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Abstract

While designing network applications, one has toecgh their
performance on a network that is loaded by realistickground traffic.
For this purpose, a packet stream can be capturedhetwork to obtain
real background traffic. When the application hasbé tested under
various network loads, one can use straightforwacdthniques to alter
the original captured traffic trace; for examplstéa replay of the packet
stream. The problem with these simple techniquethas the packet
stream will be altered in many ways, and thus gEmmultiplication of
the load inflicted by the packet stream on a netwoannot be
guaranteed. In this paper we will first describfeva simple techniques.
Then, more complex techniques that better apprdaheh goal of
multiplying the traffic load by a known factor wille presented.

1.1.INTRODUCTION

Every day work is done on designing software fow nmternet
applications. All the internet applications avaiéaboday are supported
by hardware that is continually optimized. Beforgegrating these
products in real-life networks, some testing hashéodone on their
performance. For example when a networking apjmlioatthat
implements some functionality between two peersthase tested, the
communication line between these two peers shoeldobded with
traffic comparable to real internet traffic. Otretamples are hardware
networking products like routers and switches. Theerformance
should be tested under traffic loads that at leestmble real internet
traffic. Therefore, companies need traffic streatoseither use as
background traffic for their networking applicatfonor as input to their
hardware products.

One possibility is to capture this traffic on aerehce network [1]. The
drawback of this technique is that when the appiina have to be
tested under different network loads, for each lmadther packet stream
with the right number of packets per second hadeolocated and
captured from a real-life network. More problemscwocdue to the
fractal behavior of internet traffic. To make a dammparison, all the
different streams must have a comparable self-aintiehavior if the
sole effect of increasing load is to be testedsThakes this technique
quite difficult to use in practice.

Other methods to change the load inflicted by akgiastream on a
network are thus needed. In this paper we dessobe methods to set
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this load to a desirable level, using only one paskream captured from
a reference network. We present a technique thiedstas little
computational effort as possible, while creatingeal multiplication of
the load inflicted by the packet stream.

Important to note is that for this study, the odata necessary from the
reference network are the timestamps of the packetsing at one
point. A sequence of timestamps is then generati#ld the same
characteristics as the reference stream, but witlifferent load. This
packet stream could then be used, for examplepad k& backbone
connection between two routers. We thus will nodelaiser events or
servers, but remain on the lowest levels of the-@&del.

First some terms like self-similarity will be loaket. Then the goals we
want to achieve are described more in detail. Thifollowed by a
description and study of some simple, straightfodveechniques to
double the load of a packet stream. The resulthexfe simple methods
however are found to be unsatisfying. More advamoethods such as
rotation of the bin count vector and making usedfaffic model are
studied. Finally, some remarks are made on theatisscaling of traffic
with larger factors. Scaling with factors less thame is also shortly
touched.

2. PRELIMINARIES

2.1.Discrete Traffic Models

Discrete traffic models divide packet streams ititoe intervals. A

certain length is chosen for this time interval afldimestamps within a
certain time interval are placed in one 'bin'. Likés, a bin vector is
obtained with each bin representing the numberokets that arrived in
that time interval. The bin vector can be represgrity a timeseries
variableX, with X, representing the number of packets inkin

Another important concept is aggregation. An agated) time series
X™ with aggregation levah is obtained by averaging the original time
seriesX over non-overlapping blocks of intervals:

jm

m) _
x{m Xy
k=(j-D)m+1
with j=1,2,...n/m, wheren represents the number of elements in the
original time series.

1
m

This principle can be applied to the bin count secBy aggregating, a
packet stream is in fact averaged out over a certiane interval,
normally reducing its peaked behavior.
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Figure 1.Bin count vector at different aggregation levels.
(a) Bin count vector, not aggregated, (b) Bin cowettor aggregated with m42c) Bin count vector aggregated with =2

2.2.Used Traffic Traces

The traffic trace used for this study is part af &bilenelll trace. This is
a publicly available OC192¢c backbone trace. It walected on the

Abilene network at the link between the Indianapabuter node and
Kansas City on June 1st, 2004. The '20040601-20Q0§}0 part of this

trace was used. The length of this packet strea##flsseconds, with an
average number of packets per second of 95428.

