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Abstract

In this thesis it will be shown that the partial sums of the Maclaurin series for a

certain class of entire functions possess scaling limits in various directions in the

complex plane. In doing so we obtain information about the zeros of the partial

sums. We will only assume that these entire functions have a certain asymptotic

behavior at infinity.

With this information we will partially verify for this class of functions a conjecture

on the location of the zeros of their partial sums known as the Saff-Varga Width

Conjecture.

vii



List of Symbols Used

R Field of real numbers

C Field of complex numbers

|z| Modulus of the complex number z

Re z Real part of the complex number z

Im z Imaginary part of the complex number z

f± Continuous extension of f to the ± side of an oriented contour

pn[f ](z) nth partial sum of the Maclaurin series for f

#∠
n(θ1, θ2) Number of zeros in the sector θ1 ≤ arg z ≤ θ2

#◦n(r) Number of zeros in the disk |z| ≤ r(
n
k

)
Coefficient of xk in the expansion of (1 + x)n

log Natural logarithm

erfc Complementary error function

≈ Is approximately

O,Θ,Ω, o, ω,∼, ∼̇ Asymptotic notation

viii



Acknowledgements

Thank you Karl for your sharp guidance. You knew there was a good problem here.

Thank you Rob for your unending generosity. You went far, far out of your way to

help me.

Thank you Amelia for your infinite patience. We did it.

ix



Chapter 1

Introduction

Consider the complex function

f(z) =
(1 + 3z)(z − ζ1)(z − ζ2)

(1− z)2
,

where

ζ1 = −1

5
+
i

3
and ζ2 =

35

100
− i

4
.

The particular values of ζ1 and ζ2 aren’t so important—just note that the function

f has three zeros z = −1/3, ζ1, ζ2, each inside the circle |z| = 1, and a singularity

located at z = 1. Due to this singularity at z = 1 the radius of convergence of

the Maclaurin series for f is 1 and thus the series has the unit circle as its circle of

convergence.

Figure 1.1: The zeros of f , marked
with black crosses. The dashed curve
is the unit circle.

Let pn(z) be the nth partial sum of the Maclaurin series for f . The first few of

these are

p0(z) = ζ1ζ2,

p1(z) = ζ1ζ2 + (5ζ1ζ2 − ζ1 − ζ2)z,

p2(z) = ζ1ζ2 + (5ζ1ζ2 − ζ1 − ζ2)z + (9ζ1ζ2 − 5ζ1 − 5ζ2 + 1)z2,

1



2

and in general

pn(z) = ζ1ζ2 + (5ζ1ζ2 − ζ1 − ζ2)z

+
n∑
k=2

[
(4k + 1)ζ1ζ2 − (4k − 3)(ζ1 + ζ2) + 4k − 7

]
zk.

Consider the zeros of the partial sum p5.

Figure 1.2: The zeros of p5(z) as
blue dots and the zeros of f as black
crosses. The dashed curve is the unit
circle.

As p5 is a fifth degree polynomial it has 5 complex zeros. Three of them are close

to the three zeros of f , but it also has two extra zeros. As n → ∞ the polynomials

pn converge to f uniformly on compact subsets of |z| < 1, so we expect that each pn

will have a zero near each zero of f and, further, that pn won’t have a zero where f

doesn’t. This is essentially a special case of Hurwitz’s theorem [26, p. 4]:

Theorem 1.1 (Hurwitz’s Theorem). Let fn(z) be a sequence of functions which are

analytic in a region R and which converge uniformly to a function f(z) 6≡ 0 in every

closed subregion of R. Let ζ be an interior point of R. If ζ is a limit point of the

zeros of the fn(z), then ζ is a zero of f(z). Conversely, if ζ is an m-fold zero of

f(z), every sufficiently small neighborhood K of ζ contains exactly m zeros (counting

multiplicities) of each fn(z) if n is large enough.

The partial sum p5 has two more zeros than f , p6 has three more, and so on. The

limit function f can have only finitely-many zeros in any compact subset of |z| < 1,

so it follows from Hurwitz’s theorem that almost all of the zeros of pn must leave any

fixed compact subset of |z| < 1 as n→∞.



3

Figure 1.3: From left-to-right and top-to-bottom, the zeros of the partial sums pn
with n = 5, 10, 15, 20, 25, 30, 35, 40, 45, respectively, shown with an arbitrary compact
subset of |z| < 1 (pink) and the unit circle (dashed).

In Figure 1.3 we can see that all but three zeros of pn leave the pink set (an

arbitrary compact subset of |z| < 1) as n grows. In fact it appears that, as n → ∞,

these zeros of pn which don’t converge to zeros of f will converge to the unit circle,

which is the circle of convergence of the power series. This is no coincidence: Jentzsch

showed in 1916 [22, 21] that, given any power series with positive, finite radius of

convergence, every point on the circle of convergence of the power series will be a

limit point of the zeros of the partial sums of the power series. This result was

strengthened by Szegő in 1922 [43] when he showed that there is a subsequence (nk)

for which the zeros of pnk are asymptotically uniformly distributed in angle.
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Together these results have come to be known as the Jentzsch-Szegő theorems and

have sparked a large field of research, especially in finding analogues of the results for

other types of approximating polynomials. A modern treatment of this topic can be

found in [3].

The situation is quite different if we instead suppose that the power series has

infinite radius of convergence. In this case there is no circle of convergence—or,

rather, now the point at z =∞ plays the role of the circle of convergence. Indeed, as

n grows it is again true that almost all of the zeros of pn must leave any fixed compact

subset of the region of convergence of the power series, only in this case the region

of convergence is all of C. Consequently almost all of the zeros of pn must tend to

z =∞ as n→∞.

This raises several questions, the simplest of which are probably

(a) How quickly do the zeros tend to ∞?

(b) In the finite-radius case the extra zeros asymptotically formed a circle. What

kind of geometry do the zeros have in this case?

Let’s take a look at the partial sums of the exponential function as an example.

Define

pn[exp](z) =
n∑
k=0

zk

k!
.

As n grows so do the zeros of pn[exp], and from Figure 1.4 it looks like they do so

pretty quickly.

Figure 1.4: From left-to-right, the zeros of the partial sums pn[exp] with n = 5, 10, 15,
respectively, shown with the unit circle (dashed).
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These polynomials were studied by Szegő in 1924 [44]. Szegő showed that the

zeros of pn[exp] which tend to ∞ do so at a rate comparable to n, and further that

the zeros of the scaled partial sums pn[exp](nz) converge to the piecewise-smooth

curve given by

S =
{
z ∈ C :

∣∣ze1−z∣∣ = 1, |z| ≤ 1
}
. (1.0.1)

Figure 1.5: From left-to-right and top-to-bottom, the zeros of the scaled partial sums
pn[exp](nz) with n = 10, 20, 30, 75, respectively, shown with the curve S (solid red)
and the unit circle (dashed).

This curve has come to be known as the Szegő curve.

Since Szegő’s work many authors have studied various aspects of this phenomenon.

Of note is Dieudonné, who independently rediscovered many of Szegő’s results on the
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partial sums of the exponential function [11]. In the following sections we will explore

what has been studied in detail for these partial sums, the partial sums of other entire

functions, as well as what is known in terms of general theory.

1.1 Limit Curves and Distribution of the Zeros

In his 1924 paper Szegő also studied the angular distribution of the zeros of the partial

sums pn[exp]. He observed that the map φ(z) = ze1−z maps points of the limit curve

S to points on the unit circle in a monotonic fashion, and that the arguments of the

zeros of the partial sums are asymptotically uniformly distributed modulo weighting

by φ.

To be precise, let θ1, θ2 be such that 0 < θ1 < θ2 < 2π and let zj = φ−1(eiθj),

j = 1, 2, so that z1, z2 ∈ S. If

W = {z ∈ C : arg z1 ≤ arg z ≤ arg z2},

Zn = {z ∈ C : pn[exp](z) = 0}, (1.1.1)

and #(W ∩ Zn) is the number of points in the set W ∩ Zn, then Szegő showed that

there is a constant C1 depending only on θ1 and θ2 such that∣∣∣∣#(W ∩ Zn)

n
− θ2 − θ1

2π

∣∣∣∣ ≤ C1

n
. (1.1.2)

Note, however, that this result doesn’t apply to sectors which contain the positive

real axis. Taking another look at Figures 1.4 and 1.5 gives us a clue as to why this

might be: the zeros of the scaled partial sums pn[exp](nz) seem to approach the point

of the limit curve S which lies on the positive real axis (namely the point z = 1) much

more slowly than they approach the rest of the curve. We might suspect then that

the 1/n bound on the right-hand side of (1.1.2) wouldn’t hold near the positive real

axis. Indeed, Szegő’s result was strengthened by Andrievskii, Carpenter, and Varga

in 2006 [4] to include such sectors. They showed that there are absolute positive

constants C2 and a such that, for any choice of θ1 and θ2 satisfying 0 < θ2− θ1 < 2π,∣∣∣∣#(W ∩ Zn)

n
− θ2 − θ1

2π

∣∣∣∣ ≤ C2

na
.

We also note that Szegő’s result has been reformulated in the modern language of

weak*-convergence of measures [37].
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There has also been a great deal of interest in the radial distribution of zeros.

This is most often framed as the study of the distance from the zeros of the scaled

partial sums pn[exp](nz) to their limit curve S.

In 1966, Buckholtz [7] (building on his earlier work [6]) obtained two striking

results in this vein. First, Buckholtz showed using a very simple argument that none

of the zeros of pn[exp](nz) lie on the interior of the curve S, which is characterized

by the inequalities ∣∣ze1−z∣∣ ≤ 1, |z| ≤ 1.

In other words, the zeros of the scaled partial sums approach S from the outside.

This can be seen clearly in Figure 1.5. Second, Buckholtz showed that all zeros of

pn[exp](nz) lie within a distance of 2e/
√
n of S: if pn[exp](nz0) = 0 then

max
s∈S
|s− z0| ≤

2e√
n
.

Figure 1.6: The zeros of
p150[exp](150z) as blue dots,
shown with the bounding region
found by Buckholtz (pink), the
Szegő curve S (solid red), and
the unit circle (dashed). All zeros
of pn[exp](nz) lie in the disk
|z| ≤ 1 by the Eneström-Kakeya
theorem [2], so Buckholtz’s region
is restricted to this disk in the
image.

It turns out that, except for the constant 2e, Buckholtz’s estimate is asymptoti-

cally best-possible in the sense that

max
z∈Zn

min
s∈S
|s− z| = Θ

(
n−1/2

)
as n → ∞, where Zn is as defined in (1.1.1) and Θ(· · · ) is Big Theta notation (see

Definition 2.4). In fact it was shown by Carpenter, Varga, and Waldvogel in [9] that

lim inf
n→∞

√
n ·max

z∈Zn
min
s∈S
|s− z| ≥ Rew1 + Imw1 ≈ 0.636657,
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where w1 ≈ −1.35481 + 1.99147i is the zero of the complementary error function erfc

with smallest modulus in the upper half-plane. (For information about erfc and its

zeros we refer the reader to [17].)

A major study of these types of detailed asymptotics was carried out by Edrei, Saff,

and Varga, who published a monograph on the topic in 1983 [15]. In the monograph

the authors studied the partial sums of the Mittag-Leffler function E1/λ, which can

be considered a generalization of the exponential function ez and is defined for z ∈ C
and λ > 1 by

E1/λ(z) =
∞∑
k=0

zk

Γ(k/λ+ 1)
.

When λ = 1 the usual exponential function is recovered. When λ > 1, however,

the Mittag-Leffler function is an entire function of order λ. (See Section 2.1 for the

definition of the order of an entire function.)

Let

pn[E](z) =
n∑
k=0

zk

Γ(k/λ+ 1)
.

denote the nth partial sum of E1/λ. Edrei, Saff, and Varga found that the zeros of

pn[E] which do not converge to zeros of E1/λ grow at a rate comparable to

rn := e1/(2n)
(n
λ

)1/λ

,

and, more precisely, that the corresponding zeros of the scaled partial sums pn[E](rnz)

converge to the curve

SE =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1, |z| ≤ 1, and |arg z| ≤ π

2λ

}
∪
{
z ∈ C : |z| = e−1/λ and |arg z| ≥ π

2λ

}
.

Further, the authors found that the zeros of the scaled partial sums which approach

points ξ ∈ SE with ξ 6= 1 and |arg ξ| 6= π/(2λ) do so at a rate of Θ(log n/n) and are

separated from each other by a distance of Θ(n−1), and those which approach the

point ξ = 1 do so at a rate of Θ(n−1/2) and are separated by a distance of Θ(n−1/2).

So, not only do the zeros approach the smooth arcs of the limit curve more quickly

than they approach the corner at z = 1, but they are also clustered more closely

together near the arcs than they are near the corner.
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Figure 1.7: The zeros of the scaled partial sums p105[E](r105z) with λ = 2, shown
with the curve SE (solid red).

Even though it was assumed that λ > 1, these facts are still true for the zeros of

the partial sums of the exponential function (λ = 1): the zeros of pn[exp](nz) which

approach points ξ ∈ S with ξ 6= 1 do so at a rate of Θ(log n/n) and, as we indicated

above, the zeros which approach ξ = 1 do so at a rate of Θ(n−1/2). See, for example,

[9, 47] for detailed discussions.

We will go into much more detail about the results of Edrei, Saff, and Varga

in Section 1.3. The content of their monograph [15] inspired much of the work that

appears in this thesis, and the Mittag-Leffler function E1/λ is essentially the archetype

of the functions we will consider.

Other functions whose partial sums have been studied include the sine and cosine

functions in Szegő’s original paper [44] as well as more recently by Kappert [23]

and by Varga and Carpenter [48, 49, 50], the confluent hypergeometric functions

1F1(1, b, z) by Norfolk [33], finite sums of exponentials by Bleher and Mallison [5],
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and exponential integrals of the form

f(z) =

∫ b

a

g(t)ezt dt

by both Norfolk [34] and the current author [51].

A general study of these types of results was undertaken by Rosenbloom in his 1944

PhD thesis [38], later summarized in [39]. One basic yet fundamental contribution of

his is that, if

f(z) :=
∞∑
k=0

akz
k

is an entire function of positive, finite order, then the zeros of

pn(z) :=
n∑
k=0

akz
k

which do not converge to zeros of f grow at a rate of approximately |an|−1/n. Before

giving the precise statement of this result let’s take a moment to build some intuition

for it.

First, if a0, an 6= 0 then the product of the moduli of the zeros of pn is equal to

|a0/an| in absolute value, and so the geometric mean of their moduli satisfies∣∣∣∣a0

an

∣∣∣∣1/n ∼ |an|−1/n

as n→∞. If we were to scale the zeros by this factor then the new geometric mean

of their moduli would be approximately equal to 1, and we might expect then that

the scaled zeros would be bounded. This interpretation is due to Dupuy [13].

We can also draw a comparison with the case when the power series has a finite

radius of convergence R. We mentioned in the previous section that the the zeros

in this case cluster on the circle of convergence for the power series. There is a

subsequence (nk) such that

lim
k→∞
|ank |−1/nk = R,

so it follows that the zeros of the scaled partial sums pnk(|ank |−1/nkz) cluster on the

unit circle. When, on the other hand, the power series has infinite radius of conver-

gence, Rosenbloom’s result below shows that this scaling indeed still essentially fixes

the moduli of the zeros of the partial sums at 1. From this perspective Rosenbloom’s
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results are a direct generalization of the Jentzsch-Szegő theorems to entire power

series with positive, finite order.

Let #∠
n(θ1, θ2) denote the number of zeros of the partial sum pn in the sector

θ1 ≤ arg z ≤ θ2 for some appropriate determination of arg z and let #◦n(r) denote the

number of zeros of pn in the disk |z| ≤ r. We say that a sequence of partial sums

(pnk) has a positive fraction of zeros in any sector with vertex at the origin if

lim inf
k→∞

#∠
nk

(θ1, θ2)

nk
> 0

for any θ1 < θ2.

Theorem 1.2 (Rosenbloom). Let f be an entire function of positive, finite order λ,

let pn denote the nth partial sum of the Maclaurin series for f , and let rn = |an|−1/n.

Then there is a subsequence (nk) such that the sequence of partial sums pnk has a

positive fraction of zeros in any sector with vertex at the origin and, for every ε > 0,

the number of zeros of pnk satisfying

|z| ≥
(
e1/λ + ε

)
rnk

is bounded and all zeros lie in the disk

|z| ≤
(
2e1/λ + ε

)
rnk

for k large enough. Further, for 0 ≤ t < 1 and ε > 0 we have

lim inf
k→∞

#◦nk
(
(e1/λ + ε)rnk

)
−#◦nk(trnk)

nk
≥ 1− tλ > 0.

The means by which such a sequence of indices (nk) can be constructed was given

by Norfolk in [32]. In doing so, Norfolk furnished a constructive proof of the above

result.

Not only did Rosenbloom obtain the rate at which the zeros of pn grow, but he also

showed that the zeros of the scaled partial sums pn(|an|−1/nz) will indeed converge

to some kind of limit curve, and, further, that the shape of this curve determines the

asymptotic density of the zeros along any segment of it.

Theorem 1.3 (Rosenbloom). Let f , λ, pn, rn, and (nk) be as in Theorem 1.2 and

suppose that the following conditions hold:
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(1) the quantity f(rnkz)1/nk converges uniformly to a single-valued analytic function

g in some subdomain X of the disk |z| ≤ e1/λ;

(2) w = g(z)/z maps X univalently onto a domain X1;

(3) no limit function of the sequence

Tnk(z) =
f(rnkz)− pnk(rnkz)

znk

is identically zero in X; and

(4) Tnk(z) 6= 0 in X for k large enough.

Then the only limit points of the zeros of pnk(rnkz) in X are the points on the curve

|g(z)/z| = 1, and their images in X1 under the mapping w = g(z)/z are equidis-

tributed about the unit circle |w| = 1; that is, the number of zeros of pnk(rnkz) which

accumulate on any arc in X whose image under w = g(z)/z has length α is asymp-

totically nkα/2π.

These two remarkable theorems encompass what is essentially the (asymptotic)

first-order theory of the zeros of the partial sums of power series for entire functions

of positive, finite order: this is what we need to scale the zeros by to make them

converge and this is what they converge to.

1.2 A Parabolic Zero-Free Region for the Partial Sums of the

Exponential Function

In contrast to Rosenbloom’s results for entire functions of positive, finite order, Carl-

son showed in 1948 [8] that, supposing f is a function analytic near the origin and

pn is the nth partial sum of its Maclaurin series, if there is a sector with vertex at

the origin in which pn has o(n) zeros as n→∞ then f is an entire function of order

0. (Here o(· · · ) is Little O notation, see Definition 2.5.) Because the exponential

function is entire of order 1, it follows that there cannot be any such zero-free sector

for its partial sums.

An insight into the next part of the story appears in Szegő’s collected papers [45]

just after its reproduction of [44]:
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Varga was interested in the location of the zeros of the partial sums of

the power series of ez because of applications to the analysis of stability

for some numerical methods for solving systems of ordinary differential

equations. Fast computing machines were then available and he asked

Iverson to compute the zeros for n up to 20.

Possibly inspired by Iverson’s findings, Varga showed in 1953 [46] that the partial

sums of ez have no zeros in the semi-infinite strip |Im z| <
√

6, Re z > 0.

Figure 1.8: The zeros of the partial sums pn[exp](z) for n = 5, 20, 35, 50, shown with
the zero-free strip |y| ≤

√
6, x > 0 found by Varga.

The next year Iverson published a paper [19] containing his numerical findings in

which he remarked that there seemed to be a large zero-free region surrounding the

positive real axis—larger than the zero-free strip found by Varga—which was not yet

described by the available literature. Some twenty years later this zero-free region

was investigated by Newman and Rivlin in [30, 31] and in a more general setting by

Saff and Varga in [41], and in the latter paper it was shown that no partial sum has

a zero in the parabolic region

{x+ iy : y2 ≤ 4(x+ 1) and x > −1}. (1.2.1)
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Figure 1.9: The zeros of the partial sums pn[exp](z) for n = 5, 20, 35, 50, shown with
the zero-free parabola y2 ≤ 4(x+ 1), x > −1 found by Saff and Varga.

Conversely, in their first paper [30] Newman and Rivlin calculated a certain scaling

limit for the partial sums pn[exp] in which the argument traces out a parabolic arc in

the plane.

Theorem 1.4 (Newman and Rivlin).

lim
n→∞

pn[exp](n+ w
√
n)

exp(n+ w
√
n)

=
1

2
erfc

(
w√
2

)
uniformly for w restricted to any compact subset of C.

The function erfc in the theorem statement above is known as the complementary

error function and is defined by

erfc(z) =
2√
π

∫ ∞
z

e−s
2

ds,

where the contour of integration is the horizontal line starting at s = z and extending

to the right to s = z +∞. This function has infinitely many zeros, all of which lie in

the sectors π/2 < |arg z| < 3π/4 and approach asymptotically the rays arg z = ±3π/4

(see, e.g., [17]).
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If w0 = s0 + it0 is any zero of erfc(w) then, by Hurwitz’s theorem (Theorem 1.1),

Theorem 1.4 says that pn[exp](z) has a zero z0 = x0 + iy0 of the form

z0 = n+ w0

√
2n+ o

(√
n
)
.

In particular we have x0 = n+ s0

√
2n+ o(

√
n) and y0 = t0

√
2n+ o(

√
n), so that

x0 =
1

2

(
y0

t0

)2

+O(y0)

as n → ∞. In other words, for large n the partial sum pn[exp] has a zero that lies

near the parabola x = (y/t0)2/2.

Figure 1.10: The zeros of the partial sums pn[exp](z) for n = 1, . . . , 80 in the upper
half plane, shown with the parabolas x = (y/t1)2 in orange and x = (y/t2)2 in green,
where w1 = s1 + it1 ≈ −1.35481 + 1.99147i is the smallest zero of erfc in the upper
half-plane and w2 = s2 + it2 ≈ −2.17704 + 2.69115i is the next smallest.

The function erfc has infinitely many zeros, so this analysis allows us to conclude that

the number of zeros of pn[exp] in any region which is larger than a parabola, say of

the form

|y| ≤ Ax1/2+ε, x ≥ B,

is unbounded as n→∞.

Theorem 1.4 was later studied in considerably more detail in [5].
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1.3 The Saff-Varga Width Conjecture and Scaling Limits

The exponential function is not the only entire function to have a parabolic zero-free

region as in (1.2.1). For a given entire function

f(z) :=
∞∑
k=0

akz
k,

denote its nth partial sum by pn(z). Let W denote the set of all nondecreasing

functions h : [0,∞)→ (0,∞) such that neither f nor any pn have zeros in

{z = x+ iy : x ≥ 0 and |y| ≤ h(x)}

and define

H(x) = sup{h(x) : h ∈ W}.

Theorem 1.5 (Saff, Varga [40]). If f is entire of positive order and its power series

coefficients (ak) are positive and satisfy

inf
k>0

ak
k2ak+1

> 0

then

c
√
x ≤ H(x) <∞, x ≥ 0

for some positive constant c.

Prompted by the this result and by additional computations, Saff and Varga made

the following conjecture [40, 42, 15].

Saff-Varga Width Conjecture. Consider the “parabolic region”

S0(τ) =
{
z = x+ iy : |y| ≤ Kx1−τ/2, x ≥ x0

}
,

where K and x0 are fixed positive constants, and consider also the regions Sθ(τ)

obtained by rotations of S0(τ):

Sθ(τ) = eiθS0(τ).

Given any entire function f of positive finite order λ > τ , denote its nth partial sum

by pn(z). There exists an infinite sequence M of positive integers such that there is

no Sθ(τ) which is devoid of all zeros of all partial sums pm(z), m ∈M .
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Essentially what the conjecture is saying is that if the zeros of the partial sums

avoid some region, then that region may not be too wide. In the particular case of an

entire function of order λ with a zero-free region symmetric about the positive real

axis, the conjecture posits that the width of the region (i.e. the range of y values)

must be O(x1−λ/2+ε) as x → ∞ for all ε > 0. So for the exponential function, for

example, an entire function of order 1, the zero-free region would not be wider than

O(x1/2+ε). Compare this with the discussion following Theorem 1.4 in Section 1.2.

Figure 1.11: Zeros of the partial sums pn[E](z) for n = 1, . . . , 80 with λ = 3/2. A
zero-free region can be seen opening to the right whose width is in agreement with
the Saff-Varga Width Conjecture.

According to the authors, the monograph [15] arose from an attempt to settle this

conjecture. In it they studied the Mittag-Leffler function E1/λ, defined for z ∈ C and

λ > 1 by

E1/λ(z) =
∞∑
k=0

zk

Γ(k/λ+ 1)
,

and proved the following.
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Theorem 1.6 (Edrei, Saff, and Varga). Let

pn[E](z) =
n∑
k=0

zk

Γ(k/λ+ 1)

and let rn = (n/λ)1/λe1/(2n). Then

lim
n→∞

pn

(
rn

(
1 + w

√
2/(λn)

))
(

1 + w
√

2/(λn)
)n
E1/λ(rn)

=
1

2
exp
(
w2
)

erfc(w)

uniformly for w restricted to any compact subset of C.

Let

SE =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1, |z| ≤ 1, and |arg z| ≤ π

2λ

}
∪
{
z ∈ C : |z| = e−1/λ and |arg z| ≥ π

2λ

}
.

Theorem 1.7 (Edrei, Saff, and Varga). Let ξ ∈ SE with 0 < | arg ξ| < π/(2λ) be

fixed and set

τ = |ξ|λ sin(λ arg ξ)− λ arg ξ.

Define the sequence (τn) by the condition

τ

λ
n ≡ τn (mod 2π), −π < τn ≤ π.

Let

ζ0 = −1

2
log(2πλ) +

1

2

(
1− ξλ

)
+ log

(
ξ

1− ξ

)
,

where log(2πλ) is real and the determination of the last logarithm is such that

−π < Im log

(
ξ

1− ξ

)
≤ π.

Put

Pn =

(
1 +

log n+ 2iτn − 2ζ0

2(1− ξλ)n

)
rnξ

and consider all zeros of the polynomial in ζ given by

ψn(ζ) := pn[E]

(
Pn −

rnξ

(1− ξλ)n
ζ

)
,
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where rn and pn[E] are as in Theorem 1.6. Given t > 0 (t not a multiple of 2π), the

polynomial ψn has, in the disk |ζ| ≤ t, exactly

2

⌊
t

2π

⌋
+ 1 =: 2`+ 1

zeros, all of them simple. Denoting these zeros of ψn by ζn,j, j = 0,±1, . . . ,±`, then

ζn,j = 2jπi+ ηn,j, j = 0,±1, . . . ,±`,

where for fixed t

lim
n→∞

ηn,j = 0.

A similar result holds for ξ ∈ SE with |arg ξ| > π/(2λ).

Together these theorems say that the zeros of the scaled partial sums pn[E](rnz)

of the Mittag-Leffler function which approach points ξ ∈ SE with ξ 6= 1 and |arg ξ| 6=
π/(2λ) do so at a rate of Θ(log n/n) and are separated from each other by a distance of

Θ(n−1), and those which approach the point ξ = 1 do so at a rate of Θ(n−1/2) and are

separated by a distance of Θ(n−1/2). This is typical of the functions which have been

studied to date: most the zeros of the partial sums cluster densely together and “fill”

up most of the plane, and there are only a finite number of exceptional arguments

where the zeros are widely spaced and zero-free regions like those discussed in the

previous section exist.

To capture these observations, Edrei, Saff, and Varga proposed a modified Width

Conjecture [15, p. 6].

Modified Saff-Varga Width Conjecture. Let f be an entire function of positive,

finite order λ and let pn(z) denote its nth partial sum. We can find an infinite sequence

M of positive integers and a finite number of exceptional arguments θ1, θ2, . . . , θq such

that

(a) For any argument θ 6= θj, j = 1, 2, . . . , q, it’s possible to find a positive sequence

(ρm)m∈M with ρm →∞ and ρm = O(m2/λ) such that, for every fixed ε > 0, the

number of zeros of the partial sum pm(z) in the disk∣∣z − ρmeiθ∣∣ ≤ ρmm
−1+ε

tends to infinity as m→∞, m ∈M .
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(b) For any exceptional argument θj it’s possible to find an integer k ≥ 2 and a

positive sequence (ρm)m∈M with ρm → ∞ and ρm = O(m2/(λk)) such that, for

every fixed ε > 0, the number of zeros of the partial sum pm(z) in the disk∣∣z − ρmeiθj ∣∣ ≤ ρmm
−1/k+ε

tends to infinity as m→∞, m ∈M .

One can check that a verification of the Modified Width Conjecture would imply

the truth of the standard Width Conjecture. The benefit of this second conjecture is

that it makes an attempt to distinguish between the two distinct behaviors observed

of the scaled zeros of the partial sums: heavy clustering along smooth arcs of their

limit curve (the non-exceptional arguments) and an aversion to approaching any of

the curve’s corners (the exceptional arguments).

