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Abstract

Let (X,Y ) be a random vector, where Y denotes the variable of interest possibly
subject to random right censoring, and X is a covariate. The variable Y is a (possible
monotone transformation of a) survival time. The censoring time C and the survival
time Y are allowed to be dependent, and the dependence is described via a known cop-
ula (this also includes the independent case). Under this setting we propose estimators
of certain location and scale functionals of Y given X. We derive their asymptotic
properties, uniformly over the support of X. In particular we derive an asymptotic
representation and the uniform convergence rates for these estimators and their deriva-
tives. We also prove asymptotic results for an estimator of the conditional distribution
(the so-called conditional copula-graphic estimator), which generalizes previous results
obtained by Braekers and Veraverbeke (2005). We also illustrate the results via simu-
lations and the analysis of data on bone marrow transplantation.

Key Words: Asymptotic representation; convergence rates; copulas; dependent censoring;

nonparametric regression, right censoring, survival analysis.
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1 Introduction

Let (X, Y ) be a random vector where Y denotes a possible transformation of the variable of

interest and X is a covariate. We assume that Y is subject to random right censoring, i.e.

instead of observing Y we only observe (T,∆), where T = min(Y, C), ∆ = I(Y ≤ C) and C

represents the censoring time. Let (Ti, Xi,∆i), i = 1, . . . , n be n independent vectors having

the same distribution as (T,X,∆).

In the statistical literature it is very common to assume that Y and C are indepen-

dent given X . Under this assumption a lot of work has been done on the nonparametric

estimation of the conditional distribution F (·|x) = P (Y ≤ ·|X = x). We refer to Beran

(1981), Dabrowska (1989), González-Manteiga and Cadarso-Suarez (1994), Akritas (1994),

Van Keilegom and Veraverbeke (1997a,b), among many others. The nonparametric kernel

estimator in this setting is often referred to as Beran’s estimator, and is a generalization of

the Kaplan-Meier estimator to the inclusion of covariates.

However, in various situations it is unrealistic to assume that Y and C are conditionally

independent given X . Consider e.g. the situation where a patient decides to leave a medical

study because he or she feels in very good shape and prefers therefore to stop the treatment.

In such a case the censoring time C will likely be negatively correlated with the survival time

Y , and the more the patient feels healthy the more this correlation will be negative. On

the other hand we might also have patients who decide to stop a certain treatment because

they are not in good health and would e.g. prefer to change treatment or hospital. These

are patients for which Y and C will tend to be positively correlated. Again, the strength

of the dependence will be determined by how bad the patient is feeling. More generally, in

many situations the strength of the dependence between Y and C will depend on a certain

number of external factors (or covariates). This motivates us to consider in this paper the

situation where Y and C are dependent given X .

However, in the context without covariates, Tsiatis (1975) showed in his seminal work

that the joint distribution of Y and C cannot be identified by their minimum and the

censoring indicator when the dependence between Y and C is unspecified. Crowder (1991)

showed that even when the marginal distributions are known, the joint distribution function

is not identifiable. Tsiatis’ observations have been the starting point for research on how

to modify the model so as to identify the distribution of (Y, C), and a variety of modeling

approaches have been studied in the past. One such approach consists in modeling the

dependence structure between Y and C by means of a copula function. The advantage of

using copulas is that one only models the dependence structure without affecting the margins

(see Sklar (1959)). Wang (2012) showed that even if we restrict attention to Archimedean
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copula functions, the model is in general not identifiable, whereas Schwarz, Jongbloed, and

Van Keilegom (2013) showed that when the margins are known, the copula function can

under certain conditions be identified. When the margins are unknown, Zheng and Klein

(1995) and Rivest and Wells (2001) supposed that Y and C are dependent via some known

copula and they showed that the marginal distribution of Y and C are identifiable under

very weak conditions. They developed an estimator of the distribution of Y , which they

called the copula-graphic estimator. An extension of this copula-graphic estimator has been

proposed by de Uña Álvarez and Veraverbeke (2013), when the full process is independently

censored by some administrative censoring time.

