot designs with diagonal information megriier many nesting
324 structures for which the numbers of whole plots and subplots within the wiatie gre powers
325 of two or multiples of four. Table 1 shows such a design with 16 runs, twdeyblots and two
326 subplots per whole plot accommodating one very-hard-to-change factume hard-to-change
327 factor s and twelve easy-to-change factarsti2. The information matrix of that design, which
328 is a projection of a Hall type 1V orthogonal array (see Sun and Wu 1%%f)als

ggg diag(1.2308 I, 3.2, 16 I15)

331 whenazl, 0—32 ando? are all one. This demonstrates that no information on the easy-to-change
332 factors is lost because of the nested unit structure of the design. Nwteyér, that this design
333 does not allow for the estimation of the whole plot error variami%, because it only has two
334 whole plots. Also, it is impossible to estimate the error varianégbecause the twelve degrees
335 of freedom at the sub-subplot level are used up for estimation the maictefhf the twelve

336 easy-to-change factors.
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337 Table 1.D-optimal 16-run split-split-plot design with two wholeopd each consisting
338 of two subplots for estimating a main-effects model in omg-tiard-to-change factor
339 w, one hard-to-change facterand twelve easy-to-change factogst:s.
340 Whole plot  Subplot w s t1 to t3 ta ts te tr ts to tio ti  tio
341 1 i -1 -1 1 1 1 1 -1 1 1 1 1 1 -1 -
342 1 i -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -
343 1 i -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 1
344 1 i -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 1
1 2 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1
345 1 2 1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1
346 1 2 1 1 -1 1 -1 -1 -1 -1 1 1 1 1 1 1
347 1 2 -1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 1
348 2 3 1 1 1 1 -1 1 1 1 1 -1 1 -1 1 1
349 2 3 1 1 -1 1 1 -1 -1 1 -1 -1 -1 1 -1 1
2 3 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 1 -
350 2 3 1 1 -1 -1 -1 1 1 1 -1 1 1 1 -1 -1
351 2 4 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 -1
352 2 4 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1
353 2 4 1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 1
354 2 4 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1
355
356 A main-effects design that aIIows%l to be estimated but net? is displayed in Table 2. The
357 design has six whole plots each consisting of two subplots with two observatiah like the
358 design in Table 1, accommodates one very-hard-to-change factume hard-to-change factor
359 s and twelve easy-to-change factors;t12. For each pair of runs in a subplot, the levels of the
360 easy-to-change factors are each other’s opposites. The informattdr ofahat design equals
gg; diag(3.4286 1o, 8,24 I12)
363 wheno? , 02, ando? are all one, so that, here too, no information is lost for estimating the
364 easy-to-change factor effects due to the nested unit structure ofslgmde
365 Of course, D-optimal split-split-plot designs with identical nesting structanesfewer easy-
366 to-change factors can easily be obtained from Tables 1 and 2 by rememlingns correspond-
367 ing to easy-to-change factors. Dropping one or more easy-to-cHange columns from the
368 design makes the error varianeg, estimable, so that it is possible to test the significance of the
369 remaining sub-subplot factors.
370
371
372 5. DESIGNS FOR INTERACTION MODELS
373 In completely randomized two-level designs, a diagonal information matrixagtees an
374 optimal design. In this section, we provide an example with a counter-intuéstrindicating
375 that, for two-level split-split-plot designs, a diagonal information matrix maybecoptimal.
376 Consider the D-optimal 32-run split-split-plot design with eight whole plotsi=timg of two
377 subplots each in Table 3. This design is the best one obtained using outhelgimr estimating
378 all the parameters of an interaction model in two very-hard-to-changer$ae, andws, one
379 hard-to-change factor and three easy-to-change factorst, andts whenn; = 72 = 1. It has
380 a D-criterion value oft.80132 x 10*° wheno? , 2, ando? are all one.
381 Although the design is orthogonal, its information matrix is not diagonal (X€X is diagonal
382 but X’V !X is not). The design, however, has a lot of attractive features. Firshaali effects
383 are estimated independently. Only one of the six main effects, namely oresgonding to

384 an easy-to-change factor, is not estimated independently of the two-fatdcaction effects.
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Table 2.D-optimal 24-run split-split-plot design with six wholeop$ each consisting
of two subplots for estimating a main-effects model in omg-liard-to-change factor
w, one hard-to-change facterand twelve easy-to-change factofst;s.

