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The eddy-current effects in windings, i.e. skin and proximity effects, can be macroscopically modelled via a complex frequency-
dependent impedance and reluctivity. In this work, these two complex quantities are further embedded in a harmonic-balance finite
element model for arriving at the steady-state solution. The proposed approach is validated through a 2D model of an inductor
with pulse-width modulated voltage supply. Both local and global quantities are shown to agree well with brute-force simulation
results. The computational cost of both approaches is compared.

Index Terms—Eddy currents, finite element methods, harmonic balance, proximity effect, skin effect.

I. INTRODUCTION

THE accurate consideration of skin and proximity effects
in the winding of high-frequency electromagnetic devices

through the fine discretization of each turn is most often
unworkable in practice. Frequency-domain homogenization
techniques provide a closed-form continuous representation
of the homogenized winding, see e.g. [1], [2] and references
herein. Proximity and skin effects are considered by a complex
reluctivity in the homogenized winding window and a complex
impedance in the electrical circuit equations, respectively.
A general approach to identify these frequency-dependent
parameters is proposed in [3], along with a time-domain
extension and three-dimensional application in [4].

In this paper, we aim at embedding this winding homog-
enization technique in a harmonic-balance (HB) computation
for arriving at a periodic steady-state solution, whereby local
and global variables (flux density, currents, ...) are approxi-
mated by a truncated Fourier series; this approach may be an
interesting alternative to plain time-stepping, particularly when
the transient is long [5]. By extending the set of considered
frequencies, starting from the fundamental one f1 (period
T1 = 1/f1), one can compromise between accuracy and
computational cost.

Several HB approaches have been proposed, e.g. [6], [7],
which are more or less efficient and/or arduous to implement.
A thorough mathematical analysis with error estimators can be
found in [8]. We embrace the Galerkin time-domain variant
presented in [9], as it allows to straightforwardly include
magnetic saturation, nonlinear lumped components in the
electrical circuit (e.g. diodes), and especially rotation [10].

The proposed multi-frequency approach, i.e. with winding
homogenization, is validated by means of an axisymmetric
model of an inductor.

II. GENERIC FIELD-CIRCUIT ODES

We consider a generic 2D eddy-current problem with so-
called stranded and massive conductors (subscripts S and M ,
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resp.) and its magnetic vector potential a formulation; the
extension to other formulations is straightforward. The first-
order ordinary differential equations (ODEs) arising from its
FE discretization (with nw shape and test functions) in terms
of the unknowns column vector A =

[
a1(t) · · · anw

(t)
]>

features the reluctivity-dependent stiffness matrix S(ν), the
conductivity-dependent eddy-current matrix TM (σ), and right
handside column vectors accounting for the sources, i.e. the
current in the stranded conductors (uniform current density)
and the voltage across the massive conductors (non-uniform
current density due to skin and proximity effects):

SA + TM
dA

dt
= K>MR−1M VM + K>S IS , (1)

VM = RMIM + KM
dA

dt
, (2)

VS = RSIS + KS
dA

dt
, (3)

where IS(t), IM (t), VS(t) and VM (t) comprise nS or
nM currents and voltages; diagonal matrices RM and RS

comprise the respective resistances (DC value for the massive
conductors); KM (nM × nw) and KS (nS × nw) are connec-
tivity matrices.

Electrical circuit coupling can be considered via nl inde-
pendent loops and linked loop-current column vector Il(t):

D>SlVS + D>MlVM + RlIl + Ll
dIl
dt

= Vl , (4)

where DSl (nS × nl) and DMl (nM × nl) are connectivity
matrices (with 0, 1 and −1 elements, with IS = DSlIl and
IM = DMlIl), and with the inclusion of a number of lumped
resistances, inductances and voltage sources via square loop
matrices Rl and Ll, and righthand side term Vl(t). Current
sources and capacitances can also be considered. Alternatively,
the nodal method can be adopted [11]. Any nonlinearity in the
FE model and circuit is ignored for sake of simplicity.