This data set is available online thanks to the NRANetwork Analysis

Infrastructure [2].

2.3.Fractal Behavior of Network Traffic

When we look at the bin count vector of the Abikineeace, it seems to
behave in a very bursty way. Instinctively one vabthink that when

aggregated, the peaks will average out and theséitor will be less

bursty. In Figure 1 it is shown that this doesalpen for the captured
traffic trace. In fact, the aggregated and theioalgbin vector are very
much alike. This is why this behavior is calledsahilarity [3-6].

The reason for this odd behavior is the correlasocture of network
traffic. To show this, the original bin count vects randomized and
then again aggregated like before. Figure 3 shdwes the bursty
behavior disappears with increasing aggregatioel.levhe correlation
structure in real, self-similar traffic has the @weristic of not changing
with aggregation.

Another way to look at this self-similarity is thugh a variance-time
plot. This draws the variance of a bin vector agaithe aggregation
level. Now, for the memoryless Poisson generatioocess (which
implies exponentially distributed interarrival tis)ethe logarithmic plot
should decrease linearly with slope -1. In Figuiecan be seen that for
the Abilenelll trace this indeed is not the caskatvagain is a clear
proof of the non-Poisson behavior of real traffied].

The implications of this fractal behavior are quiteportant. The
consequence is that in reality, when more userergém traffic — the
network is more loaded — traffic will not averagst,cbut will become
even more bursty. This leads to possible congestioauters and could
lead to increased packet loss. This makes it irapotb take the fractal
behavior of real traffic into account when testangetwork application
or network hardware [9].

efogm m)4

Figure 2. Variance-time plot for the Abilenelll traffic trace

3. GOAL

The goal we want to achieve is generating a pastkeam which scales
the load imposed on the network under study withegain factor

compared to the original, measured reference tBygescaling we mean
multiplying the average number of packets per seauith a factor, but

also multiplying the moment values for all aggrégratievels with this

factor. Like this, the original moment behavior Iwlile retained after
scaling.

A possible way to achieve this goal is modeling theasured traffic,
altering this modeled traffic in some way, and tigemerating a generic
packet stream with the desired characteristics.ei@évpapers are
available on this method [10-11]. The drawbacklafse techniques is
their complexity. In this paper we will use one thiese models to
compare to other techniques of scaling the load.

We will first examine some straightforward techréquand apply these
to the problem of doubling the traffic load. Rethteork is done in [12].
Eventually we want to develop a technique that wods well as
modeling the packet stream, but with less compfexand less
computational effort. The strategy we follow thrbogt this paper is
creating — next to the original packet stream —eaosd stream,
independent of the first, and with the same lengtimber of packets
and moment behavior. Next, these streams will deddogether to
result in a double load packet stream.
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Figure 3. Randomized bin count vector at different aggregeaigwels.
(a) Bin count vector, not aggregated, (b) Bin cowettor aggregated with m42c) Bin count vector aggregated with fi=2

To study the self-similarity characteristics, thacket streams will be
divided into bins. The number of bins was chosecoating to the
smallest time scale at which correlation is presdémtcase of the
Abilenelll stream, this meant a division int&* ®ins. This equals a bin
length of 35.76us. For computational reasons, we always aggregate
powers of two, and therefore the packet streamerustdidy have to be
truncated on a number of bins equal to a powewof When we choose
a whole power of two as the number of bins, no pecwill be lost.
Additive centred moments are used. In case oféhersl order moment
15(X), this comes down to the mean squared deviatioso (ablled
variance):

1500) =Var(X) = (X~ § %)°].

The unnormalized centred third order momeyX), which measures
how symmetric a distribution is, is defined asduls:

13 =E[ (X~ E0°].

The additive centred fourth order momé&K), measuring the weight of
a distribution's tail, is described by:

14(X) = E[(X— g >q)4}—3< h( X)2.

