
Traffic Load Scaling for Network Design

K. Sleurs*, J. Potemans, B. Van den Broeck, J. Theunis, D. Li, E. Van Lil, A. Van de Capelle
Department of Electrical Engineering – ESAT, TELEMIC division

Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

kristof.sleurs@esat.kuleuven.be

Keywords: Traffic scaling, Network design, Self-similarity, Load
scaling, Performance study.

Abstract
While designing network applications, one has to check their
performance on a network that is loaded by realistic background traffic.
For this purpose, a packet stream can be captured on a network to obtain
real background traffic. When the application has to be tested under
various network loads, one can use straightforward techniques to alter
the original captured traffic trace; for example faster replay of the packet
stream. The problem with these simple techniques is that the packet
stream will be altered in many ways, and thus a simple multiplication of
the load inflicted by the packet stream on a network cannot be
guaranteed. In this paper we will first describe a few simple techniques.
Then, more complex techniques that better approach the goal of
multiplying the traffic load by a known factor will be presented.

1.1. INTRODUCTION
Every day work is done on designing software for new internet
applications. All the internet applications available today are supported
by hardware that is continually optimized. Before integrating these
products in real-life networks, some testing has to be done on their
performance. For example when a networking application that
implements some functionality between two peers has to be tested, the
communication line between these two peers should be loaded with
traffic comparable to real internet traffic. Other examples are hardware
networking products like routers and switches. Their performance
should be tested under traffic loads that at least resemble real internet
traffic. Therefore, companies need traffic streams to either use as
background traffic for their networking applications or as input to their
hardware products.
One possibility is to capture this traffic on a reference network [1]. The
drawback of this technique is that when the applications have to be
tested under different network loads, for each load another packet stream
with the right number of packets per second has to be located and
captured from a real-life network. More problems occur due to the
fractal behavior of internet traffic. To make a good comparison, all the
different streams must have a comparable self-similar behavior if the
sole effect of increasing load is to be tested. This makes this technique
quite difficult to use in practice.
Other methods to change the load inflicted by a packet stream on a
network are thus needed. In this paper we describe some methods to set

* Kristof Sleurs is Research Assistant of the Fund for Scientific
Research Flanders (FWO-Vlaanderen), Belgium.

this load to a desirable level, using only one packet stream captured from
a reference network. We present a technique that takes as little
computational effort as possible, while creating a real multiplication of
the load inflicted by the packet stream.
Important to note is that for this study, the only data necessary from the
reference network are the timestamps of the packets arriving at one
point. A sequence of timestamps is then generated with the same
characteristics as the reference stream, but with a different load. This
packet stream could then be used, for example, to load a backbone
connection between two routers. We thus will not model user events or
servers, but remain on the lowest levels of the OSI-model.
First some terms like self-similarity will be looked at. Then the goals we
want to achieve are described more in detail. This is followed by a
description and study of some simple, straightforward techniques to
double the load of a packet stream. The results of these simple methods
however are found to be unsatisfying. More advanced methods such as
rotation of the bin count vector and making use of a traffic model are
studied. Finally, some remarks are made on the discrete scaling of traffic
with larger factors. Scaling with factors less than one is also shortly
touched.

2. PRELIMINARIES

2.1. Discrete Traffic Models
Discrete traffic models divide packet streams into time intervals. A
certain length is chosen for this time interval and all timestamps within a
certain time interval are placed in one 'bin'. Like this, a bin vector is
obtained with each bin representing the number of packets that arrived in
that time interval. The bin vector can be represented by a timeseries
variable X, with Xk representing the number of packets in bin k.

Another important concept is aggregation. An aggregated time series
X(m) with aggregation level m is obtained by averaging the original time
series X over non-overlapping blocks of m intervals:

()

(1) 1

1
jm

m
kj

k j m

X X
m

= − +

= ∑

with 1,2,...,j n m= , where n represents the number of elements in the

original time series.

This principle can be applied to the bin count vector. By aggregating, a
packet stream is in fact averaged out over a certain time interval,
normally reducing its peaked behavior.

0 200 400 600 800 1000
0

2

4

6

8

10

12

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
1

2

3

4

5

6

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
2.5

3

3.5

4

4.5

Bin number

B
in

 c
ou

nt

Figure 1. Bin count vector at different aggregation levels.
(a) Bin count vector, not aggregated, (b) Bin count vector aggregated with m=24, (c) Bin count vector aggregated with m=28.

