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ABSTRACT

In order to prevent rainbow attacks against a stolen pass-
word database, most passwords are appended with a unique
salt before hashing them as to make the password random
and more secure. However, the decreasing cost of hardware
has made it feasible to perform brute force attacks by guess-
ing the passwords (even when extended with their salt).

Recently Intel has made processors with Intel SGX com-
mercially available. This security technology enables devel-
opers to (1) completely isolate code and data running in an
SGX enclave from untrusted code running at any privilege
layer and (2) prevent data sealed to an enclave from being
accessed on any other machine.

We propose to add a key to the password (and salt) be-
fore they are hashed. By calculating the hash within an
enclave, the key never leaves the enclave. This provides
much stronger protection; offline attacks are infeasible with-
out knowledge of the key. Online attacks on the other hand
are much easier to defend against.
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1. INTRODUCTION

Just a week after Dropbox required its users to reset their
passwords after a security breach in 2012, Spotify is now
asking the same of theirs. Anybody who regularly checks
technology websites is familiar with such news stories. Spe-
cialized websites such as Have I Been Pwned! show that
passwords are often compromised, among other personal in-
formation. This is worrisome as users often reuse the same
password for multiple services.

'haveibeenpwned.com
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As a defense-in-depth approach against such breaches,
passwords should never be stored in clear text. Unfortu-
nately, storing only hashed versions of users’ passwords does
not stop persistent attackers. The very nature of passwords
and the breached data means that strong security properties
can no longer be guaranteed. Attackers are left with various
options. They could, for example, exploit the knowledge
that users often use easy to guess passwords and a large
amount of passwords can be tried against the captured pass-
word database. To make matters worse, the cost to calculate
a hash function has steadily dropped due to Moore’s law,
and development of specialized hardware (e.g., FPGAs) and
software (e.g., to optimize Bitcoin mining software). Adding
a salt (i.e., a randomly generated nonce) before hashing
does not prevent such attacks; with the breached password
database, the salts are likely to be compromised as well.

Various alternatives have been proposed that require an
attacker to increase their computational power [13] or mem-
ory storage [10] capabilities. However, such solutions have
limited impact against sophisticated attackers and increase
the burden on defenders as well; service providers often need
to be able to handle a large amount of concurrent access re-
quests. The performance or memory overhead that can be
accepted to provide stronger protection of a breached pass-
word database, is thus limited.

The only strong security solution is to keep a part of the
hash composition secret, even when the machine itself is
compromised. Such a requirement could be met with de-
dicated hardware security modules (HSMs). Unfortunately
such devices can be costly, especially when they need to be
able to support a large volume of login requests per second.
Moreover, industry is migrating quickly to the cloud. Such
an environment provides additional challenges. Not only do
the same security problems exist in the cloud, virtualized
machines must also be migratable to different physical ma-
chines. The recent Snowden revelations also sparked worries
about physical machines located in foreign countries and po-
tential government subpoenas. This places additional chal-
lenges on hardware security modules.

Intel Software Guard Extensions (Intel SGX), new tech-
nology added to Intel processors, presents an interesting new
direction. Instead of relying on a physical hardware security
module, Intel SGX could be used to implement an HSM in
software with similar security guarantees [17]. This would ef-
fectively reduce the capabilities of an attacker who breached
the (hashed) password database from an offline attacker to
that of an online attacker; attacks against user credentials
remain possible but attackers need to be able to directly ac-



cess the security module. It is much easier to defend against
such online attackers.
We make the following contributions:

e We propose a novel design to protect stored user cre-
dentials against offline attacks.

e We discuss how enclaves can be migrated with their
virtual machines between different physical servers. We
present an extension of Intel SGX’s attestation service
to ensure that enclave instances will only be moved to
physical machines of the cloud provider.

e We implemented and evaluated our design. Microbench-
marks show that performance overhead is limited and
likely negligible when applied in the wild.

e We evaluate our approach against known and predicted
attacks against SGX.

The remainder of this paper is structured as follows: In
Section 2 we discuss in detail the attack model we assume
and the security properties we wish to guarantee. After giv-
ing a brief introduction to Intel SGX in Section 3, we present
our solution in Section 4. Its implementation is discussed in
Section 5 and evaluated in Section 6. We finish with an
overview of related work and a conclusion.