In the presence of covariates, Braekers and Veraverbeke (2005) extended the work of

Rivest and Wells (2001) to the case of a fixed design regression model. We follow their ap-

proach, except that we assume that X is random, and we model the conditional dependence

between Y and C via a known copula Cx that is allowed to depend on the value of X :

P (Y > y, C > c|X = x) = Cx
(
1− F (y|x), 1−G(c|x)

)
,

where 1 − G(c|x) = P (C > c|X = x) is the conditional survival function of the censoring

time C given X = x. Because of its nice properties and because of the broad range of

different copula structures it covers, we focus attention in what follows on the subclass of

Archimedean copulas, i.e. we assume that

P (Y > y, C > c|X = x) = φ−1
x

[
φx

{
1− F (y|x)

}
+ φx

{
1−G(c|x)

}]
, (1.1)

for an Archimedean copula generator φx, i .e. a function from (0, 1] to IR+ that is decreasing,

convex and that satisfies φx(1) = 0 and φx(0
+) = +∞. Under these conditions Braekers and

Veraverbeke (2005) proposed the conditional copula-graphic estimator, which generalizes the

Beran estimator to the dependent setting (1.1). Their estimator reduces to Beran’s estimator

when φx(·) = − log(·).

Under this setting of dependent censoring described by an Archimedean copula, we are

interested in studying location and scale functionals of Y given X = x, which we will denote

by m(x) and σ2(x). Because we are working in a completely nonparametric framework

and because the response is subject to right censoring, we won’t be able to estimate the

conditional mean and the conditional variance in a consistent way. Instead we will assume

that m(x) and σ2(x) take the following form:

m(x) =

∫ 1

0

F−1(s|x)J(s)ds (1.2)

σ2(x) =

∫ 1

0

[
F−1(s|x)−m(x)

]2
J(s)ds =

∫ 1

0

F−1(s|x)2J(s)ds−m(x)2,
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where F−1(s|x) = inf{y : F (y|x) ≥ s} is the quantile function of Y given X = x, and J(s)

is a given positive weight function such that
∫ 1

0
J(s)ds = 1. Note that the choice J(s) ≡ 1

would lead to the conditional mean and variance. But because of lack of data in the right tail

of F (·|x), we will choose J(s) so that no weight is given to the regions where the conditional

distribution cannot be estimated consistently. This form of location and scale functionals

(known as L-functionals) is very flexible and covers a broad range of common functionals

(see e.g. Serfling (1980) to learn more about L-functionals).

The objective of this paper is to propose appropriate estimators of m(x) and σ2(x)

and to study their asymptotic properties uniformly in x. These quantities have so far not

been studied in the literature on nonparametric regression with copula dependent censoring.

Indeed, attention has been focused on the estimation of the conditional distribution F (y|x)

for a fixed value of x and under a fixed design setting. See Braekers and Veraverbeke

(2005), Braekers and Veraverbeke (2008) and Gaddah and Braekers (2010a,b), where the

latter three papers assume that the data satisfy a conditional Koziol-Green model. As a by-

product we will also study an estimator of the conditional distribution F (y|x). Compared

to the aforementioned papers, the main difference is that we obtain results uniformly in x

and y, which are technically harder to prove.

The paper is organized as follows. In Section 2 we define the estimators of m(x) and

σ2(x), and state the assumptions that will be needed for the asymptotic results. Section

3 contains the main asymptotic results of this paper. We first study an estimator of the

conditional distribution F (y|x) and we next give an asymptotic representation and the uni-

form convergence rates for the estimators of m(x) and σ2(x) and of their derivatives. In

Section 4 we show the results of a small simulation study, and in Section 5 we illustrate our

estimation method via the analysis of data on bone marrow transplantation. Finally, the

appendix contains the proofs of the asymptotic results stated in Section 3.

2 Definitions and assumptions

We focus in this section on the estimation of the functions m(x) and σ2(x) given in (1.2).

These functions depend on the conditional distribution F (·|x), which we need to estimate

first. Braekers and Veraverbeke (2005) defined the so-called conditional copula-graphic esti-

mator of F (·|x):

F̂ (y|x) = 1− φ−1
x

{
−

∑

Ti≤y,∆i=1

[
φx

(
Ĥ(T−

i |x)
)
− φx

(
Ĥ(Ti|x)

)]}
, (2.1)
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where

Ĥ(y|x) =
n∑

i=1

Wni(x, hn)I(Ti ≤ y)

is the Nadaraya-Watson estimator of the conditional distribution H(y|x) = P (T ≤ y|X = x)

of T given X = x, Ĥ(y|x) = 1− Ĥ(y|x), Ĥ(y−|x) = limt↑y Ĥ(t|x),

Wni(x, hn) =
K
(
(x−Xi)/hn

)

∑n
j=1K

(
(x−Xj)/hn

)

are Nadaraya-Watson weights, K is a probability density function (kernel), and h ≡ hn is

a bandwidth sequence tending to zero when n tends to infinity. The estimator F̂ (y|x) is

an extension of the Beran estimator in the sense that it allows for dependent censoring,

and it is also an extension of the estimator proposed by Zheng and Klein (1995), since it

includes covariates. Moreover, it is easily seen that F̂ (y|x) is a proper distribution function

if φx(0) = ∞ (i.e. the generator φx is strict) and if the last observation is uncensored (as is

the case for e.g. the Kaplan-Meier or Beran estimator).