Whole pIOt SprlOt w S t1 to ts ta ts te tr ts to tio t11 ti2
1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1
1 1 -1 1 1 1 -1 1 -1 1 1 -1 -1 -1 1 -1
1 2 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1 1
1 2 -1 01 1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1
2 3 1 -1 1 1 1 1 1 1 -1 1 -1 1 1 -1
2 3 1 -1 -1 -1 -1 -1 -1 -1 1 - 1 -1 1 1
2 4 1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1
2 4 1 1 1 -1 -1 1 1 1 1 -1 1 1 1 1
3 5 1 1 1 1 1 1 -1 -1 1 1 1 1 1 1
3 5 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1
3 6 1 -1 1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1
3 6 1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 1
4 7 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1
4 7 1 1 -1 1 1 1 1 -1 1 -1 1 -1 1 -1
4 8 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1
4 8 1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 -1
5 9 101 1 -1 1 1 1 -1 -1 -1 -1 -1 1 1
5 9 101 -1 1 -1 -1 -1 1 1 1 1 1 1 -1
5 10 -1 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 1
5 10 -1 1 -1 -1 -1 1 1 -1 1 1 -1 1 1 1
6 11 -1 -1 1 1 -1 -1 1 -1 -1 -1 1 1 1 1
6 11 101 -1 -1 1 1 1 1 1 1 -1 -1 -1 1
6 12 -1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1
6 12 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 1

Second, only six of the 462 off-diagonal elements of the information matd»oathe variance-
covariance matrix of the parameter estimates are not equal to zero. Thmatift;n matrix is
thus very nearly diagonal. The six non-zero off-diagonal elementseof/dghiance-covariance
matrix of the parameter estimates are all equaktq/96 = +0.01042 wheno? , o2, ando?
are all one. They correspond to the covariances between the estiméteswdin effect of one
of the easy-to-change factors and its interactions with the two verytbacdange factorss;
andws. These covariances are small compared to the variances of the fixadgiar estimates,
which are displayed in the column labelled “D-optimal” in Table 4. A third attracliagure
of the design is that eight of the fifteen effects involving easy-to-chaag®rs are estimated
with variancel /32 = 0.03125, which is best possible variance for a design involving 32 runs.
Only the interactions involving pairs of easy-to-change factors are estrsatestantially less
precisely. The least precise of these interaction estimates has vasj@ce 0.09375, just like
the main effect of the hard-to-change factoand the two interactions between that factor and
the very-hard-to-change factorg andws.

The literature on minimum aberration two-level split-plot designs providesady-to-use
alternative to the D-optimal 32-run split-split-plot design, but it does pewdilding blocks
for generating 32-run designs with the desired split-split-plot structure aigtht whole plots
consisting of two subplots of size two. Some of these possess the attraztuveef that their
information matrix is diagonal, so that, unlike with the D-optimal design, the maictefiand
the two-factor interaction effects can be estimated independently. Onalesign can be con-
structed starting from a minimum aberration 32-run two-level split-plot desitntwo whole-
plot factors, four subplot factors and eight whole plots of size fouemin Bingham, Schoen
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Table 3.D-optimal 32-run split-split-plot design with eight whagdots each consisting of two
subplots for estimating an interaction model in two veryeht-change factorss; andws, one
hard-to-change factog and three easy-to-change factais to andts.