For the particular case of the Mittag-Leffler function, Theorem 1.6 verifies part

(b) of the Modified Width Conjecture at the exceptional argument θ = 0 with k = 2

and Theorem 1.7 verifies part (a) along any argument θ 6= 0,±π/(2λ). Together

with the fact that the zeros of E1/λ lie asymptotically on the rays arg z = ±π/(2λ)

(and an application of Hurwitz’s theorem), this verifies the original Saff-Varga Width

Conjecture for this function. The authors also proved versions of Theorems 1.6 and

1.7 for L-functions [15, p. 21].

Similarly, Theorem 1.4 verifies part (b) of the Modified Width Conjecture at the

exceptional argument θ = 0 with λ = 1, ρn = n, and k = 2 in the particular case of

the exponential function f(z) = exp(z). Norfolk obtained the following analogue for

the case of the confluent hypergeometric function [33] which also verifies the Modified

Width Conjecture at the exceptional argument θ = 0 with λ = 1, ρn = n, and k = 2.

Theorem 1.8 (Norfolk). Let

1F1(1; b; z) = Γ(b)
∞∑
k=0

zk/Γ(k + b)

and let pn[1F1](z) denote its nth partial sum. If b ∈ R with b 6= 1, 0,−1,−2, . . . then

lim
n→∞

pn[1F1](n+ w
√
n)

ew
√
n

1F1(1; b;n)
=

1

2
erfc

(
w√
2

)
uniformly for w restricted to any compact subset of C.
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Figure 1.12: Zeros of the partial sums pn[1F1](z) for n = 10, 30, 50, 70, 90, shown with
the parabola x = (y/t1)2 in orange, where w1 = s1 + it1 ≈ −1.35481 + 1.99147i is the
smallest zero of erfc in the upper half-plane.

Other results in this same vein have been proved for binomial expansions [20] and

for linear combinations of sections and tails of Mittag-Leffler functions [52] and of

classical Lindelöf functions [36].

Though we are primarily concerned with the above statements of the standard and

modified Width Conjectures we note that an alternate formulation of the standard

conjecture was given by Norfolk in [32].

1.4 A Riemann-Hilbert Approach

In 2008 Kriecherbauer, Kuijlaars, McLaughlin, and Miller published a paper [24] in

which they undertook an analysis of the partial sums of the exponential function

using a version of the Riemann-Hilbert method of asymptotic analysis. Among other

things the authors obtained a complete asymptotic expansion of pn[exp](nz) in the

regime n→∞, z → 1.
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They began by defining the function

Fn(z) =
1

2πi

∫
γ

(se1−s)−n

s− z
ds,

where γ is a simple closed loop around the origin passing through the point s = 1.

This function is related to the partial sums of the exponential function by the formula

Fn(z) =

−(ez)−npn−1[exp](nz) for z outside γ,

(ze1−z)−n − (ez)−npn−1[exp](nz) for z 6= 0 inside γ.

Taking into account its decay as |z| → ∞ and the above jump as z crosses the curve γ

the authors formulated a Riemann-Hilbert problem (see Section 2.4) solved by Fn(z).

By applying the Riemann-Hilbert method to this problem they obtained the following

asymptotic expansion for pn−1[exp].

Theorem 1.9 (Kriecherbauer, Kuijlaars, McLaughlin, and Miller). There exists an

ε > 0 such that, for any J ∈ N,

(ez)−npn−1[exp](nz) =
1

2
enϕ(z) erfc

(√
nϕ(z)

)
− 1√

2πn

[
J−1∑
j=0

gj(z)

nj
+O

(
n−J

)]
,

where

ϕ(z) = z − 1− log z,

gj(z) =
(−1)jΓ

(
j + 1

2

)
(2π)3/2i

∫
|s−1|=2ε

ϕ(s)−j−1/2

s− z
ds,

and the error term is uniform for |z − 1| < ε with z inside γ.

This is a considerable improvement over Newman and Rivlin’s scaling limit in

Theorem 1.4. From this result the authors were able to obtain complete asymptotic

expansions of the zeros of the scaled partial sums pn−1[exp](nz) which approach the

point z = 1.

Theorem 1.10 (Kriecherbauer, Kuijlaars, Mclaughlin, and Miller). Let (wk)k∈N be

the sequence of zeros of erfc in the upper half-plane ordered so that |wk| < |wk+1|.
There exist polynomials qj of degree j such that, for 0 < β < 1, 1 < k < nβ, and

r ∈ N, the scaled partial sum pn−1[exp](nz) has a zero zk,n satisfying

zk,n = 1 +
r−1∑
j=1

qj(wk)

nj/2
+O

((
k

n

)r/2)
,
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where the constant in the error term depends only on the choice of r and β. The

polynomials qj can be computed explicitly.

Writing z = zk,n and w = wk for simplicity, the first few terms of this series are

z = 1+
√

2wn−1/2+
2w2 − 1

3
n−1+

2w3 − 7w

18
√

2
n−3/2− 6w4 + 7w2 − 8

405
n−2+· · · . (1.4.1)

Figure 1.13: The zeros of the partial sums pn[exp](z) for n = 1, . . . , 80 in the upper
half plane, shown with the approximations given by the first four terms of equation
(1.4.1) using w = w1 in orange and w = w2 in green, where w1 ≈ −1.35481+1.99147i
is the smallest zero of erfc in the upper half-plane and w2 ≈ −2.17704 + 2.69115i is
the next smallest. Compare with Figure 1.10.

Remark 1.11. In [30] the authors claim that if w = u+ iv is any zero of erfc(w/
√

2)

then pn[exp] has a zero arbitrarily close to the parabola

x =
1

v2
y2 +

u

v
y.

The expansion in (1.4.1) indicates that the constant on the y term is not correct. In

fact the correct parabola is evidently

x =
1

v2
y2 − u

3v
y +

1− u2 − 5v2

18
.

The methods in this thesis, and in particular in Chapter 5, are based on the ones

Kriecherbauer, Kuijlaars, Mclaughlin, and Miller used to obtain the above results.

By generalizing their function Fn(z) we are able to apply their methods to the study

of partial sums of power series of a wide class of entire functions.
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1.5 This Thesis

In this thesis we will verify the Modified Saff-Varga Width Conjecture for a class of

entire functions of positive, finite order with a certain asymptotic character in their

sectors of maximal growth.

We will focus on functions f where f(z) ≈ exp(zλ) in one or two sectors in the

plane, and which are bounded by a smaller exponential exp(µ|z|λ), µ < 1 otherwise.

For the sake of generality we will allow f to have some subexponential factors in

its asymptotic—in the case of a single sector of maximal growth we will assume

that f(z) ∼ za(log z)b exp(zλ) for some a, b ∈ C, and in the case of two sectors of

maximal growth we will restrict this a little and only assume that f(z) ∼ za exp(zλ).

Specifically we assume the following.

Let a, b, A ∈ C, 0 < λ <∞, µ < 1, and ζ ∈ C with |ζ| = 1, ζ 6= 1. Let θ ∈ (0, π)

be small enough so that the sectors |arg z| ≤ θ and |arg(z/ζ)| ≤ θ are disjoint. We

say that an entire function f has a single direction of maximal exponential growth if

f(z) =

za(log z)b exp(zλ)
[
1 + o(1)

]
for |arg z| ≤ θ,

O
(
exp(µ|z|λ)

)
for |arg z| > θ

as |z| → ∞, and that the function f has two directions of maximal exponential growth

if

f(z) =


za exp

(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A(z/ζ)b exp
(
(z/ζ)λ

) [
1 + o(1)

]
for |arg(z/ζ)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

as |z| → ∞, with all estimates holding uniformly in their sector. Under either of

these assumptions f is of order λ.

Remark 1.12. Both the assumption that f(z) ∼ za(log z)b exp(zλ) in the case of one

direction of maximal growth and that f(z) ∼ za exp(zλ) in the case of two directions of

maximal growth can be generalized to include other reasonably simple subexponential

factors such as (log log z)c. The conditions as they are were chosen to try to strike a

balance between generality and simplicity.

We will begin in Chapter 3 by deriving the limit curves for the appropriately-

scaled zeros of the partial sums of these functions f in the sector |arg z| < θ. Then
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in Chapter 4 we will prove analogues of Theorem 1.7, which we refer to as “scaling

limits at the arcs of the limit curve”. We will then show that these scaling limits

verify part (a) of the Modified Saff-Varga Width Conjecture for these functions f

in the sector 0 < |arg z| < θ. Finally in Chapter 5 we will prove analogues of

Theorems 1.4, 1.6, and 1.8, which we refer to as “scaling limits at the corner of the

limit curve”. We will show that these scaling limits verify part (b) of the Modified

Saff-Varga Width Conjecture at the exceptional argument arg z = 0 in the case of a

single direction of maximal exponential growth, and also when f has two directions

of maximal exponential growth as long as Re b− Re a < λ/2.

In total we verify the Modified Saff-Varga Width Conjecture for these functions

f in the full sector |arg z| < θ.

In Chapter 6 we will apply the results in the preceding chapters to several common

special functions. Among these will be the sine and cosine functions [44, 23, 48, 49, 50],

the confluent hypergeometric functions [33], the Bessel functions of the first kind [51],

and certain exponential integrals [34, 51], all of which have been studied before in

some way in the listed citations (though some in less generality, e.g. with tighter

restrictions on the ranges of their parameters). Among these functions, scaling limits

of the form in this thesis have only been obtained for the confluent hypergeometric

functions in [33]. We will also study the Airy functions and the parabolic cylinder

functions, neither of which have, to my knowledge, been examined in this way.

We note that [49] refers to the behavior of the zeros of the partial sums of sine

and cosine near the convex corners of their limit curve as an open problem. This is

addressed in the relevant section of Chapter 6 by applying Theorem 5.12.

Chapter 2 contains several preliminary facts and definitions which we will need

in our analysis, including a discussion of Riemann-Hilbert problems which appear

in Chapter 5. Finally, Appendix A contains an overview of the Laplace method, a

strategy for estimating integrals which we use throughout the thesis.



Chapter 2

Technical Preliminaries

2.1 Entire Functions

A function f : C→ C is said to be entire if it is analytic on all of C or, equivalently,

if its Taylor series converges on all of C.

Definition 2.1. The order (sometimes exponential order) of an entire function f is

defined as the infimum over all positive numbers λ such that

|f(z)| < exp
(
|z|λ
)

for all z large enough. If this isn’t satisfied for any positive number λ then we say f

has order ∞. If f is defined by the power series

f(z) =
∞∑
k=0

akz
k

then its order can be calculated by

λ = lim sup
k→∞

log k

log (|ak|−1/k)
.

(See, for example, [25].)

2.2 The Notation of Asymptotic Analysis

Asymptotic analysis uses a variety of notation whose purpose is to hide certain in-

formation about the quantities we handle. It allows us to ignore details we’re not

interested in and to greatly simplify otherwise complicated formulas.

It’s important to note that the various notations we will introduce below some-

times have different meanings depending on the conventions of the field of mathe-

matics in which they appear. One symbol may mean different things in different

26
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situations, and two different authors may use two different symbols for the same pur-

pose. Suffice it to say that the notation is only somewhat standardized. Our usage of

the notation follows the conventions of the subfield of classical analysis which is con-

cerned with the study of special functions. We will try to give a relatively complete

description of these conventions here.

2.2.1 Definitions

The principal player in the notation of asymptotic analysis is the “Big O” (pronounced

“big oh”).

Definition 2.2 (Big O Notation). Given a set U and two functions f and g whose

domains include U , the statement

f(x) = O(g(x)) for all x ∈ U (2.2.1)

is defined to mean that there exists a constant C > 0 such that

|f(x)| ≤ C|g(x)| for all x ∈ U.

There is some flexibility in the quantifier in this definition, “for all x ∈ U”. For

example, if we instead write

f(x) = O(g(x)) as x→∞,

we mean that there exists an M ∈ R such that

f(x) = O(g(x)) for all x > M.

Here we have taken U = {x ∈ R : x > M}. Similarly we may write something like

f(x) = O(g(x)) as x→ a,

where a is some limit point of the domains of f and g, to mean that there exists some

open neighborhood U of a in the domains of f and g such that f(x) = O(g(x)) for

all x ∈ U .

Notice that by writing “f(x) = O(g(x)) as x→∞” we’ve suddenly hidden away

the values of two constants, namely the C in the definition of “= O(· · · )” and the

M in the discussion above. This is a strength of the notation—for our purposes we

won’t need to know what their values are, only that they exist.
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Definition 2.3 (Big Omega Notation). Given a set U and two functions f and g

whose domains include U , the statement

f(x) = Ω(g(x)) for all x ∈ U

is defined to mean that there exists a constant C > 0 such that

|f(x)| ≥ C|g(x)| for all x ∈ U.

Definition 2.4 (Big Theta Notation). Given a set U and two functions f and g

whose domains include U , the statement

f(x) = Θ(g(x)) for all x ∈ U

is defined to mean that there exists a constant C > 0 such that

f(x) = O(g(x)) and f(x) = Ω(g(x)) for all x ∈ U.

The quantifiers in Big Omega and Big Theta notation have the same flexibility

we described above for Big O notation.

Definition 2.5 (Little O Notation). Given a point a (with the possibility that a =∞)

and two functions f and g defined in a neighborhood of a, the statement

f(x) = o(g(x)) as x→ a

is defined to mean that for any ε > 0 we can find a neighborhood U of a such that

|f(x)| ≤ ε|g(x)| for all x ∈ U.

If g(x) 6= 0 for all x near a, x 6= a, then this definition is equivalent to the

statement that

lim
x→a

f(x)

g(x)
= 0.

Definition 2.6 (Little Omega Notation). Given a point a (with the possibility that

a =∞) and two functions f and g defined in a neighborhood of a, the statement

f(x) = ω(g(x)) as x→ a

is defined to mean that for any M > 0 we can find a neighborhood U of a such that

|f(x)| ≥M |g(x)| for all x ∈ U.



29

If g(x) 6= 0 for all x near a, then this definition is equivalent to the statement that

lim
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ =∞.

It should also be noted that this Little Omega notation is not in very common use

and should be explained whenever it appears.

So, we have collected all of our basic notations: O, Ω, Θ, o, and ω. Now we will

expand the scope of their definitions to allow them to appear in formulas. This is the

most useful aspect of the notations though it does require an understanding of the

underlying conventions. The following discussion applies to all of these notations, so

for simplicity we’ll just use Big O notation as our example.

There is an inherent asymmetry in the meaning of the equals sign = in formulas

involving O. The primary convention we use is that we are always simplifying left-

to-right. A complicated expression may appear on the left of =, and its simplified or

refined form should appear on the right. Because of this the equals sign should be

viewed as part of the new notation rather than as usual equality.

Specifically, when we write a statement involving O there are hidden quantifiers.

On the left side of the equals sign = there is a “for all”, and on the right side there

is a “there exists”. For example, in the statement

log(1 + x) = x− x2

2
+O(x3) as x→ 0 (2.2.2)

the O notation appears on the right, and is therefore associated with a “there exists”:

there exists a function g defined in a neighborhood of x = 0 such that

log(1 + x) = x− x2

2
+ g(x)

and which satisfies

g(x) = O(x3) as x→ 0,

where this last line is to be interpreted precisely as in Definition 2.2.

Similarly, the expression

log(1 + x) +O(x4) = x− x2

2
+O(x3) as x→ 0

should be interpreted as follows: there is an O(· · · ) on the left of the = and another

on the right, so we understand the expression to mean that for all functions f(x) =
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O(x4) as x→ 0 there exists a function g(x) which satisfies the equation

log(1 + x) + f(x) = x− x2

2
+ g(x)

and the asymptotic g(x) = O(x3) as x → 0. Indeed, taking such a g defined by this

equation we can deduce from (2.2.2) and the assumption f(x) = O(x4) as x→ 0 that

|g(x)| =
∣∣∣∣log(1 + x)− x+

x2

2
+ f(x)

∣∣∣∣
≤
∣∣∣∣log(1 + x)− x+

x2

2

∣∣∣∣+ |f(x)|

≤ C1x
3 + C2x

4

≤ C3x
3

for all x small enough. This proves that g(x) = O(x3) as x→ 0, as desired.

Remark 2.7. If it’s not clear, it would be a valuable exercise to check that by

reversing the quantifiers the above statement is not true. It is not true that for any

function g(x) = O(x3) as x→ 0 there exists a function f(x) = O(x4) as x→ 0 such

that

log(1 + x) + f(x) = x− x2

2
+ g(x).

Consider, for example, g(x) = x3/6.

Definition 2.8 (Asymptotic Equivalence). Given a point a (with the possibility that

a =∞) and two functions f and g, we say that f is asymptotic to g, and write

f(x) ∼ g(x) as x→ a,

if

lim
x→a

f(x)

g(x)
= 1.

Alternatively we may say that f is asymptotically equivalent to g.

Definition 2.9 (Asymptotic Scale). Given a point a (with the possibility that a =∞)

and a sequence of functions {ϕn(x)}n∈N, we say that this sequence is an asymptotic

scale as x→ a if

ϕn+1(x) = o(ϕn(x)) as x→ a

for all n ∈ N.
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Definition 2.10 (Asymptotic Expansion). Given a function f , a point a, and an

asymptotic scale {ϕn(x)}n∈N as x→ a, we say that the formal series

∞∑
n=1

ϕn(x)

is an asymptotic expansion for f(x) as x→ a, and write

f(x) ∼̇
∞∑
n=1

ϕn(x) as x→ a,

if

f(x) =
N∑
n=1

ϕn(x) + o(ϕN(x)) as x→ a

for all N ∈ N.

Remark 2.11. The dotted tilde notation ∼̇ above is non-standard. In some texts the

plain tilde ∼ is instead used in the notation for an asymptotic expansion, and in others

a wavy equals ≈ is used. In my experience using the plain ∼ can cause confusion

because it already has another meaning in asymptotic analysis; see Definition 2.8.

The reason I don’t use ≈ is slightly different: I prefer that it be left undefined so

that it may be used informally. It can be a very helpful tool for communicating

exploratory, non-rigorous calculations. These are useful for building intuition. The

precise meaning of ≈ can then be determined afterward with a more detailed, rigorous

analysis. (We use ≈ in this way in Section 4.1.)

Definition 2.12 (Uniformity). Given sets U and V and two functions f(x, y) and

g(x) whose x-domains include U , the statement

f(x, y) = O(g(x)) uniformly for all x ∈ U and y ∈ V

is defined to mean that there exists a constant C > 0 depending only on U and V

such that

|f(x, y)| ≤ C|g(x)| for all x ∈ U and y ∈ V.

Of course similar definitions of uniformity can be made for the other notations

Ω, Θ, o ω, ∼, and ∼̇. Essentially a claim of uniformity in an asymptotic expression

is a statement that none of the hidden constants depend on the specified additional

parameters, though it is possible that they depend on the ranges of the parameters.
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The main way that the concept of uniform estimates will be used in this thesis

is in the description of the behavior of functions defined on the complex plane when

|z| → ∞. For example, if θ ∈ (0, π/2) then∣∣∣∣−2i sin(iz)

ez
− 1

∣∣∣∣ ≤ e−2|z| cos θ, |arg z| ≤ θ.

There is a constant C(θ) > 0 which depends on θ such that

e−2x cos θ ≤ 1

x

for all x > C(θ), so the above formula implies that if θ ∈ (0, π/2) then∣∣∣∣−2i sin(iz)

ez
− 1

∣∣∣∣ ≤ D

|z|
, |arg z| ≤ θ and |z| > C(θ)

with D = 1. We can restate this in asymptotic terms:

−2i sin(iz) = ez
[
1 +O

(
z−1
)]

as |z| → ∞ uniformly for |arg z| ≤ θ, and we interpret this to mean that the hidden

constants associated with the O(· · · ) term (in this case C(θ) and D) do not depend

on arg z as long as |arg z| ≤ θ.

2.3 Cauchy Integrals

In this section we will state several important facts about Cauchy integrals. Proofs

of these as well as further details can be found in [28, 29, 18].

Definition 2.13 (Cauchy Integrals). Let L be a finite, smooth, oriented curve (which

may be a closed contour) and suppose that g : C → C is integrable with respect to

arc length on L, i.e. ∫
L

|g(t)| |dt| <∞.

For z ∈ C \ L the Cauchy integral of g is defined as

CL[g](z) =
1

2πi

∫
L

g(t)

t− z
dt.

Proposition 2.14. The function CL[g] is analytic on C \ L and CL[g](z) = O(z−1)

as |z| → ∞.
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Definition 2.15 (Hölder Continuity). Let 0 < α ≤ 1. A function g defined on some

connected set U ⊂ C is said to be Hölder continuous on U if there exists a constant

K such that

|g(z1)− g(z2)| ≤ K|z1 − z2|α for all z1, z2 ∈ U.

Proposition 2.16 (Plemelj Formulas). If g is Hölder continuous on L then CL[g]

has extensions from the left of L onto L and from the right of L onto L denoted by

C+
L [g] and C−L [g], respectively, which are continuous except possibly in arbitrarily small

neighborhoods of the endpoints of L. If ζ ∈ L is not an endpoint of L, or if it is an

endpoint and g(ζ) = 0, then

C±L [g](ζ) =
1

2πi
P.V.

∫
L

g(t)

t− ζ
dt± g(ζ)

2
,

where P.V.
∫

is a principal value integral, and hence

C+
L [g](ζ)− C−L [g](ζ) = g(ζ).

If L is an arc which connects a to b, a, b ∈ C, then there exists a function Ha defined

in a neighborhood of a which is analytic on Lc (the complement of L), continuous at

a, and has continuous extensions onto L \ {a} from the left and the right such that

CL[g](z) =
g(a)

2πi
log

1

z − a
+Ha(z)

for z near a, where the branch cut of the logarithm coincides with L. For z near b

there is an analogous function Hb such that

CL[g](z) = −g(b)

2πi
log

1

z − b
+Hb(z),

where again the branch cut of the logarithm coincides with L.

2.4 Scalar Riemann-Hilbert Problems

Let L be an oriented curve in the plane and let g be a function defined on L. If L

is a closed contour, set L∗ = L and if L is an arc which begins at z = a and ends

at z = b, set L∗ = L \ {a, b}. A scalar Riemann-Hilbert problem is a problem of the

following form.
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Riemann-Hilbert Problem 2.17. Seek an analytic function Φ: C \ L → C such

that

1. Φ has continuous extensions Φ+ and Φ− from the left and right of L∗, respec-

tively, onto L∗,

2. Φ+(ζ)− Φ−(ζ) = g(ζ) for ζ ∈ L∗,

3. Φ(z)→ 0 as |z| → ∞,

4. if c is an endpoint of L then Φ(z) = O(|z − c|−1+ε) as z → c with z ∈ C \ L for

some ε > 0.

Proposition 2.18. If L has finite length and if g is Hölder continuous on L then

Φ = CL[g] is the unique solution to Riemann Hilbert Problem 2.17.

Proof. It follows immediately from Propositions 2.14 and 2.16 that CL[g] solves the

Riemann-Hilbert problem.

To show that CL[g] it is the only solution, suppose that Ψ also solves the Riemann-

Hilbert problem and define

F = CL[g]−Ψ.

Then for ζ ∈ L∗ we have

F+(ζ) = F−(ζ),

Consequently F is continuous across L∗ and hence analytic on C except possibly at

the endpoints of L. These endpoints are at most isolated singularities of F of order

strictly less than 1, so in fact F is bounded near these points and is thus analytic

there as well. In total F is entire, and since F (z) → 0 as |z| → ∞ it must be true

that F ≡ 0 by Liouville’s theorem.

This is essentially the same proof given in [29, sec. 78].

We will make use of this proposition at key points of Chapter 5.



Chapter 3

Limit Curves for the Zeros of the Partial Sums

In this chapter we will calculate the set of limit points in a certain sector of the (ap-

propriately scaled) zeros of the partial sums of the Maclaurin series for the functions

f we are interested in. Just as in the examples discussed in Chapter 1, as the degree

of the partial sum tends to infinity its scaled zeros converge to a piecewise-smooth

curve in the plane.

3.1 One Direction of Maximal Exponential Growth

Let a, b ∈ C, 0 < λ < ∞, 0 < θ < π, and µ < 1. We suppose that f is an entire

function with the asymptotic behavior

f(z) =

za(log z)b exp
(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

O
(
exp(µ|z|λ)

)
for |arg z| > θ

(3.1.1)

as |z| → ∞, with each estimate holding uniformly in its sector.

Note that without loss of generality we assume that the sector of maximal growth

is bisected by the positive real line—if a function grows maximally in some other

direction we can replace z by ζz for some appropriate ζ ∈ C with |ζ| = 1 so that the

maximal growth sector of the rotated function is oriented as desired. Similarly note

that we assume f has been normalized so that the leading coefficient in its asymptotic,

as well as the coefficient of zλ in the exponential, are both equal to 1.

For this f , let

pn(z) =
n∑
k=0

f (k)(0)

k!
zk

and define

rn =
(n
λ

)1/λ

. (3.1.2)

35
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Theorem 3.1. All limit points of the zeros of the scaled partial sums pn−1(rnz) in

the sector |arg z| < θ, z 6= 0 lie on the curve∣∣zλ exp
(
1− zλ

)∣∣ = 1, |z| ≤ 1.

Further, these zeros approach this curve from the region |zλ exp(1− zλ)| > 1.

In fact we will show that if z = z(n) is a zero of pn−1(rnz) which converges to a

point z0 with |arg z0| < θ, z0 6= 0, 1 then∣∣zλ exp
(
1− zλ

)∣∣ = 1 +
λ log n

2n
+O

(
n−1
)

as n→∞.

3.1.1 Definitions and Preliminaries

For |arg z| ≤ θ it follows from (3.1.1) that

f(rnz)

ran(log rn)b(e1/λz)n
∼ za

(
zλe1−zλ

)−n/λ
= zaenϕ(z) (3.1.3)

as n→∞, where

ϕ(z) :=
(
zλ − 1− λ log z

)/
λ. (3.1.4)

Definition 3.2. A contour γ is said to be admissible for a function ϕ if

1. γ is a smooth Jordan curve winding counterclockwise around the origin.

2. In the sector |arg z| ≤ θ, γ is a positive distance from the curve Reϕ(z) = 0

except for a part that lies in some neighborhood Uγ of z = 1. In this set Uγ

the contour γ coincides with the path of steepest decent of the function Reϕ(z)

passing through the point z = 1.

3. In the sector |arg z| ≥ θ, γ coincides with the unit circle.

Let γ be an admissible contour for ϕ and suppose for now that z 6= 0 is inside the

scaled contour rnγ. The function

f(z)− pn−1(z)

zn
=: Φ(z)
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is entire, so by Cauchy’s integral formula

Φ(z) =
1

2πi

∫
rnγ

ζ−nf(ζ)
dζ

ζ − z
− 1

2πi

∫
rnγ

ζ−npn−1(ζ)
dζ

ζ − z
. (3.1.5)

Since ∫
rnγ

ζ−m
dζ

ζ − z
= 0

for all integers m ≥ 1, the second integral in (3.1.5) is zero. Making the substitution

ζ = rns and replacing z by rnz yields the identity

f(rnz)− pn−1(rnz)

(rnz)n
=

1

2πi

∫
γ

(rns)
−nf(rns)

ds

s− z
,

which holds for z 6= 0 inside γ. (This construction is a special case of the one in [14,

p. 436] for an integral representation of the error of a Padé approximation.)

Define the function

Fn(z) =
r−an (log rn)−b

2πi

∫
γ

(
e1/λs

)−n
f(rns)

ds

s− z
(3.1.6)

for z /∈ γ, z 6= 0. For z inside γ with z 6= 0 it follows from the derivation above that

Fn(z) =
f(rnz)− pn−1(rnz)

ran(log rn)b(e1/λz)n
.

The value of Fn(z) for z outside γ can be calculated using a similar derivation or by

using the residue theorem, and in total

Fn(z) =
1

ran(log rn)b(e1/λz)n
×

−pn−1(rnz) for z outside γ,

f(rnz)− pn−1(rnz) for z 6= 0 inside γ.
(3.1.7)

A straightforward calculation shows that ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) = λ, so

ϕ(s) =
λ

2
(s− 1)2 +O

(
(s− 1)3

)
in a neighborhood of s = 1. The inverse function theorem ensures the existence of a

neighborhood V of the origin, a neighborhood U ⊂ Uγ of s = 1, and a biholomorphic

map ψ : V → U which satisfies

(ϕ ◦ ψ)(x) = x2

for x ∈ V . This function ψ maps a segment of the imaginary axis onto the path of

steepest descent of the function Reϕ(z) going through z = 1 with ψ(0) = 1, and we

make the choice that ψ′(0) =
√

2/λ.
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3.1.2 Proof of Theorem 3.1

Split the integral for Fn into the two pieces

Fn(z) =
r−an (log rn)−b

2πi

(∫
γθ

(
e1/λs

)−n
f(rns)

ds

s− z
+

∫
γ\γθ

(
e1/λs

)−n
f(rns)

ds

s− z

)
,

(3.1.8)

where γθ is the portion of γ in the sector |arg z| ≤ θ.