Equations (1)-(4) can be written in a block matrix form as:

MX(t) + N
dX

dt
= F(t) , (5)

X(t) =
[
A VM Il

]>
, F(t) =

[
0 0 Vl

]>
, (6)



2

M=

 S −K>MR−1M −K>SDSl

0 1 −RMDMl

0 D>Ml Rl + RSl

 , N=

 TM 0 0
−KM 0 0
D>SlKS 0 Ll

 ,
(7)

with RSl = D>SlRSDSl (nl × nl) and 1 the identity matrix.
The brute-force skin- and proximity-effect modelling of a

coil consist in considering each turn as a massive conductor
(e.g. nM = 120 as in section V) and the series connection of
all turns via the circuit equations. Instead, the homogenized
winding is modelled as one stranded conductor (nS = 1 and
nM = 0), as further developed in section IV.

III. HARMONIC-BALANCE APPROACH

Each of the n = nw + nM + nl unknowns in X(t) can
be expressed as a truncated Fourier series considering nf
frequencies fk, k = 1, 2, . . ., integer multiples of fundamental
frequency f1 (period T1 = 1/f1), or angular frequencies
ωk = 2πfk, for a total of nh = 2nf harmonic (cosine or
sine) basis functions (BFs), and n · nh unknown coefficients
collected in column vectors H(t) and XH respectively:

H(t)=
[
h1 · · ·hnh

]>
=
[
· · · cos(ωkt) sin(ωkt) · · ·

]>
, (8)

X(t) =
(
1⊗H(t)>

)
XH , (9)

where ⊗ denotes the Kronecker product. For the sake of
simplicity, a DC term (with unitary BF) is not considered [9].

These nh cosine and sine BFs are mutually orthogonal:

2

T1

∫ T1

0

H(t)H>(t) dt = 1 , (10)

whereas there is coupling per individual frequency via their
time derivative (with associated matrix Q):

Q =
2

T1

∫ T1

0

H(t)
dH>

dt
dt =


· · · · · · · · · · · ·
· · · 0 ωk · · ·
· · · −ωk 0 · · ·
· · · · · · · · · · · ·

 . (11)

The ODEs (5) are weakly imposed using the same hj(t)
BFs [9]:

2

T1

∫ T1

0

(
MX + N

dX

dt

)
hj dt =

2

T1

∫ T1

0

Fhj dt , (12)

leading to one system of n · nh algebraic equations:

MHXH = FH , (13)

MH = 1⊗M + Q⊗N , (14)

FH =
2

T

∫ T

0

H(t)⊗ F(t) dt . (15)

IV. HOMOGENIZATION OF MULTI-TURN WINDINGS

A. Skin- and proximity-effect coefficients

We consider a representative FE model of the winding com-
prising at least one central cell (copper wire plus insulation),
possibly surrounded by one or more layers of cells (nM ≥ 1).

Frequency-domain calculations are carried out for the sinu-
soidal time variation at frequency f [4]. A complete charac-
terization of the winding is achieved through the active and
reactive power absorbed by the central cell and the extraction

of four dimensionless frequency-dependent coefficients pI , qI
and qB , pB (depicted in Fig. 1) [4]. The corresponding com-
plex skin-effect impedance Zskin(f) and complex proximity-
effect reluctivity νprox (f) read:

Zskin(f) = pI(f) RDC + ı qI(f) ω
µ0l

8π
, (16)

νprox (f) = qB(f) ν0 + ı pB(f)
1

4
λσr2ω , (17)

with ν0 the reluctivity of the air, r =
√
Ac/π the equivalent

radius (surface area Ac), λ the fill factor and ı the imaginary
unit. The DC resistance of the conductor is RDC = l/(σAc)
with l the length along the third dimension (that can arbitrarily
be taken to be 1 m). It is worth mentioning that the skin-effect
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Fig. 1. Skin & proximity effect coefficients vs. frequency for round copper
conductors with square packing (σ = 60MS/m, Ac = 1mm2, λ = 0.65)

losses are often negligible with respect to the proximity-effect
losses. Further, the skin-effect losses and the coefficient pI are
practically independent of the fill factor λ.

B. Homogenization in a HB-FE model

In (1) eddy currents are explicitly accounted for via TM

(classical FE) or via a frequency-dependent complex reluctiv-
ity (17) in the homogenized winding window (one stranded
inductor) in S and a complex impedance (16) replacing the
DC resistance in RS .