Whole plot  Subplot w; w2 ta ts3 Wholeplot Subplot wiy w2 s t1 ta t3

Vo)
~+
—

1 1 1 1 1 -1 -1 1 5 9 -1 -1 1 1 1 1
1 1 1 1 1 1 1 -1 5 9 -1 -1 1 -1 -1 -1
1 2 1 1 -1 1 -1 1 5 10 -1 -1 -1 1 -1 1
1 2 1 1 -1 -1 1 1 5 10 -1 -1 -1 -1 1 1
2 3 -1 1 -1 -1 -1 1 6 11 1 -1 -1 1 1 -1
2 3 -1 1 -1 1 1 1 6 11 1 -1 -1 -1 -1 1
2 4 -1 1 1 1 -1 -1 6 12 1 -1 1 1 -1 1
2 4 -1 1 1 1 1 1 6 12 1 -1 1 -1 1 -1
3 5 1 -1 -1 -1 -1 -1 7 13 -1 1 1 1 -1 1
3 5 1 -1 -1 1 1 1 7 13 -1 1 1 -1 1 -1
3 6 1 -1 1 1 -1 -1 7 14 -1 1 -1 -1 -1 -1
3 6 1 -1 1 -1 1 1 7 14 -1 1 1 1 1 1
4 7 -1 -1 -1 -1 1 -1 8 15 1 1 1 -1 1 -1
4 7 -1 -1 -1 1 -1 - 8 15 1 1 -1 1 -1 1
4 8 -1 -1 1 1 1 1 8 16 1 1 1 1 1 1
4 8 -1 -1 1 -1 -1 1 8 16 1 1 1 -1 -1 -1

and Sitter (2004). The design’s defining relationt4s= wywsstito and the contrast column
w1 sto IS used to obtain the desired number of eight whole plots. The minimum abermlasamn
can be used as a 32-run split-split-plot design by using one of its foyl@utnlumns for the
hard-to-change factor.

A better alternative, however, can be constructed by arranging arhatfdn of a factorial
design with defining relatiot, = wwsst; in the desired split-split-plot structure using the con-
trast columnsw, wy andwstits to partition the 32 runs in eight whole plots. The variances
of the parameter estimates for this combinatorially constructed alternativenagesiglisplayed
in Table 4. Desirable features of the design, which has a diagonal infiomaatrix, are that
all whole-plot and subplot effects are estimated with maximum precision, aéfthout three
sub-subplot effects are estimated with the best possible varigf82~= 0.03125. However, this
is at the expense of the three two-factor interaction effects betweengiigeahange factors,
which are raised to one of the higher strata. Two of these interactionsfiee raised to the
subplot stratum and thus estimated with variab¢&2 = 0.09375, while the third one is even
raised to the whole-plot stratum. This results in a variance'®82 = 0.21875. As a consequence
of all this, the D-criterion value of the alternative design, whén, o2, ando? are all one, is
3.17836 x 10%5. The D-efficiency of the combinatorially constructed design, relative tdthe
optimal design, i98.14%. Thus the algorithmically constructed design has a higher determinant
than the alternative despite its having a non-diagonal information matrix. Thishigved by
sacrificing some of the precision of the estimates of three subplot effedttthanndependence
between these estimates in order to obtain reasonably small variances &stithates of the
two-factor interaction effects between the easy-to-change factors.

The larger variances for the estimates of the main and interaction effecimefa the easy-
to-change factors seem very difficult to avoid in many split-plot type oigteisroblems, espe-
cially when the number of runs in every subplot is as small as two. Optimalrdesitstruction
algorithms like ours, however, attempt to limit that increase by introducing somalamde in
the levels of the easy-to-change factors within the subplots. This is illustogtéte design in
Table 3, where the low and the high level of the easy-to-change facéwe unbalanced in each
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Table 4. Variance of estimates of fixed
model parameters for the D-optimal 32-
run split-split-plot design in Table 3 and
a combinatorially constructed alternative

whena§ , 02 ando? are all one.
1 Y2 &€

Stratum Effect D-optimal  Alternative
WP Intercept  0.21875 0.21875

WP w1 0.21875 0.21875
WP w2 0.21875 0.21875
WP Wi w2 0.21875 0.21875
SP 5 0.09375 0.09375
SP w18 0.09375 0.09375
SP was 0.09375 0.09375
SSP t1 0.03125 0.03125
SSP t2 0.03125 0.03125
SSP t3 0.04167 0.03125

SSP w1ty 0.03125 0.03125
SSP wits 0.03125 0.03125
SSP wits 0.04167 0.03125
SSP waty 0.03125 0.03125
SSP wata 0.03125 0.03125
SSP wats 0.04167 0.03125

SSP sty 0.03125 0.03125
SSP st 0.03125 0.03125
SSP st3 0.03977 0.03125

SSP t1to 0.09375 0.09375
SSP tit3 0.07721 0.21875
SSP tots 0.06908 0.09375

of the subplots 7-10. This explains the small variance inflation for the mésctedstimate of
that factor when compared to the main-effect estimates.f@and¢,. Notice that, in all other
subplots, the levels of the easy-to-change factors are balanced.