Lemma 3.3. If z is restricted to any sector |arg z| ≤ θ − ε with ε > 0 then∫
γ\γθ

(
e1/λs

)−n
f(rns)

ds

s− z
= O

(
e(µ−1)n/λ

)
as n→∞ uniformly in z.

Proof. For any ε > 0 there exists a constant K > 0 such that |s − z| ≥ K for

all s ∈ γ \ γθ and all z with |arg z| ≤ θ − ε. Also, it follows from the asymptotic

assumption on f in (3.1.1) that for all z large enough with |arg z| ≥ θ there is a

constant M such that

|f(z)| ≤M exp
(
µ|z|λ

)
.

Since the contour γ \ γθ lies on the unit circle in the sector |arg z| ≥ θ, it therefore

follows from the above assumptions that∣∣∣∣∫
γ\γθ

(
e1/λs

)−n
f(rns)

ds

s− z

∣∣∣∣ ≤ K−1M length(γ \ γθ)e(µ−1)n/λ

for all n large enough.

Define the function δ(z) for |arg z| ≤ θ by

f(z) = za(log z)b exp(zλ)
[
1 + δ(z)

]
. (3.1.9)

This implies

f(rns)

ran(log rn)b(e1/λs)n
= saenϕ(s)

(
1 +

log s

log rn

)b [
1 + δ(rns)

]
for s ∈ γθ. By then defining

δ̃(rn, s) =

(
1 +

log s

log rn

)b [
1 + δ(rns)

]
− 1 (3.1.10)
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the integrand of the first integral in (3.1.8) can be rewritten as

saenϕ(s) + saenϕ(s)δ̃(rn, s).

It then follows from (3.1.8) and Lemma 3.3 that, for some constant c > 0,

Fn(z) =
1

2πi

∫
γθ

saenϕ(s) ds

s− z
+

1

2πi

∫
γθ

saenϕ(s)δ̃(rn, s)
ds

s− z
+O(e−cn) (3.1.11)

as n→∞ uniformly for z restricted to any sector |arg z| ≤ θ − ε with ε > 0.

For ε > 0 define Nε to be the set of all points within a distance of ε of the curve γθ.

Lemma 3.4. ∫
γθ

saenϕ(s) ds

s− z
=

i

1− z

√
2π

λn
+O

(
n−1
)

as n→∞ uniformly for z ∈ C \Nε with ε > 0.

Proof. Fix ε > 0. Using the same method as in the proof of Lemma 3.3 it can be

shown that the integral over the part of the contour outside of U is exponentially

small, so that ∫
γθ

saenϕ(s) ds

s− z
=

∫
γθ∩U

saenϕ(s) ds

s− z
+O(e−cn)

as n→∞ uniformly for z ∈ C \Nε, where c is some positive constant not depending

on n or z. Making the substitution s = ψ(it) yields∫
γθ

saenϕ(s) ds

s− z
=

∫ α2

−α1

e−nt
2

ψ(it)a
iψ′(it)

ψ(it)− z
dt+O(e−cn) (3.1.12)

for some α1, α2 > 0.

Now write

ψ(it)a
iψ′(it)

ψ(it)− z
=

i

1− z

√
2

λ
+ ψ̃(t, z),

where

ψ̃(t, z) := ψ(it)a
iψ′(it)

ψ(it)− z
− ψ(0)a

iψ′(0)

ψ(0)− z
.

By taking U smaller if necessary it is tedious though straightforward to show by

Taylor’s theorem that for all z ∈ C \Nε and for all t ∈ [−α1, α2] that

|ψ̃(t, z)| ≤M |t|
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for some constant M not depending on z, and therefore that∣∣∣∣∫ α2

−α1

e−nt
2

ψ̃(t, z) dt

∣∣∣∣ ≤M

∫ α2

−α1

e−nt
2|t| dt

< 2M

∫ ∞
0

e−nt
2

t dt

=
M

n
.

Substituting this into (3.1.12) and using the fact that∫ α2

−α1

e−nt
2

dt =

√
π

n
+O(e−c

′n)

for some constant c′ > 0 yields the estimate∫
γθ

saenϕ(s) ds

s− z
=

i

1− z

√
2

λ

∫ α2

−α1

e−nt
2

dt+O
(
n−1
)

=
i

1− z

√
2π

λn
+O

(
n−1
)

(3.1.13)

as n→∞ uniformly for z ∈ C \Nε.

Lemma 3.5. ∫
γθ

saenϕ(s)δ̃(rn, s)
ds

s− z
= o
(
n−1/2

)
as n→∞ uniformly for z ∈ C \Nε with ε > 0.

Proof. Fix ε > 0 and let U ′ ⊂ U be a neighborhood of z = 1 such that

sup
z∈U ′
|z − 1| < ε.

As in Lemma 3.5,∫
γθ

saenϕ(s)δ̃(rn, s)
ds

s− z
=

∫
γθ∩U ′

saenϕ(s)δ̃(rn, s)
ds

s− z
+O(e−cn)

as n→∞ uniformly for z ∈ C \Nε, where c is some positive constant not depending

on n or z, and the substitution s = ψ(it) yields∫
γθ

saenϕ(s)δ̃(rn, s)
ds

s− z
=

∫ α′2

−α′1
e−nt

2

ψ(it)a
iψ′(it)

ψ(it)− z
δ̃(rn, ψ(it)) dt+O(e−cn)
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for some α′1, α
′
2 > 0. If z ∈ C \ Nε and t ∈ [−α′1, α′2] then |ψ(it) − z| ≥ K for some

positive constant K, so that∣∣∣∣∣
∫ α′2

−α′1
e−nt

2

ψ(it)a
iψ′(it)

ψ(it)− z
δ(nψ(it)) dt

∣∣∣∣∣
≤ K−1

∫ α′2

−α′1
e−nt

2

dt sup
−α′1<t<α′2

∣∣∣ψ(it)aψ′(it)δ̃(rn, ψ(it))
∣∣∣

<
M√
n

sup
−α′1<t<α′2

∣∣∣δ̃(rn, ψ(it))
∣∣∣

for some positive constant M . Note that U may need to be made smaller to ensure

that ψ′(it) is bounded—doing this doesn’t cause any issues.

By definition δ(z) → 0 as |z| → ∞ uniformly for |arg z| ≤ θ, and so δ(rns) → 0

as n→∞ uniformly for s ∈ γθ. By extension this holds for δ̃(rn, s) as well, and thus

lim
n→∞

sup
−α′1<t<α′2

∣∣∣δ̃(rn, ψ(it))
∣∣∣ = 0.

Combining Lemmas 3.4 and 3.5 and equation (3.1.11) yields the asymptotic

Fn(z) =
1

(1− z)
√

2πλn
+ o
(
n−1/2

)
(3.1.14)

as n→∞ uniformly for z ∈ C \Nε with |arg z| ≤ θ − ε for any fixed ε > 0.

Suppose that z = z(n) is a zero of pn−1(rnz), i.e. that pn−1(rnz) = 0. Suppose

further that, as n→∞, z tends to a limit point inside γ and in the set

{z ∈ C : |arg z| < θ and z 6= 0, 1}.

Then for n large enough there is an ε > 0 such that |arg z| ≤ θ − ε and z ∈ C \ Nε,

and so from the definition of Fn(z) it follows from (3.1.14) that

f(rnz)

ran(log rn)b(e1/λz)n
∼ 1

(1− z)
√

2πλn
=

e−(logn)/2

(1− z)
√

2πλ

as n→∞, and from the asymptotic assumption on f in (3.1.1) that

za
[
zλ exp

(
1− zλ

)]−n/λ ∼ e−(logn)/2

(1− z)
√

2πλ
(3.1.15)
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as n→∞. If g(n) = Θ(1) then

|g(z)|1/n = 1 +O
(
n−1
)

as n → ∞, so taking absolute values and raising both sides of (3.1.15) to the power

−λ/n yields ∣∣zλ exp
(
1− zλ

)∣∣ = exp

(
λ log n

2n

)[
1 +O

(
n−1
)]

= 1 +
λ log n

2n
+O

(
n−1
)

(3.1.16)

as n→∞.

It follows from the above asymptotic that the limit points z0 of the zeros of

pn−1(rnz) inside γ with |arg z0| < θ, z0 6= 0 lie on the curve∣∣zλ0 exp
(
1− zλ0

)∣∣ = 1,

or, equivalently,

Reϕ(z0) = 0.

Further, the exterior of this curve in this region is characterized by the inequality∣∣zλ exp
(
1− zλ

)∣∣ > 1,

so the zeros approach this limit curve from the exterior. Finally, as an admissible

contour may be taken to lie as close to the lines Imϕ(z) = 0 as desired, the only such

limit points z0 in the whole set

{z ∈ C : Reϕ(z) > 0} ∪ {z ∈ C : Reϕ(z) ≤ 0 and |z| ≤ 1}

must lie on the curve Reϕ(z0) = 0.

Suppose now that z is a zero of pn−1(rnz) which lies in a sector |arg z| ≤ θ − ε
with ε > 0 and in the set

{z ∈ C : Reϕ(z) ≤ 0 and |z| > 1} \Nε

for n large enough. Then z eventually lies outside of γ, and so Fn(z) = 0 by (3.1.7).

From equation (3.1.14) it follows that

0 =
1

(1− z)
√

2πλn
+ o
(
n−1/2

)
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as n→∞, and, on multiplying this by
√
n, that

0 =
1

(1− z)
√

2πλ
+ o(1)

as n→∞. The only way this is possible is if |z| → ∞.

Since ε > 0 was arbitrary, it follows that the zeros of pn−1(rnz) have no limit point

in the set

{z ∈ C : Reϕ(z) ≤ 0 and |z| > 1}.

This completes the proof.

3.2 Two Directions of Maximal Exponential Growth

Let a, b, A ∈ C, 0 < λ < ∞, µ < 1, and ζ ∈ C with |ζ| = 1, ζ 6= 1. Let θ ∈ (0, π)

be small enough so that the sectors |arg z| ≤ θ and |arg(z/ζ)| ≤ θ are disjoint. We

suppose that f is an entire function with the asymptotic behavior

f(z) =


za exp

(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A(z/ζ)b exp
(
(z/ζ)λ

) [
1 + o(1)

]
for |arg(z/ζ)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

(3.2.1)

as |z| → ∞, with each estimate holding uniformly in its sector.

Without loss of generality we assume that one sector of maximal growth is bisected

by the positive real line—if neither of the function’s directions of maximal growth are

bisected by the positive real line then we can replace z by ωz for some ω ∈ C with

|ω| = 1 so that one of those directions is as desired. Similarly we assume that f

has been normalized so that the leading coefficient in its asymptotic in this direction

bisected by the positive real line, as well as the coefficient of zλ in the first exponential

and the coefficient of (z/ζ)λ in the second exponential, are all equal to 1.

For this f , let

pn(z) =
n∑
k=0

f (k)(0)

k!
zk

and define

rn =
(n
λ

)1/λ

. (3.2.2)
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Theorem 3.6. All limit points of the zeros of the scaled partial sums pn−1(rnz) in

the sector |arg z| < θ, z 6= 0 lie on the curve∣∣zλ exp
(
1− zλ

)∣∣ = 1, |z| ≤ 1.

If Re a 6= Re b, define α = min{Re a,Re b}. In this case the zeros approach this limit

curve from the region |zλ exp(1− zλ)| > 0 if α− Re b+ λ/2 > 0 and from the region

|zλ exp(1− zλ)| < 0 if α− Re b+ λ/2 < 0.

In fact we will show that if Re a 6= Re b and if z = z(n) is a zero of pn−1(rnz)

which converges to a point z0 with |arg z0| < θ, z0 6= 0 then∣∣zλ exp
(
1− zλ

)∣∣ = 1 +

(
α− Re b+

λ

2

)
log n

n
+O

(
n−1
)

as n→∞. This formula also holds when Re a = Re b as long as

z0 /∈ {w ∈ C : |ζ − w| = |A(1− w)|}.

3.2.1 Definitions and Preliminaries

Let

ϕ(z) =
(
zλ − 1− λ log z

)/
z

and let γ be an admissible contour for ϕ (see Definition 3.2).

Define

Fn(z) =
r−an
2πi

∫
γ

(
e1/λs

)−n
f(rns)

ds

s− z
(3.2.3)

for z /∈ γ, z 6= 0. As in Section 3.1.1,

Fn(z) =
1

ran(e1/λz)n
×

−pn−1(rnz) for z outside γ,

f(rnz)− pn−1(rnz) for z 6= 0 inside γ.
(3.2.4)

3.2.2 Proof of Theorem 3.6

Call γ1 the part of γ in the sector |arg z| ≤ θ, call γ2 the part of γ in the sector

|arg(z/ζ)| ≤ θ, and call γ3 the part of γ outside of either of those sectors. This allows

us to divide the integral in the definition of Fn(z) in (3.2.3) into three parts∫
γ

=

∫
γ1

+

∫
γ2

+

∫
γ3
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which will be analyzed separately.

Using a method identical to the proof of Lemma 3.3 it can be shown that∫
γ3

(
e1/λs

)−n
f(rns)

ds

s− z
= O

(
e(µ−1)n/λ

)
(3.2.5)

as n → ∞ uniformly for z restricted to any sector |arg z| ≤ θ − ε with ε > 0, and

using a method identical to the proofs of Lemmas 3.4 and 3.5 that∫
γ1

(
e1/λs

)−n
f(rns)

ds

s− z
=

iran
1− z

√
2π

λn
+ o
(
rann

−1/2
)

(3.2.6)

as n→∞ uniformly for z in any set C \Nε with ε > 0. Here Nε is defined to be the

set of all points within a distance of ε from γ1.

For ε > 0 define Ñε to be the set of all points within a distance of ε of the curve γ2.

Lemma 3.7. ∫
γ2

(
e1/λs

)−n
f(rns)

ds

s− z
=
iAζ1−nrbn
ζ − z

√
2π

λn
+ o(rbnn

−1/2)

as n→∞ uniformly for z ∈ C \ Ñε with ε > 0.

Proof. By the asymptotic assumption on f in (3.2.1), for |arg(z/ζ)| ≤ θ we can write

f(z) = A(z/ζ)b exp
(
(z/ζ)λ

) [
1 + δ(z)

]
, (3.2.7)

where δ(z)→ 0 uniformly as |z| → ∞ in this sector. This implies

f(rns)

(e1/λs)n
= Aζ−nrbn(s/ζ)benϕ̃(s)

[
1 + δ(rns)

]
for s ∈ γ2, where

ϕ̃(s) =
[
(s/ζ)λ − 1− λ log(s/ζ)

]/
λ,

allowing us to split the integral in question like∫
γ2

(
e1/λs

)−n
f(rns)

ds

s− z

= Aζ−nrbn

(∫
γ2

(s/ζ)benϕ̃(s) ds

s− z
+

∫
γ2

(s/ζ)benϕ̃(s)δ(rns)
ds

s− z

)
. (3.2.8)

By the inverse function theorem there exists a neighborhood Ṽ of the origin, a neigh-

borhood Ũ of s = ζ, and a biholomorphic map ψ̃ : Ṽ → Ũ which satisfies

(ϕ̃ ◦ ψ̃)(x) = x2
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for x ∈ Ṽ . It follows that ψ̃(0) = ζ, and we make the choice that ψ′(0) = ζ
√

2/λ.

This function ψ̃ maps a segment of the imaginary axis onto the path of steepest

descent of the function Re ϕ̃(z) going through z = ζ.

The rest of the proof proceeds just as the proofs of Lemmas 3.4 and 3.5 by using

ϕ̃ and ψ̃ in place of ϕ and ψ, respectively.

Combining equations (3.2.5), (3.2.6), and Lemma 3.7 yields the asymptotic

Fn(z) =
1

(1− z)
√

2πλn
+

Aζ1−nrb−an

(ζ − z)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
(3.2.9)

as n → ∞ uniformly for z ∈ C \ Nε restricted to the sector |arg z| ≤ θ − ε, where

ε > 0 is arbitrary but fixed.

Suppose that z = z(n) is a zero of pn−1(rnz) which, as n → ∞, tends to a limit

point inside γ and in the set

{z ∈ C : |arg z| < θ and z 6= 0, 1}.

Then for n large enough there is an ε > 0 such that |arg z| ≤ θ − ε and z ∈ C \ Nε,

and so from the definition of Fn(z) it follows from (3.2.9) that

f(rnz)

ran(e1/λz)n
=

1

(1− z)
√

2πλn
+

Aζ1−nrb−an

(ζ − z)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
as n→∞, and from the asymptotic assumption on f in (3.2.1) that

za
[
zλ exp

(
1− zλ

)]−n/λ [
1 + o(1)

]
=

1

(1− z)
√

2πλn
+

Aζ1−nrb−an

(ζ − z)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
(3.2.10)

as n→∞.

If Re a > Re b then

za
[
zλ exp

(
1− zλ

)]−n/λ ∼ 1

(1− z)
√

2πλn

and hence, just as in (3.1.16),∣∣zλ exp
(
1− zλ

)∣∣ = 1 +
λ log n

2n
+O

(
n−1
)

(3.2.11)

as n→∞. If instead Re a < Re b then

za
[
zλ exp

(
1− zλ

)]−n/λ ∼ Aζ1−nrb−an

(ζ − z)
√

2πλn
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and hence∣∣zλ exp
(
1− zλ

)∣∣ = 1 +

(
Re a− Re b+

λ

2

)
log n

n
+O

(
n−1
)

(3.2.12)

as n→∞. Finally suppose Re b = Re a, so that

za
[
zλ exp

(
1− zλ

)]−n/λ [
1 + o(1)

]
=

(
A−1 ζ − z

1− z
+ ζ1−nrb−an + o(1)

)
1

(ζ − z)
√

2πλn
(3.2.13)

as n→∞. Note that |ζ1−nrb−an | = 1 in this case, so for n large enough the quantity

in parentheses is bounded below in absolute value by a positive constant unless∣∣∣∣ζ − z1− z

∣∣∣∣→ |A|.
If z does not tend to a point on the circle

{w ∈ C : |ζ − w| = |A(1− w)|}

then taking absolute values and raising both sides of the equation to the power −λ/n
yields ∣∣zλ exp

(
1− zλ

)∣∣ = 1 +
λ log n

2n
+O

(
n−1
)

(3.2.14)

as n→∞. Suppose now that z does tend to a point on the circle

{w ∈ C : |ζ − w| = |A(1− w)|},

define

M = lim sup
n→∞

∣∣∣∣A−1 ζ − z
1− z

+ ζ1−nrb−an

∣∣∣∣ ,
and note that M > 0. It follows that

lim inf
n→∞

∣∣∣∣A−1 ζ − z
1− z

+ ζ1−nrb−an

∣∣∣∣−λ/n = 1. (3.2.15)

If

lim sup
n→∞

∣∣∣∣A−1 ζ − z
1− z

+ ζ1−nrb−an

∣∣∣∣−λ/n 6= 1

then

lim
n→∞

∣∣∣∣A−1 ζ − z
1− z

+ ζ1−nrb−an

∣∣∣∣−λ/n
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does not exist. However, by the above assumption on the convergence of z as n→∞
it’s true that

lim
n→∞

∣∣z−aλ/n∣∣ , lim
n→∞

∣∣zλ exp
(
1− zλ

)∣∣ , and lim
n→∞

∣∣∣∣ 1

(ζ − z)
√

2πλn

∣∣∣∣−λ/n
all exist. Consequently it follows from (3.2.13) that

lim
n→∞

∣∣∣∣A−1 ζ − z
1− z

+ ζ1−nrb−an

∣∣∣∣−λ/n
exists, and then from (3.2.15) that this limit is equal to 1. Altogether, this implies

that ∣∣zλ exp
(
1− zλ

)∣∣ = 1 + o(1) (3.2.16)

as n→∞.

It follows from the asymptotics in (3.2.11), (3.2.12), (3.2.14), and (3.2.16) that

the limit points z0 of the zeros of pn−1(rnz) inside γ with |arg z0| < θ, z0 6= 0 lie on

the curve ∣∣zλ0 exp
(
1− zλ0

)∣∣ = 1,

or, equivalently,

Reϕ(z0) = 0.

Further, the exterior of this curve in this region is characterized by the inequality∣∣zλ exp
(
1− zλ

)∣∣ > 1,

so if Re a 6= Re b and we set α = min{Re a,Re b} then the zeros approach this limit

curve from the exterior if α−Re b+λ/2 > 0 and from the interior if α−Re b+λ/2 < 0.

If Re a = Re b then the zeros which approach points of the curve which are not on

the circle

{w ∈ C : |ζ − w| = |A(1− w)|}

do so from the exterior.

As an admissible contour may be taken to lie as close to the lines Imϕ(z) = 0 as

desired, the only such limit points z0 in the whole set

{z ∈ C : Reϕ(z) > 0} ∪ {z ∈ C : Reϕ(z) ≤ 0 and |z| ≤ 1}

must lie on the curve Reϕ(z0) = 0.
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Suppose now that z is a zero of pn−1(rnz) which lies in a sector |arg z| ≤ θ − ε
with ε > 0 and in the set

{z ∈ C : Reϕ(z) ≤ 0 and |z| > 1} \Nε

for n large enough. Then z eventually lies outside of γ, and so Fn(z) = 0 by (3.2.4).

From equation (3.2.9) it follows that

0 =
1

(1− z)
√

2πλn
+

Aζ1−nrb−an

(ζ − z)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
as n→∞.

If Re a > Re b then multiplying through by
√
n yields

0 =
1

(1− z)
√

2πλ
+ o(1)

as n → ∞, and the only way this is possible is if |z| → ∞. If Re a < Re b then

multiplying through by ra−bn

√
n instead yields

0 =
Aζ1−n

(ζ − z)
√

2πλ
+ o(1)

as n→∞, and we again conclude that we must have |z| → ∞. Finally if Re a = Re b

then multiplying through by
√
n yields

0 =

(
A−1 ζ − z

1− z
+ ζ1−nrb−an

)
1

(ζ − z)
√

2πλ
+ o(1)

as n→∞. Again, the only way this holds is if |z| → ∞.

Since ε > 0 was arbitrary, it follows that the zeros of pn−1(rnz) have no limit point

in the set

{z ∈ C : Reϕ(z) ≤ 0 and |z| > 1}.

This completes the proof.

3.3 Generalization to More Directions of Maximal Growth

It’s not difficult to extend the results in this chapter to functions with more than two

of directions of maximal exponential growth.

Let a, b1, . . . , bm, A1, . . . , Am ∈ C, 0 < λ < ∞, µ < 1, and ζ1, . . . , ζm ∈ C with

|ζk| = 1, ζk 6= 1 for all k = 1, . . . ,m and ζj 6= ζk for j 6= k. Let θ ∈ (0, π) be
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small enough so that all of the sectors |arg z| ≤ θ, |arg(z/ζk)| ≤ θ, k = 1, . . . ,m, are

disjoint. We suppose that f is an entire function with the asymptotic behavior

f(z) =



za exp
(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A1(z/ζ1)b1 exp
(
(z/ζ1)λ

) [
1 + o(1)

]
for |arg(z/ζ1)| ≤ θ,

...

Am(z/ζm)bm exp
(
(z/ζm)λ

) [
1 + o(1)

]
for |arg(z/ζm)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

(3.3.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let, pn(z),

rn, and Fn(z) be defined as in Section 3.2. For convenience of notation, define b0 = a,

A0 = 1, and ζ0 = 1.

We can derive an analogue to equations (3.1.14) and (3.2.9), specifically

ranFn(z) =
1√

2πλn

m∑
k=0

[
Akζ

1−n
k rbkn

ζk − z
+ o
(
rbkn n

−1/2
)]

(3.3.2)

as n→∞ uniformly with respect to z as long as z remains in any sector |arg(z/ζk)| ≤
θ − ε with ε > 0, k = 0, 1, . . . ,m, and remains bounded away from γ. Following this

we would proceed just as before to conclude that the limit points of the zeros of the

scaled partial sum pn−1(rnz) in the sector |arg z| < θ, z 6= 0 all still lie on the curve∣∣zλ exp
(
1− zλ

)∣∣ = 1.

If Re a > Re bk for all k = 1, . . . , n then the zeros will again approach these limit

points from the exterior of the curve. The main complication that may arise is if Re a

is equal to a number of the quantities Re bk, and in that case it may be more difficult

to determine where the analogue of formula (3.2.12),

∣∣zλ exp
(
1− zλ

)∣∣ = 1 +

(
Re a− Re bk +

λ

2

)
log n

n
+O

(
n−1
)

for some k ∈ {1, . . . ,m}, will hold.



Chapter 4

Scaling Limits at the Arcs of the Limit Curve

In this chapter we aim to study the zeros of the scaled partial sums pn(rnz) which

approach the smooth arcs of the limit curve

S =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1 and |z| ≤ 1
}

in the sector |arg z| < θ. We will determine how quickly these zeros approach the

curve, track their movement and the spacing between them, and ultimately calculate

a certain limit of the partial sums depending on an argument which follows the zeros

in their approach.

The results in Sections 4.2, 4.3, and 4.4 can be seen as generalizations of Theorem

1.7 which was originally obtained by Edrei, Saff, and Varga in their monograph [15].

4.1 Exploratory Analysis to Estimate the Rate of Approach to the

Limit Curve

We will first assume that f has a single direction of maximal growth, just as in

Section 3.1. In the derivation of the limit curve for the zeros of the scaled partial

sums pn−1(rnz) we obtained equation (3.1.15), which essentially says that any such

zero z = z(n) which tends to a point ξ on the limit curve (other than the point ξ = 1)

satisfies

za exp
{n
λ

(
zλ − 1− λ log z

)}
≈ e−(logn)/2

(1− z)
√

2πλ
(4.1.1)

as n→∞. If we set z = ξ + δ and assume that δ → 0 as n→∞ then

za ≈ ξa, 1− z ≈ 1− ξ,

51
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and

zλ − 1− λ log z

= (ξ + δ)λ − 1− λ log(ξ + δ)

= ξλ
(

1 +
δ

ξ

)λ
− 1− λ log ξ − λ log

(
1 +

δ

ξ

)
≈ ξλ

(
1 +

λ

ξ
δ

)
− 1− λ log ξ − λδ

ξ

= ξλ − 1− λ log ξ +
λ(ξλ − 1)

ξ
δ,

so that the estimate in (4.1.1) becomes

ξa exp

{
n

λ

(
ξλ − 1− λ log ξ

)
+
ξλ − 1

ξ
nδ

}
≈ e−(logn)/2

(1− ξ)
√

2πλ

as n→∞. Since ξ lies on the limit curve we have

Re
(
ξλ − 1− λ log ξ

)
= 0,

so the factor ξa exp{n
λ
(ξλ − 1 − λ log ξ)} on the left-hand side is Θ(1). In order to

balance the decay of the factor e−(logn)/2 on the right-hand side we thus need

ξλ − 1

ξ
nδ ≈ −1

2
log n,

and hence

δ ≈ ξ log n

2(1− ξλ)n
as n→∞.

Now, this estimate for δ doesn’t include anything that differentiates two separate

zeros of pn−1(rnz), so it makes sense for us to try to look for this information in

higher-order corrections to δ. In (3.1.16) we found that z satisfies

∣∣zλ exp
(
1− zλ

)∣∣ = 1 +
λ log n

2n
+O

(
n−1
)

as n→∞, so we might guess that δ has the same 1/n correction term, i.e.

δ =
ξ log n

2(1− ξλ)n
+
v

n
,



53

where v = O(1) as n → ∞. Attempting to use such a δ to prove something like

Theorem 4.1 below leads immediately to the refinement v = ξ(w− iτn)/(1− ξλ) that

appears in the statement of the theorem.

Suppose now that f has two directions of maximal exponential growth, just as in

Section 3.2. If Re a > Re b then we again have

ξa exp
{n
λ

(
zλ − 1− λ log z

)}
≈ e−(logn)/2

(1− ξ)
√

2πλ

as n → ∞ for any zero z = z(n) of pn−1(rnz) which tends to a point ξ 6= 1 on the

limit curve. By following the steps above we again get an estimate like

z ≈ ξ +
ξ log n

2(1− ξλ)n

as n→∞. On the other hand, if Re a < Re b then we instead get from (3.2.10) that

za exp
{n
λ

(
zλ − 1− λ log z

)}
≈ Aζ1−nλ(a−b)/λ

(ζ − z)
√

2πλ
exp

{(
b− a
λ
− 1

2

)
log n

}
as n →∞. If we set z = ξ + δ and assume that δ → 0 as n →∞ then the estimate

for the left-hand side is the same as before, transforming the above into

ξa exp

{
n

λ

(
ξλ − 1− λ log ξ

)
+
ξλ − 1

ξ
nδ

}
≈ Aζ1−nλ(a−b)/λ

(ζ − ξ)
√

2πλ
exp

{
−
(
a− b
λ

+
1

2

)
log n

}
.