2.2. Used Traffic Traces
The traffic trace used for this study is part of the AbileneIII trace. This is
a publicly available OC192c backbone trace. It was collected on the
Abilene network at the link between the Indianapolis router node and
Kansas City on June 1st, 2004. The '20040601-200000-1.gz' part of this
trace was used. The length of this packet stream is 600 seconds, with an
average number of packets per second of 95428.
This data set is available online thanks to the NLANR Network Analysis
Infrastructure [2].

2.3. Fractal Behavior of Network Traffic
When we look at the bin count vector of the AbileneIII trace, it seems to
behave in a very bursty way. Instinctively one would think that when
aggregated, the peaks will average out and the bin vector will be less
bursty. In Figure 1 it is shown that this doesn't happen for the captured
traffic trace. In fact, the aggregated and the original bin vector are very
much alike. This is why this behavior is called self-similarity [3-6].

The reason for this odd behavior is the correlation structure of network
traffic. To show this, the original bin count vector is randomized and
then again aggregated like before. Figure 3 shows that the bursty
behavior disappears with increasing aggregation level. The correlation
structure in real, self-similar traffic has the characteristic of not changing
with aggregation.

Another way to look at this self-similarity is through a variance-time
plot. This draws the variance of a bin vector against the aggregation
level. Now, for the memoryless Poisson generation process (which
implies exponentially distributed interarrival times), the logarithmic plot
should decrease linearly with slope -1. In Figure 2 it can be seen that for
the AbileneIII trace this indeed is not the case, what again is a clear
proof of the non-Poisson behavior of real traffic [7-8].

The implications of this fractal behavior are quite important. The
consequence is that in reality, when more users generate traffic – the
network is more loaded – traffic will not average out, but will become
even more bursty. This leads to possible congestion in routers and could
lead to increased packet loss. This makes it important to take the fractal
behavior of real traffic into account when testing a network application
or network hardware [9].

0 1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

log
10

(m)

lo
g 10

(I
2(X

(m
)))

Figure 2. Variance-time plot for the AbileneIII traffic trace.

3. GOAL
The goal we want to achieve is generating a packet stream which scales
the load imposed on the network under study with a certain factor
compared to the original, measured reference trace. By scaling we mean
multiplying the average number of packets per second with a factor, but
also multiplying the moment values for all aggregation levels with this
factor. Like this, the original moment behavior will be retained after
scaling.

A possible way to achieve this goal is modeling the measured traffic,
altering this modeled traffic in some way, and then generating a generic
packet stream with the desired characteristics. Several papers are
available on this method [10-11]. The drawback of these techniques is
their complexity. In this paper we will use one of these models to
compare to other techniques of scaling the load.

We will first examine some straightforward techniques and apply these
to the problem of doubling the traffic load. Related work is done in [12].
Eventually we want to develop a technique that works as well as
modeling the packet stream, but with less complexity and less
computational effort. The strategy we follow throughout this paper is
creating – next to the original packet stream – a second stream,
independent of the first, and with the same length, number of packets
and moment behavior. Next, these streams will be added together to
result in a double load packet stream.

(a) (c) (b)

0 200 400 600 800 1000
0

2

4

6

8

10

12

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
1

2

3

4

5

6

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
2.5

3

3.5

4

4.5

Bin number

B
in

 c
ou

nt

Figure 3. Randomized bin count vector at different aggregation levels.
(a) Bin count vector, not aggregated, (b) Bin count vector aggregated with m=24, (c) Bin count vector aggregated with m=28.

To study the self-similarity characteristics, the packet streams will be
divided into bins. The number of bins was chosen according to the
smallest time scale at which correlation is present. In case of the
AbileneIII stream, this meant a division into 224 bins. This equals a bin
length of 35.76 µs. For computational reasons, we always aggregate by
powers of two, and therefore the packet streams under study have to be
truncated on a number of bins equal to a power of two. When we choose
a whole power of two as the number of bins, no packets will be lost.
Additive centred moments are used. In case of the second order moment
I2(X), this comes down to the mean squared deviation (also called
variance):

2
2() () ([])I X Var X E X E X = = −  

.

The unnormalized centred third order moment I3(X), which measures
how symmetric a distribution is, is defined as follows:

3
3() ([])I X E X E X = −  

.