Skewness and kurtosis were not used because thkytHe additive
property. We study second, third and fourth ordemmants at different
aggregation levels to characterize the distribut@nbin counts as
precise as possible.

When the second packet stream is generated, bmsofiboth streams
will be added up. Because the two streams ideadlyehthe same
moment behavior and are independent of each dtier,moments will
simply add up (thanks to the moments' additive ertyp, and a new
stream will be generated with moments equalingeviie moments of
the original stream at each aggregation level.

To make a good comparison of the queuing behawtwden different
techniques based on their moment behavior, thestanmgs of packets
within a bin are randomized. Like this, differendetween techniques
will be due to the difference in bin count disttion on certain
aggregation levels and not to intra-bin timestamsfridutions.

4. SIMPLE TECHNIQUES

4.1.Trace Division

First, individual streams were extracted from theasured trace, based
on the 4-tuple <Source IP address, Source portiriaéien IP address,
Destination port>. Then these streams were randgnayped into two
large packet streams. Because of the large nunfilsereams, eventually

both parts contain a comparable number of pacRets.1 will further be

taken as the reference packet stream, and degigmatehe original

packet stream. Part 2 is in fact an approximatibthe packet stream
that we are searching for to append to the origieaket stream. This
first technique is used mainly for comparison psgs because an
original packet stream of course can't be doubledthis.

4.2.Bin Count Doubling

The second quite straightforward technique createsecond packet
stream by taking the same bin count vector astigenal packet stream.
Packets inside the bins are then again randomlzkd.this a second
packet stream is obtained. These timestamps asnépg to the original
timestamps. This way, two packet streams with #meslength, number
of packets and moment behavior are added. Thisigehd can also be
seen as simply doubling the bin counts of the pabpacket stream.
One major drawback of this 'bin count doublingthe fact that both
streams are certainly not independent. This isrlglegsible when the
mean and variance are calculated:

V=EM=1Y v =23 g =20x
k k

os=E[Y)-E{Y

2
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Here the original bin count is representedXand the doubled packet
stream is designated B Both streams are divided intobins, andXx
and Y, represent the number of packets in kifor both streams. The
mean number of packets per bin indeed doublestHeutvariance gets
multiplied by four instead of two. The same happienthe higher order
moments; the third and fourth order moment get iplidd by
respectively eight and sixteen. This effect isalasady stated, due to the
high correlation between the two added packet sisea

4.3.Halving Interarrival Times

Thirdly, the interarrival times of the original past stream are halved.
This technique doesn't really create a second retréaut alters the
original stream. In this case, it's more difficiltpredict the effect on the
moments of the resulting stream, but a few calmnatwill give some

insight:
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Figure 4. Moment plots for the simple scenarios.
(a) Second order moment, (b) Third order moment-¢eirth order moment.
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Here the original bin count is again representedXbyand the half
interarrival times packet stream is designatedZbyThe relationship
between the original and the new time series isrglyy:Z; = X5, + Xy;.
The halving of interarrival times is equal to adgihe packets in each
two subsequent bins together. This principle isbigsin the previous
formula.

We define autocovariance as follows:

R = B X X4l -

We use this autocovariance wik¥0 andk=1, and define the altered
autocovariance:

R(0)= iz NG
n
k
1
R(@) = ;Z Xk Xic+1
k

2
R*(1) = z X X1 -
k=odd
The resulting variance can be written as:
02 =222~ 2IR(0)+ 2R*(1).

When a stationary packet stream is considdr¢tl) andR*(1) are equal
if enough bins are taken into account. With incireasiggregation level,
R(0) andR(1) get more equal, hence halving the interarrivaksngets
identical to doubling the bin count for large ireival times.

For higher order moments, calculations get a lotemetumbersome.

From Figure 4, the higher order moment behavior lmarregarded as
very comparable to second order moment behavior.