To balance the possible growth or decay of the exponential factor on the right-hand

side we need to take
ξλ − 1

ξ
nδ ≈ −

(
a− b
λ

+
1

2

)
log n

and hence

δ ≈
(
a− b+

λ

2

)
ξ log n

λ(1− ξλ)n
.

There are still extra oscillations coming from the ζ−n factor on the right-hand side

which this scaling doesn’t account for. We handle these in the statement of Theorem

4.3 by introducing extra periodicity in the higher-order corrections to this δ that we

didn’t need when we had Re a > Re b.
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4.2 One Direction of Maximal Exponential Growth

Let a, b ∈ C, 0 < λ < ∞, 0 < θ < π, and µ < 1. We suppose that f is an entire

function with the asymptotic behavior

f(z) =

za(log z)b exp
(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

O
(
exp(µ|z|λ)

)
for |arg z| > θ

(4.2.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let

pn(z) =
n∑
k=0

f (k)(0)

k!
zk

and define

rn =
(n
λ

)1/λ

. (4.2.2)

We showed in Chapter 3 that the limit points of the zeros of the scaled partial

sums pn−1(rnz) in the sector |arg z| < θ, z 6= 0, lie on the curve

S =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1 and |z| ≤ 1
}
.

If ξ is a point of S then

Re
(
ξλ − 1− λ log ξ

)
= 0.

Theorem 4.1. Let ξ be a point of S with |arg ξ| < θ, ξ 6= 1 and define

τ = Im
(
ξλ − 1− λ log ξ

)
.

Define the sequence τn by the conditions

τn

λ
≡ τn (mod 2π), −π < τn ≤ π

and let

zn(w) = ξ

(
1 +

log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)
.

Then

lim
n→∞

pn−1(rnzn(w))

f(rnzn(w))
= 1− e−w

ξa(1− ξ)
√

2πλ

uniformly for w restricted to any compact subset of C.

Remark 4.2. Theorem 4.1 gives us precise asymptotics for individual zeros of the

scaled partial sums pn−1(rnz) near a given point ξ on the arcs of the curve S. Details

of this are given in Section 4.5, where we use that information to verify part (a) of the

Modified Saff-Varga Width Conjecture (see Section 1.3) for this class of functions.
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4.2.1 Definitions and Preliminaries

We will repeat here several relevant definitions from Section 3.1.1.

Let γ be an admissible contour for the function

ϕ(z) :=
(
zλ − 1− λ log z

)/
λ (4.2.3)

and define

Fn(z) =
r−an (log rn)−b

2πi

∫
γ

(
e1/λs

)−n
f(rns)

ds

s− z
(4.2.4)

for z /∈ γ, z 6= 0. Just as in Section 3.1.1,

Fn(z) =
1

ran(log rn)b(e1/λz)n
×

−pn−1(rnz) for z outside γ,

f(rnz)− pn−1(rnz) for z 6= 0 inside γ.
(4.2.5)

4.2.2 Proof of Theorem 4.1

Let γθ be the portion of γ in the sector |arg z| ≤ θ and for ε > 0 define Nε to be the

set of all points within a distance of ε of γθ. It was shown in the proof of Theorem

3.1 (see equation (3.1.14)) that

Fn(z) =
1

(1− z)
√

2πλn
+ o
(
n−1/2

)
(4.2.6)

as n→∞ uniformly for z ∈ C \Nε with |arg z| ≤ θ − ε for any fixed ε > 0.

Because Reϕ(ξ) = 0 and because γ is an admissible contour for the function ϕ,

ε > 0 can be taken small enough so that

inf
s∈γ
|ξ − s| > ε.

Consequently if w is restricted to a compact subset of C then zn(w) /∈ Nε and

|arg zn(w)| ≤ θ − ε for all such w if n is large enough. It follows from (4.2.6) that

Fn(zn(w)) =
1

(1− zn(w))
√

2πλn
+ o
(
n−1/2

)
∼ 1

(1− ξ)
√

2πλn

as n→∞ uniformly for w restricted to any compact subset of C. Then, since zn(w)

is inside γ for n large enough, (4.2.5) implies that

f(rnzn(w))

ran(log rn)b(e1/λzn(w))n

(
pn−1(rnzn(w))

f(rnzn(w))
− 1

)
∼ − 1

(1− ξ)
√

2πλn
(4.2.7)
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as n→∞ uniformly for w restricted to any compact subset of C.

It follows from the asymptotic assumption on f in (4.2.1) that

f(rnzn(w))

ran(log rn)b
∼ ξaer

λ
nzn(w)λ

= ξa exp

{
nξλ

λ

(
1 +

log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)λ}

∼ ξa exp

{
nξλ

λ

(
1 +

λ log n

2(1− ξλ)n
− λ(w − iτn)

(1− ξλ)n

)}
= ξanξ

λ/[2(1−ξλ)] exp

{
nξλ

λ
− ξλ(w − iτn)

1− ξλ

}
as n→∞ uniformly for w restricted to any compact subset of C. Since

zn(w)n = ξn
(

1 +
log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)n
= ξn exp

{
n log

(
1 +

log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)}
∼ ξn exp

{
log n

2(1− ξλ)
− w − iτn

1− ξλ

}
= ξnn1/[2(1−ξλ)] exp

{
−w − iτn

1− ξλ

}
it then follows that

f(rnzn(w))

ran(log rn)b(e1/λzn(w))n
∼ ξan−1/2 exp

{
n(ξλ − 1− λ log ξ)

λ
+ w − iτn

}
= ξan−1/2 exp

{
iτn

λ
+ w − iτn

}
= ξan−1/2ew (4.2.8)

as n→∞ uniformly for w restricted to any compact subset of C.

Substituting (4.2.8) into (4.2.7) yields the limit

pn−1(rnzn(w))

f(rnzn(w))
−→ 1− e−w

ξa(1− ξ)
√

2πλ

as n → ∞ uniformly for w restricted to any compact subset of C, which is exactly

the limit we desire.
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4.3 Maximal Growth in Two Directions and Its Effect on the Scaling

Limit

Let a, b, A ∈ C, 0 < λ < ∞, µ < 1, and ζ ∈ C with |ζ| = 1, ζ 6= 1. Let θ ∈ (0, π)

be small enough so that the sectors |arg z| ≤ θ and |arg(z/ζ)| ≤ θ are disjoint. We

suppose that f is an entire function with the asymptotic behavior

f(z) =


za exp

(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A(z/ζ)b exp
(
(z/ζ)λ

) [
1 + o(1)

]
for |arg(z/ζ)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

(4.3.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let

pn(z) =
n∑
k=0

f (k)(0)

k!
zk

and define

rn =
(n
λ

)1/λ

. (4.3.2)

We showed in Chapter 3 that the limit points of the zeros of the scaled partial

sums pn−1(rnz) in the sector |arg z| < θ, z 6= 0, lie on the curve

S =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1 and |z| ≤ 1
}
.

If ξ is a point of S then

Re
(
ξλ − 1− λ log ξ

)
= 0.

Theorem 4.3. Let ξ be a point of S with |arg ξ| < θ, ξ 6= 1 and define

τ = Im
(
ξλ − 1− λ log ξ

)
.

Define the sequence τn by the conditions

τn

λ
≡ τn (mod 2π), −π < τn ≤ π

and let

z1
n(w) = ξ

(
1 +

log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)
.

Define the sequence σn by the conditions

n arg ζ ≡ σn (mod 2π), −π < σn ≤ π
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and let

z2
n(w) = ξ

[
1 +

(
a− b+

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]
.

If Re a > Re b then

lim
n→∞

pn−1(rnz
1
n(w))

f(rnz1
n(w))

= 1− e−w

ξa(1− ξ)
√

2πλ
,

if Re a < Re b then

lim
n→∞

pn−1(rnz
2
n(w))

f(rnz2
n(w))

= 1− Aζλ(a−b)/λe−w

ξa(ζ − ξ)
√

2πλ
,

and if Re a = Re b then

pn−1(rnz
1
n(w))

f(rnz1
n(w))

= 1−
(

1

1− ξ
+
Aζ1−nrb−an

ζ − ξ

)
e−w

ξa
√

2πλ
+ o(1)

as n → ∞. All three limits are uniform with respect to w as long as w is restricted

to a compact subset of C.

Remark 4.4. Depending on the balance between Re a and Re b there are three pos-

sible forms of the scaling limit in this case, compared to only one when f has a single

direction of maximal growth as in Section 4.2. Examples of these extra scaling limits

are given in Chapter 6 (in all sections except 6.3).

Remark 4.5. Just as with Theorem 4.1 in the case of one direction of maximal

growth, Theorem 4.3 gives us precise asymptotics for individual zeros of the scaled

partial sums pn−1(rnz) near a given point ξ on the arcs of the curve S in the case of

two directions of maximal growth. Details of this are given in Section 4.5, where we

use that information to verify part (a) of the Modified Saff-Varga Width Conjecture

(see Section 1.3) for this class of functions.

4.3.1 Definitions and Preliminaries

We will repeat here several relevant definitions from Section 3.2.1.

Let γ be an admissible contour for the function

ϕ(z) :=
(
zλ − 1− λ log z

)/
λ (4.3.3)

and define

Fn(z) =
r−an
2πi

∫
γ

(
e1/λs

)−n
f(rns)

ds

s− z
(4.3.4)
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for z /∈ γ, z 6= 0. Just as in Section 3.2.1,

Fn(z) =
1

ran(e1/λz)n
×

−pn−1(rnz) for z outside γ,

f(rnz)− pn−1(rnz) for z 6= 0 inside γ.
(4.3.5)

4.3.2 Proof of Theorem 4.3

Let γθ be the portion of γ in the sector |arg z| ≤ θ and for ε > 0 define Nε to be the

set of all points within a distance of ε of γθ. It was shown in the proof of Theorem

3.6 (see equation (3.2.9)) that

Fn(z) =
1

(1− z)
√

2πλn
+

Aζ1−nrb−an

(ζ − z)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
(4.3.6)

as n→∞ uniformly for z ∈ C \Nε with |arg z| ≤ θ − ε for any fixed ε > 0.

Fix j ∈ {1, 2}. Because Reϕ(ξ) = 0 and because γ is an admissible contour for

the function ϕ, ε > 0 can be taken small enough so that

inf
s∈γ
|ξ − s| > ε.

Consequently if w is restricted to a compact subset of C then zjn(w) /∈ Nε and

|arg zjn(w)| ≤ θ − ε for all such w if n is large enough. It follows from (4.3.6) that

Fn(zjn(w)) =
1

(1− zjn(w))
√

2πλn
+

Aζ1−nrb−an

(ζ − zjn(w))
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
=

1

(1− ξ)
√

2πλn
+

Aζ1−nrb−an

(ζ − ξ)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
as n→∞ uniformly for w restricted to any compact subset of C. Then, since zjn(w)

is inside γ for n large enough, (4.3.5) implies that

f(rnz
j
n(w))

ran(e1/λzjn(w))n

(
pn−1(rnz

j
n(w))

f(rnz
j
n(w))

− 1

)
= − 1

(1− ξ)
√

2πλn
− Aζ1−nrb−an

(ζ − ξ)
√

2πλn
+ o
(
n−1/2

)
+ o
(
rb−an n−1/2

)
(4.3.7)

as n→∞ uniformly for w restricted to any compact subset of C.

Suppose that Re a > Re b. Then from (4.3.7) it follows that

f(rnz
1
n(w))

ran(e1/λz1
n(w))n

(
pn−1(rnz

1
n(w))

f(rnz1
n(w))

− 1

)
∼ − 1

(1− ξ)
√

2πλn
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as n→∞ uniformly for w restricted to any compact subset of C. This is analogous

to equation (4.2.7) from the proof of Theorem 4.1, and by proceeding as in that proof

it can be shown that

pn−1(rnz
1
n(w))

f(rnz1
n(w))

−→ 1− e−w

ξa(1− ξ)
√

2πλ
(4.3.8)

as n → ∞ uniformly for w restricted to any compact subset of C. This is the first

desired limit in Theorem 4.3.

Now suppose Re a < Re b. From (4.3.7) it follows that

f(rnz
2
n(w))

ran(e1/λz2
n(w))n

(
pn−1(rnz

2
n(w))

f(rnz2
n(w))

− 1

)
∼ − Aζ1−nrb−an

(ζ − ξ)
√

2πλn
(4.3.9)

as n→∞ uniformly for w restricted to a compact subset of C.

The asymptotic assumption on f in (4.3.1) implies that

f(rnz
2
n(w))

ran
∼ ξaer

λ
nz

2
n(w)λ

= ξa exp

{
nξλ

λ

[
1 +

(
a− b+

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]λ}

∼ ξa exp

{
nξλ

λ

[
1 +

(
a− b+

λ

2

)
log n

(1− ξλ)n
− λ(w − iσn − iτn)

(1− ξλ)n

]}
= ξa exp

{
nξλ

λ
+

(
a− b+

λ

2

)
ξλ log n

λ(1− ξλ)
− ξλ(w − iσn − iτn)

1− ξλ

}
as n→∞ uniformly for w restricted to any compact subset of C. Since

z2
n(w)n = ξn

[
1 +

(
a− b+

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]n
= ξn exp

{
n log

[
1 +

(
a− b+

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]}
∼ ξn exp

{
n

[(
a− b+

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]}
= ξn exp

{(
a− b+

λ

2

)
log n

λ(1− ξλ)
− w − iσn − iτn

1− ξλ

}
it then follows that

f(rnz
2
n(w))

ran(e1/λz2
n(w))n

∼ ξan(b−a)/λ−1/2 exp
{n
λ

(
ξλ − 1− λ log ξ

)
+ w − iσn − iτn

}
= ξan(b−a)/λ−1/2 exp

{
iτn

λ
+ w − iσn − iτn

}
= ξan(b−a)/λ−1/2ew−iσn (4.3.10)
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as n→∞ uniformly for w restricted to a compact subset of C.

Substituting (4.3.10) into (4.3.9) yields the limit

pn−1(rnz
2
n(w))

f(rnz2
n(w))

−→ 1− Aζ1−nλ(a−b)/λeiσn−w

ξa(ζ − ξ)
√

2πλ
= 1− Aζλ(a−b)/λe−w

ξa(ζ − ξ)
√

2πλ

as n→∞ uniformly for w restricted to any compact subset of C. This is the second

desired limit in Theorem 4.3.

Finally suppose Re a = Re b. In this case, after setting j = 1 equation (4.3.7)

becomes

f(rnz
1
n(w))

ran(e1/λz1
n(w))n

(
pn−1(rnz

1
n(w))

f(rnz1
n(w))

− 1

)
= −

(
1

1− ξ
+
Aζ1−nrb−an

ζ − ξ

)
1

ξa
√

2πλn
+ o
(
n−1/2

)
as n → ∞ uniformly for w restricted to any compact subset of C. By following the

same method as in the proof of Theorem 4.1 to obtain equation (4.2.8) it can be

shown that

f(rnz
1
n(w))

ran(e1/λz1
n(w))n

∼ ξan−1/2ew

as n → ∞ uniformly for w restricted to any compact subset of C. Substituting this

into the above yields the asymptotic

pn−1(rnz
1
n(w))

f(rnz1
n(w))

= 1−
(

1

1− ξ
+
Aζ1−nrb−an

ζ − ξ

)
e−w

ξa
√

2πλ
+ o(1)

as n → ∞ uniformly for w restricted to any compact subset of C, which is the last

desired item in Theorem 4.3.

4.4 Generalization to More Directions of Maximal Growth

Let a, b1, . . . , bm, A1, . . . , Am ∈ C, 0 < λ < ∞, µ < 1, and ζ1, . . . , ζm ∈ C with

|ζk| = 1, ζk 6= 1 for all k = 1, . . . ,m and ζj 6= ζk for j 6= k. Let θ ∈ (0, π) be

small enough so that all of the sectors |arg z| ≤ θ, |arg(z/ζk)| ≤ θ, k = 1, . . . ,m, are



62

disjoint. We suppose that f is an entire function with the asymptotic behavior

f(z) =



za exp
(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A1(z/ζ1)b1 exp
(
(z/ζ1)λ

) [
1 + o(1)

]
for |arg(z/ζ1)| ≤ θ,

...

Am(z/ζm)bm exp
(
(z/ζm)λ

) [
1 + o(1)

]
for |arg(z/ζm)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

(4.4.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let, pn(z),

rn, and Fn(z) be defined as in Section 4.3. For convenience of notation, define b0 = a,

A0 = 1, and ζ0 = 1.

As in Section 3.3 we can derive an analogue to equations (3.1.14) and (3.2.9),

specifically

Fn(z) =
1√

2πλn

m∑
k=0

[
Akζ

1−n
k rbk−an

ζk − z
+ o
(
rbk−an n−1/2

)]
(4.4.2)

as n→∞ uniformly with respect to z as long as z remains in any sector |arg(z/ζk)| ≤
θ − ε with ε > 0, k = 0, 1, . . . ,m, and remains bounded away from γ.

The main difficulty in extending Theorem 4.3 to arbitrary m ≥ 3 lies in the

necessity of modifying the quantity zn(w) that appears in the scaling limit when the

real parts of the bk balance in different ways. In the simplest case there is a j such

that Re bj > Re bk for all k 6= j, which allows us to simplify (3.3.2) into

Fn(z) ∼
Ajζ

1−n
j r

bj−a
n

(ζj − z)
√

2πλn
,

after which the analysis proceeds just as in the relevant parts of the proof of Theorem

4.3. This yields the following result.

Theorem 4.6. Let m ≥ 1 and suppose that there is a j ∈ {0, 1, . . . ,m} such that

Re bj > Re bk for all k 6= j. Let ξ be a point of

S =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1 and |z| ≤ 1
}

with |arg ξ| < θ, ξ 6= 1 and define

τ = Im
(
ξλ − 1− λ log ξ

)
.
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Define the sequences τn and σn by the conditions

τn

λ
≡ τn (mod 2π), −π < τn ≤ π,

n arg ζj ≡ σn (mod 2π), −π < σn ≤ π

and let

zn(w) = ξ

[
1 +

(
a− bj +

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]
.

Then

lim
n→∞

pn−1(rnzn(w))

f(rnzn(w))
= 1− Ajζjλ

(a−bj)/λe−w

ξa(ζj − ξ)
√

2πλ

uniformly for w restricted to any compact subset of C.

Now we will consider what happens when Re a is not strictly larger than all of the

other Re bk. Because the analysis for general m would be very complicated, we will

restrict ourselves to the case m = 2. Up to relabeling the bk there are three cases not

included in the theorem above: (i) Re a = Re b1 > Re b2, (ii) Re a = Re b1 = Re b2,

and (iii) Re b1 = Re b2 > Re a.

Case (i): Re a = Re b1 > Re b2. In this case (3.3.2) becomes

Fn(z) =
1

(1− z)
√

2πλn
+

A1ζ
1−n
1 rb1−an

(ζ1 − z)
√

2πλn
+ o
(
n−1/2

)
.

If we define

zn(w) = ξ

(
1 +

log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)
then

Fn(zn(w)) =

(
1

1− ξ
+
A1ζ

1−n
1 rb1−an

ζ1 − ξ

)
1√

2πλn
+ o
(
n−1/2

)
as n→∞ uniformly for w restricted to any compact subset of C. The remainder of

the analysis proceeds just as in the analogous part of the proof of Theorem 4.3 and

produces the following result.

Theorem 4.7. Let m = 2 and Re a = Re b1 > Re b2. Let ξ be a point of S with

|arg ξ| < θ, ξ 6= 1 and define τ and τn as in Theorem 4.6. Let

zn(w) = ξ

(
1 +

log n

2(1− ξλ)n
− w − iτn

(1− ξλ)n

)
.

Then
pn−1(rnzn(w))

f(rnzn(w))
= 1−

(
1

1− ξ
+
A1ζ

1−n
1 rb1−an

ζ1 − ξ

)
e−w

ξa
√

2πλ
+ o(1)

as n→∞ uniformly for w restricted to any compact subset of C.
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Case (ii): Re a = Re b1 = Re b2. This case is very similar to the previous one,

the only difference being that we keep all three terms in the sum in (3.3.2) instead of

only two. Doing so yields the following result.

Theorem 4.8. Let m = 2 and Re a = Re b1 = Re b2. Let ξ be a point of S with

|arg ξ| < θ, ξ 6= 1 and define τ and τn as in Theorem 4.6 and zn(w) as in Theorem

4.7. Then

pn−1(rnzn(w))

f(rnzn(w))
= 1−

(
1

1− ξ
+
A1ζ

1−n
1 rb1−an

ζ1 − ξ
+
A2ζ

1−n
2 rb2−an

ζ2 − ξ

)
e−w

ξa
√

2πλ
+ o(1)

as n→∞ uniformly for w restricted to any compact subset of C.

Case (iii): Re b1 = Re b2 > Re a. In this case we retain both the b1 term and the

b2 term in (3.3.2), i.e.

Fn(z) =

(
A1

ζ1 − z
+
A2(ζ2/ζ1)1−nrb2−b1n

ζ2 − z

)
ζ1−n

1 rb1−an√
2πλn

+ o
(
rb1−an n−1/2

)
.

Unfortunately we can’t easily cancel the oscillations coming from the factor in

parentheses by adding extra periodicity to zn(w) like before. We will again have to

settle for an asymptotic rather than a proper limit.

Theorem 4.9. Let m = 2 and Re b1 = Re b2 > Re a. Let ξ be a point of S with

|arg ξ| < θ, ξ 6= 1 and define τ and τn as in Theorem 4.6. Define the sequence σn by

the conditions

n arg ζ1 ≡ σn (mod 2π), −π < σn ≤ π

and let

zn(w) = ξ

[
1 +

(
a− b1 +

λ

2

)
log n

λ(1− ξλ)n
− w − iσn − iτn

(1− ξλ)n

]
.

Then

pn−1(rnzn(w))

f(rnzn(w))
= 1−

(
A1

ζ1 − ξ
+
A2(ζ2/ζ1)1−nrb2−b1n

ζ2 − ξ

)
ζ1λ

(a−b1)/λe−w

ξa
√

2πλ
+ o(1)

as n→∞ uniformly for w restricted to any compact subset of C.
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4.5 Verification of the Modified Saff-Varga Width Conjecture in the

Sector 0 < |arg z| < θ

The theorems in this chapter allow us to verify part (a) of the Modified Saff-Varga

Width Conjecture (see Section 1.3) for the function f in the sector 0 < |arg z| < θ.

When f has a single direction of maximal exponential growth, Theorem 4.1 and

Hurwitz’s theorem imply that if ξ is any point of the curve

S =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1 and |z| ≤ 1
}

with 0 < |arg ξ| < θ and if w0 is any solution to the equation

ξa(1− ξ)
√

2πλ = e−w (4.5.1)

then pn−1(z) has a zero z0 satisfying

z0 = rnξ

(
1 +

log n

2(1− ξλ)n
− w0 − iτn

(1− ξλ)n
+ o
(
n−1
))

(4.5.2)

as n→∞.

Fix φ ∈ (−θ, θ) with φ 6= 0. There is a unique ξ ∈ S such that ξ = |ξ|eiφ. Set

ρn = |ξ|rn. Then for the zero z0 above,

z0 − ρneiφ = z0 − rnξ

∼ rnξ
log n

2(1− ξλ)n

= ρne
iφ log n

2(1− ξλ)n
as n→∞. It follows that, for any ε > 0, z0 will lie inside the disk∣∣z − ρneiφ∣∣ ≤ ρnn

−1+ε

for n large enough. As equation (4.5.1) has infinitely many solutions, the number of

zeros of pn−1(z) in any such disk will tend to infinity as n→∞. Since ρn = Θ(n1/λ) =

O(n2/λ) this completes the verification of part (a) of the Modified Saff-Varga Width

Conjecture for the sector 0 < |arg z| < θ.

When f has two directions of maximal exponential growth and Re a 6= Re b then

the situation is very similar to the one above. Theorem 4.3 implies that for any ξ ∈ S
with 0 < |arg ξ| < θ there is an equation of the form

u = ew
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for some u = u(ξ) ∈ C such that if w0 is any solution of the equation then pn−1(z)

has a zero z0 of the form

z0 = rnξ + Crnξ
log n

n
+ hn(w0),

where C ∈ C and hn is a function satisfying hn(z) = O(n−1) as n→∞ for any fixed

z ∈ C. Part (b) of the Modified Saff-Varga Width Conjecture follows just as above.

When f has two directions of maximal exponential growth and Re a = Re b then

Theorem 4.3 implies that for any ξ ∈ S with 0 < |arg ξ| < θ it is possible to find a

constant D ∈ C with D 6= 0 and a subsequence M such that

lim
m∈M

pm−1(rmz
1
m(w))

f(rmz1
m(w))

= 1−De−w

uniformly on compact subsets of the w-plane. So if w0 is any solution of the equation

1 = De−w

then by Hurwitz’s theorem pm−1(z) has a zero z0 of the form

z0 = rmξ

(
1 +

logm

2(1− ξλ)m
− w0 − iτm

(1− ξλ)m
+ o
(
m−1

))
as m → ∞ with m ∈ M . The rest of the verification of the Modified Saff-Varga

Width Conjecture proceeds just as above, though with the indices restricted to the

subsequence M (as allowed in the Conjecture).

By using Theorems 4.6, 4.7, 4.8, and 4.9 we can verify the conjecture for functions

with three directions of maximal exponential growth, and though we haven’t obtained

any explicit results in the case that f has more than three directions of maximal

exponential growth the conjecture can be verified using a similar method.



Chapter 5

Scaling Limits at the Corner of the Limit Curve

In this chapter we aim to study the zeros of the scaled partial sums pn(rnz) which

approach the corner of the limit curve

S =
{
z ∈ C :

∣∣zλ exp
(
1− zλ

)∣∣ = 1 and |z| ≤ 1
}

located at z = 1. To this end we will calculate a certain limit of the partial sums

depending on an argument which follows the zeros as they approach this corner.

The results in Sections 5.1, 5.2, and 5.3 can be seen as generalizations of Theorem

1.6 which was obtained by Edrei, Saff, and Varga in their monograph [15].

5.1 One Direction of Maximal Exponential Growth

Let a, b ∈ C, 0 < λ < ∞, 0 < θ < π, and µ < 1. We suppose that f is an entire

function with the asymptotic behavior

f(z) =

za(log z)b exp
(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

O
(
exp(µ|z|λ)

)
for |arg z| > θ

(5.1.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let

pn(z) =
n∑
k=0

f (k)(0)

k!
zk

and define

rn =
(n
λ

)1/λ

. (5.1.2)

Theorem 5.1.

lim
n→∞

pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

=
1

2
erfc
(
w
√
λ/2

)
uniformly for w restricted to any compact subset of Rew < 0.
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The function erfc in the theorem statement above is known as the complementary

error function and is defined by

erfc(z) =
2√
π

∫ ∞
z

e−s
2

ds, (5.1.3)

where the contour of integration is the horizontal line starting at s = z and extending

to the right to s = z +∞. Information about the zeros of this function can be found

in [17].

Remark 5.2. Theorem 5.1 gives us precise asymptotics for individual zeros of the

scaled partial sums pn−1(rnz) near the corner of the limit curve S located at z = 1.

Details of this are given in Section 5.4, where we use that information to verify part

(b) of the Modified Saff-Varga Width Conjecture (see Section 1.3) for this class of

functions.

5.1.1 Definitions and Preliminaries

We will repeat here several relevant definitions from Section 3.1.1.

Let γ be an admissible contour for the function

ϕ(z) :=
(
zλ − 1− λ log z

)/
λ (5.1.4)

and define

Fn(z) =
r−an (log rn)−b

2πi

∫
γ

(
e1/λs

)−n
f(rns)

ds

s− z
(5.1.5)

for z /∈ γ, z 6= 0. Just as in Section 3.1.1,

Fn(z) =
1

ran(log rn)b(e1/λz)n
×

−pn−1(rnz) for z outside γ,

f(rnz)− pn−1(rnz) for z 6= 0 inside γ.
(5.1.6)

In particular we have

F+
n (z) = F−n (z) +

f(rnz)

ran(log rn)b(e1/λz)n
, z ∈ γ,

where F+
n (resp. F−n ) refers to the continuous extension of Fn from inside (resp.

outside) γ onto γ.
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Note that

f(rnz)

ran(log rn)b(e1/λz)n
∼ za

(
zλe1−zλ

)−n/λ
= zaenϕ(z) (5.1.7)

as n → ∞ for |arg z| ≤ θ. Additionally, a straightforward calculation shows that

ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) = λ, so

ϕ(s) =
λ

2
(s− 1)2 +O

(
(s− 1)3

)
in a neighborhood of s = 1. The inverse function theorem ensures the existence of a

neighborhood V of the origin, a neighborhood U ⊂ Uγ of s = 1, and a biholomorphic

map ψ : V → U which satisfies

(ϕ ◦ ψ)(x) = x2

for x ∈ V . This function ψ maps a segment of the imaginary axis onto the path of

steepest descent of the function Reϕ(z) going through z = 1 with ψ(0) = 1 and we

make the choice that ψ′(0) =
√

2/λ.