The additive centred fourth order moment I4(X), measuring the weight of
a distribution's tail, is described by:

4 2
4 2() ([]) 3(())I X E X E X I X = − −  

.

Skewness and kurtosis were not used because they lack the additive
property. We study second, third and fourth order moments at different
aggregation levels to characterize the distribution of bin counts as
precise as possible.

When the second packet stream is generated, bin counts of both streams
will be added up. Because the two streams ideally have the same
moment behavior and are independent of each other, their moments will
simply add up (thanks to the moments' additive property), and a new
stream will be generated with moments equaling twice the moments of
the original stream at each aggregation level.
To make a good comparison of the queuing behavior between different
techniques based on their moment behavior, the timestamps of packets
within a bin are randomized. Like this, differences between techniques
will be due to the difference in bin count distribution on certain
aggregation levels and not to intra-bin timestamp distributions.

4. SIMPLE TECHNIQUES

4.1. Trace Division
First, individual streams were extracted from the measured trace, based
on the 4-tuple <Source IP address, Source port, Destination IP address,
Destination port>. Then these streams were randomly grouped into two
large packet streams. Because of the large number of streams, eventually

both parts contain a comparable number of packets. Part 1 will further be
taken as the reference packet stream, and designated as the original
packet stream. Part 2 is in fact an approximation of the packet stream
that we are searching for to append to the original packet stream. This
first technique is used mainly for comparison purposes, because an
original packet stream of course can't be doubled like this.

4.2. Bin Count Doubling
The second quite straightforward technique creates a second packet
stream by taking the same bin count vector as the original packet stream.
Packets inside the bins are then again randomized. Like this a second
packet stream is obtained. These timestamps are appended to the original
timestamps. This way, two packet streams with the same length, number
of packets and moment behavior are added. This technique can also be
seen as simply doubling the bin counts of the original packet stream.
One major drawback of this 'bin count doubling' is the fact that both
streams are certainly not independent. This is clearly visible when the
mean and variance are calculated:

1 2
[] 2k k

k k

Y E Y Y X X
n n

= = = = ⋅∑ ∑

2 2 2

2

2
2

2 2

[] []

4 4

2

y

k k

k k

x

E Y E Y

X X
n n

σ

σ

= −

 
 = −
  
 

= ⋅

∑ ∑ .

Here the original bin count is represented by X, and the doubled packet
stream is designated by Y. Both streams are divided into n bins, and Xk
and Yk represent the number of packets in bin k for both streams. The
mean number of packets per bin indeed doubles, but the variance gets
multiplied by four instead of two. The same happens to the higher order
moments; the third and fourth order moment get multiplied by
respectively eight and sixteen. This effect is, as already stated, due to the
high correlation between the two added packet streams.

4.3. Halving Interarrival Times
Thirdly, the interarrival times of the original packet stream are halved.
This technique doesn't really create a second stream, but alters the
original stream. In this case, it's more difficult to predict the effect on the
moments of the resulting stream, but a few calculations will give some
insight:

(a) (c) (b)

0 1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

log
10

(m)

lo
g 10

(I
2(X

(m
)))

Part 1 + Part 2
Part 1, moments*2
Part 1, interarrival times /2
Part 1 * 2

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

log
10

(m)

lo
g 10

(a
bs

(I 3(X
(m

)))
)

Part 1 + Part 2
Part 1, moments*2
Part 1, interarrival times /2
Part 1 * 2

0 1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

1

2

3

log
10

(m)

lo
g 10

(a
bs

(I 4(X
(m

)))
)

Part 1 + Part 2
Part 1, moments*2
Part 1, interarrival times /2
Part 1 * 2

Figure 4. Moment plots for the simple scenarios.
(a) Second order moment, (b) Third order moment, (c) Fourth order moment.

0 200 400 600 800 1000
1.4

1.6

1.8

2

2.2

2.4

2.6

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
1.4

1.6

1.8

2

2.2

2.4

2.6

Bin number

B
in

 c
ou

nt

0 200 400 600 800 1000
1.4

1.6

1.8

2

2.2

2.4

2.6

Bin number

B
in

 c
ou

nt

Figure 5. Rotations of the bin count vector of AbileneIII, Part 1.
(a) Original bin count vector, (b) Rotated bin count vector, offset a quarter of the vector length, (c) Rotated bin count vector, offset half the vector length.