6. SENSITIVITY TO 11 AND 79

As mentioned in Section 2, the D-optimal split-split-plot designs depend on theasance
ratios,n; andny. Goos (2002) studied the effect of the changing the ratio of the whote-plo
variance to the error variance on D-optimal split-plot designs. He shtvegdor given numbers
and sizes of whole plots, D-optimal split-plot designs for first-order modelsanany standard
cases not a function of this ratio. Split-plot response surface designkavever, show some
sensitivity to changes in this ratio. Sometimes as many as three different slestgm found to
be D-optimal, each over mutually exclusive intervals of the variance ratier @ractical ranges
of the variance ratio, the D-optimal design usually did not change.

Of course, the split-split-plot structure is more complicated than the split-plattste, so it is
necessary to address this question again. We did studies to investigatiethefethanging the
two variance ratiog; andrn, over broad ranges, and report the results obtained for two different
design problems that are illustrative for the sensitivity of the D-optimal desmm ands,.

The first design problem involved a main-effects model in three cateddaictors each at
three levels. The first scenario had three whole plots, six subplots artdlsample size of
twelve. We computed designs for a 3 by 3 grichpfandns values from 0.1 to 1 to 10. We found
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529 Table 5. D-optimal 12-run split-split-plot designs with
530 three whole plots each consisting of two subplots with two
531 runs for estimating a main-effects model in one very-hard-
532 to-change factorw, one hard-to-change facterand one
533 easy-to-change factar The three factors are categorical.
534 t
535 Whole plot  Subplot w s 72=01 mn2=1 n2=10
536 1 1 A a 1 1 1

1 1 A a 2 2 2
gg; 1 2 A b 2 2 2

1 2 A b 3 3 1
539 2 3 B b 1 1 2
540 2 3 B b 2 3 3
541 2 4 B ¢ 2 2 1
542 2 4 B C 3 3 3

3 5 C a 2
543 3 5 C a 3 g é
544 3 6 c ¢ 1 1 2
545 3 6 C ¢ 2 2 3
546
547
548 three different D-optimal designs - one for each valug-ofT he three designs are shown in Table
549 5. For each design the whole plot and subplot structure is the same. drleeieur runs at each
550 level of both the whole-plot factor and the subplot factor. The diffeesrin the designs come in
551 the sub-subplot factor levels. Fgs = 0.1 there are three runs at two levels and six runs at the
552 other. Foms = 1 there are three runs at one level, four runs at another and five trthmes third.
553 For n, = 10 there are four runs at each level. In this case, the arrangement ofréeel¢hrels
554 of the easy-to-change factor in six subplots of two runs takes the foardaplicated balanced
555 incomplete block design for three treatments with three blocks of size two.
556 In order to investigate whether the information content of the three desigiabla 5 is very
557 different, we compare the objective functiof/ |, for each of them assumim:gzﬂ, 032 ando? are
558 all one. The determinant of the information matrix of the D-optimal desigmfceE 1 is 3978.7
559 while the design with four runs at each level (obtainedifpe= 10) has a determinant of 3944.7.
560 The relative efficiency of this design is 99.88%. The determinant of thigregth 3, 3 and 6
561 runs per level (obtained fof, = 0.1) is 3672.6 with a relative efficiency of 98.86%. While the
562 easy-to-change factor levels look very different for the three destbere is thus no substantial
563 difference among them for the purpose of estimating the parameters of thed. mod
564 The second design problem considered five continuous factors, antooly one very-hard-
565 to-change and one hard-to-change factor, with a model including all rffasteand two-factor
566 interactions. There were six whole plots, 12 subplots and 24 runs in totatowiputed nine
567 D-optimal designs for this setting using the same 3 by 3 desidggin; andlog ;.
568 Here the story is more involved as the designs vary depending or;bathd .. We found
569 four distinct designs over the nine possibilities where we distinguish betdesigns based on
570 the determinant of their information matrix while holding the covariance matrjfixed at one
571 value ofn; andnq. One of the designs was optimal for all six scenarios where 10. When
572 031 = a?m = 0.1 ando? = 1, the D-efficiencies of the four distinct designs found, relative to the
573 optimal design for = 1, = 0.1, range from 96.36% to 100%. Whet}, = 02, = 02 = 1, the
574 D-efficiencies of the designs found, relative to the optimal desigmfcet 7, = 1, range from
575 95.69% to 100%. The six designs that were the same all had full efficiemdpdse values of