The following definitions are unique to this chapter.

Let γθ = γ ∩ {z ∈ C : |arg z| ≤ θ} and define

Gn(z) =
1

2πi

∫
γθ

enϕ(s) ds

s− z
, (5.1.8)

where ϕ is as in (5.1.4). Plemelj’s formula implies that

G+
n (z) = G−n (z) + enϕ(z), z ∈ γθ,

where G+
n and G−n refer to the continuous extensions of Gn from the left and right of

γθ onto γθ, respectively. Based on the asymptotic (5.1.7) and the fact that the saddle

point of the function ϕ(s) is located at s = 1, we expect that Fn(z) ≈ Gn(z) for z ≈ 1

as n→∞. Something to this effect is shown in Lemma 5.6.

Just as in [24, p. 189] we define

h(ζ) =
1

2πi

∫ ∞
−∞

e−u
2 du

u− ζ
, ζ ∈ C \ R

and

Pn(z) = h
(
−i
√
nψ−1(z)

)
, z ∈ U \ γθ.
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Plemelj’s formula implies that

h+(x) = h−(x) + e−x
2

, x ∈ R,

where R is given the usual orientation from −∞ to +∞, and setting z = ψ(ix/
√
n)

yields

P+
n (z) = P−n (z) + enϕ(z), z ∈ U ∩ γθ.

Here + and − indicate approaching the contour γθ from the left and from the right,

respectively.

5.1.2 Proof of Theorem 5.1

Choose ε > 0 such that B2ε(1) ⊂ U and define

m(z) =

Gn(z) for z ∈ C \
(
γθ ∪B2ε(1)

)
,

Gn(z)− Pn(z) for z ∈ B2ε(1) \ γθ.

The jumps for Gn(z) and Pn(z) cancel each other out as z moves across γθ in B2ε(1),

so m is analytic on B2ε(1). If we define the contours

Γ1 = ∂B2ε(1), Γ2 = γθ \B2ε(1), Γ = Γ1 ∪ Γ2, (5.1.9)

where Γ1 is oriented in the counterclockwise direction and Γ2 inherits its orientation

from γθ (and thus γ), then the function m uniquely solves the following Riemann-

Hilbert problem.

Riemann-Hilbert Problem 5.3. Seek an analytic function M : C \ Γ → C such

that

1. M+(z) = M−(z)− Pn(z) for z ∈ Γ1 \ Γ2,

2. M+(z) = M−(z) + enϕ(z) for z ∈ Γ2 except at endpoints,

3. M(z)→ 0 as |z| → ∞,

4. if c is an endpoint of either arc of Γ2 then M(z) = O(|z − c|q) as z → c with

z ∈ C \ Γ2 for some q > −1.
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Figure 5.1: Schematic representations of the curve γθ (left) and the curve Γ in (5.1.9)
(right). In the plot of Γ, the curve Γ1 is dashed and the curve Γ2 is solid black.

Plemelj’s formula then yields

m(z) =
1

2πi

∫
Γ

[
m+(s)−m−(s)

] ds

s− z

= − 1

2πi

∫
Γ1

Pn(s)
ds

s− z
+

1

2πi

∫
Γ2

enϕ(s) ds

s− z
. (5.1.10)

Lemma 5.4. ∫
Γ1

Pn(s)
ds

s− z
= O(n−1/2)

uniformly for z ∈ Bε(1) as n→∞.

Proof. There exists a constant C1 such that

|h(ζ)| ≤ C1|ζ|−1

for ζ /∈ R. Setting ζ = −i
√
nψ−1(s) yields

|Pn(s)| ≤ C1n
−1/2|ψ−1(s)|−1 = C1n

−1/2|ϕ(s)|−1/2

for s ∈ U \ γθ. Thus if s ∈ Γ1 then |ϕ(s)| ≥ C2 for some constant C2 > 0, so∣∣∣∣∫
Γ1

Pn(s)
ds

s− z

∣∣∣∣ ≤ C1C
−1/2
2 ε−1n−1/2

for z ∈ Bε(1).
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Lemma 5.5. There is a constant c > 0 such that∫
Γ2

enϕ(s) ds

s− z
= O(e−cn)

uniformly for z ∈ Bε(1) as n→∞.

Proof. Recalling Definition 3.2, since γθ = γ ∩ {z ∈ C : |arg z| ≤ θ} and Γ2 = γθ \
B2ε(1) there exists a constant c > 0 such that Reϕ(s) < −c for s ∈ Γ2. Further, if

z ∈ Bε(1) and s ∈ Γ2 then |s− z| > ε, so that∣∣∣∣∫
Γ2

enϕ(s) ds

s− z

∣∣∣∣ ≤ ∫
Γ2

enReϕ(s) |ds|
|s− z|

< ε−1 length(Γ2)e−cn.

Combining Lemmas 5.4 and 5.5 yields

m(z) = o(1),

and hence, by the definition of m,

Gn(z) = Pn(z) + o(1) (5.1.11)

uniformly for z ∈ Bε(1) as n→∞. Now set z = 1 + w/
√
n, where w is restricted to

a compact subset of Rew < 0.

Lemma 5.6.

lim
n→∞

Fn
(
1 + w/

√
n
)
−Gn

(
1 + w/

√
n
)

= 0

uniformly for w restricted to compact subsets of Rew < 0.

Proof. In this proof we will write z = 1 +w/
√
n as a shorthand, keeping in mind the

implicit dependence of z on w and n.

Split the integral for Fn into the two pieces

Fn(z) =
r−an (log rn)−b

2πi

(∫
γθ

(e1/λs)−nf(rns)
ds

s− z
+

∫
γ\γθ

(e1/λs)−nf(rns)
ds

s− z

)
.

(5.1.12)

As in the previous lemma the second integral here is uniformly exponentially decreas-

ing.
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By the asymptotic assumption on f in (5.1.1), for |arg z| ≤ θ we can write

f(z) = za(log z)b exp(zλ)
[
1 + δ(z)

]
, (5.1.13)

where δ(z)→ 0 uniformly as |z| → ∞ in this sector. This implies

f(rns)

ran(log rn)b(e1/λs)n
= saenϕ(s)

(
1 +

log s

log rn

)b [
1 + δ(rns)

]
for s ∈ γθ. Then define

δ̃(rn, s) =

(
1 +

log s

log rn

)b [
1 + δ(rns)

]
− 1 (5.1.14)

and write the integrand of the first integral in (5.1.12) as

enϕ(s) + enϕ(s) (sa − 1) + saenϕ(s)δ̃(rn, s).

Recalling the definition of Gn in (5.1.8), it follows that (5.1.12) can be rewritten as

Fn(z) = Gn(z) +
1

2πi

∫
γθ

enϕ(s) (sa − 1)
ds

s− z
+

1

2πi

∫
γθ

saenϕ(s)δ̃(rn, s)
ds

s− z

+O(e−cn) (5.1.15)

for some constant c > 0. We will show that both of these remaining integrals tend to

0 uniformly.

The contour γθ passes through the point s = 1 vertically, so by assumption there

exists a positive constant C2 such that |s− z| ≥ C1n
−1/2. For n large enough z /∈ γθ,

and in that case ∣∣∣∣s− 1

s− z

∣∣∣∣ ≤ 1 +

∣∣∣∣1− zs− z

∣∣∣∣ ≤ 1 + C−1
1 n1/2|1− z| ≤ C2

for some constant C2. Hence∣∣∣∣∫
γθ

enϕ(s) (sa − 1)
ds

s− z

∣∣∣∣ ≤ ∫
γθ

enReϕ(s)

∣∣∣∣sa − 1

s− 1

∣∣∣∣ ∣∣∣∣s− 1

s− z

∣∣∣∣ |ds|
≤ C2

∫
γθ

enReϕ(s)

∣∣∣∣sa − 1

s− 1

∣∣∣∣ |ds|,
which tends to zero as n→∞.

Split the second integral in (5.1.15) like∫
γθ

=

∫
γθ∩Bε(1)

+

∫
γθ\Bε(1)

.
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The integral over γθ \Bε(1) decreases exponentially. Let s = ψ(it) and let

−iψ−1(γθ ∩Bε(1)) = (−α1, α2),

where α1, α2 > 0, so that∣∣∣∣∫
γθ∩Bε(1)

saenϕ(s)δ̃(rn, s)
ds

s− z

∣∣∣∣
=

∣∣∣∣∫ α2

−α1

e−nt
2

δ̃(rn, ψ(it))
ψ(it)aψ′(it)

ψ(it)− z
dt

∣∣∣∣
≤ C−1

1 n1/2 sup
−α1<t<α1

∣∣∣δ̃(rn, ψ(it))ψ(it)aψ′(it)
∣∣∣ ∫ α2

−α1

e−nt
2

dt

< C−1
1

√
π sup
−α1<t<α1

∣∣∣δ̃(rn, ψ(it))ψ(it)aψ′(it)
∣∣∣ ,

which tends to 0 as n→∞ by the assumption on δ and, by extension, δ̃.

Combining the above estimates with (5.1.15) it follows that

Fn(z) = Gn(z) + o(1)

uniformly as n→∞.

As a consequence of this lemma, equation (5.1.11) implies that

Fn
(
1 + w/

√
n
)

= Pn
(
1 + w/

√
n
)

+ o(1) (5.1.16)

uniformly as n→∞.

Following the argument in [24, p. 194], it can be shown that

h(ζ) =
1

2
e−ζ

2

erfc(−iζ)

on Im ζ > 0. Setting

ζ = −i
√
nψ−1(z) = −i

√
nϕ(z)

for an appropriately chosen branch of the square root yields an expression for Pn,

Pn(z) =
1

2
enϕ(z) erfc

(
−
√
nϕ(z)

)
,

valid for z ∈ U to the left of γθ. Since 2− erfc(x) = erfc(−x) this can be rewritten as

Pn(z) = enϕ(z) − 1

2
enϕ(z) erfc

(√
nϕ(z)

)
.
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It is straightforward to show that

lim
n→∞

nϕ(1 + w/
√
n) =

λ

2
w2

uniformly, so

Pn(1 + w/
√
n) = eλw

2/2 − 1

2
eλw

2/2 erfc
(
w
√
λ/2

)
+ o(1)

uniformly as n→∞. By substituting this into (5.1.16) it follows that

Fn(1 + w/
√
n) = eλw

2/2 − 1

2
eλw

2/2 erfc
(
w
√
λ/2

)
+ o(1) (5.1.17)

uniformly as n→∞.

For n large enough

Fn(1 + w/
√
n) =

1

ran(log rn)b

(
f(rn(1 + w/

√
n))

en/λ(1 + w/
√
n)n
− pn−1(rn(1 + w/

√
n))

en/λ(1 + w/
√
n)n

)
by (5.1.6). The asymptotic assumption (5.1.1) grants us the uniform estimate

f(rn(1 + w/
√
n))

ran(log rn)ben/λ(1 + w/
√
n)n

= eλw
2/2 + o(1),

and substituting this into the above formula yields

Fn(1 + w/
√
n) = eλw

2/2 − eλw2/2pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

(1 + o(1)) + o(1)

uniformly as n→∞. Substituting this into (5.1.17) then yields the expression

pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

(1 + o(1)) =
1

2
erfc
(
w
√
λ/2

)
+ o(1),

which holds uniformly as n→∞. Theorem 5.1 follows immediately from this asymp-

totic.

5.1.3 Aside: An Alternate Riemann-Hilbert Problem

The proof in the last section proceeded by solving a Riemann-Hilbert problem (RHP

5.3) which connected Gn(z) to Pn(z), giving an explicit expression for the error be-

tween them. We then proved that Gn(z) ≈ Fn(z) which, after some calculations,

essentially concluded the proof. It is instructive, however, to note that we could have

instead solved a Riemann-Hilbert problem that connected Fn(z) directly to Pn(z),
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thereby constructing a function which connects the global behavior of Fn(z) to this

relationship between Gn(z) and the local parametrix Pn(z).

We will detail this alternate proof in this section. It is substantially more compli-

cated than the proof given in the last section, and we must even assume something

stronger about the asymptotic behavior of f .

Let ∆ be the circle centered at z = 1 which subtends an angle of θ from the

origin. Denote by σ1, σ2 the points where ∆ intersects the line of steepest descent of

the function Reϕ(z) which passes through the point z = 1. Note that by symmetry

σ1 = σ2 and Reϕ(σ1) = Reϕ(σ2). Further, Reϕ(σ1) < 0.

Condition 5.7. There exists a constant ν < −Reϕ(σ1) such that if z is restricted

to any compact subset of {z ∈ C : z 6= 0 and |arg z| ≤ θ} then

f ′(rnz)

f(rnz)
= O(eνn)

uniformly in z as n→∞.

Assuming that this condition holds, we now introduce our alternate definition for

m(z) as well as the Riemann-Hilbert problem it solves.

Choose ε > 0 such that B2ε(1) ⊂ U and define

m(z) =

Fn(z) for z ∈ C \
(
γ ∪B2ε(1)

)
,

Gn(z)− Pn(z) for z ∈ B2ε(1) \ γ.

The jumps for Gn(z) and Pn(z) cancel each other out as z moves across γ in B2ε(1),

so m is analytic on B2ε(1). If we define the contours

Γ1 = ∂B2ε(1), Γ2 = γ \B2ε(1), Γ = Γ1 ∪ Γ2, (5.1.18)

where Γ1 is oriented in the counterclockwise direction and Γ2 inherits its orientation

from γ, then the function m uniquely solves the following Riemann-Hilbert problem.

Riemann-Hilbert Problem 5.8. Seek an analytic function M : C \ Γ → C such

that

1. M+(z) = M−(z)− Pn(z) +Gn(z)− Fn(z) for z ∈ Γ1 \ Γ2,

2. M+(z) = M−(z) + f(rnz)

ran(log rn)b(e1/λz)n
for z ∈ Γ2 except at endpoints,
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Figure 5.2: Schematic representation of the curve Γ in (5.1.18). The curve Γ1 is
dashed and the curve Γ2 is solid black.

3. M(z)→ 0 as |z| → ∞,

4. if c is an endpoint of Γ2 then M(z) = O(|z − c|q) as z → c with z ∈ C \ Γ2 for

some q > −1.

Plemelj’s formula grants the integral representation

m(z) =
1

2πi

∫
Γ

[
m+(s)−m−(s)

] ds

s− z

= − 1

2πi

∫
Γ1

Pn(s)
ds

s− z
+

1

2πi

∫
Γ1

Gn(s)
ds

s− z
− 1

2πi

∫
Γ1

Fn(s)
ds

s− z

+
r−an (log rn)−b

2πi

∫
Γ2

(e1/λs)−nf(rns)
ds

s− z
. (5.1.19)

The following lemmas will show that, as n→∞, each of these integrals tends to zero

uniformly as long as z is bounded away from Γ.

Lemma 5.9. ∫
Γ1

Gn(s)
ds

s− z
= O(n−1/2)

uniformly for z ∈ Bε(1) as n→∞.
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Proof. For z ∈ Bε(1) ∣∣∣∣∫
Γ1

Gn(s)
ds

s− z

∣∣∣∣ ≤ 4πε

∥∥∥∥Gn(s)

s− z

∥∥∥∥
L∞(Γ1)

≤ 4π‖Gn(s)‖L∞(Γ1).

Let Γ+
1 and Γ−1 denote the closures of the parts of Γ1 lying to the left and to the right

of γθ, respectively. Then from the above it follows that∣∣∣∣∫
Γ1

Gn(s)
ds

s− z

∣∣∣∣ ≤ 4π
(
‖Gn(s)‖L∞(Γ+

1 ) + ‖Gn(s)‖L∞(Γ−1 )

)
. (5.1.20)

Define s1, s2 to be the points where Γ1 intersects γθ. Depending on whether s

approaches sj from the left or the right,

Gn(sj) = ±1

2
enϕ(sj) +

1

2πi
P.V.

∫
γθ

enϕ(t) dt

t− sj
.

Note that the first term here decays exponentially.

Deform the contour γθ in a small neighborhood A of sj to be a straight line passing

through sj. Choose this neighborhood small enough so that γθ still lies entirely below

the saddle point at s = 1 on the surface Reϕ(s) except where it passes through s = 1.

Then

P.V.

∫
γθ

enϕ(t) dt

t− sj
=

∫
γθ∩A

enϕ(t) − enϕ(sj)

t− sj
dt+

∫
γθ\A

enϕ(t) dt

t− sj
.

A straightforward application of the Laplace method to the second integral here yields∫
γθ\A

enϕ(t) dt

t− sj
= O(n−1/2).

Taylor’s theorem grants the estimate

∣∣enϕ(t) − enϕ(sj)
∣∣ ≤ |t− sj| sup

τ∈γθ∩A

∣∣nϕ′(τ)enϕ(τ)
∣∣

≤ |t− sj|nen(Reϕ(sj)+c) sup
τ∈γθ
|ϕ′(τ)|,

where 0 < c < −Reϕ(sj), and thus it follows that∣∣∣∣∫
γθ∩A

enϕ(t) − enϕ(sj)

t− sj
dt

∣∣∣∣ < const. · nen(Reϕ(sj)+c),
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and this tends to 0. Combining these facts,

Gn(sj) = O(n−1/2) (5.1.21)

as n→∞.

Now suppose s ∈ Γ+
1 \ {s1, s2}. Then enϕ(t)/(t− s) is analytic in a neighborhood

of γθ. Deform γθ near s1 and s2 so that it stays a small positive distance away from

Γ+
1 , and in such a way that γθ is unchanged in the disk Bε(1). Split the integral for

Gn(s) into the pieces

Gn(s) =
1

2πi

∫
γθ\Bε(1)

enϕ(t) ds

t− s
+

1

2πi

∫
γθ∩Bε(1)

enϕ(t) ds

t− s
.

After this deformation, the first integral is bounded by∣∣∣∣∫
γθ\Bε(1)

enϕ(t) ds

t− s

∣∣∣∣ ≤ Ce−cn,

where C > 0 and c > 0 are constants independent of s. In the second integral let

t = ψ(iu) and define −iψ−1(γθ ∩Bε(1)) = (−α1, α2), so that∣∣∣∣∫
γθ∩Bε(1)

enϕ(t) ds

t− s

∣∣∣∣ =

∣∣∣∣∫ α2

−α1

e−nu
2 iψ′(iu)

ψ(iu)− s
du

∣∣∣∣
≤ sup

u∈(α1,α2)

∣∣∣∣ ψ′(iu)

ψ(iu)− s

∣∣∣∣ ∫ α2

−α1

e−nu
2

du

≤ ε−1
√
π/n sup

u∈(α1,α2)

|ψ′(iu)|. (5.1.22)

An identical process will yield the same bound for s ∈ Γ−1 \ {s1, s2}.
Combining (5.1.21) and (5.1.22) in (5.1.20) results in the estimate∫

Γ1

Gn(s)
ds

s− z
= O(n−1/2)

uniformly for z ∈ Bε(1) as n→∞, as desired.

Lemma 5.10. There exists a constant c > 0 such that

r−an (log rn)−b
∫

Γ2

(e1/λs)−nf(rns)
ds

s− z
= O(e−cn)

uniformly for z ∈ Bε(1) as n→∞.
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Proof. Let Γ′2 denote the part of Γ2 for which |arg s| ≤ θ and let Γ′′2 denote the part

for which θ < |arg s|. Split the integral into the two parts∫
Γ2

=

∫
Γ′2

+

∫
Γ′′2

.

For |arg z| ≤ θ we can write

f(z) = za(log z)b exp(zλ)
[
1 + δ(z)

]
,

where δ(z)→ 0 uniformly as |z| → ∞, so for s ∈ Γ′2

f(rns)

ran(log rn)b(e1/λs)n
= saenϕ(s)

(
1 +

log s

log rn

)b [
1 + δ(rns)

]
.

If s ∈ Γ′2 then there is a constant d > 0 such that Reϕ(s) < −d. The quantities sa,

log s/ log rn, and δ(rns) are uniformly bounded for s ∈ Γ′2, and the quantities ran and

(log rn)b grow subexponentially, so if z ∈ Bε(1) there are positive constants C1 and d′

such that ∣∣∣∣∣
∫

Γ′2

(e1/λs)−nf(rns)
ds

s− z

∣∣∣∣∣ ≤ length(Γ′2) · ε−1 · C1e
−d′n.

For |arg z| > θ

|f(z)| ≤ C2 exp(µ|z|λ)

for some constant C2. If s ∈ Γ′′2 then |s| = 1, so∣∣∣∣ f(rns)

(e1/λs)n

∣∣∣∣ ≤ C2 exp[(µ− 1)n/λ],

and, since |s− z| ≥ ε,∣∣∣∣∣
∫

Γ′′2

(e1/λs)−nf(rns)
ds

s− z

∣∣∣∣∣ ≤ length(Γ′′2) · ε−1 · C2 exp[(µ− 1)n/λ].

Combining this with the above estimate yields the desired result.

Lemma 5.11. ∫
Γ1

Fn(s)
ds

s− z
= O(n−1/2)

uniformly for z ∈ Bε(1) as n→∞.
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Proof. Split the integral for Fn into the two pieces

Fn(s) =
r−an (log rn)−b

2πi

(∫
γ\γθ

(e1/λt)−nf(rnt)
dt

t− s
+

∫
γθ

(e1/λt)−nf(rnt)
dt

t− s

)
and denote by F 1

n(s) and F 2
n(s) the left and right terms, respectively.

If s ∈ Γ1 and t ∈ γ \ γθ then |t− s| ≥ C1 for some constant C1 > 0 since

s ∈ B2ε(1) ⊂ U ⊂ {z ∈ C : |arg z| ≤ θ}

and U is open. There exists a constant C2 such that

|f(z)| ≤ C2 exp(µ|z|λ)

for |arg z| ≥ θ, and just as in the proof of Lemma 5.10 it can be shown that∣∣∣∣∫
γ\γθ

(e1/λt)−nf(rnt)
dt

t− s

∣∣∣∣ ≤ length(γ \ γθ) · C−1
1 · C2 exp[(µ− 1)n/λ].

It follows that there are positive constants C3 and c such that∣∣∣∣∫
Γ1

F 1
n(s)

ds

s− z

∣∣∣∣ ≤ C3e
−cn.

Now consider the integral over γθ. For |arg z| ≤ θ we can write

f(z) = za(log z)b exp(zλ)
[
1 + δ(z)

]
, (5.1.23)

where δ(z)→ 0 uniformly as |z| → ∞ in this sector. This implies

f(rnt)

ran(log rn)b(e1/λt)n
= taenϕ(t)

(
1 +

log t

log rn

)b [
1 + δ(rnt)

]
for t ∈ γθ, and so∫

Γ1

F 2
n(s)

ds

s− z

=
1

2πi

∫
Γ1

1

s− z

∫
γθ

taenϕ(t) dt

t− s
ds+

1

2πi

∫
Γ1

1

s− z

∫
γθ

taenϕ(t)δ̃(rn, t)
dt

t− s
ds,

where

δ̃(rn, t) =

(
1 +

log t

log rn

)b [
1 + δ(rnt)

]
− 1. (5.1.24)

The first integral in this expression can be estimated using the method in Lemma 5.9

while the second requires a little more care. Actually the proof will go through just

as before except for the estimates at the points sj, which we will detail here.
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Name the inner integral

gn(s) =
1

2πi

∫
γθ

taenϕ(t)δ̃(rn, t)
dt

t− s
.

Depending on whether s approaches sj from the left or the right,

gn(sj) = ±1

2
saje

nϕ(sj)δ̃(rn, sj) +
1

2πi
P.V.

∫
γθ

taenϕ(t)δ̃(rn, t)
dt

t− sj
.

The first term here decays exponentially. Deform the contour γθ in a small neighbor-

hood A of sj to be a straight line passing through sj. Choose this neighborhood small

enough so that γθ still lies entirely below the saddle point at s = 1 on the surface

Reϕ(s) except where it passes through s = 1. Then

P.V.

∫
γθ

taenϕ(t)δ̃(rn, t)
dt

t− sj

=

∫
γθ∩A

taenϕ(t)δ̃(rn, t)− sajenϕ(sj)δ̃(rn, sj)

t− sj
dt+

∫
γθ\A

taenϕ(t)δ̃(rn, t)
dt

t− sj
.

For the second integral, the Laplace method yields∫
γθ\A

taenϕ(t)δ̃(rn, t)
dt

t− sj
= o(n−1/2).

Taylor’s theorem implies that∣∣∣taenϕ(t)δ̃(rn, t)− sajenϕ(sj)δ̃(rn, sj)
∣∣∣

≤ |t− sj| sup
τ∈γθ∩A

∣∣∣aτa−1enϕ(τ)δ̃(rn, τ) + nϕ′(τ)τaenϕ(τ)δ̃(rn, τ) + τaenϕ(τ)δ̃τ (rn, τ)
∣∣∣

≤ |t− sj|
(

sup
τ∈γθ∩A

∣∣∣aτa−1enϕ(τ)δ̃(rn, τ) + nϕ′(τ)τaenϕ(τ)δ̃(rn, τ)
∣∣∣

+ sup
τ∈γθ∩A

∣∣∣τaenϕ(τ)δ̃τ (rn, τ)
∣∣∣) .

The first supremum here decays exponentially. For the second,

sup
τ∈γθ∩A

∣∣∣τaenϕ(τ)δ̃τ (rn, τ)
∣∣∣ ≤ en(Reϕ(sj)+c

′) sup
τ∈γθ

∣∣∣τaδ̃τ (rn, τ)
∣∣∣ ,

where 0 < c′ < −Reϕ(sj). By choosing A smaller it can be shown that this estimate

holds for any fixed c′ > 0 small enough. Differentiating the formula for δ̃ yields

δ̃τ (rn, τ) =

(
b

τ log(rnτ)
+

rn
1 + δ(rnτ)

)(
δ̃(rn, τ) + 1

)
δ′(rnτ),
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and, from (5.1.23),

δ′(rnτ) =

[
f ′(rnτ)

f(rnτ)
− 1

rnτ

(
a+

b

log(rnτ)
+ nτλ

)] [
1 + δ(rnτ)

]
.

After substituting this into the previous expression, an appeal to Condition 5.7 grants

an estimate

sup
τ∈γθ∩A

∣∣∣τaenϕ(τ)δ̃τ (rn, τ)
∣∣∣ ≤ C4rne

n(Reϕ(sj)+c
′+ν),

where C4 > 0 is a constant independent of n. In addition to taking c′ as small as we

like, by choosing Uγ, U , and ε slightly larger the quantity Reϕ(sj) can be made as

close to Reϕ(σj) as desired. Arrangements can thus be made so that the quantity

Reϕ(sj) + c′ + ν is negative. It follows that∣∣∣∣∣
∫
γθ∩A

taenϕ(t)δ̃(rn, t)− sajenϕ(sj)δ̃(rn, sj)

t− sj
dt

∣∣∣∣∣ ≤ C5e
−c′′n

for some positive constants C5 and c′′, and combining this with the above Laplace

method estimate yields

gn(sj) = o(n−1/2)

as n→∞.

The remainder of the proof proceeds exactly as in Lemma 5.9.

Indeed, Lemmas 5.9, 5.10, 5.11, and 5.4 imply that

m(z) = o(1),

and then, by the definition of m,

Gn(z) = Pn(z) + o(1)

uniformly for z ∈ Bε(1) as n→∞. Now set z = 1 + w/
√
n, where w is restricted to

a compact subset of Rew < 0. By Lemma 5.6

Fn(1 + w/
√
n) = Pn(1 + w/

√
n) + o(1) (5.1.25)

uniformly as n→∞.

The remainder of the proof of the theorem proceeds exactly as in the previous

section.



84

5.2 Unbalanced Growth in Two Directions: Destruction of the Scaling

Limit

In Section 4.3 the scaling limit at the arcs of the limit curve for the partial sums of

a function with two directions of maximal growth had to be modified depending on

the balance of the constants Re a and Re b. When Re a > Re b one limit holds, when

Re a < Re b another, and when Re a = Re b a sort of transitional limit holds.

The behavior of the scaling limit at the corner of the limit curve is starkly different.