2. PROBLEM STATEMENT

We assume the following setting: An enterprise provides a
service to a large number of clients and requires them to au-
thenticate before they are allowed to access its service. The
enterprise outsourced its infrastructure to a cloud provider;
its services are virtualized and the cloud provider may de-
cide to move them from one physical service to another at
any moment in time. The cloud provider’s physical servers
are equipped with SGX-enabled hardware.

We assume that an attacker (or malicious cloud provider)
may be able to launch sophisticated attacks against the en-
terprise’s servers. Such attacks may succeed to (1) gain in-
kernel access and (2) exfiltrate the password database.

Under such conditions, we wish to guarantee that an at-
tacker is computationally only as powerful as an online at-
tacker. Bruteforce attacks against the leaked password data-
base may still be launched, but their chances of success are
equivalent to inverting the used cryptographic hash function.

Online attacks are much easier to defend against than off-
line attacks. This is a well-researched topic, and includes
mitigations such as forcing users to choose passwords with
enough entropy, automatically lock out users indefinitely [14,
19,21] or for a period of time to defend against bruteforce
attacks, etc. Such mitigations are important, but orthogonal
to the problem we wish to solve.

For cryptographic primitives, we assume the Dolev-Yao
model. Cryptographic messages may be replayed, but it is
infeasible to invert hash functions or find a collision.

3. BACKGROUND: INTEL SGX

Providing strong security guarantees on commodity hy-
pervisors and kernels is challenging. With a trusted com-
puting base of multiple millions lines of code, the presence of
previously undetected vulnerabilities is almost a mathemati-
cal certainty. Additionally, the construction of this software
poses additional risks. Their single address space implies

that once an attacker has managed to exploit a single vul-
nerability, the entire hypervisor or kernel is compromised.
As they assume that lower-level layers are implemented per-
fectly, successful exploitation of a vulnerability in such a
lower-level layer enables an attacker to attack any software
component running on top.

In 2008 McCune et al. [11] proposed a radically different,
non-hierarchical design. Instead of relying on a layered ap-
proach, security sensitive pieces of applications should be
completely isolated from the rest of the system. This idea
was coined a protected-module architecture (PMA). Since
Intel implemented such a PMA in their Skylake processors,
research interest has sparked.

Protected-module architectures rely on two basic prop-
erties. First, security sensitive code and data can be com-
pletely isolated from any other part of the system. Access to
such “modules” (or “enclaves” in SGX-terminology) is pro-
tected with a program-counter-based access control mech-
anism [22]: When code is running outside of the module,
access is heavily restricted. Only when the module is en-
tered through specially created entry points does the pro-
gram counter point within the module, and can its stored
code and data be accessed.

Related work [1,2,15,16] showed that this access control
mechanism enables protected modules to provide strong se-
curity guarantees when (1) this isolation mechanism is im-
plemented perfectly, (2) sufficient security checks are taken
when a module is called and (3) the module itself is free from
vulnerabilities. Unfortunately, recent results show that Intel
SGX (and probably most/all other protected-module archi-
tectures [6,23]) currently do not provide perfect isolation.
Design choices (e.g., a malicious or badly written enclave
should never cause the system to stop responding) lead to
side channels that allow attackers to largely reconstruct the
control flow graph of the enclave. To prevent such attacks,
enclaves should be written carefully; developers should avoid
that the code branches on secret information.

Second, protected-module architectures rely heavily on
key derivation. By deriving a cryptographic key based on
the initial state of the module (i.e., its contents and size)
and a unique platform secret, each module can easily ac-
cess its own, unique cryptographic key. Access to this key is
subject to the same program-counter-based access control.
Only the currently executing protected module may directly
access its own key.

Key derivation is an interesting primitive as it enables
protected modules to use their own key to confidentiality,
integrity and version protect sensitive data for the next in-
vocation. Similarly, the same construct can be used for at-
testation purposes. In many settings a user should be able to
cryptographically prove to a remote party that it executed
the correct protected module, with the presented input lead-
ing to the returned result.

Intel SGX also provides protection against sophisticated
hardware attacks. It does so by guaranteeing that enclave
code and data only reside in plaintext within the CPU pack-
age (e.g., the processor’s cache). Whenever contents need to
be sent to main memory, it is confidentiality, integrity and
version protected. Thus an attacker executing a cold boot
attack [9], or who snoops the system bus, cannot extract
sensitive data stored within the enclave’s boundaries.
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Figure 1: Graphical overview of how a user’s password is checked. As in a cloud environment virtual machines
may be moved between physical machines, SGX enclaves need to be migratable as well.