2

2 1 2

1

1

1 2
()

2

2
2

n

j j j

j j

n

k

k

Z Z X X
n n

X X
n

−
=

=

= = +

= = ⋅

∑ ∑

∑

2
2 2

2 2
2

1 1

2 2
2

2 2 12
1

1 4

2

2 4 4

n n

z j j

j j

n

k k j j

k k j

Z Z
n n

X X X X
n nn

σ
= =

−
=

 
 = −  
 
 

 
 = − +
  
 

∑ ∑

∑ ∑ ∑

.

Here the original bin count is again represented by X, and the half
interarrival times packet stream is designated by Z. The relationship
between the original and the new time series is given by: Zj = X2j-1 + X2j.
The halving of interarrival times is equal to adding the packets in each
two subsequent bins together. This principle is visible in the previous
formula.
We define autocovariance as follows:

() []i i kR k E X X+= .

We use this autocovariance with k=0 and k=1, and define the altered
autocovariance:

21
(0) k

k

R X
n

= ∑

1
1

(1) k k

k

R X X
n += ∑

1
2

*(1) k k

k odd

R X X
n +

=

= ∑ .

The resulting variance can be written as:
2 2 22 2 (0) 2 *(1)z x R Rσ σ= ⋅ − ⋅ + ⋅ .

When a stationary packet stream is considered, R(1) and R*(1) are equal
if enough bins are taken into account. With increasing aggregation level,
R(0) and R(1) get more equal, hence halving the interarrival times gets
identical to doubling the bin count for large interarrival times.
For higher order moments, calculations get a lot more cumbersome.
From Figure 4, the higher order moment behavior can be regarded as
very comparable to second order moment behavior.

To conclude, second, third and fourth order moments are plotted in
Figure 4. As it can be seen, the deviation from the ideal scenario (Part 1,
moments*2) is quite large, especially for third and fourth order
moments. Even for the artificially generated double load stream (Part 1
+ Part 2), significant deviations are visible for higher order moments.
Another remark is that indeed doubling bin counts and halving
interarrival times have the same effect on the moments for large
aggregation levels. Note that the differences for the highest aggregation
levels are due to the small number of remaining bins and the resulting
non-convergence of the moments.

(a) (c) (b)

(a) (c) (b)

0 5 10 15

x 10
6

−2

−1

0

1

2

3

4

5
x 10

−3

rotation−offset

se
co

n
d

 o
rd

e
r

e
rr

o
r

0 5 10 15

x 10
6

−2

−1

0

1

2

3
x 10

−3

rotation−offset

th
ir
d

 o
rd

e
r

e
rr

o
r

0 5 10 15

x 10
6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

rotation−offset

fo
ur

th
 o

rd
er

 e
rr

or

Figure 6. Deviation of the moments of the composed packet streams due to correlation between original and rotated bin count vectors.
Errors are plotted relative to the error for zero rotation.

(a) Relative second order moment deviation, (b) Relative third order moment deviation, (c) Relative fourth order moment deviation.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

log
10

(m)

lo
g 10

(I
2(X

(m
)))

Part 1 + Part 1

Part 1 + Rotated part 1 (220)

Part 1 + Rotated part 1 (222)

Part 1 + Rotated part 1 (223)

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

log
10

(m)

lo
g 10

(I
3(X

(m
)))

Part 1 + Part 1

Part 1 + Rotated part 1 (220)

Part 1 + Rotated part 1 (222)

Part 1 + Rotated part 1 (223)

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

log
10

(m)

lo
g 10

(I
4(X

(m
)))

Part 1 + Part 1

Part 1 + Rotated part 1 (220)

Part 1 + Rotated part 1 (222)

Part 1 + Rotated part 1 (223)

Figure 7. Moments for the sum of the original bin vector and a rotated bin vector (rotation offset is shown in legend).
(a) Second order moment, (b) Third order moment, (c) Fourth order moment.

5. ADVANCED TECHNIQUES

5.1. Bin Vector Rotation
After these fairly straightforward techniques, we try another bin count
altering technique to obtain better results. The main problem with bin
count doubling was the large correlation between the two - basically
equal - bin count vectors. Next, the second bin count vector will be
rotated before summing it to the original bin vector. Like this, the
optimal rotation offset can be found to get the correlation with the
original bin vector as small as possible.