To conclude, second, third and fourth order momemés plotted in
Figure 4. As it can be seen, the deviation fromidleal scenario (Part 1,
moments*2) is quite large, especially for third afaurth order
moments. Even for the artificially generated doubkd stream (Part 1
+ Part 2), significant deviations are visible fagher order moments.
Another remark is that indeed doubling bin countyd &ahalving
interarrival times have the same effect on the nmimdor large
aggregation levels. Note that the differences ffer highest aggregation
levels are due to the small number of remaining laind the resulting
non-convergence of the moments.
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Figure 7. Moments for the sum of the original bin vector antated bin vector (rotation offset is shownegdnd).
(a) Second order moment, (b) Third order moment-¢eirth order moment.

5. ADVANCED TECHNIQUES

5.1.Bin Vector Rotation

After these fairly straightforward techniques, wg @nother bin count
altering technique to obtain better results. Thénnpaioblem with bin
count doubling was the large correlation between ttho - basically
equal - bin count vectors. Next, the second binntawector will be
rotated before summing it to the original bin vecthike this, the
optimal rotation offset can be found to get thereation with the
original bin vector as small as possible.

First, the rotation principle is shown in FigureNext to the original bin
count vector (Figure 5a), the rotated bin vectoshiswn, respectively
with a quarter length (Figure 5b) and half lengftiggre 5c) rotation
offset. The rotation offset is the number of bihattare taken from the
end of the bin count vector and are placed attére af the vector.

The moment behavior of the original bin count veatdl not change
below aggregation level"? when rotated with an offset of".2For
higher aggregation levels, our empirical study slaswn the deviation
to remain very small. To attain an ideal doublirighe packet stream,
the rotation offset has to be found that gener#tes smallest total
deviation for the second, third and fourth ordernmeats due to
correlation, taking into account every aggregatievel. The relative
value of the correlation error compared to therefoo zero rotation is
plotted in Figure 6 for aggregation level 0. Obwlyy this correlation

error is symmetric about half the length of thekmticstream. This can
be quite easily understood when looking at the adteristics of
autocorrelation. Another remark that has to be mizdéhe heavily
fluctuating behavior of these errors, especially foigher order
moments.

When the rotation technique is used, the problemahes of choosing
the optimal rotation offset. When the rotation effis chosen outside the
initial decrease of the error shown in Figure & deviation for second,
third and fourth order moments does not get undabgp high. The
relative change in deviation is largest for theosglcorder moment. For
optimal results, moment errors at all aggregatievels have to be
considered. However, Figure 7 shows that the randbpice of an
offset outside the initial decrease yields reswithin acceptable ranges,
at least for second and third order moments.

When an optimal solution is desired though, wetdryind the rotation
offset that results in the least total relativeoeriSearching through all
possible rotation offsets would be too time-conswgniTherefore, first
the change in rotation offset that changes ergmificantly is sought.
Based on this study, we search for the smallest &or rotation offsets
from 0 to half the packet stream'’s lengtff)(th steps of 2. This results
in a rotation offset of 2 + 2° for the Abilenelll trace. To achieve the
best results, rotation offsets in the neighborhobdhis value can be
searched for small improvement of errors. Thistidohe here because
the gain will be small compared to the extra corafioh time necessary.
For the rotated bin count vector, random intra-bimestamps are
calculated and appended to the original packearstr@ueuing behavior
will be looked at later.
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Figure 8. Plots of the moments for the advanced scenarios.
(a) Second order moment, (b) Third order moment-¢eirth order moment.

5.2. Traffic Model Packet Generation

Another possibility to create a second packet streadependent of the
original stream and with comparable moment behav®rby using
traffic models. The model used here is an addittygdic lognormal
model [10], whereto the moments of the original keacstream are
inputted, and a second packet stream with the $amg¢h is generated.
The model fits the second and third order momehtiseopacket stream.

The resulting moment behavior of both techniqueshmwvn in Figure 8.
The improvement compared to the simple techniguesclearly

noticable. For comparison, the first simple techeigsumming the two
parts of the trace, not applicable in reality)lmarawn. The rotation of
the bin count vector yields the best results, ¢jok#lowed by the use
of a model-based generated packet stream. Thetideviat the model-
based generated packet stream is especially léogehe fourth order
moment. This is due to the fourth order momenthetg fitted by the
model. If the computational effort is also taketoiaccount, the rotation
of the bin count vector can be considered as thedimice.