4. PROTECTING PASSWORDS AGAINST
OFFLINE ATTACKS

An enterprise that wishes to take advantage of her cloud
provider’s SGX-enabled hardware needs to tackle two prob-
lems: Making optimal use of SGX’s isolation mechanism to
protect users’ passwords and dealing with the cloud provider’s
abilities to move virtual machines. We tackle both problems
sequentially.

Checking a client’s password.

In order to provide stronger protection against an attacker
who launches (offline) bruteforce attacks against a breached
password database, we propose to store the passwords as the
result of an HMAC function with a cryptographic key k:

password HMAC(k, password||salt)

stored —

where “||” represents string concatenation.

In order to keep the cryptographic key k secure, we place
it in an enclave. Only two entry points to the enclave are
provided: (1) given a user’s password and salt, the HMAC is
calculated and returned and (2) another to facilitate resum-
ing the enclaves’ execution on a different physical machine.

Figure 1 shows the operation graphically. First, a user
connects to the enterprise’s server and provides its username
and password. Next, the server looks up the user’s stored
password and salt in the password database (potentially lo-
cated on a different machine). The salt is provided to the
password enclave together with the user-provided password.
There the resulting HMAC is calculated. The result is com-
pared to the reference password from the password database.
When both match, the user is logged in. Otherwise an error
is returned.

Dealing with VM migration.

Building the HM A C-calculating enclave is simple but deal-
ing with VM migration is more challenging: SGX prevents
enclaves from being migrated directly with their VM image.
Enclaves need to be recreated at their destination. As all
user passwords are protected with the same cryptographic
key k, this key needs to be transferred to the new physical
machine in a secure way.

There are various options to achieve this. First, we could
set up a secure communication channel between the previous
physical machine and the new one. Intel SGX’s attestation
features guarantee that an attacker cannot not intercept k in
any way. We presented this approach in previous work [20].
Unfortunately, this approach is suboptimal in this case. In
order to set up a communication channel, the virtual ma-
chine images must be live at both communication end points.
Afterwards the cloud provider should be signalled that the
old one can be destructed. This may require changes to the
provider’s management software.

Second, a dedicated server could be created to distribute
k to a newly created or migrated virtual machine. As in the
previous option, SGX’s attestation services can provide a
secure channel. As with any central server, availability may
be of concern. Alternatively, virtual machines could also
establish a peer-to-peer network of virtual machines, where
each one can choose to distribute k£ to newcomers.

In each case a secure channel is created between two phys-
ical machines. Intel SGX’s attestation features guarantees
that both platforms are genuine Intel platforms. However,
additional checks should be added to ensure that enclaves
are only migrated to physical machines of the cloud provider.
An attacker who manages to move an enclave to her own
machine has indirect access to k. Adding security measures
within the enclave would only partially solve the problem.
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Figure 2: In order to prevent the password enclave from being migrated to the attacker’s device, we need to
guarantee that enclaves are only migrated to physical machines belonging to the cloud provider. A simple,
non-migratable cloud provider’s enclave can provide the required guarantees during remote attestation.

Consider as an example an enclave that rate limits the num-
ber of guesses an attacker may execute. While this may be
implemented effectively for each enclave, an attacker would
still have the ability to deploy an almost unlimited num-
ber of identical, concurrently executing enclaves. Enforcing
guess rate limits at the overall enterprise level would likely
cause management problems and deteriorate performance
significantly.

We believe that such considerations are an important, gen-
eral limitation of using Intel SGX in a cloud environment.
We propose a solution where the cloud provider runs a (non-
migratable) “cloud provider enclave” on all of its physical
servers. During attestation of clients’ enclaves, they should
verify that they execute on the same physical platform as
the cloud provider’s cloud enclave.

To achieve this, we assume that each instance of the cloud
provider’s enclave on each physical machine has access to the
cloud provider’s public-private (PKcp & SKcp) key pair;
both parts are sealed to the enclave’s identity and stored
locally by the hypervisor. Enclaves that wish to verify that
they execute on one of the cloud provider’s physical ma-
chines are linked with its public key PK¢cp.

Figure 2 displays our approach graphically. In the first
step, a client enclave is deployed on the platform (e.g., the
password enclave) and receives an attestation request.

In step two, the client establishes a secure, local commu-
nication channel with the cloud provider’s enclave [3] and
a nonce is exchanged. SGX’s attestation features already
differentiate local from remote attestation; only when both
enclaves run on the same physical machine will a secure com-
munication channel be established.