First, the rotation principle is shown in Figure 5. Next to the original bin
count vector (Figure 5a), the rotated bin vector is shown, respectively
with a quarter length (Figure 5b) and half length (Figure 5c) rotation
offset. The rotation offset is the number of bins that are taken from the
end of the bin count vector and are placed at the start of the vector.
The moment behavior of the original bin count vector will not change
below aggregation level 2n+1 when rotated with an offset of 2n. For
higher aggregation levels, our empirical study has shown the deviation
to remain very small. To attain an ideal doubling of the packet stream,
the rotation offset has to be found that generates the smallest total
deviation for the second, third and fourth order moments due to
correlation, taking into account every aggregation level. The relative
value of the correlation error compared to the error for zero rotation is
plotted in Figure 6 for aggregation level 0. Obviously, this correlation

error is symmetric about half the length of the packet stream. This can
be quite easily understood when looking at the characteristics of
autocorrelation. Another remark that has to be made is the heavily
fluctuating behavior of these errors, especially for higher order
moments.

When the rotation technique is used, the problem remains of choosing
the optimal rotation offset. When the rotation offset is chosen outside the
initial decrease of the error shown in Figure 6, the deviation for second,
third and fourth order moments does not get unacceptably high. The
relative change in deviation is largest for the second order moment. For
optimal results, moment errors at all aggregation levels have to be
considered. However, Figure 7 shows that the random choice of an
offset outside the initial decrease yields results within acceptable ranges,
at least for second and third order moments.

When an optimal solution is desired though, we try to find the rotation
offset that results in the least total relative error. Searching through all
possible rotation offsets would be too time-consuming. Therefore, first
the change in rotation offset that changes error significantly is sought.
Based on this study, we search for the smallest error for rotation offsets
from 0 to half the packet stream's length (224) in steps of 220. This results
in a rotation offset of 221 + 220 for the AbileneIII trace. To achieve the
best results, rotation offsets in the neighborhood of this value can be
searched for small improvement of errors. This isn't done here because
the gain will be small compared to the extra computation time necessary.
For the rotated bin count vector, random intra-bin timestamps are
calculated and appended to the original packet stream. Queuing behavior
will be looked at later.

(a) (c) (b)

(a) (c) (b)

0 1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

log
10

(m)

lo
g 10

(I
2(X

(m
)))

Part 1 + Part 2
Part 1, moments * 2
Part 1 + Model part 1

Part 1 + Rotated part 1 (221+220)

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

log
10

(m)

lo
g 10

(a
bs

(I 3(X
(m

)))
)

Part 1 + Part 2
Part 1, moments * 2
Part 1 + Model part 1

Part 1 + Rotated part 1 (221+220)

0 1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

1

2

log
10

(m)

lo
g 10

(a
bs

(I 4(X
(m

)))
)

Part 1 + Part 2
Part 1, moments * 2
Part 1 + Model part 1

Part 1 + Rotated part 1 (221+220)

Figure 8. Plots of the moments for the advanced scenarios.
(a) Second order moment, (b) Third order moment, (c) Fourth order moment.

5.2. Traffic Model Packet Generation
Another possibility to create a second packet stream, independent of the
original stream and with comparable moment behavior, is by using
traffic models. The model used here is an additive, dyadic lognormal
model [10], whereto the moments of the original packet stream are
inputted, and a second packet stream with the same length is generated.
The model fits the second and third order moments of the packet stream.

The resulting moment behavior of both techniques is shown in Figure 8.
The improvement compared to the simple techniques is clearly
noticable. For comparison, the first simple technique (summing the two
parts of the trace, not applicable in reality) is also drawn. The rotation of
the bin count vector yields the best results, closely followed by the use
of a model-based generated packet stream. The deviation of the model-
based generated packet stream is especially larger for the fourth order
moment. This is due to the fourth order moment not being fitted by the
model. If the computational effort is also taken into account, the rotation
of the bin count vector can be considered as the best choice.