In the multi-harmonic case, we adopt a different proximity-
effect complex reluctivity (17) and skin-effect impedance (16)
per considered frequency fk.There is a coupling between the
cosine and sine HB-BFs due to these effects. The matrix MH

is modified by considering νprox (fk) (17) in S as:
· · · · · · · · · · · ·
· · · S(<(νprox (fk))) S(=(νprox (fk))) · · ·
· · · −S(=(νprox (fk))) S(<(νprox (fk))) · · ·
· · · · · · · · · · · ·

 , (18)

and by considering Zprox (fk) (16) in the circuit coupling
blocks via RS :

· · · · · · · · · · · ·
· · · <(Zskin(fk)) =(Zskin(fk)) · · ·
· · · −=(Zskin(fk)) <(Zskin(fk)) · · ·
· · · · · · · · · · · ·

 . (19)

V. APPLICATION EXAMPLE

We consider an axisymmetric inductor with a 120-turn coil
with round copper conductors (σ = 60 MS/m, 1 mm2) and
square packing (λ = 0.65, see Fig. 1) [4]. The total DC resis-
tance and inductance are RDC = 0.188 Ω, LDC = 2.726 mH.
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The magnetic core (µr = 1000, non-conducting σ = 0) has a
central 3 mm airgap [4].

A brute-force time-domain 2-D axisymmetric FE fine model
of the inductor serves as reference (nM = 120, nS = 0,
nl = 1) and validation of the proposed HB-FE model with
homogenization. By way of illustration, flux lines obtained
with a mono-frequency f = 50 kHz voltage computation
are depicted in Fig. 2. The eddy-current effects are clearly
visible in the fine solution (left). The homogenized solution
(right) follows the pattern with high fidelity though. Note the
difference in mesh density.

Fig. 2. Flux lines in winding domain obtained with the fine (left) and homog-
enized model (right). Mono-frequency domain computations with sinusoidal
50 kHz voltage. Detail of the meshes.

The equivalent resistance R(f) and inductance L(f) of the
winding are derived from mono-frequency-domain calcula-
tions. An excellent agreement is observed in Fig. 3. Mainly due
to the proximity effect, the eddy-current losses increase sub-
stantially with frequency, whereas the inductance decreases.
The R and L values corresponding to the fk frequencies
considered next in the HB computation are highlighted.
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Fig. 3. Resistance (up) and inductance (down) as a function of frequency.

We consider an intersective pulse-width modulated (PWM)
voltage supply (50 V DC, fundamental frequency f1 = 1 kHz,
modulation index mf = 21, amplitude index ma = 0.8,
bipolar switching). The voltage waveform and main harmonic
components are represented in Fig. 4. The voltage waveforms
corresponding to nf = 1, 6, and 13 frequency harmonics are
depicted as well. The frequencies included in the HB com-
putations are chosen and sorted according to the decreasing
amplitude of the PWM voltage components, e.g. the result
denoted HB 6 (43) includes nf = 6 harmonic frequencies,
harmonics 1, 21, 19, 23, 41 and 43, with the highest harmonic

between parenthesis. The actual harmonics per HB case are
successively added and highlighted Fig. 4 (down).
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Fig. 4. Imposed PWM voltage in ref. TD-FE fine case; imposed voltage
with the HB-FE model for 1 (fundamental), 6 and 13 harmonics (up). Main
harmonic components of the PWM voltage (down).

Time-stepping simulations (with and without homogeniza-
tion) are carried out for validating the HB approach. The
pseudo time constant at f1 = 1 kHz, τ = L/R = 11 ms,
is quite high (long transient). To prevent the lengthy tran-
sient computation, we determine an optimal phase shift for
the sinusoidal control signal of the PWM voltage, with TD
computations and an initial guess φ = arctan(τf1) = 89.9◦.
A zero DC component is achieved with φ = 88.1◦. With
this phase shift, the steady state solution is thus attained by
discretising only one period with mf250 = 5250 steps.