In the third step, the cloud provider’s enclave signs the
received nonce with its private key SKcp and returns it to
the client’s enclave.

Next, the client enclave verifies in step four that the nonce
is signed with the provider’s private key. As it is already
verified in step 2 that it runs on the same physical machine
as the provider’s enclave, it must now execute on genuine
physical hardware of the cloud provider. Now it only needs
to send a positive reply to the initial (remote) attestation
request from step 1.

S. IMPLEMENTATION

We implemented a proof-of-concept of our approach. The
enclave supports password verification, but migration to dif-
ferent physical machines is left for future work.

Our implementation uses an HMAC function based on the
new SHA-3 standard, downloaded from the Keccak page [8].
The used key k and salts are generated using the hardware
rdrand instruction.

Table 1 shows the number of lines of code executing inside
the enclave. The total enclave is implemented in 2,012 LoC.
The SHA-3 implementation consumes the largest part with
1,805 LoC. Our own HMAC implementation — excluding the
SHA-3 implementation — takes 34 LoC and is part of the en-
clave, so it is not counted in the total lines of code. These
measurements were performed using David A. Wheeler’s
‘SLOCCount’.

| || Lines of Code |

Enclave 173

HMAC 34

SHA-3 1,805
Total lines of code 2,012

Table 1: Number of lines of code for different parts
of the enclave.

6. EVALUATION

Performance evaluation.

We microbenchmarked our solution by computing 10,000
passwords. The tests were performed on a laptop with an
Intel Core i7-6500U CPU running at 2.50 GHz with 8 GB
of RAM and making use of version 0.10 of the SGX driver?
and SDK version 1.5%. The median of the results of these
tests can be found in the Table 2. When the passwords
were HMAC’ed within the enclave, it took 0.046 ms per
password. We compared this to only computing a SHA-
3 hash of an equally long salted password in unprotected
memory. With only 0.007 ms/password this approach was
considerably faster, but passwords would be relatively easy
to bruteforce in practice.

We attribute the performance difference to the fact that
crossing the enclave’s borders is a relatively costly operation
compared to the cheap SHA-3 operation. Also note that the
HMAC internally uses two SHA-3 calls.

*From https://github.com/0lorg/linux-sgx-driver
3From https://github.com/01org/linux-sgx



With an overhead of 0.039ms/password, we believe that
these microbenchmarks show that our approach is practi-
cally feasible. In future work we plan to implement a com-
plete setup where a user interacts with an Apache server
and a MySQL database to log in to a webpage. Based on
these microbenchmarks, we suspect that the incurred prac-
tical overhead is well below alternative approaches applied
in practice.

| [ SGX [ NoSGX |
[ Time (ms) || 0.046023 [ 0.006788 |

Table 2: Performance measures of the creation of
passwords with and without the use of SGX.

Security evaluation.

With the use of SGX, different attack scenarios for our
implementation are impossible.

An attacker may attempt to derive the secret key from a
stored password. Such attacks are impossible against our
implementation as it requires inverting the HMAC algo-
rithm. This means that even if an attacker creates a user
account for himself and knows the resulting hash, he will
not be able to derive the secret key that was used.

This is why the use of a salt is still needed: if an attacker
were to know the resulting hashes for certain passwords and
no salt would be added, it would be possible to derive pass-
words that result in the same hash within the system. This
would allow her to breach user accounts, even without know-
ing the secret key. If a random salt is appended to each user’s
password, the password becomes truly unique and knowing
a password that results in the same hash will not suffice to
break into a user’s account (since the salt of the two accounts
will differ).

In case an attacker has access to the virtual machine that
manages the passwords, he can use brute force to guess user
passwords, but he will need continuous access to the machine
and could be detected by various detection mechanisms such
as an IDS. Such online attacks can also be mitigated by
forcing users to make use of sufficiently strong passwords
or by maintaining a rate limit where the number of guesses
for a user password is limited to a pre-defined number of
guesses.

Our solution does not provide protection against replay
attacks of the hash: if an attacker manages to get inside the
database and get hold of previous secrets of a user, these can
be reinstantiated, granting the attacker access to this user’s
account. Mitigating such rollback attacks is feasible [21],
but left for future work.

Attackers may also launch side-channel attacks against
the password-calculating enclave. In an execution-time side-
channel attack, an attacker tries to determine how long the
enclave takes to execute a calculation by providing different
input. By analyzing timing differences for different inputs,
an attacker can gain insight into the workings of the system
and extract sensitive data. This attack is not possible be-
cause our solution does not branch on the secret key nor the
provided password.

