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Abstract 
While designing network applications, one has to check their 
performance on a network that is loaded by realistic background traffic. 
For this purpose, a packet stream can be captured on a network to obtain 
real background traffic. When the application has to be tested under 
various network loads, one can use straightforward techniques to alter 
the original captured traffic trace; for example faster replay of the packet 
stream. The problem with these simple techniques is that the packet 
stream will be altered in many ways, and thus a simple multiplication of 
the load inflicted by the packet stream on a network cannot be 
guaranteed. In this paper we will first describe a few simple techniques. 
Then, more complex techniques that better approach the goal of 
multiplying the traffic load by a known factor will be presented. 

1.1. INTRODUCTION 
Every day work is done on designing software for new internet 
applications. All the internet applications available today are supported 
by hardware that is continually optimized. Before integrating these 
products in real-life networks, some testing has to be done on their 
performance. For example when a networking application that 
implements some functionality between two peers has to be tested, the 
communication line between these two peers should be loaded with 
traffic comparable to real internet traffic. Other examples are hardware 
networking products like routers and switches. Their performance 
should be tested under traffic loads that at least resemble real internet 
traffic. Therefore, companies need traffic streams to either use as 
background traffic for their networking applications or as input to their 
hardware products. 
One possibility is to capture this traffic on a reference network [1]. The 
drawback of this technique is that when the applications have to be 
tested under different network loads, for each load another packet stream 
with the right number of packets per second has to be located and 
captured from a real-life network. More problems occur due to the 
fractal behavior of internet traffic. To make a good comparison, all the 
different streams must have a comparable self-similar behavior if the 
sole effect of increasing load is to be tested. This makes this technique 
quite difficult to use in practice. 
Other methods to change the load inflicted by a packet stream on a 
network are thus needed. In this paper we describe some methods to set 
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this load to a desirable level, using only one packet stream captured from 
a reference network. We present a technique that takes as little 
computational effort as possible, while creating a real multiplication of 
the load inflicted by the packet stream. 
Important to note is that for this study, the only data necessary from the 
reference network are the timestamps of the packets arriving at one 
point. A sequence of timestamps is then generated with the same 
characteristics as the reference stream, but with a different load. This 
packet stream could then be used, for example, to load a backbone 
connection between two routers. We thus will not model user events or 
servers, but remain on the lowest levels of the OSI-model. 
First some terms like self-similarity will be looked at. Then the goals we 
want to achieve are described more in detail. This is followed by a 
description and study of some simple, straightforward techniques to 
double the load of a packet stream. The results of these simple methods 
however are found to be unsatisfying. More advanced methods such as 
rotation of the bin count vector and making use of a traffic model are 
studied. Finally, some remarks are made on the discrete scaling of traffic 
with larger factors. Scaling with factors less than one is also shortly 
touched. 

2. PRELIMINARIES 

2.1. Discrete Traffic Models 
Discrete traffic models divide packet streams into time intervals. A 
certain length is chosen for this time interval and all timestamps within a 
certain time interval are placed in one 'bin'. Like this, a bin vector is 
obtained with each bin representing the number of packets that arrived in 
that time interval. The bin vector can be represented by a timeseries 
variable X, with Xk representing the number of packets in bin k. 
 
Another important concept is aggregation. An aggregated time series 
X(m) with aggregation level m is obtained by averaging the original time 
series X over non-overlapping blocks of m intervals: 
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This principle can be applied to the bin count vector. By aggregating, a 
packet stream is in fact averaged out over a certain time interval, 
normally reducing its peaked behavior. 
 



0 200 400 600 800 1000
0

2

4

6

8

10

12

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
1

2

3

4

5

6

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
2.5

3

3.5

4

4.5

Bin number

B
in

 c
ou

nt

 
 

Figure 1. Bin count vector at different aggregation levels.  
(a) Bin count vector, not aggregated, (b) Bin count vector aggregated with m=24, (c) Bin count vector aggregated with m=28. 

 

2.2. Used Traffic Traces 
The traffic trace used for this study is part of the AbileneIII trace. This is 
a publicly available OC192c backbone trace. It was collected on the 
Abilene network at the link between the Indianapolis router node and 
Kansas City on June 1st, 2004. The '20040601-200000-1.gz' part of this 
trace was used. The length of this packet stream is 600 seconds, with an 
average number of packets per second of 95428. 
This data set is available online thanks to the NLANR Network Analysis 
Infrastructure [2]. 