It does not go through any such change when Re a = Re b. In a sense the geometry

of the zeros of the partial sums doesn’t change that much when Re a − Re b is only

slightly negative compared to when it is slightly positive—the zeros still lie outside

the curve—and it turns out that the corner scaling limit isn’t sensitive to the change

that does happen there, which is that the rate at which the zeros approach the arcs

of the limit curve begins to depend on both a and b (see Theorem 4.3, compare the

definitions of z1
n(w) and z2

n(w)).

There is a second bifurcation past this one which we have noticed previously in

Chapter 3 (Theorem 3.6), namely that the zeros approach the limit curve from the

exterior when Re a − Re b > −λ/2 and from the interior when Re a − Re b < −λ/2.

We will see that this bifurcation is so severe that the scaling limit at the corner of

the limit curve is completely destroyed when Re a− Re b ≤ −λ/2.

For examples of this behavior see Sections 6.4 and 6.6.

5.2.1 Statement of the Result

Let a, b, A ∈ C, 0 < λ < ∞, µ < 1, and ζ ∈ C with |ζ| = 1, ζ 6= 1. Let θ ∈ (0, π)

be small enough so that the sectors |arg z| ≤ θ and |arg(z/ζ)| ≤ θ are disjoint. We

suppose that f is an entire function with the asymptotic behavior

f(z) =


za exp

(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A(z/ζ)b exp
(
(z/ζ)λ

) [
1 + o(1)

]
for |arg(z/ζ)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

(5.2.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let

pn(z) =
n∑
k=0

f (k)(0)

k!
zk
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and define

rn =
(n
λ

)1/λ

. (5.2.2)

Theorem 5.12.

lim
n→∞

pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

=
1

2
erfc
(
w
√
λ/2

)
uniformly for w restricted to any compact subset of Rew < 0 if and only if

Re b− Re a <
λ

2
.

Remark 5.13. Just as with Theorem 5.1 in the case of one direction of maximal

growth, Theorem 5.12 gives us precise asymptotics for individual zeros of the scaled

partial sums pn−1(rnz) near the corner of the limit curve S located at z = 1 in the

case where Re b− Re a < λ/2. Details of this are given in Section 5.4, where we use

that information to verify part (b) of the Modified Saff-Varga Width Conjecture (see

Section 1.3) for this class of functions.

5.2.2 Definitions and Preliminaries

We will repeat here several relevant definitions from Section 3.2.1.

Let γ be an admissible contour for the function

ϕ(z) :=
(
zλ − 1− λ log z

)/
λ (5.2.3)

and define

Fn(z) =
r−an
2πi

∫
γ

(
e1/λs

)−n
f(rns)

ds

s− z
(5.2.4)

for z /∈ γ, z 6= 0. Just as in Section 3.2.1,

Fn(z) =
1

ran(e1/λz)n
×

−pn−1(rnz) for z outside γ,

f(rnz)− pn−1(rnz) for z 6= 0 inside γ.
(5.2.5)

5.2.3 Proof of Theorem 5.12

As in the proof of Theorem 3.6 in Section 3.2.2 we will split γ into three parts. Call γ1

the part of γ in the sector |arg z| ≤ θ, call γ2 the part of γ in the sector |arg(z/ζ)| ≤ θ,
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and call γ3 the part of γ outside of either of those sectors. Then divide the integral

in (5.2.4) into the three parts ∫
γ

=

∫
γ1

+

∫
γ2

+

∫
γ3

.

Using a method identical to the proof of Lemma 3.3 it can be shown that∫
γ3

(
e1/λs

)−n
f(rns)

ds

s− z
= O

(
e(µ−1)n/λ

)
(5.2.6)

as n → ∞ uniformly for z restricted to any sector |arg z| ≤ θ − ε with ε > 0. Also,

Lemma 3.7 grants the asymptotic∫
γ2

(
e1/λs

)−n
f(rns)

ds

s− z
=
iAζ1−nrbn
ζ − z

√
2π

λn
+ o(rbnn

−1/2) (5.2.7)

as n→∞ uniformly for z ∈ C \ Ñε with ε > 0.

Combining equations (5.2.6) and (5.2.7) in the definition of Fn yields the estimate

Fn(z) =
r−an
2πi

∫
γ1

(
e1/λ

)−n
f(rns)

ds

s− z
+

Aζ1−nrb−an

(ζ − z)
√

2πλn
+ o(rb−an n−1/2) (5.2.8)

as n→∞ uniformly for z restricted to any sector |arg z| ≤ θ − ε with ε > 0.

Using essentially the same technique used in Section 5.1.2 to prove Theorem 5.1

it can be shown that

r−an
2πi

∫
γ1

(
e1/λ

)−n
f(rns)

ds

s− z

∣∣∣∣
z=1+w/

√
n

= eλw
2/2 − 1

2
eλw

2/2 erfc
(
w
√
λ/2
)

+ o(1)

and that

Fn(1 + w/
√
n) = eλw

2/2 − eλw2/2pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

[
1 + o(1)

]
+ o(1)

as n → ∞ uniformly for w restricted to compact subsets of Rew < 0. Substituting

these into (5.2.8) produces the estimate

pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

[
1 + o(1)

]
=

1

2
erfc
(
w
√
λ/2
)
− Aζ1−nrb−an

(ζ − 1− w/
√
n)
√

2πλn
+ o(rb−an n−1/2) + o(1)

as n→∞ uniformly for w restricted to compact subsets of Rew < 0. It follows that

the formula

lim
n→∞

pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

=
1

2
erfc
(
w
√
λ/2

)
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holds if and only if rb−an n−1/2 = o(1), and since rn = (n/λ)1/λ this is equivalent to the

requirement that

Re b− Re a <
λ

2
.

This completes the proof of Theorem 5.12.

5.3 Generalization to More Directions of Maximal Growth

Unlike the scaling limit at the arcs of the limit curve (Section 4.4), generalizing the

scaling limit at the corner of the curve is relatively straightforward.

Let a, b1, . . . , bm, A1, . . . , Am ∈ C, 0 < λ < ∞, µ < 1, and ζ1, . . . , ζm ∈ C with

|ζk| = 1, ζk 6= 1 for all k = 1, . . . ,m and ζj 6= ζk for j 6= k. Let θ ∈ (0, π) be

small enough so that all of the sectors |arg z| ≤ θ, |arg(z/ζk)| ≤ θ, k = 1, . . . ,m, are

disjoint. We suppose that f is an entire function with the asymptotic behavior

f(z) =



za exp
(
zλ
) [

1 + o(1)
]

for |arg z| ≤ θ,

A1(z/ζ1)b1 exp
(
(z/ζ1)λ

) [
1 + o(1)

]
for |arg(z/ζ1)| ≤ θ,

...

Am(z/ζm)bm exp
(
(z/ζm)λ

) [
1 + o(1)

]
for |arg(z/ζm)| ≤ θ,

O
(
exp
(
µ|z|λ

))
otherwise

(5.3.1)

as |z| → ∞, with each estimate holding uniformly in its sector. For this f , let pn(z),

rn, and Fn(z) be defined as in Section 5.2. For convenience of notation, define b0 = a,

A0 = 1, and ζ0 = 1.

For each new direction of maximal growth of f , equation (5.2.8) gains a cor-

responding term and error term. Explicitly, for f as defined above, the equation

becomes

Fn(z) =
r−an
2πi

∫
γ1

(
e1/λ

)−n
f(rns)

ds

s− z
+

m∑
k=1

[
Akζ

1−n
k rbk−an

(ζk − z)
√

2πλn
+ o(rbk−an n−1/2)

]
as n → ∞ uniformly for z restricted to any sector |arg z| ≤ θ − ε with ε > 0.

Continuing the argument in the proof of Theorem 5.12 presents the conclusion that

the desired scaling limit exists if and only if rbk−an n−1/2 = o(1), k = 1, . . . ,m. In other

words, we have the following result.
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Theorem 5.14.

lim
n→∞

pn−1(rn(1 + w/
√
n))

f(rn(1 + w/
√
n))

=
1

2
erfc
(
w
√
λ/2

)
uniformly for w restricted to any compact subset of Rew < 0 if and only if

Re bk − Re a <
λ

2
, k = 1, . . . ,m.

Remark 5.15. Theorem 5.14 gives us precise asymptotics for individual zeros of the

scaled partial sums pn−1(rnz) near the corner of the limit curve S located at z = 1

in the case where f has multiple directions of maximal exponential growth as long as

Re bk − Re a < λ/2, k = 1, . . . ,m. Details of this are given in Section 5.4, where we

use that information to verify part (b) of the Modified Saff-Varga Width Conjecture

(see Section 1.3) for this class of functions.

5.4 Verification of the Modified Saff-Varga Width Conjecture at the

Exceptional Argument arg z = 0

The theorems in this chapter allow us to verify part (b) of the Modified Saff-Varga

Width Conjecture (see Section 1.3) at the exceptional argument arg z = 0 uncon-

ditionally when f has a single direction of maximal exponential growth and on the

condition that Re bk − Re a < λ/2, k = 1, . . . ,m when f has two or more directions

of maximal exponential growth.

Under these conditions Theorems 5.1, 5.12, and 5.14 imply that if w0 is any

solution of the equation

erfc
(
w
√
λ/2

)
= 0 (5.4.1)

then pn−1(z) has a zero z0 of the form

z0 = rn + rnw0/
√
n+ o

(
rnn

−1/2
)

as n→∞. It follows that

z0 − rn ∼ rnw0/
√
n

as n→∞, and hence that, for any fixed ε > 0, z0 lies in the disk

|z − rn| ≤ rnn
−1/2+ε
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for n large enough. Since equation (5.4.1) has infinitely-many solutions, the number

of zeros of pn−1(z) in any such disk tends to infinity as n→∞. Setting ρn = rn, this

is precisely the condition in part (b) of the Modified Saff-Varga Width Conjecture

with k = 2 at the exceptional argument arg z = 0.



Chapter 6

Applications

In this chapter we will apply the results from Chapters 3, 4, and 5 to several common

special functions. These functions were chosen to illustrate different behaviors of the

zeros of the partial sums.

6.1 The Sine and Cosine Functions

Each of the functions

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2

are entire of order 1 and have two directions of maximal exponential growth, one as

|z| → ∞ with ε < arg z < π − ε and one as |z| → ∞ with −π + ε < arg z < −ε.
Indeed, if θ ∈ (0, π/2) then∣∣∣∣∓2i sin(±iz)

ez
− 1

∣∣∣∣∣∣∣∣2 cos(±iz)

ez
− 1

∣∣∣∣
 ≤ e−2|z| cos θ, |arg z| ≤ θ

and

|∓2i sin(±iz)|

|2 cos(±iz)|

 ≤ 2e|z| cos θ, θ ≤ |arg z| ≤ π − θ.

So, for θ ∈ (0, π/2) and µ = cos θ we have

∓2i sin(±iz) =


ez [1 + o(1)] for |arg z| ≤ θ,

−e−z [1 + o(1)] for |arg−z| ≤ θ,

O
(
eµ|z|

)
otherwise

and

2 cos(±iz) =


ez [1 + o(1)] for |arg z| ≤ θ,

e−z [1 + o(1)] for |arg−z| ≤ θ,

O
(
eµ|z|

)
otherwise

90



91

as |z| → ∞ uniformly in each of these sectors.

In the notation of the asymptotic assumption on the functions f we have con-

sidered in the thesis (see, e.g., (3.2.1)), for each of the rotated and scaled functions

∓2i sin(±iz) and 2 cos(±iz) and for θ ∈ (0, π/2) we have a = b = 0, λ = 1, µ = cos θ,

and ζ = −1. For the sine functions we have A = −1 and for the cosines we have

A = 1.

Remark 6.1. Applying the results in this thesis to the functions −2i sin(−iz) and

2 cos(−iz) gives us information about the zeros of their partial sums in the upper half-

plane, and applying them to the function 2i sin(iz) and 2 cos(−iz) gives information

about the lower half-plane. This is a very useful trick; by applying the results repeat-

edly to rotated versions of a function with multiple directions of maximal growth we

can obtain information about its partial sums in all of its maximal growth sectors.

This technique is used throughout this chapter.

Applying Theorems 3.6, 4.3, and 5.12 to these sine and cosine functions yields the

following collections of results.

Theorem 6.2. Let

pn[sin](z) =

b(n−1)/2c∑
k=0

(−1)kz2k+1

(2k + 1)!

denote the nth partial sum of the Maclaurin series for sin z and let

S = {z ∈ C : |z exp(1− z)| = 1, |z| ≤ 1, and Re z > 0}.

The limit points of the zeros of the scaled partial sums pn−1[sin](nz) which do not

lie on the real axis are precisely the points of the set iS ∪ −iS.

Let ξ ∈ S, ξ 6= 1 and define

τ = Im(ξ − 1− log ξ),

τn ≡ τn (mod 2π), −π < τn ≤ π,

and

zn(w) = ξ

(
1 +

log n

2(1− ξ)n
− w − iτn

(1− ξ)n

)
.

Then
pn−1[sin](±inzn(w))

sin(±inzn(w))
= 1−

(
1

1− ξ
− (−1)n

1 + ξ

)
e−w√

2π
+ o(1) (6.1.1)
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as n→∞ uniformly on compact subsets of the w-plane.

Additionally,

lim
n→∞

pn−1[sin](±i(n+ w
√
n))

sin(±i(n+ w
√
n))

=
1

2
erfc

(
w√
2

)
(6.1.2)

uniformly on compact subsets of Rew < 0.

Theorem 6.3. Let

pn[cos](z) =

bn/2c∑
k=0

(−1)kz2k

(2k)!

denote the nth partial sum of the Maclaurin series for cos z and let

S = {z ∈ C : |z exp(1− z)| = 1, |z| ≤ 1, and Re z > 0}.

The limit points of the zeros of the scaled partial sums pn−1[cos](nz) which do not

lie on the real axis are precisely the points of the set iS ∪ −iS.

Let ξ ∈ S, ξ 6= 1 and define

τ = Im(ξ − 1− log ξ),

τn ≡ τn (mod 2π), −π < τn ≤ π,

and

zn(w) = ξ

(
1 +

log n

2(1− ξ)n
− w − iτn

(1− ξ)n

)
.

Then
pn−1[cos](±inzn(w))

cos(±inzn(w))
= 1−

(
1

1− ξ
+

(−1)n

1 + ξ

)
e−w√

2π
+ o(1)

as n→∞ uniformly on compact subsets of the w-plane.

Additionally,

lim
n→∞

pn−1[cos](±i(n+ w
√
n))

cos(±i(n+ w
√
n))

=
1

2
erfc

(
w√
2

)
uniformly on compact subsets of Rew < 0.

Remark 6.4. Due to the appearance of (−1)n in the scaling limits corresponding to

the arcs of the limit curve we actually get two different limits if we restrict n to run

through only even or only odd integers. For example, the scaling limit for the sine

function yields

lim
n→∞

p2n−1[sin](±i2nz2n(w))

sin(±i2nz2n(w))
= 1−

(
1

1− ξ
− 1

1 + ξ

)
e−w√

2π
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and

lim
n→∞

p2n[sin](±i(2n+ 1)z2n+1(w))

sin(±i(2n+ 1)z2n+1(w))
= 1−

(
1

1− ξ
+

1

1 + ξ

)
e−w√

2π
,

each converging uniformly on compact subsets of the w-plane.

Figure 6.1: The zeros of pn−1[sin](nz) for n = 200 in blue and their limit curve in red.
Region A, magnified in the top-right, shows the approximations for the zeros in that
region, represented as black crosses, which are given by the corner scaling limit in
(6.1.2). Region B, magnified in the bottom-right, shows the approximations for the
zeros in that region, represented as black crosses, which are given by the curve scaling
limit in (6.1.1). The point ξ which is used in (6.1.1) to obtain the approximations in
Region B is shown in black.
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Remark 6.5. The approximations in Region B in Figure 6.1 appear much better

than those in Region A. Indeed, since the sine function is so close to an exponential

in those regions we expect from what is known about the zeros of the partial sums of

the exponential function that the absolute error of the approximations is on the order

of (log n)2/n2 in Region B and on the order of 1/n in Region A. In fact, based on

the asymptotic expansion in equation (1.4.1) we expect that the two approximations

in Region A have absolute errors of approximately 0.02 and 0.04, respectively, which

agrees with what is shown in the plot.

6.2 Bessel Functions of the First Kind

The Bessel functions of the first kind are defined by

Jν(z) =
(z

2

)ν ∞∑
k=0

(−z2/4)k

Γ(ν + k + 1)k!

for ν ∈ C, where a suitable branch cut is chosen for the factor (z/2)ν . The series in

this definition converges for all z ∈ C, so the function (2/z)νJν(z) is entire. As such

we define the new function

Jν(z) =

(
2

z

)ν
Jν(z).

According to NIST’s Digital Library of Mathematical Functions [12, eq. 10.17.3]

the Bessel function obeys the asymptotic

Jν(z) =
1√
π

(
2

z

)ν+1/2 [
cosω

[
1 + o(1)

]
+O

(
sinω

ω

)]
as |z| → ∞ uniformly in any sector |arg z| ≤ π − ε with ε > 0, where

ω = z − πν

2
− π

4
.

As Jν(z) is even, the same asymptotic is valid for Jν(−z) in |arg z| ≤ π− ε. It follows

that for any θ ∈ (0, π/2) there is a µ < 1 such that

Jν(±iz) = 2ν
√

2

π
×


z−ν−1/2ez [1 + o(1)] for |arg z| ≤ θ,

(−z)−ν−1/2e−z [1 + o(1)] for |arg−z| ≤ θ,

O
(
eµ|z|

)
otherwise
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as |z| → ∞ uniformly in each of these sectors.

From this information we deduce that the function Jν has two directions of max-

imal exponential growth. In the notation of the asymptotic assumption on the func-

tions f we have considered in the thesis (see, e.g., (3.2.1)) we have a = b = −ν− 1/2,

A = 1 (after rescaling), λ = 1, and ζ = −1. Applying Theorems 3.6, 4.3, and 5.12 to

these functions yields the following collection of results.

Theorem 6.6. Let

pn[Jν ](z) =

bn/2c∑
k=0

(−z2/4)k

Γ(ν + k + 1)k!

denote the nth partial sum of the Maclaurin series for Jν(z) and let

S = {z ∈ C : |z exp(1− z)| = 1, |z| ≤ 1, and Re z > 0}.

The limit points of the zeros of the scaled partial sums pn−1[Jν ](nz) which do not

lie on the real axis are precisely the points of the set iS ∪ −iS.

Let ξ ∈ S, ξ 6= 1 and define

τ = Im(ξ − 1− log ξ),

τn ≡ τn (mod 2π), −π < τn ≤ π,

and

zn(w) = ξ

(
1 +

log n

2(1− ξ)n
− w − iτn

(1− ξ)n

)
.

Then

pn−1[Jν ](±inzn(w))

Jν(±inzn(w))
= 1−

(
1

1− ξ
+

(−1)n

1 + ξ

)
ξν+1/2e−w√

2π
+ o(1) (6.2.1)

as n→∞ uniformly on compact subsets of the w-plane.

Additionally,

lim
n→∞

pn−1[Jν ](±i(n+ w
√
n))

Jν(±i(n+ w
√
n))

=
1

2
erfc

(
w√
2

)
(6.2.2)

uniformly on compact subsets of Rew < 0.

Remark 6.7. Just as in the case of the sine and cosine functions, the scaling limit

corresponding to the arcs of the limit curve gives two different limits if we restrict n

to run through only even or only odd integers.
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Figure 6.2: The zeros of pn−1[Jν ](nz) for ν = i and n = 200 in blue and their limit
curve in red. Region A, magnified in the top-right, shows the approximations for the
zeros in that region, represented as black crosses, which are given by the corner scaling
limit in (6.2.2). Region B, magnified in the bottom-right, shows the approximations
for the zeros in that region, represented as black crosses, which are given by the
curve scaling limit in (6.2.1). The point ξ which is used in (6.2.1) to obtain the
approximations in Region B is shown in black.

6.3 Confluent Hypergeometric Functions

In this section we will consider the functions

M(α, β, z) =
1

Γ(α)

∞∑
k=0

Γ(k + α)

Γ(k + β)k!
zk,
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where α, β ∈ C and α 6= 0,−1,−2, . . .. The series converges for all z ∈ C, so these

functions are entire. They are related to the usual hypergeometric 1F1 functions by

1F1(α, β, z)

Γ(β)
= M(α, β, z)

for fixed β 6= 0,−1, 2, . . ., as well as in the limit β → −m, m = 0, 1, 2, . . ..

The Digital Library of Mathematical Functions (or the DLMF) gives the following

asymptotic for M:

M(α, β, z) =
zα−βez

Γ(α)

[
1 + o(1)

]
+
e±iπαz−α

Γ(β − α)

[
1 + o(1)

]
as |z| → ∞ uniformly in any sector −π/2 + ε ≤ ±arg z ≤ 3π/2 − ε with ε > 0 for

appropriate choices of branches for zα−β and z−α and an appropriate determination

of arg z [12, eq. 13.7.2]. It follows that for any θ ∈ (0, π/2) there exists a constant

µ < 1 such that

Γ(α) M(α, β, z) =

zα−βez [1 + o(1)] for |arg z| ≤ θ,

O
(
eµ|z|

)
for |arg z| > θ

as |z| → ∞ uniformly in each of these sectors.

From the above information we deduce that the function M has a single direction

of maximal exponential growth. In the notation of the asymptotic assumption on the

functions f we have considered in the thesis (see, e.g., (3.1.1)) we have a = α − β,

b = 0, and λ = 1. Applying Theorems 3.1, 4.1, and 5.1 to these functions yields the

following collection of results.

Theorem 6.8. Let

pn[M](z) =
1

Γ(α)

n∑
k=0

Γ(k + α)

Γ(k + β)k!
zk

denote the nth partial sum of the Maclaurin series for M(α, β, z) and let

S = {z ∈ C : |z exp(1− z)| = 1, |z| ≤ 1, and Re z > 0}.

The limit points of the zeros of the scaled partial sums pn−1[M](nz) in the right

half-plane are precisely the points of S.

Let ξ ∈ S, ξ 6= 1 and define

τ = Im(ξ − 1− log ξ),
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τn ≡ τn (mod 2π), −π < τn ≤ π,

and

zn(w) = ξ

(
1 +

log n

2(1− ξ)n
− w − iτn

(1− ξ)n

)
.

Then

lim
n→∞

pn−1[M](nzn(w))

M(α, β, nzn(w))
= 1− e−w

ξα−β(1− ξ)
√

2π
(6.3.1)

uniformly on compact subsets of the w-plane.

Additionally,

lim
n→∞

pn−1[M](n+ w
√
n)

M(α, β, n+ w
√
n)

=
1

2
erfc

(
w√
2

)
(6.3.2)

uniformly on compact subsets of Rew < 0.

6.4 Exponential Integrals

Let −1 ≤ r < 1 and let g : [r, 1] → C ∪ {∞} be a measurable, integrable function

satisfying

g(t) = (t− r)pg1(t− r) = (1− t)qg2(1− t),

where

(1) Re p > −1 and Re q > −1,

(2) g1(0) and g2(0) are both finite and nonzero, and

(3) in a neighborhood of t = 0, both g′1(t) and g′2(t) exist and are bounded.

Define the function

f(z) =

∫ 1

r

eztg(t) dt. (6.4.1)

Under the above conditions this f is an entire function of order 1.

By Watson’s lemma (see Theorem A.2 or [27, Secs. 2.2 and 2.3]) the function f

obeys the asymptotics

f(z) ∼ g2(0)Γ(q + 1)z−q−1ez

and

f(−z) ∼ g1(0)Γ(p+ 1)z−p−1e−rz
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Figure 6.3: The zeros of pn−1[M](nz) for α = −1/2, β = −5/2, and n = 200 in
blue and their limit curve in the right half-plane in red. Region A, magnified in
the bottom-left, shows the approximations for the zeros in that region, represented
as black crosses, which are given by the corner scaling limit in (6.3.2). Region B,
magnified in the bottom-right, shows the approximations for the zeros in that region,
represented as black crosses, which are given by the curve scaling limit in (6.3.1). The
point ξ which is used in (6.3.1) to obtain the approximations in Region B is shown
in black.
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as |z| → ∞ uniformly in any sector |arg z| ≤ θ with 0 ≤ θ < π/2. Additionally, if

|arg z| ≤ π/2− θ then

|f(±iz)| ≤
∫ 1

r

e∓t Im z|g(t)| dt

=

∫ 1

r

e∓|z|t sin arg z|g(t)| dt

≤
∫ 1

r

e|zt| cos θ|g(t)| dt

≤ e|z| cos θ

∫ 1

r

|g(t)| dt.

It follows that for any fixed θ ∈ (0, π/2), if −1 < r < 1 then

[g2(0)Γ(q + 1)]−1f(z) =

z−q−1ez [1 + o(1)] for |arg z| ≤ θ,

O
(
eµ|z|

)
for |arg z| > θ

(6.4.2)

and if r = −1 then

[g2(0)Γ(q + 1)]−1f(z) =


z−q−1ez [1 + o(1)] for |arg z| ≤ θ,

A(−z)−p−1e−z [1 + o(1)] for |arg−z| ≤ θ,

O
(
eµ|z|

)
otherwise

(6.4.3)

as |z| → ∞ uniformly in each sector, where µ < 1 and

A =
g1(0)Γ(p+ 1)

g2(0)Γ(q + 1)
.

Applying Theorems 3.1, 4.1, 5.1, 3.6, 4.3, and 5.12 to this function yields the following

collection of results.

Theorem 6.9. Let

pn[f ](z) =
n∑
k=0

zk

k!

∫ 1

r

tkg(t) dt

denote the nth partial sum of the Maclaurin series for f(z) and let

S = {z ∈ C : |z exp(1− z)| = 1, |z| ≤ 1, and Re z > 0}.

If −1 < r < 1 then the limit points of the zeros of the scaled partial sums

pn−1[f ](nz) in the right half-plane are precisely the points of S. If r = −1, the
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limit points which do not lie on the imaginary axis are precisely the points of the set

S ∪ −S.

Let ξ ∈ S, ξ 6= 1 and define

τ = Im(ξ − 1− log ξ).

Define the sequence τn by the conditions

τn ≡ τn (mod 2π), −π < τn ≤ π

and let

z1
n(w) = ξ

(
1 +

log n

2(1− ξ)n
− w − iτn

(1− ξ)n

)
.

Define the sequence σn by the conditions

πn ≡ σn (mod 2π), −π < σn ≤ π

and let

z2
n(w) = ξ

[
1 +

(
p− q +

1

2

)
log n

(1− ξ)n
− w − iσn − iτn

(1− ξ)n

]
.

If −1 < r < 1 or if r = −1 and Re q < Re p then

lim
n→∞

pn−1[f ](nz1
n(w))

f(nz1
n(w))

= 1− ξq+1e−w

(1− ξ)
√

2π
(6.4.4)

as n→∞ uniformly on compact subsets of the w-plane. When r = −1, if Re q > Re p

then

lim
n→∞

pn−1[f ](nz2
n(w))

f(nz2
n(w))

= 1− Aξq+1e−w

(1 + ξ)
√

2π
(6.4.5)

and if Re q = Re p then

pn−1[f ](nz1
n(w))

f(nz1
n(w))

= 1−
(

1

1− ξ
+
A(−1)nnq−p

1 + ξ

)
ξq+1e−w√

2π
+ o(1)

as n→∞. Both of these limits are uniform with respect to w on compact subsets of

the w-plane.

Additionally, if −1 < r < 1 then

lim
n→∞

pn−1[f ](n+ w
√
n)

f(n+ w
√
n)

=
1

2
erfc

(
w√
2

)
(6.4.6)

uniformly on compact subsets of Rew < 0. This is also true when r = −1 if and only

if

Re p− Re q +
1

2
> 0.
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Figure 6.4: The zeros of pn−1[f ](nz) for g(t) = (1− t)3, r = −1, and n = 200 in blue
and their limit curve in red. The magnified regions A and B show the approximations
for the zeros in those regions, represented as black crosses, which are given by the
curve scaling limits in (6.4.4) and (6.4.5), respectively. Note that to apply limit (6.4.4)
we applied Theorem 6.9 to the reflected function f(−z). The points ξ which are used
in the respective applications of (6.4.4) and (6.4.5) are shown in black. The corner
scaling limit (6.4.6) does not exist for this function f so we do not get approximations
for the zeros which approach the point z = 1.
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6.5 Airy Functions

The Airy functions of the first and second kind are entire functions defined for z ∈ C
by the integrals

Ai(z) =
1

2πi

∫ eiπ/3∞

e−iπ/3∞
exp

(
1

3
t3 − zt

)
dt

and

Bi(z) =
1

2π

∫ eiπ/3∞

−∞
exp

(
1

3
t3 − zt

)
dt+

1

2π

∫ e−iπ/3∞

−∞
exp

(
1

3
t3 − zt

)
dt,

respectively.