This leads to the following estimators for m(x) and σ2(x):

m̂(x) =

∫ 1

0

F̂−1(s|x)J(s)ds and σ̂2(x) =

∫ 1

0

[
F̂−1(s|x)− m̂(x)

]2
J(s)ds. (2.2)

Note that these estimators are in the same spirit as the ones proposed by Van Keilegom

and Akritas (1999), who worked under the assumption of conditional independence between

Y and C given X , and who estimated F (·|x) by means of the Beran estimator instead of

the estimator defined in (2.1). Therefore, if we take φx(·) = − log(·) in formula (2.1), the

estimators m̂(x) and σ̂2(x) reduce to the ones proposed in Van Keilegom and Akritas (1999).

The assumptions below are important for the establishment of the asymptotic results in

Section 3. In addition to the distributions F (·|x), G(·|x) and H(·|x) already defined above,

they concern the subdistribution Hu(y|x) = P (T ≤ y,∆ = 1|X = x) of the uncensored ob-

servations and the distribution FX(x) = P (X ≤ x) of the covariate. The probability density

functions of the distribution functions defined above will be denoted by the corresponding

lower case letters. Also, let T̃x be any value less than the upper bound of the support of

H(·|x) such that infx∈RX
(1−H(T̃x|x)) > 0.

For an arbitrary (sub)distribution function L(y|x) we will use the notations l(y|x) =

L′(y|x) = ∂
∂y
L(y|x), L̇(y|x) = ∂

∂x
L(y|x) and similar notations will be used for higher order

derivatives. (In the proofs, the function L(y|x) of assumption (A5) below will be either

H(y|x) or Hu(y|x)). We also use the notation L(y|x) = 1− L(y|x) throughout the paper.

(A1) (i) The sequence hn satisfies nh5
n(log n)

−1 = O(1) and (nhn)
−1 logn → 0.
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(ii) The support RX of X is a bounded interval in IR.

(iii) The probability density function K has compact support [−M,M ] for some M >

0,
∫
uK(u)du = 0, and K is twice continuously differentiable.

(A2) (i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (T̃x|x), s0 ≤ inf{s ∈

[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX
infs0≤s≤s1 f(F

−1(s|x)|x)

> 0.

(ii) The function J is bounded and twice continuously differentiable on the interval

(s0, s1),
∫ 1

0
J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(A3) (i) The distribution FX is three times continuously differentiable on the interior of

RX , and infx∈RX
fX(x) > 0.

(ii) The functions m and σ are twice continuously differentiable and infx∈RX
σ(x) > 0.

(A4) (i) The functions φ′
x(u) = ∂

∂u
φx(u), φ

′′
x(u) and φ

(3)
x (u) exist and are continuous in

(x, u) ∈ RX × (0, 1].

(ii) The functions φ̈′′
x(u) =

∂4

∂x2∂u2φx(u), φ̇
(3)
x (u) and φ

(4)
x (u) exist and are continuous

in (x, u) ∈ RX × (0, 1].

(iii) The function φx satisfies φ′
x(1) < 0.

(A5) (i) L(y|x) is continuous in (x, y).

(ii) L′(y|x) exists, is continuous in (x, y) and supx,y |yL
′(y|x)| < ∞.

(iii) L′′(y|x) exists, is continuous in (x, y) and supx,y |y
2L′′(y|x)| < ∞.

(iv) L̇(y|x) exists, is continuous in (x, y) and supx,y |yL̇(y|x)| < ∞.

(v) L̈(y|x) exists, is continuous in (x, y) and supx,y |y
2L̈(y|x)| < ∞.