2.3. Fractal Behavior of Network Traffic 
When we look at the bin count vector of the AbileneIII trace, it seems to 
behave in a very bursty way. Instinctively one would think that when 
aggregated, the peaks will average out and the bin vector will be less 
bursty. In Figure 1 it is shown that this doesn't happen for the captured 
traffic trace. In fact, the aggregated and the original bin vector are very 
much alike. This is why this behavior is called self-similarity [3-6]. 
 
The reason for this odd behavior is the correlation structure of network 
traffic. To show this, the original bin count vector is randomized and 
then again aggregated like before. Figure 3 shows that the bursty 
behavior disappears with increasing aggregation level. The correlation 
structure in real, self-similar traffic has the characteristic of not changing 
with aggregation. 
 
Another way to look at this self-similarity is through a variance-time 
plot. This draws the variance of a bin vector against the aggregation 
level. Now, for the memoryless Poisson generation process (which 
implies exponentially distributed interarrival times), the logarithmic plot 
should decrease linearly with slope -1. In Figure 2 it can be seen that for 
the AbileneIII trace this indeed is not the case, what again is a clear 
proof of the non-Poisson behavior of real traffic [7-8]. 
 
The implications of this fractal behavior are quite important. The 
consequence is that in reality, when more users generate traffic – the 
network is more loaded – traffic will not average out, but will become 
even more bursty. This leads to possible congestion in routers and could 
lead to increased packet loss. This makes it important to take the fractal 
behavior of real traffic into account when testing a network application 
or network hardware [9]. 
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Figure 2. Variance-time plot for the AbileneIII traffic trace. 

3. GOAL 
The goal we want to achieve is generating a packet stream which scales 
the load imposed on the network under study with a certain factor 
compared to the original, measured reference trace. By scaling we mean 
multiplying the average number of packets per second with a factor, but 
also multiplying the moment values for all aggregation levels with this 
factor. Like this, the original moment behavior will be retained after 
scaling. 
 
A possible way to achieve this goal is modeling the measured traffic, 
altering this modeled traffic in some way, and then generating a generic 
packet stream with the desired characteristics. Several papers are 
available on this method [10-11]. The drawback of these techniques is 
their complexity. In this paper we will use one of these models to 
compare to other techniques of scaling the load. 
 
We will first examine some straightforward techniques and apply these 
to the problem of doubling the traffic load. Related work is done in [12]. 
Eventually we want to develop a technique that works as well as 
modeling the packet stream, but with less complexity and less 
computational effort. The strategy we follow throughout this paper is 
creating – next to the original packet stream – a second stream, 
independent of the first, and with the same length, number of packets 
and moment behavior. Next, these streams will be added together to 
result in a double load packet stream.  
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Figure 3. Randomized bin count vector at different aggregation levels. 
(a) Bin count vector, not aggregated, (b) Bin count vector aggregated with m=24, (c) Bin count vector aggregated with m=28. 

 
To study the self-similarity characteristics, the packet streams will be 
divided into bins. The number of bins was chosen according to the 
smallest time scale at which correlation is present. In case of the 
AbileneIII stream, this meant a division into 224 bins. This equals a bin 
length of 35.76 µs. For computational reasons, we always aggregate by 
powers of two, and therefore the packet streams under study have to be 
truncated on a number of bins equal to a power of two. When we choose 
a whole power of two as the number of bins, no packets will be lost.  
Additive centred moments are used. In case of the second order moment 
I2(X), this comes down to the mean squared deviation (also called 
variance): 

2
2( ) ( ) ( [ ])I X Var X E X E X = = −  

. 

The unnormalized centred third order moment I3(X), which measures 
how symmetric a distribution is, is defined as follows: 

3
3( ) ( [ ])I X E X E X = −  

. 

The additive centred fourth order moment I4(X), measuring the weight of 
a distribution's tail, is described by: 

4 2
4 2( ) ( [ ]) 3( ( ))I X E X E X I X = − −  

. 

Skewness and kurtosis were not used because they lack the additive 
property. We study second, third and fourth order moments at different 
aggregation levels to characterize the distribution of bin counts as 
precise as possible. 
 