576 the variance components. Whe#, = o2, = 10 ando? = 1, the D-efficiencies of the designs
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o577 Table 6.Comparative D-efficiencies for misspecificationsypfand n, assumings? is one
578 for a design problem involving one very-hard-to-changedaone hard-to-change factor and
579 three easy-to-change factors and a model with main effeaddwo-factor interactions.

580 021 = 022 =0.1 021 = 022 =1 021 = 022 =10

581 s nz s 771“/ v n:

582 2 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10

583 0.1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 89.68%63%  89.63%
584 1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 89.63%63®O 89.63%
585 10 96.36%  96.37%  96.42%  95.69%  95.95%  96.05%  99.88%  99.99%0.00%
586

587 found, relative to the optimal design fgf = > = 10, range from 89.63% to 100%. Detailed
588 results are in Table 6.

589 For the second design problem in this sensitivity study, we also investigditeither a design
590 could be found that is more robust to the values of the variance ratiaadn, than the ones
591 generated using our algorithm, which assumes a point prior for their valadkis end, we im-
592 plemented a Bayesian approach in which we used indepegrdeiitributions with two degrees
593 of freedom as priors foy; andns. The 2.5%, 50% and 97.5% percentiles of these prior distribu-
594 tions are 0.05, 1.39 and 7.38 respectively, so that we allowed for coabldaincertainty about
595 the variance ratios. It turns out that the Bayesian D-optimal split-split-@sige is equivalent
596 to the non-Bayesian design obtained#fer= 0.1 andrn, = 1, so that the Bayesian approach did
597 not provide the desired robustness.

598 The concern is that misspecifying andr, for the purpose of designing a split-split-plot
599 experiment with our algorithm might lead to the use of a design that is verydieeffi The
600 last study shows that it is better to choose large valuegf@ince designs that were optimal
601 assuming small values did not perform well if the true values were lardesreas designs that
602 were optimal assuming large values still perform reasonably well if the @liees are smaller.
603 In both of the sensitivity studies reported here, it is more important to dbriguecify the ratio
604 of the subplot variance to the error variangg,

605

606

607 7. DISCUSSION

608 We have provided an algorithmic approach to the construction of D-optinligdsgfit-plot
609 designs. We have shown how to use this approach to create screeriggsdéVe have also
610 considered the effect that changing the two relevant variance rasasrnhe D-optimal design.
611 For more examples of screening designs, some examples of split-split-gpainse surface
612 designs and for a discussion of several attractive design optionsfoh#ese production experi-
613 ment in Schoen (1999), we refer the reader to Jones and Goos {|200i&e it is also discussed
614 what approach can be used when economic considerations dictate arrmimib®le plots that
615 does not allow for the estimation of the whole-plot variance.