The current computed with the homogenized winding HB
approach (1, 6, 13 freqs.) is compared to the reference TD
result in Fig. 5, up. The harmonic amplitudes are also depicted
in Fig. 5, down. A zoom on the evolution of the current
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Fig. 5. Current calculated with ref. time-domain FE and homogenized winding
HB-FE model and increasing harmonic components (up). Main harmonic
components of the current (down).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

time (ms)

-1

-0.8

-0.6

-0.4

-0.2

0

c
u
rr

e
n
t 
(A

)

TD fine
HB homog 1 (1)
HB homog 6 (43)
HB homog 13 (67)
HB fine 1 (1)
HB fine 6 (43)
HB fine 13 (67)

Fig. 6. Current calculated with ref. TD and HB homogenized winding FE
model and increasing harmonic components (up).



4

with time is shown in Fig. 6. Results include the HB solution
obtained with the same fine mesh as reference TD case. As
expected, the accuracy of the HB approaches increases with
the number of frequencies; the difference between both HB
cases is evident. This discrepancy is better quantified by means
of the relative L2-error in Fig. 7, function of the number of
harmonics and computed with regard to TD fine. For 1, 6 and
13 harmonics, the error amounts to 5.6%, 1.1%, 0.6% (HB
fine) and to 5.7%, 1.1%, 0.8% (HB homog).
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Fig. 9. Instantaneous losses obtained with TD fine and homogenized models.

For the sake of completeness, the instantaneous losses
obtained with a TD homogenized approach are shown in
Fig. 9. We need TD homog with order 2 (see [3], [4]) for
ensuring a good accuracy. Regarding the current, the difference
between TD homog order 1 and 2 is negligible and results
match TD fine in Fig. 6.

The eddy-current losses are represented in Fig. 8 as a
function of the number of harmonics (up) and as individual
contribution per harmonic (down). The losses of the TD fine
and TD homog 2 cases (average losses of a period in steady
state) equal 0.85 W. Further, the relative L2-errors on the HB-
losses (with the TD fine losses as reference) are given in Fig. 7.
With 1, 6 and 13 frequencies, the relative L2-error is 18.1%,
0.7% to 0.2% (both HB fine and HB homog).

Simulations have been performed on a personal laptop with
a 2.7 GHz Intel Core i7 processor and 16Gb 1600 MHz DDR3
memory. A direct LU solver is used. The cost of TD fine

(one period, most favorable case) is: 30936 degrees of freedom
(DoF), 210 Mb, 4376 s. The cost of TD homog 2 (one period)
is: 4265 DoFs, 40.8 Mb, 249 s.

Comparing the HB approaches, we observe constant factors
between the HB fine and HB homog costs (13×DoF, 19×CPU,
18×Mem). With 13 frequencies, the HB homog cost amounts
to 92742 DoFs, 1.7 s CPU, and 0.23 Gb Mem. Even though
the storage cost is higher than the one of TD fine and TD
homog 2 (factors 1.1 and 5.6, respectively), the gain in CPU
time is considerable.

VI. CONCLUSIONS

We have embedded a homogenization method accounting
for the eddy-current effects in a winding in a HB-FE method.
Though validated with an axisymmetric linear case, its appli-
cation is general.

An elementary and computationally cheap 2-D FE model
is first used to characterize the winding type by four dimen-
sionless frequency-dependent coefficients. The coefficients are
directly used in the HB-FE model: for each of the considered
frequencies in the HB approach, a different complex reluctivity
and impedance value is adopted. We compare the plain time
stepping with the HB approach, with and without homogenized
winding. The proposed approach allows for high accuracy of
local and global quantities at reduced computational cost.
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nonlinear multiharmonic eddy current problems,” Numer. Math., vol. 100,
no. 4, pp. 593-616, 2005.

[9] J. Gyselinck, P. Dular, C. Geuzaine, W. Legros, “Harmonic-balance finite-
element modeling of electromagnetic devices: A novel approach,” IEEE
Trans. Magn., vol. 38, no. 2, pp. 521-524, 2002.

[10] J. Gyselinck, L. Vandevelde, P. Dular, C. Geuzaine, W. Legros, “A
general method for the frequency domain FE modeling of rotating
electromagnetic devices,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1147-
1150, 2003.

[11] H. De Gersem, K. Hameyer, T. Weiland, “Field-circuit coupled models
in electromagnetic simulation,” J. Comput. Appl. Math., vol. 168, no.
1-2, pp. 125-133, 2004.