When the second packet stream is generated, bin counts of both streams 
will be added up. Because the two streams ideally have the same 
moment behavior and are independent of each other, their moments will 
simply add up (thanks to the moments' additive property), and a new 
stream will be generated with moments equaling twice the moments of 
the original stream at each aggregation level. 
To make a good comparison of the queuing behavior between different 
techniques based on their moment behavior, the timestamps of packets 
within a bin are randomized. Like this, differences between techniques 
will be due to the difference in bin count distribution on certain 
aggregation levels and not to intra-bin timestamp distributions. 

4. SIMPLE TECHNIQUES 

4.1. Trace Division 
First, individual streams were extracted from the measured trace, based 
on the 4-tuple <Source IP address, Source port, Destination IP address, 
Destination port>. Then these streams were randomly grouped into two 
large packet streams. Because of the large number of streams, eventually 

both parts contain a comparable number of packets. Part 1 will further be 
taken as the reference packet stream, and designated as the original 
packet stream. Part 2 is in fact an approximation of the packet stream 
that we are searching for to append to the original packet stream. This 
first technique is used mainly for comparison purposes, because an 
original packet stream of course can't be doubled like this. 

4.2. Bin Count Doubling 
The second quite straightforward technique creates a second packet 
stream by taking the same bin count vector as the original packet stream. 
Packets inside the bins are then again randomized. Like this a second 
packet stream is obtained. These timestamps are appended to the original 
timestamps. This way, two packet streams with the same length, number 
of packets and moment behavior are added. This technique can also be 
seen as simply doubling the bin counts of the original packet stream. 
One major drawback of this 'bin count doubling' is the fact that both 
streams are certainly not independent. This is clearly visible when the 
mean and variance are calculated: 
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Here the original bin count is represented by X, and the doubled packet 
stream is designated by Y. Both streams are divided into n bins, and Xk 
and Yk represent the number of packets in bin k for both streams. The 
mean number of packets per bin indeed doubles, but the variance gets 
multiplied by four instead of two. The same happens to the higher order 
moments; the third and fourth order moment get multiplied by 
respectively eight and sixteen. This effect is, as already stated, due to the 
high correlation between the two added packet streams. 

4.3. Halving Interarrival Times 
Thirdly, the interarrival times of the original packet stream are halved. 
This technique doesn't really create a second stream, but alters the 
original stream. In this case, it's more difficult to predict the effect on the 
moments of the resulting stream, but a few calculations will give some 
insight:  
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Part 1 + Part 2
Part 1, moments*2
Part 1, interarrival times /2
Part 1 * 2
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Figure 4. Moment plots for the simple scenarios. 
(a) Second order moment, (b) Third order moment, (c) Fourth order moment. 
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Figure 5. Rotations of the bin count vector of AbileneIII, Part 1. 
(a) Original bin count vector, (b) Rotated bin count vector, offset a quarter of the vector length, (c) Rotated bin count vector, offset half the vector length. 
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Here the original bin count is again represented by X, and the half 
interarrival times packet stream is designated by Z. The relationship 
between the original and the new time series is given by: Zj = X2j-1 + X2j. 
The halving of interarrival times is equal to adding the packets in each 
two subsequent bins together. This principle is visible in the previous 
formula. 
We define autocovariance as follows: 

( ) [ ]i i kR k E X X+= . 

We use this autocovariance with k=0 and k=1, and define the altered 
autocovariance: 
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The resulting variance can be written as: 
2 2 22 2 (0) 2 *(1)z x R Rσ σ= ⋅ − ⋅ + ⋅ . 

When a stationary packet stream is considered, R(1) and R*(1) are equal 
if enough bins are taken into account. With increasing aggregation level, 
R(0) and R(1) get more equal, hence halving the interarrival times gets 
identical to doubling the bin count for large interarrival times. 
For higher order moments, calculations get a lot more cumbersome. 
From Figure 4, the higher order moment behavior can be regarded as 
very comparable to second order moment behavior. 
 
To conclude, second, third and fourth order moments are plotted in 
Figure 4. As it can be seen, the deviation from the ideal scenario (Part 1, 
moments*2) is quite large, especially for third and fourth order 
moments. Even for the artificially generated double load stream (Part 1 
+ Part 2), significant deviations are visible for higher order moments. 
Another remark is that indeed doubling bin counts and halving 
interarrival times have the same effect on the moments for large 
aggregation levels. Note that the differences for the highest aggregation 
levels are due to the small number of remaining bins and the resulting 
non-convergence of the moments.  
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Figure 6. Deviation of the moments of the composed packet streams due to correlation between original and rotated bin count vectors.  
Errors are plotted relative to the error for zero rotation. 