6. QUEUING BEHAVIOR

To study the practical implications of these diéfar techniques and
their moments behavior, queuing characteristicshsws delay
distribution and drop probability are simulated e$l simulations were
conducted in Matlab with a modeled single queugesywith a constant
packet service time of 7.6{6 for the Abilenelll packet stream. This
corresponds to a load of 75 %.

The plots in Figure 10 confirm that bin vector taia and packet stream
modeling yield far better results than the simgehniques. When we
look at delay distribution for example, the formtechniques predict a
probability far less than 10for delays larger than 10 milliseconds. The
latter techniques predict a much larger probabdityaimost 0.5 percent
for this magnitude of delays. In case of averagm dirobabilities, the
simple techniques predict a needed system capagitg to three times
as large as predicted by the more accurate tecksifpn average drop
probabilities of about 1 percent.

There still are differences between the rotatioohmégue and the
modeled packet stream though. A possible explamatimuld be the
better modeling of the fourth order moment by thttion technique.
This could be resolved by also fitting the fourtlier moments by the
traffic model.

7. SCALING WITH LARGER FACTORS

Until now, only scaling with a factor 2 was consef2 When we want

to scale with larger factors, the same rotationgipie can be used. The
maximum scaling factor to keep the correlation retnader control can

be predicted by looking at Figure 6. The fluctuasi@f the second order
moment deviation are the largest, and are thersfooan in more detail

in Figure 11.

When we plot the maximum absolute value of thereopall rotation

offsets larger than a given value, Figure 11 shtiws for the second
order moment a rotation offset greater than 6 X Keeps the error
smaller than 0.32 % of the error without rotatiételative third and
fourth order moment errors are for this rotatiofseff already far below
0.32 %. Thus a minimum rotation offset of 3.58 peicof the total
packet stream length is desirable.

Based on this number, we can predict that a discsetling of this
Abilenelll packet stream can be computed by summatated versions
of the original bin count vector up to a scalingtéa of about 28. Of
course, for high scaling factors, the overheadodhiced by using a
traffic model diminishes. For high factors it wibe better —
computationally and for precision — to use a tcaffiodel.
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Figure 9. Maximum absolute value of relative second order emm
error for rotation offsets larger than x.
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We remark that obviously a rotation offset of h&lé vector length is
even better in case of the second order momentltires in a relative
error of approximately 0.16 %. If searching for tbptimal rotation
offset is considered too time-consuming, chooshreggrbtation offset at
half the vector length is thus a reasonably goamcehfor doubling the
traffic load.

When one wants to scale traffic with non-discretetdrs (e.g. 1.3), the
traffic model technique will be the only possihilitThe moments can
then simply be multiplied by the desired factolldiwed by generation
of the packet stream.

8. CONCLUSIONS

We conclude that techniques like simply doubling bount or halving

interarrival times are, despite their simplicityptnquite accurate in
doubling the load inflicted by a packet stream.desally the correlation

between original and added packet streams gendeatgs deviations

from the ideal case.

In the study of other techniques, rotating the béttor to decrease
correlation seems to generate good results fomhadtiplication factors.

For larger factors, the correlation increases agafile computational

effort also rises. For these large factors, the tessilts with the smallest
effort can be generated by using traffic modelgthis paper we used a
dyadic lognormal model [10] that fits the mean a®tond and third
order moments. Moments behavior of this generatacket stream

equalled the ideal behavior quite good for second third order

moments. As a result, the queuing behavior resaimtiie rotation

technique queuing behavior quite well. An improveiean be

expected by also fitting fourth order moments. When-integer scaling
factors are wanted, traffic models have to be used.

Another important remark is the fact that we madbstraction of the
packet sizes. Because the packet delays in routeisly consist of

routing delays (lookups in routing tables), padkigé plays a minor role
here. But if we want to simulate the performanca sfvitched network,
the delay is mostly determined by the transmissiefay, which is

proportional to the packet size. In this scenamiext to a model for
packet interarrival times, an adequate modelingaufket sizes is also
necessary.
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