616 In this article, we have assumed that the number of subplots is an integer muitipteraim-
617 ber of whole plots, and that the total number of runs is an integer multiple of thmbeuof
618 subplots,n = b1bsk. This scenario is perhaps the most common one in practice, where these
619 parameters are usually dictated by the logistics of the experiment and by timepsindon-
620 straints. Nevertheless, there exist experimental situations where tleane hard constraints on
621 the number of whole plots, the number of subplots within whole plots and/or tnéerof runs
622 within subplots. In such cases, experimenters may want to deviate fronsehar® discussed
623 here and still use the algorithm we outlined above to generate a D-optimal@jitpist design

624 for the unit structure that they have in mind. It should be noted, howthatrjn such cases the
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time-saving update formulas for the information matrix described in Section 3.8actmger
be used because Theorem 1 is valid only for the scenario we focusadhus article. Another
approach would be to modify our algorithm so that it generates the D-optumabers of whole
plots, subplots within whole plots, and runs within subplots, in addition to the optesgn
points. It seems likely that allowing for different sizes of whole plots arfapkats might im-
prove the efficiency of D-optimal response surface designs. Similaarels was done by Goos
and Vandebroek (2004), who presented an algorithm for determinirgptiveal split-plot struc-
ture of an experimental design. The modified split-split-plot algorithm could ladsextended
for computing D-optimal designs that do not just focus on the precise estmftine factor
effects contained withirs, but also on that of the variance components o2, ando?.

Apart from these extensions, some interesting research questions rtoegnwork could be
done to attempt to bound the effect of misspecification of the two variance @tievhich the
D-optimal design depends. Another potentially interesting topic for futigeareh is the use of
Bayesian optimal design criteria. Such criteria could be used to prioritizeréoésp estimation
of the main effects when constructing optimal split-plot and split-split-plot desighe fast
update formulas in the appendix for the inverse of the information matrix atggestithat it is
possible to compute A-optimal and V-optimal (also called I-optimal) split-split-pésighs at
an acceptable computational cost. Finally, the design of experiments invdigidgto-change
factors and non-nested unit structures would be a useful topic fibvefiuinvestigation.

A version of the algorithm presented in this article is available in the commerdiaizse
JMP. The algorithm can handle any scenario where the number of whag {fle number of
subplots and the number of runs are fixed by the experimenter. The dsiteos¢éained in the
paper are available from the authors as either IMP data files or Excel files
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APPENDIX

The update formulas derived here extensively use two matggbraic results for matrices of the form
R+ STU, whereR andT are nonsingular x r andt x ¢ matrices, respectively, arglandU arer x t
andt x r matrices, respectively. The first result is

|R+ STU| = |R||T||T~' +UR™'S], (AD)
= |R||I, + TUR™'S]|,

while the second result is
(R+STU) '=R'—R'S(T'+UR'S)"'UR™. (A2)

Detailed proofs of these results can be found in Harvill©{)9for example. The results are especially
useful when R|, |T|, R~ andT~" are easy to obtain. This is exactly the case in the consbructi D-
optimal split-split-plot designs becau®gis a diagonal matrix and becaudel and R~ are being stored
during the entire operation of the design construction ratigm.

Changes of the level of an easy-to-change factor

A change of the level of an easy-to-change factor intheun of thejth subplot within theth whole plot
only affects the corresponding row in the model mafixSuch a change does not require the information
matrix to be recomputed from scratch. In order to see thisptethe original of the affected row by
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673 f'(wi, si5, ;1) and its modified version by’ (w;, s;;, t;‘jl). The updated versions f/1;, andX;jlk
674 can then be obtained using (19) and (20), and the informatiatnix (15) can be updated using

675 ,

676 M* = M — 022 f(wi, sij, tiji) f' (Wi, sij, tiji) + e1(X{Lppr) (Xi Logn) + c2(X7;15) (X515)

677 + o2 flwi, sijy t) f(wiy si,t51) — 1 (X7 Logi) (X7 Loyr) — c2(X35 16) (X5 15)', (A3)
678 whereM andM* represent the information matrix before and after the charespectively, and’* and
25738 X;; represent the updated versionsXofand X;;;, respectively. This can be rewritten as

681 1/ (ws, S5, tizi) ' -0-200 0 0 0 1/ (ws, S5, tiji)

682 (X{Loyk)' 0 0 0 0 0 (Xiloor)'

683 . (X[;1,) 0 O0c; O 0 0 (X 1k)