6. QUEUING BEHAVIOR
To study the practical implications of these different techniques and
their moments behavior, queuing characteristics such as delay
distribution and drop probability are simulated. These simulations were
conducted in Matlab with a modeled single queue system with a constant
packet service time of 7.675 µs for the AbileneIII packet stream. This
corresponds to a load of 75 %.
The plots in Figure 10 confirm that bin vector rotation and packet stream
modeling yield far better results than the simple techniques. When we
look at delay distribution for example, the former techniques predict a
probability far less than 10-6 for delays larger than 10 milliseconds. The
latter techniques predict a much larger probability of almost 0.5 percent
for this magnitude of delays. In case of average drop probabilities, the
simple techniques predict a needed system capacity twice to three times
as large as predicted by the more accurate techniques for average drop
probabilities of about 1 percent.

There still are differences between the rotation technique and the
modeled packet stream though. A possible explanation could be the
better modeling of the fourth order moment by the rotation technique.
This could be resolved by also fitting the fourth order moments by the
traffic model.

7. SCALING WITH LARGER FACTORS
Until now, only scaling with a factor 2 was considered. When we want
to scale with larger factors, the same rotation principle can be used. The
maximum scaling factor to keep the correlation error under control can
be predicted by looking at Figure 6. The fluctuations of the second order
moment deviation are the largest, and are therefore shown in more detail
in Figure 11.

When we plot the maximum absolute value of the error for all rotation
offsets larger than a given value, Figure 11 shows that for the second
order moment a rotation offset greater than 6 x 105 keeps the error
smaller than 0.32 % of the error without rotation. Relative third and
fourth order moment errors are for this rotation offset already far below
0.32 %. Thus a minimum rotation offset of 3.58 percent of the total
packet stream length is desirable.

Based on this number, we can predict that a discrete scaling of this
AbileneIII packet stream can be computed by summing rotated versions
of the original bin count vector up to a scaling factor of about 28. Of
course, for high scaling factors, the overhead introduced by using a
traffic model diminishes. For high factors it will be better –
computationally and for precision – to use a traffic model.

1 2 3 4 5 6 7 8

x 10
6

−3

−2.5

−2

−1.5

−1

−0.5

0

x

lo
g 10

(m
ax

(e
rr

or
(x

:e
nd

))
)

Figure 9. Maximum absolute value of relative second order moment
error for rotation offsets larger than x.

(a) (c) (b)

10
−5

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d (seconds)

P
[D

el
ay

 >
 d

]

Part 1 + Part 2
Part 1, interarrival times /2
Part 1 * 2

10

−5
10

−4
10

−3
10

−2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d (seconds)

P
[D

el
ay

 >
 d

]

Part 1 + Part 2
Part 1 + Model part 1

Part 1 + Rotated part 1 (221+220)

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

System capacity (packets)

A
ve

ra
ge

 d
ro

p
pr

ob
ab

ili
ty

Part 1 + Part 2
Part 1, interarrival times /2
Part 1 * 2

10

0
10

1
10

2
10

3
10

−8

10
−6

10
−4

10
−2

10
0

System capacity (packets)

A
ve

ra
ge

 d
ro

p
pr

ob
ab

ili
ty

Part 1 + Part 2
Part 1 + Model part 1

Part 1 + Rotated part 1 (221+220)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

System capacity (packets)

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Part 1 + Part 2
Part 1, interarrival times /2
Part 1 * 2

10

0
10

1
10

2
10

3
10

4
10

−6

10
−5

10
−4

System capacity (packets)

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Part 1 + Part 2
Part 1 + Model part 1

Part 1 + Rotated part 1 (221+220)

Figure 10. Queuing behavior for different scenarios (randomized intra-bin timestamps).
(a) Delay distribution for infinite queue size, (b) Average drop probability for finite queue size, (c) Average delay for finite queue size.

0 0.5 1 1.5 2 2.5

x 10
6

−8

−7

−6

−5

−4

−3

−2

−1

0

rotation−offset

lo
g 10

(S
ec

on
d

or
de

r
m

om
en

t e
rr

or
)

1 2 3 4 5 6 7 8

x 10
6

−8

−6

−4

−2

0

2

4

6

8

10

x 10
−3

rotation−offset

S
ec

on
d

or
de

r
m

om
en

t e
rr

or

Figure 11. Relative second order moment error for increasing rotation offset.

(a)

(c)

(b)

We remark that obviously a rotation offset of half the vector length is
even better in case of the second order moment, resulting in a relative
error of approximately 0.16 %. If searching for the optimal rotation
offset is considered too time-consuming, choosing the rotation offset at
half the vector length is thus a reasonably good choice for doubling the
traffic load.