(A6) There exist continuous and non-decreasing functions Mj with Mj(−∞) = 0 and

Mj(+∞) < ∞ (j = 1, ..., 4) such that

|H(y2|x)−H(y1|x)| ≤ |M1(y2)−M1(y1)|,

|Hu(y2|x)−Hu(y1|x)| ≤ |M2(y2)−M2(y1)|,∣∣∣∂H(y2|x)

∂x
−

∂H(y1|x)

∂x

∣∣∣ ≤ |M3(y2)−M3(y1)|,

∣∣∣∂H
u(y2|x)

∂x
−

∂Hu(y1|x)

∂x

∣∣∣ ≤ |M4(y2)−M4(y1)|,

for all x ∈ RX ,−∞ < y1, y2 < +∞.
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Note that assumption (A6) comes from Du and Akritas (2002), and is required to prove an

i.i.d. representation for our estimator F̂ (y|x), whose remainder term is negligible uniformly

in x and y.

The following functions will also be needed in the sequel.

g
(
T,∆, y|x

)
=

−1

φ′
x

(
F (y|x)

)
{∫ y

−∞

φ′′
x

(
H(s|x)

)[
I(T ≤ s)−H(s|x)

]
dHu(s|x)

−φ′
x

(
H(y|x)

)[
I(T ≤ y,∆ = 1)−Hu(y|x)

]

−

∫ y

−∞

φ′′
x

(
H(s|x)

)[
I(T ≤ s,∆ = 1)−Hu(s|x)

]
dH(s|x)

}
,

η
(
T,∆|x

)
=

∫ +∞

−∞

J
(
F (y|x)

)
g
(
T,∆, y|x

)
dy,

ζ
(
T,∆|x

)
=

∫ +∞

−∞

J
(
F (y|x)

)
g
(
T,∆, y|x

)y −m(x)

σ(x)
dy.

3 Asymptotic results

3.1 Asymptotic results for the estimator of F (y|x)

We start this section with some new results concerning the copula-graphic estimator F̂ (y|x).

In particular, we will derive uniform consistency rates for F̂ (y|x), for its derivative
˙̂
F (y|x)

and for the ‘derivative’ of order 1+ δ defined by (
˙̂
F (y|x)−

˙̂
F (y|x′))/(x−x′)δ. In addition we

will also show an iid asymptotic representation for F̂ (y|x)− F (y|x), and establish the rate

of convergence of the remainder term uniformly in x and y.

These results are useful for establishing similar results for the estimators of m(x) and

σ2(x) in the next subsection. In addition, they generalize previous results obtained by

Braekers and Veraverbeke (2005), who focused attention on the estimator F̂ (y|x) itself and

who established the rate of convergence for a fixed value of x under a fixed design setting.

We refer to Subsection 3.2 for additional motivation for studying these results.

Proposition 3.1. Assume (A1), (A3)(i), (A4)(i,iii), and H and Hu satisfy (A5)(i,iv,v).

Then,

sup
x∈RX

sup
y≤T̃x

∣∣∣F̂ (y|x)− F (y|x)
∣∣∣ = O((nhn)

−1/2(logn)1/2) a.s.

Proposition 3.2. Assume (A1), (A3)(i), (A4)(i,iii), φ̇′′
x(u) exists and is continuous in

(x, u), and H and Hu satisfy (A5)(i,iv,v). Then,

sup
x∈RX

sup
y≤T̃x

∣∣∣ ˙̂F (y|x)− Ḟ (y|x)
∣∣∣ = O((nh3

n)
−1/2(logn)1/2) a.s.
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Proposition 3.3. Assume (A1), (A3)(i), (A4), and H and Hu satisfy (A5)(i,iv,v). Then,

sup
x,x′∈RX

sup
y≤T̃x∧T̃x′

∣∣∣ ˙̂F (y|x)− Ḟ (y|x)−
˙̂
F (y|x′) + Ḟ (y|x′)

∣∣∣
|x− x′|δ

= O((nh3+2δ
n )−1/2(log n)1/2) a.s.,

for any 0 < δ < 1.

Proposition 3.4. Assume (A1), (A3)(i), (A4)(i,iii), (A6) and H and Hu satisfy (A5).

Then,

F̂ (y|x)− F (y|x) =
1

nhnfX(x)

n∑

i=1

K
(x−Xi

hn

)
g(Ti,∆i, y|x) +Rn(y|x),

where supx∈RX
supy≤T̃x

|Rn(y|x)| = O
(
(nhn)

−3/4(log n)3/4
)
a.s.

Remark 3.1. Without assumption (A4)(iii) all the results in this subsection remain valid

if we replace supy≤T̃x
by supt̃x≤y≤T̃x

, where t̃x is chosen such that supx∈RX
(1−H(t̃x|x)) < 1.