684 M* =M+ Fiwi, sijs tip) 0 0002 0 0 | |f/(wisity)| (A4)
685 (Xz* 1b2k)/ 0 00 O —C1 0 (Xz* 1b2k)l

686 (X5 1) 0 00 0 0 —c (X713

687 which is of the formR + STU so that the results in (A1) and (A2) can be used for computig| and
688 M~*~1. Defining D; andU, as in (17) and (18), and substituting these into (A1) and (&ajlis to the
689 following update formulas for the determinant and the iseesf the information matrix:

690 X _ _ _

a0l [M*| = [M]| I + DyUIM 01| = MDDy + UM,

692 and

693 MU= M - MTU(D + UM U T U M

694

695 The matrix producfl —1U; plays a key role in these updates formulas. Notice that therskexpression
696 for updating the determinant is slightly less computatilyriavolved than the first one aB; is a constant
697 diagonal matrix for given values of, b, k and the three variance components.

698 Changes of the level of a hard-to-change factor

699 A change of the level of a hard-to-change factor cannot beerf@dh single run because the level of such
700 a factor has to be constant for all the runs in a given subglath a change can therefore only be made
701 to all the runs in an entire subplot. Modifying the level ofadito-change factor level in thigh subplot
702 within whole plot: therefore results in the following information matrix:

703 1 1 l I

704 M* :MﬁUg2X1',inj +01(X1{1b2k)(X7;1b2k) +62(X1{j1k)(X7{j1k) (A5)
705 F o2 X — (X L) (X Ln) — e2 (X5 1) (X5 1),

706 where

707 * * * /

708 X = [f(wiasijvtijl) f(wivsijvtijk) ]

709 is the modified version of

710 ,

711 Xij = [ f(wi, sij,tij1) - fwi,siz,tign) |

712 and

;12 X'Ekl]-bgk’ :Xz{llmk _Xz{j]-k"_X;j/]-h

715 Notice thatX;; and X;; only differ in the columns corresponding to the factor whiesel is changed, its
716 interactions and higher-order terms involving it. Now, j&%n be written as

717 M* = M + U Do U3, (AB)
718

719 where

720 Dy = diag(—a;zlk,cl,@,as_zlk, —c1,—Ca),
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, /
;3; Uy = [X;j X! Upp X0 X5 X7 Ly, X7 14 .
723 As a result,
ret (M| = [M[|lages2) + DaUsM Vsl = M| Dal| D5 + UM~ U,
726 and
727 M =M~ — M~ 'Uy(Dy" + UM U, UM .
728
729 Changes of the level of a very-hard-to-change factor
730 Finally, after a change in one of the levels of a very-hargtange factor, the update is even more involved
731 as such a change has an impact ot runs in that stratum. If the change is performed inithevhole
732 plot, then the new information matrix can be computed as
733 ba
734 M* =M — 072X X; + 1 (X[ L) (X[ Lopr) + 02 D (X[ 1) (X];15)
735 j=1
A7

736 b , (A7)
737 + O'_QX* X* — Cl(X 152k)(X 1b2k — C2 Z X* 1k (Xz*j ]-k:)/7
738 J=1
739 where
741 X5 = f(w],sij,ti1) - fwy, sij tin)
742 is the modified version ak;;, and
;ji X = fwy,sit,tinn) - f(w], iy tivyr)
745 is the modified version ok’;. Notice that eactX;; and X;; only differ in the columns corresponding to
746 the factor whose level is changed, its |nteract|ons anddrigihder terms involving it. Now, (A7) can be

written as
747
748 M* = M + U3 D3Us, (A8)
749 where
750
751 D3 = diaq_o-g_zlbglw C1, CQIbza 0-5_21172]67 —C1, _CQIb2)7
752 ’ ’ ’ /
753 U3 = [Xz/ Xz(lek X1{11k Xzbz lk Xz* XZ* lbzk Xz?kl 1k Xz*bz 1k] )
754 As aresult,
755 * / -1 —1 / —1
756 |M*| = [M] X Iz, k4b041) + DsUsM ™ Us| = [M|| D3| Dy~ + UM~ Us|,
757 and
758 *—1 —1 —1 —1 / —1 —1777 —1
759 M~ t=M"1'—~ M'U3(Dy + UM~ U3) UM
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