The DLMF gives the following uniform asymptotics for Ai [12, eqns. 9.7.5 and

9.7.9]: for any fixed ε > 0,

Ai(z) ∼ z−1/4

2
√
π

exp

(
−2

3
z3/2

)
as |z| → ∞ with |arg z| ≤ π − ε and

Ai(−z) =
z−1/4

√
π

[
cosω

[
1 + o(1)

]
+O

(
sinω

ω

)]
as |z| → ∞ with |arg z| ≤ 2π/3− ε, where

ω =
2

3
z3/2 − π

4
.

It follows that for any ε > 0 there is some µ < 2/3 such that

Ai(z) =
1

2
√
π
×

z−1/4 exp
(
−2

3
z3/2

)
[1 + o(1)] for |arg z| ≤ π − ε,

O
(
exp
(
µ|z|3/2

))
for |arg z| ≥ π − ε

as |z| → ∞ uniformly in each sector. The quantity Re(−z3/2) is maximal on the rays

arg z = ±2π/3, so we conclude that Ai has two directions of maximal exponential

growth.

We could now apply Theorems 3.6, 4.3, and 5.12 directly. However, in each of

these results we restricted ourselves to sectors which are symmetric about the rays

of maximal growth of the function. This was done to simplify the notation, and not

because some aspect of the analysis requires it. So, I hope the reader will permit me

to extend the generality of the results just slightly in this direction without additional
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comment toward rigorous justification. In particular, we will consider the function

Ai(z) to have two half-open sectors of maximal growth, one 0 ≤ arg z < π− ε and the

other −π+ ε < arg z ≤ 0, even though the rays of maximal growth (arg z = 2π/3 and

−2π/3, respectively) do not bisect these sectors. With this in mind, the appropriately

extended versions of Theorems 3.6, 4.3, and 5.12 give the following collection of

results.

Theorem 6.10. Let pn[Ai](z) denote the nth partial sum of the Maclaurin series for

Ai(z), let

S =
{
z ∈ C :

∣∣z3/2 exp
(
1− z3/2

)∣∣ = 1, |z| ≤ 1, and −2π/3 ≤ arg z < π/3
}
,

and define

S+ = S, S− = S,

and

rn =

(
2n

3

)2/3

.

The limit points of the zeros of the scaled partial sums pn−1[Ai]((3/2)2/3rnz) which

do not lie on the ray arg z = π are precisely the points of the set[
(3/2)2/3ei2π/3S+

]
∪
[
(3/2)2/3e−i2π/3S−

]
.

Let ξ ∈ S±, ξ 6= 1 and define

τ = Im

(
ξ3/2 − 1− 3

2
log ξ

)
,

τn ≡
τn

3/2
(mod 2π), −π < τn ≤ π,

and

zn(w) = ξ

(
1 +

log n

2(1− ξ3/2)n
− w − iτn

(1− ξ3/2)n

)
.

Then

pn−1[Ai]
(
(3/2)2/3e±i2π/3rnzn(w)

)
Ai
(
(3/2)2/3e±i2π/3rnzn(w)

) = 1−
(

1

1− ξ
− e∓i2πn/3

e±i2π/3 − ξ

)
ξ1/4e−w√

3π
+o(1) (6.5.1)

as n→∞ uniformly on compact subsets of the w-plane.

Additionally,

lim
n→∞

pn−1[Ai]
(
(3/2)2/3e±i2π/3rn(1 + w/

√
n)
)

Ai
(
(3/2)2/3e±i2π/3rn(1 + w/

√
n)
) =

1

2
erfc
(
w
√

3/4
)

(6.5.2)

uniformly on compact subsets of Rew < 0.
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Figure 6.5: The zeros of pn−1[Ai]((3/2)2/3rnz) for n = 200 in blue and their limit
curve in red.

Remark 6.11. Due to the appearance of e±i2πn/3 in the scaling limit corresponding

to the arcs of the limit curve, the ratio pn−1[Ai](· · · )/Ai(· · · ) may tend to one of three

different limits if we restrict n to run through any one of the three residue classes

modulo 3.
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Figure 6.6: Magnifications of the regions labeled in Figure 6.5. Region A shows the
approximations for the zeros in that region, represented as black crosses, which are
given by the corner scaling limit in (6.5.2). Region B shows the approximations for the
zeros in that region, represented as black crosses, which are given by the curve scaling
limit in (6.5.1). The point ξ which is used in (6.5.1) to obtain the approximations in
Region B is shown in black.

The DLMF gives the following uniform asymptotics for Bi [12, eqns. 9.7.7, 9.7.11,

and 9.7.13]: for any fixed ε > 0,

Bi(z) ∼ z−1/4

√
π

exp

(
2

3
z3/2

)
as |z| → ∞ with |arg z| ≤ π/3− ε,

Bi(−z) =
z−1/4

√
π

[
− sinω

[
1 + o(1)

]
+O

(cosω

ω

)]
as |z| → ∞ with |arg z| ≤ 2π/3− ε, and

Bi
(
e±iπ/3z

)
= e±iπ/6z−1/4

√
2

π

[
cos

(
ω ∓ i

2
log 2

)[
1 + o(1)

]
+O

(
sin
(
ω ∓ i

2
log 2

)
ω

)]

as |z| → ∞ with |arg z| ≤ 2π/3− ε, where

ω =
2

3
z3/2 − π

4
.
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It follows that for any ε > 0 there is some µ < 2/3 such that

√
πBi(z) ∼


z−1/4 exp

(
2
3
z3/2

)
for |arg z| ≤ π/3− ε,

1
2
e∓iπ/3

(
e±i2π/3z

)−1/4
exp
[

2
3

(
e±i2π/3z

)3/2
]

for
∣∣arg e±i2π/3z

∣∣ ≤ π/3− ε,

O
(
exp
(
µ|z|3/2

))
otherwise

as |z| → ∞ uniformly in each sector. Evidently the Bi function has three directions

of maximal exponential growth. The discussion in Section 3.3 and Theorems 4.8 and

5.14 yield the following collection of results.

Theorem 6.12. Let pn[Bi](z) denote the nth partial sum of the Maclaurin series for

Bi(z), let

S =
{
z ∈ C :

∣∣z3/2 exp
(
1− z3/2

)∣∣ = 1, |z| ≤ 1, and |arg z| < π/3
}
,

and define

rn =

(
2n

3

)2/3

.

The limit points of the zeros of the scaled partial sums pn−1[Bi]((3/2)2/3rnz) which

do not lie on the rays arg z = ±π/3, π are precisely the points of the set

S ∪ ei2π/3S ∪ e−i2π/3S.

Let ξ ∈ S, ξ 6= 1 and define

τ = Im

(
ξ3/2 − 1− 3

2
log ξ

)
,

τn ≡
τn

3/2
(mod 2π), −π < τn ≤ π,

and

zn(w) = ξ

(
1 +

log n

2(1− ξ3/2)n
− w − iτn

(1− ξ3/2)n

)
.

Then

pn−1[Bi]
(
(3/2)2/3rnzn(w)

)
Bi
(
(3/2)2/3rnzn(w)

)
= 1−

(
1

1− ξ
− e−i2πn/3

2(ei2π/3 − ξ)
− ei2πn/3

2(e−i2π/3 − ξ)

)
ξ1/4e−w√

3π
+ o(1)



108

and

pn−1[Bi]
(
(3/2)2/3e±i2π/3rnzn(w)

)
Bi
(
(3/2)2/3e±i2π/3rnzn(w)

)
= 1−

(
1

1− ξ
− 2e±i2πn/3

e∓i2π/3 − ξ
+

e∓i2πn/3

e±i2π/3 − ξ

)
ξ1/4e−w√

3π
+ o(1) (6.5.3)

as n→∞ uniformly on compact subsets of the w-plane.

Additionally, for fixed k ∈ {−1, 0, 1}

pn−1[Bi]
(
(3/2)2/3ei2πk/3rnzn(w)

)
Bi
(
(3/2)2/3ei2πk/3rnzn(w)

) =
1

2
erfc
(
w
√

3/4
)

(6.5.4)

uniformly on compact subsets of Rew < 0.

Figure 6.7: The zeros of pn−1[Bi]((3/2)2/3rnz) for n = 200 in blue and their limit
curve in red.
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Figure 6.8: Magnifications of the regions labeled in Figure 6.7. Region A shows the
approximations for the zeros in that region, represented as black crosses, which are
given by the corner scaling limit in (6.5.4). Region B shows the approximations for the
zeros in that region, represented as black crosses, which are given by the curve scaling
limit in (6.5.3). The point ξ which is used in (6.5.3) to obtain the approximations in
Region B is shown in black.

6.6 Parabolic Cylinder Functions

The parabolic cylinder function U(a, z) is an entire function which is defined for

a, z ∈ C as the solution of the differential equation

d2u

dz2
−
(

1

4
z2 + a

)
u = 0

identified by the asymptotic behavior

U(a, z) ∼ z−a−1/2e−z
2/4

as |z| → ∞ with | arg z| ≤ 3π/4− ε and

U(a, z) = z−a−1/2e−z
2/4
[
1 + o(1)

]
± i

√
2π

Γ(a+ 1/2)
e∓iπaza−1/2ez

2/4
[
1 + o(1)

]
as |z| → ∞ with π/4+ ε ≤ ±arg z ≤ 5π/4− ε, where in the latter appropriate choices

for the branches of z−a−1/2 and za−1/2 and an appropriate determination of arg is

made [12, eqns. 12.9.1 and 12.9.3]. These functions are sometimes written using the

alternate notation

Dν(z) = U(−ν − 1/2, z),
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as in [1, sec. 19.3].

From the above asymptotic it follows that U has three directions of maximal

exponential growth. Indeed, for any ε > 0 there is a µ < 1/4 such that

U(a, z)∼



√
2π

Γ(a+1/2)
(−z)a−1/2 exp

[
1
4
(−z)2

]
for |arg−z| ≤ π/4− ε,

eiπ(a/2+1/4)(iz)−a−1/2 exp
[

1
4
(iz)2

]
for − π/4 + ε < arg iz < π/2− ε,

e−iπ(a/2+1/4)(z/i)−a−1/2 exp
[

1
4
(z/i)2

]
for − π/2 + ε < arg(z/i) < π/4− ε,

O(exp(µ|z|2)) otherwise

as |z| → ∞ uniformly in each sector. As with the Ai function we will consider the

half-open sectors 0 ≤ ± arg z < 3π/4 to be maximal growth sectors even though

the maximal growth rays arg z = ±π/2 do not bisect them. With this in mind, the

discussion in Section 3.3 and Theorems 4.6, 4.7, 4.8, 4.9 and 5.14 yield the following

collection of results.

Theorem 6.13. Let pn[U ](z) denote the nth partial sum of the Maclaurin series for

U(a, z), let

S =
{
z ∈ C :

∣∣z2 exp
(
1− z2

)∣∣ = 1, |z| ≤ 1, and − π/2 ≤ arg z < π/4
}
,

and define

Sπ/4 = S ∩ {z ∈ C : |arg z| < π/4}, S+ = S, S− = S

and

rn =
(n

2

)1/2

.

The limit points of the zeros of the scaled partial sums pn−1[U ](2rnz) which do not

lie on the rays arg z = ±3π/4 are precisely the points of the set

iS+ ∪ −iS− ∪ −Sπ/4.

Define

τ = Im
(
ξ2 − 1− 2 log ξ

)
,

τn ≡
τn

2
(mod 2π), −π < τn ≤ π,

σn ≡
πn

2
(mod 2π), −π < σn ≤ π,
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z1
n(w) = ξ

(
1 +

log n

2(1− ξ2)n
− w − iτn

(1− ξ2)n

)
,

z2
n(w) = ξ

(
1 +

(2a+ 1) log n

2(1− ξ2)n
− w − iσn − iτn

(1− ξ2)n

)
,

and

z±n (w) = ξ

(
1 +

(1− 2a) log n

2(1− ξ2)n
− w ∓ iσn − iτn

(1− ξ2)n

)
.

Let ξ ∈ Sπ/4, ξ 6= 1. If Re a > 0 then

lim
n→∞

pn−1[U ](−2rnz
1
n(w))

U(a,−2rnz1
n(w))

= 1− ξ1/2−ae−w

2
√
π(1− ξ)

,

if Re a < 0 then

pn−1[U ](−2rnz
2
n(w))

U(a,−2rnz2
n(w))

= 1−
(

exp{iπ(a/2 + 3/4)}
i− ξ

+
(−1)n exp{−iπ(a/2− 1/4)}

i+ ξ

)
Γ(a+ 1/2)e−w

2a+3/2πξa−1/2

+ o(1) (6.6.1)

as n→∞, and if Re a = 0 then

pn−1[U ](−2rnz
1
n(w))

U(a,−2rnz1
n(w))

= 1−
[

1

1− ξ
+

Γ(a+ 1/2)r−2a
n

4a
√

2π

(
i1−n exp{iπ(a/2 + 1/4)}

i− ξ

− (−i)1−n exp{−iπ(a/2 + 1/4)}
i+ ξ

)]
e−w

2
√
πξa−1/2

+ o(1)

as n→∞, with each limit holding uniformly on compact subsets of the w-plane.

Let ξ ∈ S±, ξ 6= 1. If Re a > 0 then

lim
n→∞

pn−1[U ](±2irnz
±
n (w))

U(a,±2irnz±n (w))
= 1− i exp

{
±iπ

(
a
2

+ 1
4

)} 2a−1/2ξa+1/2e−w

Γ(a+ 1/2)(i∓ ξ)
,

if Re a < 0 then

pn−1[U ](±2irnz
1
n(w))

U(a,±2irnz1
n(w))

= 1−
(

1

1− ξ
+

(−1)n exp{±iπ(a+ 1/2)}
1 + ξ

)
ξa+1/2e−w

2
√
π

+ o(1)

as n→∞, and if Re a = 0 then

pn−1[U ](±2irnz
1
n(w))

U(a,±2irnz1
n(w))

= 1−
(

1

1− ξ
+

(−1)n exp{±iπ(a+ 1/2)}
1 + ξ

± exp
{
±iπ

(
a
2

+ 1
4

)}4a
√

2π(±i)1−nr2a
n

Γ(a+ 1/2)(i∓ ξ)

)
ξa+1/2e−w

2
√
π

+ o(1)
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as n→∞, with each limit holding uniformly on compact subsets of the w-plane.

Additionally,

lim
n→∞

pn−1[U ](−2rn(1 + w/
√
n))

U(a,−2rn(1 + w/
√
n))

=
1

2
erfc(w)

if and only if Re a > −1/2 and

lim
n→∞

pn−1[U ](±2irn(1 + w/
√
n))

U(a,±2irn(1 + w/
√
n))

=
1

2
erfc(w) (6.6.2)

if and only if Re a < 1/2, with each limit holding uniformly on compact subsets of

Rew < 0.

Figure 6.9: The zeros of pn−1[U ](2rnz) for a = −2 and n = 200 in blue and their limit
curve in red.
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Figure 6.10: Magnifications of the regions labeled in Figure 6.9. Region A shows the
approximations for the zeros in that region, represented as black crosses, which are
given by the corner scaling limit in (6.6.2). Region B shows the approximations for the
zeros in that region, represented as black crosses, which are given by the curve scaling
limit in (6.6.1). The point ξ which is used in (6.6.1) to obtain the approximations in
Region B is shown in black.



Chapter 7

Conclusion

In this thesis it has been shown that if an entire function has simple exponential

growth in a finite number of directions in the complex plane—growth like za exp(zλ)

for some a ∈ C and some λ > 0—and is exponentially smaller elsewhere, then the

partial sums of its power series have scaling limits in these exponential growth di-

rections which yield information about the asymptotic behavior of their zeros. In

particular these scaling limits describe enough about the trajectories of the zeros to

verify that the Saff-Varga Width Conjecture (see Section 1.3) holds for these entire

functions.

In this chapter we will give some context for these results and discuss an open

problem relating to them.

7.1 Big Picture and the Width Conjecture

In his thesis [38] Rosenbloom considered entire functions

f(z) :=
∞∑
k=0

akz
k

for which some subsequence of f(|an|−1/nz)1/n converges to an analytic function in

some domain (see Theorem 1.3). For example, Rosenbloom tells us that if

lim
n→∞

f(|an|−1/nez)1/n = ez (7.1.1)

in some domain then the zeros of the scaled partial sums pn[f ](|an|−1/nez) converge

precisely to the classical Szegő curve |ze1−z| = 1 in that domain.

These results can be thought of as the “first-order” theory for the zeros of partial

sums of power series for entire functions. Given information about the limiting be-

havior of f(|an|−1/nz)1/n, Rosenbloom deduces the limiting behavior of the zeros of

the scaled partial sums pn[f ](|an|−1/nez).
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The assumptions made in this thesis are stronger than Rosenbloom’s. Whereas

Rosenbloom would only assume something like (7.1.1), I would instead assume that

f(nz) ∼ (nz)a(log n)benz (7.1.2)

as n → ∞ for z in some domain. Rosenbloom-type results can indeed be deduced

from this—i.e. the proper scaling of the zeros (they will scale like n) as well as the fact

that the zeros of the scaled partial sums pn[f ](nz) will accumulate on the classical

Szegő curve |ze1−z| = 1. However, under this stronger assumption we can go one step

further than Rosenbloom and deduce not only how quickly the zeros approach the

limit curve but also information about their geometry as they do so. In this way the

results in this thesis can be considered part of the “second-order” theory of the zeros.

The scaling limits in Chapter 4 tell us that the zeros of the scaled partial sums

approach their limit curve at a rate of approximately log n/n, that they are (locally)

separated from each other by a distance of approximately 1/n, and that they approx-

imately lie on straight lines parallel to their limit curve. Similarly, the scaling limits

in Chapter 5 tell us that the zeros approach the convex corner of their limit curve

at a rate of approximately 1/
√
n, that they are (locally) separated from each other

by a distance of approximately 1/
√
n, and that they approximately lie on rays with

arguments ±3π/4 originating at the corner of the curve.

This second-order information is detailed enough to imply the validity of the Saff-

Varga Width Conjecture for the class of functions considered in this thesis. However,

while substantial, this class of functions is smaller than the one considered by Rosen-

bloom. A verification of the Width Conjecture for Rosenbloom’s class would mark

a significant step forward in the theory. It would be interesting to see whether the

techniques used here can be generalized to that case.

A proof of the Width Conjecture in the general setting still eludes us.

7.2 Open Problem: Asymptotics in the Transitional Regions

In this thesis we did not study regions of the limit curve which lie on the boundary

between two sectors of maximal exponential growth.

For example, consider the example of f(x) = sinx as in Section 6.1. This function
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behaves exponentially as Im z → ±∞, and the dividing line between these two expo-

nential growth directions is the real axis. The zeros of f lie on this line, and so the

partial sums of f have corresponding zeros there as well. This can been seen clearly

in Figure 7.1. This line of zeros on the real axis extends outward until it intersects

the limit curves from the upper and lower half-planes at the points z = ±1/e. At

the intersection at z = 1/e magnified in the figure we can see that the zeros of the

partial sums come together in a three-spoke junction, one ray emanating from the

point z = 1/e to the left along the real axis and the other two into the upper and

lower half-planes with arguments of ±(arctan e−1 − π/2).

This three-spoke geometry seems to appear wherever two exponential growth sec-

tors meet. Further examples can be seen in Figures 6.2, 6.4, 6.5, 6.7, and 6.9. We

know so far that the partial sums have universal erfc scaling limits which capture

the asymptotics near the convex corners of the limit curve and universal 1 − De−w

scaling limits which capture asymptotics near the smooth arcs, so it seems reason-

able to expect that there is some analogous universal scaling limit which captures the

asymptotics at these three-spoke intersections.

This phenomenon has been studied in the case where f is an exponential sum of

the form

f(z) =
n∑
k=0

exp(ωkz),

where ωk ∈ C, by Bleher and Mallison. We refer the reader to their paper [5], and in

particular their Theorem 7.1. Their result indicates that the universal behavior may

involve a three-term exponential sum of the form

c1e
a1z + c2e

a2z + c3e
a3z.
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Figure 7.1: The zeros of pn−1[sin](nz) for n = 200 in blue and their limit curve in
red. The boxed region, magnified on the right, shows the zeros which are near this
corner of the limit curve.



Appendix A

The Laplace Method

The “Laplace method” is a statement concerning the analytic behavior, usually in

regards to the growth or decay, of integrals of a certain type. The most common

version of it looks something like this:

If g : R→ R has a global maximum at t = t0 and g′′(t0) < 0 then∫ ∞
−∞

eλg(t) dt ∼ eλg(t0)

√
2π

−λg′′(t0)

as λ→∞ with λ > 0.

Throughout this thesis I use several variants of this result. For example, more general

versions of the above would allow λ to be complex or would replace the real integral

with a complex contour integral. A full description of these tools can be found in a

book on asymptotic analysis (such as Miller’s [27]). Instead, my goal in this appendix

is to investigate a few simple archetypal situations in order to help a starting student

gain a basic understanding of the topic, and hopefully to give them enough of an idea

of it that they can follow the more advanced maneuvers in the body of the thesis.

The no-assembly-required statement above is very useful for applications and can

even give correct results in situations that don’t quite satisfy the hypotheses. While

we will prove this statement, the main idea behind the Laplace method is much

simpler, and in my opinion much more powerful:

The Laplace method.

An integral can be approximated by approximating the integrand

near its largest point.

This perspective can get you pretty far, I think. I’ll focus in the succeeding sections

on investigating how it can inform our decisions when attempting to approximate

various types of integrals which depend in some way on a parameter.
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A.1 Something Like a Laplace Transform

Consider the Laplace transform of a function f ,

F (λ) =

∫ ∞
0

f(t)e−λt dt,

where λ > 0. Suppose we want to estimate this integral for large λ. If all we know

about f is that it’s bounded, say |f(t)| ≤M , then we can at least say that

|F (λ)| ≤
∫ ∞

0

|f(t)|e−λt dt

≤M

∫ ∞
0

e−λt dt

=
M

λ
,

so F (λ) = O(λ−1). It stands to reason that if we know more about f then we can

probably get a more accurate picture of the behavior of F .

Let’s hand wave a little. If f(t) is a “nice” function that doesn’t grow very quickly

as t → ∞ then the quantity f(t)e−λt will be very small for large values of t. As λ

grows, the quantity will even be very small for not-so-large values of t. In a sense,

the values of t near t = 0 are the only ones for which the e−λt factor doesn’t make

the integrand (and its contributions to the integral) negligible.

More precisely (but still informally), if λt → ∞ then f(t)e−λt → 0, so we only

care about the values of t for which λt is bounded. We could chose any bound, so

let’s say we only care about all t for which λt < 1.

Letting λt = u the integral becomes

F (λ) =
1

λ

∫ ∞
0

f
(u
λ

)
e−u du,

and, as mentioned, we only really care about the values u < 1. When λ is much

larger than u we have u/λ ≈ 0, so if f is sufficiently nice we might expect that

F (λ) ≈ 1

λ

∫ ∞
0

f(0)e−u du =
f(0)

λ

for large λ.

So what do we mean when we say that f needs to be “sufficiently nice”? In order

to ensure that f(u/λ) ≈ f(0) when u/λ ≈ 0 we’ll at least need to assume that f is
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continuous from the right at 0. Of course u/λ is not small over the entire range of

integration, so we’ll also need to assume that the “tail” of f , i.e. the set of values of

f(t) when t is large, does not contribute too much to the total size of the integral.

We can formalize this as follows.

Theorem A.1. Fix 0 < T ≤ ∞ and let f : [0, T ]→ C∪{∞} be a measurable function

satisfying ∫ T

0

|f(t)|e−`t dt <∞

for some constant ` ≥ 0. Suppose f is right-continuous at 0 with f(0) 6= 0. Then

F (λ) :=

∫ T

0

f(t)e−λt dt ∼
∫ ∞

0

f(0)e−λt =
f(0)

λ

as λ→∞ with λ > 0.

Proof. The fundamental idea behind the proof of this result (and many of the follow-

ing ones as well) is that we will extract the “dominant” contribution from the integral

and leave behind something which is relatively much smaller. To wit, write

f(t) = f(0) + (f(t)− f(0)),

so that

F (λ) =

∫ T

0

f(0)e−λt dt+

∫ T

0

(f(t)− f(0))e−λt dt

=
f(0)

λ
− f(0)

λeTλ
+

∫ T

0

(f(t)− f(0))e−λt dt.

Since the second term is
f(0)

λeTλ
= o

(
1

λ

)
it only remains to show that∫ T

0

(f(t)− f(0))e−λt dt = o

(
1

λ

)
as well, for this will imply that

F (λ) =
f(0)

λ
+ o

(
1

λ

)
,

allowing us to conclude the result.
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Let’s take advantage of the continuity of f . For any ε > 0 we can find a 0 < δ < T

such that

|f(t)− f(0)| < ε

for all 0 ≤ t ≤ δ. We then have∣∣∣∣∫ δ

0

(f(t)− f(0))e−λt dt

∣∣∣∣ ≤ ∫ δ

0

|f(t)− f(0)|e−λt dt

< ε

∫ δ

0

e−λt dt

< ε

∫ ∞
0

e−λt dt

=
ε

λ
. (A.1.1)

To estimate the contribution to the integral from the remaining interval (δ, T ) we will

separate f(t) and f(0),∣∣∣∣∫ T

δ

(f(t)− f(0))e−λt dt

∣∣∣∣ ≤ ∫ T

δ

|f(t)|e−λt dt+

∫ T

δ

|f(0)|e−λt dt,

and treat each piece individually. For the first we apply the assumption that fe−`t is

integrable to obtain the estimate∫ T

δ

|f(t)|e−λt dt =

∫ T

δ

|f(t)|e(`−λ)te−`t dt

≤ e(`−λ)δ

∫ T

δ

|f(t)|e−`t dt (A.1.2)

for λ ≥ `. Since λe(`−λ)δ → 0 as λ→∞ we can therefore find an M > 0 such that∫ T

δ

|f(t)|e−λt dt < ε

λ
(A.1.3)

for all λ > M . Handling the second integral is similar; we only need to note that∫ T

δ

|f(0)|e−λt dt ≤
∫ ∞
δ

|f(0)|e−λt dt

=
|f(0)|
λeδλ

<
ε

λ

for λ large enough. Combining this and (A.1.3) with the estimate in (A.1.1) we may

conclude that ∣∣∣∣∫ T

0

(f(t)− f(0))e−λt dt

∣∣∣∣ < 3ε

λ
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for all λ large enough. Since ε was arbitrary, this is equivalent to the statement∫ T

0

(f(t)− f(0))e−λt dt = o

(
1

λ

)
,

which is what was to be shown.

The assumption that f(0) 6= 0 is definitely necessary in Theorem A.1—after all, a

conclusion like “F (λ) ∼ 0” wouldn’t make sense with our definition of “∼”. However,

in the course of the proof we actually showed that if f satisfies all of the other

assumptions and f(0) = 0 then∫ T

0

f(t)e−λt dt = o

(
1

λ

)
as λ → ∞. If we go back and examine that part of the proof in detail (when we

integrate f(t) − f(0) over the the interval (0, δ)) we get a better idea of just what

kind of information we need about f : we need to know more about how f(t)→ f(0)

as t → 0. There are myriad conditions we could consider, but instead of going into

full generality we’ll just consider two regimes which tend to be very useful.

A.1.1 Integrands Asymptotic to Powers of t

In this first regime, f(t) behaves like a series of powers of t as t → 0. The result

treating this case is known as Watson’s lemma.

Theorem A.2 (Watson’s lemma). Fix 0 < T ≤ ∞ and let f : [0, T ] → C ∪ {∞} be

a measurable function satisfying∫ T

0

|f(t)|e−`t dt <∞

for some constant ` ≥ 0. Suppose that

f(t) ∼̇
∞∑
k=0

akt
bk

as t→ 0+, where −1 < Re bk < Re bk+1 for all k. Then

F (λ) :=

∫ T

0

f(t)e−λt dt ∼̇
∞∑
k=0

akΓ(bk + 1)

λbk+1

as λ→∞ with λ > 0.
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The proof will have three main steps. First, since the asymptotic series only

approximates f(t) well near t = 0, we will remove the tail of the integral in F . Then,

having only the head of the integral, we’ll approximate f . Once we’ve done that

we’ll reattach appropriate tails to any remaining integrals. This kind of argument

will reappear in various forms all throughout this appendix.

Proof. Fix any integer n ≥ 1. By assumption we can find an M > 0 and a δ with

0 < δ < T such that ∣∣∣∣∣f(t)−
n−1∑
k=0

akt
bk

∣∣∣∣∣ ≤Mtbn (A.1.4)

for all 0 ≤ t ≤ δ. Using this δ we split the integral in F like

F (λ) =

∫ δ

0

f(t)e−λt dt+

∫ T

δ

f(t)e−λt dt. (A.1.5)

The second integral in (A.1.5) will be negligible—this is identical to what hap-

pened in the proof of Theorem A.1. Its interval of integration, (δ, T ), is bounded

away from the main contribution coming from t = 0, so the exponential factor in

the integrand, e−λt, will dominate and cause the integral to decay exponentially as

λ→∞. Indeed, repeating the calculations in (A.1.2) we find that∫ T

δ

f(t)e−λt dt = O
(
e−δλ

)
(A.1.6)

as λ→∞. We will appeal to this kind of heuristic to inform our rigorous calculations

whenever we need to remove a tail from or attach a tail to an integral.