When one wants to scale traffic with non-discrete factors (e.g. 1.3), the
traffic model technique will be the only possibility. The moments can
then simply be multiplied by the desired factor, followed by generation
of the packet stream.

8. CONCLUSIONS
We conclude that techniques like simply doubling bin count or halving
interarrival times are, despite their simplicity, not quite accurate in
doubling the load inflicted by a packet stream. Especially the correlation
between original and added packet streams generates large deviations
from the ideal case.
In the study of other techniques, rotating the bin vector to decrease
correlation seems to generate good results for low multiplication factors.
For larger factors, the correlation increases again, while computational
effort also rises. For these large factors, the best results with the smallest
effort can be generated by using traffic models. In this paper we used a
dyadic lognormal model [10] that fits the mean and second and third
order moments. Moments behavior of this generated packet stream
equalled the ideal behavior quite good for second and third order
moments. As a result, the queuing behavior resembled the rotation
technique queuing behavior quite well. An improvement can be
expected by also fitting fourth order moments. When non-integer scaling
factors are wanted, traffic models have to be used.

Another important remark is the fact that we made abstraction of the
packet sizes. Because the packet delays in routers mainly consist of
routing delays (lookups in routing tables), packet size plays a minor role
here. But if we want to simulate the performance of a switched network,
the delay is mostly determined by the transmission delay, which is
proportional to the packet size. In this scenario, next to a model for
packet interarrival times, an adequate modeling of packet sizes is also
necessary.

REFERENCES
[1] G. Iannaccone, C. Diot, I. Graham and N. McKeown.

“Monitoring very high speed links.” In IMW '01:
Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, pages 267-271, 2001.

[2] A. McGregor, H.W. Braun and J. Brown. “The NLANR
Network Analysis Infrastructure.” IEEE Communications
Magazine, 38(5): 122-128, 2000.

[3] Mark Crovella and Azer Bestavros. “Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes.”
IEEE/ACM Transactions on Networking, 5(6): 835-846,
1997.

[4] Will E. Leland, Murad S. Taqq, Walter Willinger and Daniel
V. Wilson. “On the self-similar nature of Ethernet traffic.” In
Proc. of ACM SIGCOMM, pages 183-193, San Francisco,
California, 1993.

[5] Trang Dang Dinh, Sándor Molnár and Atilla Vidács.
“Investigation of Fractal Properties in Data Traffic.” Journal
on Communications, XLIX:12-18, November-December
1998.

[6] D. Figueiredo, B. Liu, V. Misra and D. Towsley. “On the
Autocorrelation Structure of TCP Traffic.” Computer
Networks Journal Special Issue, 2002.

[7] Vern Paxson and Sally Floyd. “Wide area traffic: the failure
of Poisson modeling.” IEEE/ACM Transactions on
Networking, 3(3): 226-244, 1995.

[8] W. Willinger and V. Paxson. “Where Mathematics meets the
Internet.” Notices of the American Mathematical Society,
45(8): 961-970, 1998.

[9] K. Park, G. Kim and M. Crovella. “On the effect of traffic
self-similarity on network performance.” In Proc. of the SPIE
Int. Conference on Performance and Control of Network
Systems, Nov. 1997.

[10] J. Potemans, J. Theunis, B. Van den Broeck, Y. Guan, E. Van
Lil and A. Van de Capelle. “Modelling Fractal Internet
Traffic: Additive Dyadic Superposition of Lognormal
Distributions.” In Proc. of The IASTED International
Conference on Communication and Computer Networks
(CCN2004), MIT, Cambridge, MA, USA, November 2004.

[11] K. Vishwanath and A. Vahdat. “Swing: Generating
Representative High-Speed Packet Traces.” In Proc. of ACM
SIGCOMM, Philadelphia, PA, USA, 2005

[12] P. Kamath, Kun-chan Lan, J. Heidemann, J. Bannister and J.
Touch. “Generation of High Bandwidth Network Traffic
Traces.” In Proc. of the International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Fort Worth, Texas, USA,
October 2002

[13] J. Potemans, J. Theunis, P. Leys, B. Van den Broeck, E. Van
Lil and A. Van de Capelle. “Advanced Traffic Modeling:
Fitting Third Order Moments.” In Proc. to IEEE Global
Conference on Communications GLOBECOM2003, San
Francisco, CA, USA, December 2003.