(a) Relative second order moment deviation, (b) Relative third order moment deviation, (c) Relative fourth order moment deviation. 
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Figure 7. Moments for the sum of the original bin vector and a rotated bin vector (rotation offset is shown in legend). 
(a) Second order moment, (b) Third order moment, (c) Fourth order moment. 

 
 

5. ADVANCED TECHNIQUES 

5.1. Bin Vector Rotation 
After these fairly straightforward techniques, we try another bin count 
altering technique to obtain better results. The main problem with bin 
count doubling was the large correlation between the two - basically 
equal - bin count vectors. Next, the second bin count vector will be 
rotated before summing it to the original bin vector. Like this, the 
optimal rotation offset can be found to get the correlation with the 
original bin vector as small as possible. 
 
First, the rotation principle is shown in Figure 5. Next to the original bin 
count vector (Figure 5a), the rotated bin vector is shown, respectively 
with a quarter length (Figure 5b) and half length (Figure 5c) rotation 
offset. The rotation offset is the number of bins that are taken from the 
end of the bin count vector and are placed at the start of the vector. 
The moment behavior of the original bin count vector will not change 
below aggregation level 2n+1 when rotated with an offset of 2n. For 
higher aggregation levels, our empirical study has shown the deviation 
to remain very small. To attain an ideal doubling of the packet stream, 
the rotation offset has to be found that generates the smallest total 
deviation for the second, third and fourth order moments due to 
correlation, taking into account every aggregation level. The relative 
value of the correlation error compared to the error for zero rotation is 
plotted in Figure 6 for aggregation level 0. Obviously, this correlation 

error is symmetric about half the length of the packet stream. This can 
be quite easily understood when looking at the characteristics of 
autocorrelation. Another remark that has to be made is the heavily 
fluctuating behavior of these errors, especially for higher order 
moments. 
 
When the rotation technique is used, the problem remains of choosing 
the optimal rotation offset. When the rotation offset is chosen outside the 
initial decrease of the error shown in Figure 6, the deviation for second, 
third and fourth order moments does not get unacceptably high. The 
relative change in deviation is largest for the second order moment. For 
optimal results, moment errors at all aggregation levels have to be 
considered. However, Figure 7 shows that the random choice of an 
offset outside the initial decrease yields results within acceptable ranges, 
at least for second and third order moments. 
 
When an optimal solution is desired though, we try to find the rotation 
offset that results in the least total relative error. Searching through all 
possible rotation offsets would be too time-consuming. Therefore, first 
the change in rotation offset that changes error significantly is sought. 
Based on this study, we search for the smallest error for rotation offsets 
from 0 to half the packet stream's length (224) in steps of 220. This results 
in a rotation offset of 221 + 220 for the AbileneIII trace. To achieve the 
best results, rotation offsets in the neighborhood of this value can be 
searched for small improvement of errors. This isn't done here because 
the gain will be small compared to the extra computation time necessary. 
For the rotated bin count vector, random intra-bin timestamps are 
calculated and appended to the original packet stream. Queuing behavior 
will be looked at later.  
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Figure 8. Plots of the moments for the advanced scenarios. 
(a) Second order moment, (b) Third order moment, (c) Fourth order moment. 

 

5.2. Traffic Model Packet Generation 
Another possibility to create a second packet stream, independent of the 
original stream and with comparable moment behavior, is by using 
traffic models. The model used here is an additive, dyadic lognormal 
model [10], whereto the moments of the original packet stream are 
inputted, and a second packet stream with the same length is generated. 
The model fits the second and third order moments of the packet stream. 
 
The resulting moment behavior of both techniques is shown in Figure 8. 
The improvement compared to the simple techniques is clearly 
noticable. For comparison, the first simple technique (summing the two 
parts of the trace, not applicable in reality) is also drawn. The rotation of 
the bin count vector yields the best results, closely followed by the use 
of a model-based generated packet stream. The deviation of the model-
based generated packet stream is especially larger for the fourth order 
moment. This is due to the fourth order moment not being fitted by the 
model. If the computational effort is also taken into account, the rotation 
of the bin count vector can be considered as the best choice. 