Next we’ll attempt to use our asymptotic approximation for f in the first integral

in (A.1.5). To start we write∫ δ

0

f(t)e−λt dt =
n−1∑
k=0

ak

∫ δ

0

tbke−λt dt+

∫ δ

0

(
f(t)−

n−1∑
k=0

akt
bk

)
e−λt dt.

Using (A.1.4) we estimate the remainder integral like∣∣∣∣∣
∫ δ

0

(
f(t)−

n−1∑
k=0

akt
bk

)
e−λt dt

∣∣∣∣∣ ≤
∫ δ

0

∣∣∣∣∣f(t)−
n−1∑
k=0

akt
bk

∣∣∣∣∣ e−λt dt
≤M

∫ δ

0

tbne−λt dt

< M

∫ ∞
0

tbne−λt dt

=
MΓ(bn + 1)

λbn+1
,



124

so that ∫ δ

0

f(t)e−λt dt =
n−1∑
k=0

ak

∫ δ

0

tbke−λt dt+O

(
1

λbn+1

)
. (A.1.7)

Now we’ll attach the tails onto the n integrals appearing in (A.1.7). We write∫ δ

0

tbke−λt dt =

∫ ∞
0

tbke−λt dt−
∫ ∞
δ

tbke−λt dt

=
Γ(bk + 1)

λbk+1
−
∫ ∞
δ

tbke−λt dt,

and note that the remainder integral decays exponentially:

0 <

∫ ∞
δ

tbke−λt dt = e−δλ
∫ ∞

0

(s+ δ)bke−λs ds

< e−δλ
∫ ∞

0

(s+ δ)bke−s ds,

where the inequality holds for λ > 1. Thus∫ δ

0

tbke−λt dt =
Γ(bk + 1)

λbk+1
+O

(
e−δλ

)
as λ→∞. Substituting this in (A.1.7) yields∫ δ

0

f(t)e−λt dt =
n−1∑
k=0

ak

[
Γ(bk + 1)

λbk+1
+O

(
e−δλ

)]
+O

(
1

λbn+1

)

=
n−1∑
k=0

akΓ(bk + 1)

λbk+1
+O

(
e−δλ

)
+O

(
1

λbn+1

)
. (A.1.8)

Note that we only added together finitely many terms of the form O(e−δλ). Even

though the implied constants in each O(· · · ) are different, the result is still O(e−δλ).

Combining (A.1.6) and (A.1.8) in (A.1.5) we find that∫ T

0

f(t)e−λt dt =
n−1∑
k=0

akΓ(bk + 1)

λbk+1
+O

(
e−δλ

)
+O

(
1

λbn+1

)

=
n−1∑
k=0

akΓ(bk + 1)

λbk+1
+O

(
1

λbn+1

)
as λ→∞. Since n was arbitrary, this completes the proof.

Remark A.3. Since ∫ ∞
0

tbe−λt dt =
Γ(b+ 1)

λb+1
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provided Re b > −1 and λ > 0, another form of the conclusion of Watson’s lemma is

that

F (λ) :=

∫ T

0

f(t)e−λt dt ∼̇
∞∑
k=0

ak

∫ ∞
0

tbke−λt dt

as λ→∞ with λ > 0. One informal interpretation of this is that
∫ ∑

∼̇
∑∫

under

the hypotheses of Watson’s lemma. That is to say, the series and the integral can

be exchanged in this case as long as both series are interpreted as asymptotic series.

This a sort of asymptotic dominated convergence result.

A.1.2 Integands Asymptotic to Powers of Logarithms and Powers of t

Now we will consider the case when the asymptotic series for f(t) as t → 0 involves

powers of logarithms of t in addition to powers of t, say

f(t) ∼̇
∞∑
k=0

ak(− log t)bktck

as t→ 0+. An astute practitioner would try to substitute this series into the integral

for F (λ) but would quickly run into integrals like∫ δ

0

(− log t)btce−λt dt,

which have no closed form. Apparently we need to investigate their asymptotic be-

havior.

The result below is due to Erdélyi, and an alternate proof, along with other

interesting related results, can be found in the paper [16].

Theorem A.4. Suppose that 0 < δ < 1, Re a > 0, and b ∈ R. Then∫ δ

0

(− log t)bta−1e−λt dt ∼̇ λ−a
∞∑
k=0

(−1)k
(
b

k

)
Γ(k)(a)(log λ)b−k

as λ→∞ with λ > 0.

Proof. Fix an integer n ≥ 0. Taylor’s theorem with remainder gives us the identity

(1 + x)b =
n∑
k=0

(
b

k

)
xk + (b− n)

(
b

n

)
xn+1

∫ 1

0

(1 + xt)b−n−1(1− t)n dt

=
n∑
k=0

(
b

k

)
xk + Cb,nx

n+1g(b, n, x), (A.1.9)
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valid for x > −1.

Turning to the integral in question, the substitution s = λt gives us∫ δ

0

(− log t)bta−1e−λt dt = λ−a
∫ δλ

0

(log λ− log s)bsa−1e−s ds

= λ−a(log λ)b
∫ δλ

0

(
1− log s

log λ

)b
sa−1e−s ds.

Setting x = − log s/ log λ in (A.1.9) and inserting it into the above expression yields

λa(log λ)−b
∫ δ

0

(− log t)bta−1e−λt dt

=
n∑
k=0

(−1)k
(
b

k

)
(log λ)−k

∫ δλ

0

(log s)ksa−1e−s ds

+ Cb,n(log λ)−n−1

∫ δλ

0

(− log s)n+1g

(
b, n,− log s

log λ

)
sa−1e−s ds. (A.1.10)

To aid us in estimating the last integral in the above expression we will assume

for the moment that n and λ are large enough to have n > b − 1 and δλ > 1. For

0 < s < 1 we have

g

(
b, n,− log s

log λ

)
=

∫ 1

0

(
1− t log s

log λ

)b−n−1

(1− t)n dt <
∫ 1

0

(1− t)n dt =
1

n+ 1
,

and for 1 < s < δλ

g

(
b, n,− log s

log λ

)
<

(
1− log s

log λ

)b−n−1 ∫ 1

0

(1− t)n dt

<
(− log δ)b−n−1

n+ 1
.

On the whole interval 0 < s < δλ we have g(b, n,− log s/ log λ) ≥ 0, so we can

conclude that ∣∣∣∣∫ δλ

0

(− log s)n+1g

(
b, n,− log s

log λ

)
sa−1e−s ds

∣∣∣∣
<

1 + (− log δ)b−n−1

n+ 1

∫ δλ

0

| log s|n+1sa−1e−s ds

<
1 + (− log δ)b−n−1

n+ 1

∫ ∞
0

| log s|n+1sa−1e−s ds

and therefore, combining this with (A.1.10), that

λa(log λ)−b
∫ δ

0

(− log t)bta−1e−λt dt

=
n∑
k=0

(−1)k
(
b

k

)
(log λ)−k

∫ δλ

0

(log s)ksa−1e−s ds+O
(
(log λ)−n−1

)
. (A.1.11)
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The last thing we need to do is attach the tails onto the integrals in the sum. For

each k = 0, ..., n they can be expressed as∫ δλ

0

(log s)ksa−1e−s ds =

∫ ∞
0

(log s)ksa−1e−s ds−
∫ ∞
δλ

(log s)ksa−1e−s ds

= Γ(k)(a)−
∫ ∞
δλ

(log s)ksa−1e−s ds,

and the error in each case is exponentially small:∣∣∣∣∫ ∞
δλ

(log s)ksa−1e−s ds

∣∣∣∣ ≤ ∫ ∞
δλ

(log s)ksRe a−1e−s ds

<

∫ ∞
δλ

sRe a+k−1e−s ds

= λRe a+ke−δλ
∫ ∞

0

(δ + r)Re a+k−1e−λr dr

< λRe a+ke−δλ
∫ ∞

0

(δ + r)Re a+k−1e−r dr,

where we made the substitution s = λ(δ + r) in the third line. Thus∫ δλ

0

(log s)ksa−1e−s ds = Γ(k)(a) +O
(
λRe a+ke−δλ

)
for each k, and so from (A.1.11) we get∫ δ

0

(− log t)bta−1e−λt dt

= λ−a
n∑
k=0

(−1)k
(
b

k

)
Γ(k)(a)(log λ)b−k +O

(
λ−a(log λ)b−n−1

)
. (A.1.12)

We assumed that n > b − 1, while we really want (A.1.12) to hold for all n =

0, 1, 2, . . .. Actually, this follows easily. If b− 1 ≥ 0 then set n = bb− 1c + 1 and fix

m ∈ {0, 1, . . . , n− 1}. By (A.1.12) we indeed have∫ δ

0

(− log t)bta−1e−λt dt

= λ−a

(
m∑
k=0

+
n∑

k=m+1

)
(−1)k

(
b

k

)
Γ(k)(a)(log λ)b−k +O

(
λ−a(log λ)b−n−1

)
= λ−a

m∑
k=0

(−1)k
(
b

k

)
Γ(k)(a)(log λ)b−k +O

(
λ−a(log λ)b−m−1

)
,

which concludes the proof.
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A.2 More Complicated Exponents

Now we’ll investigate how to deal with integrals of the form

F (λ) =

∫ b

a

f(t)eλg(t) dt.

Just as in the previous section, if f(t) is nice enough then the λ → ∞ behavior of

the integrand will essentially be dominated by the exponential factor eλg(t). In that

special case we had g(t) = −t, and the maximum of this quantity occurred at the left

endpoint of the interval of integration. For general g the situation can be much more

complicated:

• g(t) can have a global maximum at t = a, t = b, or both;

• g(t) can have one or more global maxima inside the interval (a, b);

• any such global maximum may or may not be a critical point of g(t) with

high-order degeneracy.

In any case, though, the method of attack remains the same: approximate the inte-

grand near its largest points. Here that means we’ll be approximating f and g near

any global maxima of g.

One principle that simplifies our work is that the contribution of each maximum

of g can be estimated independently. Let’s prove a small lemma toward this.

Lemma A.5. Fix −∞ ≤ a < b ≤ ∞ and let f : [a, b] → C ∪ {∞} and g : [a, b] → R
be measurable functions satisfying∫ b

a

|f(t)|e`g(t) dt <∞

for some constant ` ≥ 0. If g(t) < M for I ⊂ [a, b] then∫
I

f(t)eλg(t) dt = O
(
eMλ

)
for λ ≥ `.
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Proof. The calculation is pretty similar to the ones we have done before:∣∣∣∣∫
I

f(t)eλg(t) dt

∣∣∣∣ ≤ ∫
I

|f(t)|eλg(t) dt

=

∫
I

|f(t)|e(λ−`)g(t)e`g(t) dt

≤ e(λ−`)M
∫
I

|f(t)|e`g(t) dt

≤ e(λ−`)M
∫ b

a

|f(t)|e`g(t) dt

for λ ≥ `.

So, suppose that g : [a, b]→ R is a continuous function that has global maxima at

the points t1, . . . , tn ∈ [a, b], i.e. that

g(t1) = · · · = g(tn) > g(t), t ∈ [a, b] \ {t1, . . . , tn}.

We can then find disjoint intervals I1, . . . , In ⊂ [a, b] with tj ∈ Ij, j = 1, . . . , n and a

constant δ > 0 such that g(t) < g(t1)− δ for all t ∈ [a, b] \ (I1 ∪ · · · ∪ In). So, if f is a

function such that the hypotheses of Lemma A.5 are satisfied, taking M = g(t1)− δ
and I = [a, b] \ (I1 ∪ · · · ∪ In) in the lemma tells us that∫ b

a

f(t)eλg(t) dt =
n∑
k=1

∫
Ik

f(t)eλg(t) dt+

∫
[a,b]\(I1∪···∪In)

f(t)eλg(t) dt

=
n∑
k=1

∫
Ik

f(t)eλg(t) dt+O
(
e(g(t1)−δ)λ) (A.2.1)

as λ→∞, λ > 0.

We are now free to estimate each integral in the sum on its own. Of course, we’re

banking on the fact that the leading-order behavior of these integrals is asymptotically

larger than the O(· · · ) term, but this will indeed be the case: it will turn out that

their behavior will involve a factor of eλg(t1) multiplied by some other subexponential

factors. As such, the integrals in the sum will, in fact, be exponentially larger than

the O(· · · ) term.

In light of these observations we can simplify the discussion in this section and

only consider exponent functions g with a single global maximum. We’ll focus on

just two common situations, illustrating different methods in each case. It might be

instructive, after seeing both methods, to try applying each of them in the other case.
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A.2.1 A Simple Maximum on the Boundary

In this section we’ll suppose that the exponent function g : [a, b]→ R has a maximum

at the left endpoint t = a of the interval we’re integrating over. We’ll also suppose

that g′(a) < 0, which means that this maximum isn’t a critical point of g. Techniques

to handle a maximum at a critical point of g can be found in the next section.

One thing that I should point out about the theorems in this section and the next

is that we won’t explicitly assume that g has a unique global maximum at t = a,

but rather that g(t) is forever bounded below g(a) by some fixed amount as soon as

t > a. This does imply that g(t) has a unique global maximum at t = a, but the two

concepts aren’t equivalent. For example, the function defined by

g(t) =

−t 0 ≤ t < 1,

−t−1 t ≥ 1

has a unique global maximum at t = 0, but, after dropping below g(0), g(t) eventually

rises again and gets arbitrarily close to g(0) as t → ∞. This g is therefore not one

of the ones considered in the following theorems. We’ll revisit this example after the

proof.

Theorem A.6. Fix −∞ < a < b ≤ ∞ and let f : [a, b]→ R∪{∞} and g : [a, b]→ R
be measurable functions satisfying∫ b

a

|f(t)|e`g(t) dt <∞

for some constant ` ≥ 0. Suppose that g′(a) exists with g′(a) < 0, and that for any

δ > 0 we can find an η(δ) > 0 such that g(t) < g(a) − η(δ) whenever a + δ < t < b.

Suppose also that

f(t) ∼ (t− a)p

as t→ a+ with p > −1. Then

F (λ) :=

∫ b

a

f(t)eλg(t) dt ∼ Γ(p+ 1)

(−g′(a)λ)p+1
eg(a)λ

as λ→∞ with λ > 0.

The idea behind the statement of this theorem and its proof is to try to get the

leading order asymptotic for F (λ) using the least amount of information about g as
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possible. By only assuming that g′(a) exists we limit ourselves to very weak bounds

for g(t) as t → a+, and are therefore limited to upper and lower bounds for F (λ)

which are within multiplicative factors of 1 ± ε of the desired asymptotic. We then

perform a final limiting step taking ε→ 0 to conclude the result.

Proof. To start let’s make the change of variables s = t−a in the integral and rename

h(s) = g(s+ a), so that

F (λ) =

∫ b−a

0

f(s+ a)eλh(s) ds.

By assumption h′(0) exists and is negative. If we define

H(s) = h(s)− h(0)− h′(0)s

then H(0) = H ′(0) = 0, so that

H(s)−H(0)

s− 0
=
H(s)

s
→ 0

as s→ 0. It follows that for all ε with 0 < ε < −h′(0) we can find a δ with 0 < δ < b−a
such that

|h(s)− h(0)− h′(0)s| ≤ εs

and

(1− ε)sp < f(s+ a) < (1 + ε)sp

for all 0 ≤ s ≤ δ. We then have

(1− ε)eλh(0)

∫ δ

0

speλ(h′(0)−ε)s ds

<

∫ δ

0

f(s+ a)eλh(s) ds

< (1 + ε)eλh(0)

∫ δ

0

speλ(h′(0)+ε)s ds. (A.2.2)

By assumption we know that h(s) = g(t) < g(a)−η(δ) = h(0)−η(δ) for s = t−a > δ,

so by Lemma A.5 we have∫ δ

0

f(s+ a)eλh(s) ds = F (λ) +O
(
e(h(0)−η(δ))λ

)
,∫ δ

0

speλ(h′(0)−ε)s ds =
Γ(p+ 1)

[−(h′(0)− ε)λ]p+1
+O

(
eδ(h

′(0)−ε)λ
)
,∫ δ

0

speλ(h′(0)+ε)s ds =
Γ(p+ 1)

[−(h′(0) + ε)λ]p+1
+O

(
eδ(h

′(0)+ε)λ
)
.
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We can then write

(1− ε)Γ(p+ 1)

[−(h′(0)− ε)λ]p+1
+O

(
e−µλ

)
< e−h(0)λF (λ) <

(1 + ε)Γ(p+ 1)

[−(h′(0) + ε)λ]p+1
+O

(
e−µλ

)
as λ→∞ for some µ > 0 which does not depend on λ, and hence

(1− 2ε)Γ(p+ 1)

[−(h′(0)− ε)λ]p+1
< e−h(0)λF (λ) <

(1 + 2ε)Γ(p+ 1)

[−(h′(0) + ε)λ]p+1

for λ > 0 large enough. Since ε was arbitrary, it follows that

F (λ) ∼ Γ(p+ 1)

(−h′(0)λ)p+1
eh(0)λ =

Γ(p+ 1)

(−g′(a)λ)p+1
eg(a)λ

as λ→∞, which is what was to be shown.

Another example of this method can be found in [10, sec. 4.2] for the case when

g has a critical point in the interior of the interval (like in the next section).

Let’s revisit the exponent function example we mentioned before the theorem,

namely

g(t) =

−t 0 ≤ t < 1,

−t−1 t ≥ 1.

If we take

f(t) =

1 0 ≤ t < 1,

t−2 t ≥ 1

then all hypotheses of Theorem A.6 are satisfied except for one: g does have a unique

global maximum at t = 0, but the necessary quantity η(δ) doesn’t exist for any

δ > 0. If we naively tried to apply the result we might reason that since f(t) ∼ 1 and

g(t) ∼ −t as t→ 0+ we should have∫ ∞
0

f(t)eλg(t) dt
?∼
∫ ∞

0

e−λt dt =
1

λ

as λ→∞. It turns out that this isn’t quite correct, and that in this case we actually

do get non-negligible contributions coming from the tail of the integral
∫∞
δ
· · · dt.

If we split the integral at t = 1 and write∫ ∞
0

f(t)eλg(t) dt =

∫ 1

0

e−λt dt+

∫ ∞
1

t−2e−λ/t dt
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then make the change of variables t = 1/u in the second integral we get∫ ∞
1

t−2e−λ/t dt =

∫ 1

0

e−λu du.

Apparently the tail actually makes a contribution of 1/λ to the integral as well.

Consequently, the correct asymptotic is∫ ∞
0

f(t)eλg(t) dt ∼ 2

λ
,

which is twice our naive estimate.

It’s worth noting that it is possible for the naive guess to be off by much more

than just a constant factor. Take, for example,

g(t) =

−t 0 ≤ t < 1,

−e−t t ≥ 1,

with the same f as before. Here, splitting the integral and making the change of

variables e−t = u yields∫ ∞
0

f(t)eλg(t) dt =

∫ 1

0

e−λt dt+

∫ ∞
1

t−2 exp
(
−λe−t

)
dt

=

∫ 1

0

e−λt dt+

∫ 1/e

0

(− log u)−2u−1e−λudu.

By using Theorem A.4 we can show that the second integral is asymptotic to 1/ log λ,

so in fact ∫ ∞
0

f(t)eλg(t) dt ∼ 1

log λ

as λ→∞. This is very far off from the naive guess of 1/λ.

Point being, if an η function doesn’t exist, one must take special care to also

estimate the asymptotic contribution coming from the tail of the integral.

Remark A.7. Theorem A.6 is also true when p ∈ C with Re p > −1, though the

proof above doesn’t really generalize to complex p.

A.2.2 A Critical Point in the Interior

In this section we’ll suppose that g has a maximum at some t0 ∈ (a, b). The method

we’ll use requires that we know a little more about f and g than in the previous

section, but in return we can quantify relative error of the resulting asymptotic for

F (λ).
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Theorem A.8. Fix −∞ ≤ a < b ≤ ∞ and let f : [a, b]→ C∪{∞} and g : [a, b]→ R
be measurable functions satisfying∫ b

a

|f(t)|e`g(t) dt <∞

for some constant ` ≥ 0. Suppose that g′(t0) = 0 and g′′(t0) < 0, that g′′′(t0) exists,

and that for any δ > 0 we can find an η(δ) > 0 such that g(t) < g(a) − η(δ) for all

t ∈ (a, b) with |t− t0| > δ. Suppose also that

f(t) = (t− t0)2n +O
(
(t− t0)2n+1

)
as t→ t0 for some integer n ≥ 0. Then

F (λ) :=

∫ b

a

f(t)eλg(t) dt = Γ

(
n+

1

2

)(
2

−g′′(t0)λ

)n+1/2

eg(t0)λ
[
1 +O

(
λ−1/2

)]
as λ→∞ with λ > 0.

Proof. Our assumptions imply that g has a maximum at t = t0, and so we infer that

g′(t0) = 0. To simplify things a little we’ll make the translation t = s+ t0 and rename

h(s) = g(t), so that

F (λ) =

∫ b−t0

a−t0
f(s+ t0)eλh(s) ds.

The new exponent function h(s) has a maximum at s = 0. The main idea for the

proof is that we want to replace h(s) and f(s+ t0) with simple approximations near

this maximum, keeping track throughout of the errors we introduce in doing so.

By making an argument similar to the one in the beginning of the proof of The-

orem A.6 (or simply by appealing to Taylor’s theorem) it can be deduced from the

assumptions that

h(t) = h(0) +
h′′(0)

2
s2 +

h′′′(0)

6
s3 + o

(
s3
)

= h(0) +
h′′(0)

2
s2 +O

(
s3
)

(A.2.3)

as s→ 0.

We wish to use h(0) + h′′(0)s2/2 as an approximation for h(s) near s = 0, and

near s = 0 the error in doing so is O(s3). The key step in the proof is that we will

use this O(s3) error to find the size of the interval about s = 0 which contains all of
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the asymptotic information about the integral. For now we just note that because of

the the asymptotic in (A.2.3) we can find a δ > 0 such that (−δ, δ) ⊂ (a− t0, b− t0)

and

h(t) < h(0) +
h′′(0)

4
s2 (A.2.4)

for all |s| < δ. We then have

F (λ) =

∫ δ

−δ
f(s+ t0)eλh(s) ds+O

(
e(h(0)−η(δ))λ

)
. (A.2.5)

Now, suppose that ϕ is some function with −A|x| ≤ ϕ(x) ≤ A|x| for all x ∈
[−B,B]. Then |ϕ(x)| ≤ AB and∣∣∣∣eϕ(x) − 1

x

∣∣∣∣ =

∣∣∣∣∣ϕ(x)

x

∞∑
k=0

|ϕ(x)|k

(k + 1)!

∣∣∣∣∣
≤ A

∞∑
k=0

|ϕ(x)|k

(k + 1)!

≤ Ae|ϕ(x)|

≤ AeAB

for all x ∈ [−B,B]. This implies that eϕ(x) = 1 + O(x). Stated differently, we have

shown that

eO(x) = 1 +O(x) if x = O(1). (A.2.6)

How can we use this? As stated above we want to write

exp(λh(s)) = exp

[
λ

(
h(0) +

h′′(0)

2
s2 +O

(
s3
))]

= exp

[
λ

(
h(0) +

h′′(0)

2
s2

)]
exp
[
O
(
λs3
)]
,

and ideally we would then like to simplify the exponential with the O(· · · ) term, say

like

exp
[
O
(
λs3
)]

= 1 +O
(
λs3
)
.

Well, (A.2.6) tells us that this is true as long as λs3 = O(1) or, equivalently,

s = O(λ−1/3). This is precisely the range of s which contains all of the asymp-

totic information about the integral. Specifically we will show that the contributions

coming from |s| > λ−1/3 are exponentially small relative to those from |s| < λ−1/3.
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Returning to (A.2.5), we split the integral like

F (λ) =

(∫
|s|<λ−1/3

+

∫
λ−1/3<|s|<δ

)
f(s+ t0)eλh(s) ds+O

(
e(h(0)−η(δ))λ

)
.

By taking δ smaller if necessary we can ensure that f(s + t0) is bounded on (−δ, δ),
say by |f(s+ t0)| ≤M0, and then using (A.2.3) we get the estimate

∣∣∣∣∫
λ−1/3<|s|<δ

f(s+ t0)eλh(s) ds

∣∣∣∣ ≤M0

∫
λ−1/3<|s|<δ

eλh(s) ds

< M0

∫
λ−1/3<|s|<δ

exp

[
λ

(
h(0) +

h′′(0)

4
s2

)]
ds

< M0 exp

[
λ

(
h(0) +

h′′(0)

4
λ−2/3

)]∫
λ−1/3<|s|<δ

ds

< 2δM0 exp

[
h(0)λ+

h′′(0)

4
λ1/3

]
.

This error dominates the previous error term in (A.2.5), so we end up with

F (λ) =

∫
|s|<λ−1/3

f(s+ t0)eλh(s) ds+O
(
eh(0)λ+h′′(0)λ1/3/4

)
. (A.2.7)

With |s| < λ−1/3 it is now true that

f(s+ t0) = s2n +O
(
s2n
)
,

h(s) = h(0) +
h′′(0)

2
s2 +O

(
s3
)
,

and

exp
[
O
(
λs3
)]

= 1 +O
(
λs3
)
,

so we can insert these approximations into the integral. We note that

[
s2n +O

(
s2n+1

)] [
1 +O

(
λs3
)]

= s2n +O
(
s2n+1

)
+O

(
λs2n+3

)
+O

(
λs2n+4

)
= s2n +O

(
s2n+1

)
+O

(
λs2n+3

)
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in this situation, so the integral splits into the three pieces

e−λh(0)

∫
|s|<λ−1/3

f(s+ t0)eλh(s) ds

=

∫
|s|<λ−1/3

[
s2n +O

(
s2n+1

)]
eλh

′′(0)s2/2+O(λs3) ds

=

∫
|s|<λ−1/3

[
s2n +O

(
s2n+1

)]
eλh

′′(0)s2/2
[
1 +O

(
λs3
)]
ds

=

∫
|s|<λ−1/3

s2neλh
′′(0)s2/2 ds+

∫
|s|<λ−1/3

O
(
s2n+1

)
eλh

′′(0)s2/2 ds

+ λ

∫
|s|<λ−1/3

O
(
s2n+3

)
eλh

′′(0)s2/2 ds.

The two integrals involving O(· · · ) factors can be handled simply; if we suppose the

quantity represented by O(sk) is bounded by M1|s|k then∣∣∣∣∫
|s|<λ−1/3

O
(
sk
)
eλh

′′(0)s2/2 ds

∣∣∣∣ ≤M1

∫
|s|<λ−1/3

|s|keλh′′(0)s2/2 ds

= 2M1

∫ λ−1/3

0

skeλh
′′(0)s2/2 ds

< 2M1

∫ ∞
0

skeλh
′′(0)s2/2 ds

= M1Γ

(
k + 1

2

)(
2

−h′′(0)λ

)(k+1)/2

,

so taking k = 2n + 1 and k = 2n + 3 gives us the respective estimates of O(λ−n−1)

and O(λ−n−2) for the integrals. Finally after combining like O(· · · ) terms we are left

with

e−λh(0)

∫
|s|<λ−1/3

f(s+ t0)eλh(s) ds =

∫
|s|<λ−1/3

s2neλh
′′(0)s2/2 ds+O

(
λ−n−1

)
.

Finally Lemma A.5 tells us that∫
|s|>λ−1/3

s2neλh
′′(0)s2/2 ds = O

(
eh
′′(0)λ1/3/2

)
,

so

e−λh(0)

∫
|s|<λ−1/3

f(s+ t0)eλh(s) ds = Γ

(
n+

1

2

)(
2

−h′′(0)λ

)n+1/2

+O
(
λ−n−1

)
.

(A.2.8)
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Upon substituting (A.2.8) into (A.2.7) we observe that the new error term

O(λ−n−1eh(0)λ) dominates the previous one, leaving us with

F (λ) = Γ

(
n+

1

2

)(
2

−h′′(0)λ

)n+1/2

eh(0)λ +O
(
λ−n−1eh(0)λ

)
= Γ

(
n+

1

2

)(
2

−h′′(0)λ

)n+1/2

eh(0)λ
[
1 +O

(
λ−1/2

)]
= Γ

(
n+

1

2

)(
2

−g′′(t0)λ

)n+1/2

eg(t0)λ
[
1 +O

(
λ−1/2

)]
as desired.
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