Xu et al. [23] recently showed that when an attacker pages
out enclave pages, sensitive data may be leaked. Similarly,
as we don’t branch on a secret, such attacks are not possible
against our implementation.

A cold-boot attack is another side-channel attack sce-
nario. In such an attack, the user’s drive is removed from
the system while it was up and running and inserted into
an attacker-controlled system [9]. With memory protection
no longer being enforced by the processor, sensitive data is
readily accessible to the attacker. Because SGX encrypts
data travelling between the system cache and memory, this
attack is not possible. This defense mechanism also prevents
bus snooping attacks.

7. RELATED WORK

With the arrival of time-sharing machines in the 1960s, a
need arose to authenticate users. Passwords are an obvious
solution and techniques to store them have been researched
ever since. We categorize them according to the mechanism
they rely on to secure passwords.

In very early systems such as the CTSS time sharing sys-
tem, passwords were stored in plaintext. Bugs in such a
design may inadvertently leak passwords to benign users,
and they did [5]. To avoid such failures, passwords were
later hashed.

When the cost of storage went down, large databases of
hashed passwords could be pre-generated and used to lookup
matching passwords for a given hash. To make such attacks
harder, a salt was added at the time the passwords were
hashed.

Salts only prevent rainbow table attacks against password
databases. Unfortunately, with the performance overhead of
a single hash function dropping steadily over time — espe-
cially when specialized hardware is used such as a GPU or
FPGAs — bruteforce attacks have become feasible again.

To prevent such attacks, new algorithms have been de-
veloped to artificially increase the time required to compute
the resulting hash. PBKDF2 [13] for example can be config-
ured to hash a password not once, but an arbitrary number
of times. The disadvantage of such mechanisms is that the
defender is slowed down as well.

Scrypt [10] takes a different approach. Instead of artifi-
cially decreasing the performance of a hash calculation, the
algorithm attempts to increase the amount of memory that
is required during its execution. Unfortunately, this too de-
creases the number of authentication request per second that
a defender can support.

In addition to the use of stronger cryptographic primitives,
password handling could also be done isolated [7] from the
generic web server. Big companies such as Facebook [12]
take this approach and employ a completely physically iso-
lated machine. As these servers still rely on a commodity
operating system, their TCB is considerable. By relying on
Intel SGX, we avoid a huge TCB.

More recently, special hardware security modules (HSMs)
are being considered to store passwords and /or cryptographic
keys. The Yubikey for example can be used by users to gen-
erate one-time-passwords. For websites that do not support
OTPs, the Yubikey can store static passwords.

On the server-side, hardware security modules can be used
to store user credentials as well. Unfortunately, they are of-
ten expensive. In 2012 Graham Steel proposed an alterna-
tive [18]; keep a local parameter secret and stored within a
low-cost peripheral. While the peripherals can be audited —
in contrast to many high-end HSMs — the peripherals cannot
defend against a hardware-based attacker.

Himanshu et al. [17] showed that such HSMs could also be



implemented in software. Their industry-application imple-
ments a software-based TPM chip running on top of ARM
TrustZone. They also discussed options to port their fTPM
to Intel SGX, but face additional architectural challenges.

Finally, Joseph Birr-Pixton presented a proof-of-concept
to check passwords in a blog post [4]. They use a different
approach: Passwords are passed to the PBKDF2 function
and the result is encrypted with a region key. This results
in a performance overhead of more than 3 orders of magni-
tude larger than our HMAC-based approach. In addition,
we propose a solution to (automatically) migrate the pass-
word enclave, making it feasible in a cloud setting. We also
provide a detailed security analysis.

8. CONCLUSION

Powerful hardware and custom designed hardware (e.g.,
GPUs and FPGASs) have become affordable, making it possi-

ble for attackers to perform bruteforce attacks against breached

password databases. Adding a salt to a password is no longer
enough to enforce its security. In this paper we propose the
use of SGX to isolate a secret key and to include it in the
password hash. Because part of the hashed message is se-
cret, it becomes computationally infeasible to bruteforce the
passwords. Our solution is intended for use in a cloud en-
vironment and makes use of the HMAC hashing algorithm
and SHA-3. Despite a limited performance overhead, we be-
lieve this work could be the basis for future work to enhance
password security.
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