6. QUEUING BEHAVIOR 
To study the practical implications of these different techniques and 
their moments behavior, queuing characteristics such as delay 
distribution and drop probability are simulated. These simulations were 
conducted in Matlab with a modeled single queue system with a constant 
packet service time of 7.675 µs for the AbileneIII packet stream. This 
corresponds to a load of 75 %. 
The plots in Figure 10 confirm that bin vector rotation and packet stream 
modeling yield far better results than the simple techniques. When we 
look at delay distribution for example, the former techniques predict a 
probability far less than 10-6 for delays larger than 10 milliseconds. The 
latter techniques predict a much larger probability of almost 0.5 percent 
for this magnitude of delays. In case of average drop probabilities, the 
simple techniques predict a needed system capacity twice to three times 
as large as predicted by the more accurate techniques for average drop 
probabilities of about 1 percent. 
 
There still are differences between the rotation technique and the 
modeled packet stream though. A possible explanation could be the 
better modeling of the fourth order moment by the rotation technique. 
This could be resolved by also fitting the fourth order moments by the 
traffic model. 

7. SCALING WITH LARGER FACTORS 
Until now, only scaling with a factor 2 was considered. When we want 
to scale with larger factors, the same rotation principle can be used. The 
maximum scaling factor to keep the correlation error under control can 
be predicted by looking at Figure 6. The fluctuations of the second order 
moment deviation are the largest, and are therefore shown in more detail 
in Figure 11.  
 
When we plot the maximum absolute value of the error for all rotation 
offsets larger than a given value, Figure 11 shows that for the second 
order moment a rotation offset greater than 6 x 105 keeps the error 
smaller than 0.32 % of the error without rotation. Relative third and 
fourth order moment errors are for this rotation offset already far below 
0.32 %. Thus a minimum rotation offset of 3.58 percent of the total 
packet stream length is desirable. 
 
Based on this number, we can predict that a discrete scaling of this 
AbileneIII packet stream can be computed by summing rotated versions 
of the original bin count vector up to a scaling factor of about 28. Of 
course, for high scaling factors, the overhead introduced by using a 
traffic model diminishes. For high factors it will be better – 
computationally and for precision – to use a traffic model. 
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Figure 9. Maximum absolute value of relative second order moment 
error for rotation offsets larger than x. 
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Figure 10. Queuing behavior for different scenarios (randomized intra-bin timestamps). 
(a) Delay distribution for infinite queue size, (b) Average drop probability for finite queue size, (c) Average delay for finite queue size. 
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Figure 11. Relative second order moment error for increasing rotation offset. 
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We remark that obviously a rotation offset of half the vector length is 
even better in case of the second order moment, resulting in a relative 
error of approximately 0.16 %. If searching for the optimal rotation 
offset is considered too time-consuming, choosing the rotation offset at 
half the vector length is thus a reasonably good choice for doubling the 
traffic load. 
 
When one wants to scale traffic with non-discrete factors (e.g. 1.3), the 
traffic model technique will be the only possibility. The moments can 
then simply be multiplied by the desired factor, followed by generation 
of the packet stream. 

8. CONCLUSIONS 
We conclude that techniques like simply doubling bin count or halving 
interarrival times are, despite their simplicity, not quite accurate in 
doubling the load inflicted by a packet stream. Especially the correlation 
between original and added packet streams generates large deviations 
from the ideal case. 
In the study of other techniques, rotating the bin vector to decrease 
correlation seems to generate good results for low multiplication factors. 
For larger factors, the correlation increases again, while computational 
effort also rises. For these large factors, the best results with the smallest 
effort can be generated by using traffic models. In this paper we used a 
dyadic lognormal model [10] that fits the mean and second and third 
order moments. Moments behavior of this generated packet stream 
equalled the ideal behavior quite good for second and third order 
moments. As a result, the queuing behavior resembled the rotation 
technique queuing behavior quite well. An improvement can be 
expected by also fitting fourth order moments. When non-integer scaling 
factors are wanted, traffic models have to be used. 
 
Another important remark is the fact that we made abstraction of the 
packet sizes. Because the packet delays in routers mainly consist of 
routing delays (lookups in routing tables), packet size plays a minor role 
here. But if we want to simulate the performance of a switched network, 
the delay is mostly determined by the transmission delay, which is 
proportional to the packet size. In this scenario, next to a model for 
packet interarrival times, an adequate modeling of packet sizes is also 
necessary. 
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