Also note that in the next subsection we do not need to assume (A4)(iii), since by assumption

(A2)(i) the score function J(s) equals zero for s close to 0 or 1.

3.2 Asymptotic results for the estimators of m(x) and σ2(x)

In this section we will derive some asymptotic properties of the location estimator m̂(x) and

the scale estimator σ̂(x) defined in (2.2). In particular, we will show the uniform consistency

rates of m̂(x), of m̂′(x) and of (m̂′(x)− m̂′(x′))/(x− x′)δ, and of their analogues for σ̂. We

will also prove an asymptotic representation for m̂(x) and σ̂(x). All results will be obtained

uniformly in x ∈ RX .

These results are important, since they show that with probability tending to one, the

estimators m̂ and σ̂ belong to the class C1+δ
K (RX) of differentiable functions f : RX → IR

for which

‖f‖1+δ = max
{
sup
x

|f(x)|, sup
x

|f ′(x)|
}
+ sup

x,x′

|f ′(x)− f ′(x′)|

|x− x′|δ

is bounded by K < ∞. This class plays a major role in empirical process theory, since its

covering and bracketing number enjoy nice properties, which are needed to show that the

class is Donsker (see Van der Vaart and Wellner (1996) for more details).
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The results have additional value as they are necessary if one is interested in exploring the

asymptotic properties of an estimator of the error distribution in a nonparametric location-

scale regression model of the form Y = m(X) + σ(X)ǫ with ǫ and X independent. This is

currently under investigation by the authors, and a research paper is in preparation that will

soon be submitted for publication.

Proposition 3.5. Assume (A1)–(A3), (A4)(i), and H and Hu satisfy (A5)(i,iv,v). Then,

(a) supx∈RX

∣∣∣m̂(x)−m(x)
∣∣∣ = O((nhn)

−1/2(log n)1/2) a.s.

(b) supx∈RX

∣∣∣σ̂(x)− σ(x)
∣∣∣ = O((nhn)

−1/2(log n)1/2) a.s.

Proposition 3.6. Assume (A1)–(A3), (A4)(i), φ̇′′
x(u) exists and is continuous in (x, u), and

H and Hu satisfy (A5)(i,iv,v). Then,

(a) supx∈RX

∣∣∣m̂′(x)−m′(x)
∣∣∣ = O((nh3

n)
−1/2(logn)1/2) a.s.

(b) supx∈RX

∣∣∣σ̂′(x)− σ′(x)
∣∣∣ = O((nh3

n)
−1/2(log n)1/2) a.s.

Proposition 3.7. Assume (A1)–(A3), (A4)(i,ii) and H and Hu satisfy (A5)(i,iv,v). Then,

(a) sup
x,x′∈RX

∣∣∣m̂′(x)−m′(x)− m̂′(x′) +m′(x′)
∣∣∣

|x− x′|δ
= O((nh3+2δ

n )−1/2(logn)1/2) a.s.

(b) sup
x,x′∈RX

∣∣∣σ̂′(x)− σ′(x)− σ̂′(x′) + σ′(x′)
∣∣∣

|x− x′|δ
= O((nh3+2δ

n )−1/2(logn)1/2) a.s.,

for any 0 < δ < 1.

Proposition 3.8. Assume (A1)–(A3), (A4)(i), (A6) and H and Hu satisfy (A5). Then,

(a)

m̂(x)−m(x) =
−1

nhnfX(x)

n∑

i=1

K
(x−Xi

hn

)
η
(
Ti,∆i|x

)
+Rn1(x)

(b)

σ̂(x)− σ(x) =
−1

nhnfX(x)

n∑

i=1

K
(x−Xi

hn

)
ζ
(
Ti,∆i|x

)
+Rn2(x),

where supx∈RX
|Rnj(x)| = O

(
(nhn)

−3/4(logn)3/4
)
a.s. (j = 1, 2).
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The latter result is important for obtaining e.g. the asymptotic normality of (nhn)
1/2

(
m̂(x)

− m(x)
)
and (nhn)

1/2
(
σ̂(x) − σ(x)

)
for a fixed x in RX , from which pointwise confidence

intervals for m(x) and σ(x) can be obtained, provided appropriate estimators of the variance

are available. This variance basically relies on a good estimator of the function g(T,∆, y|x),

which can be obtained by replacing H(y|x), Hu(y|x) and F (y|x) by their corresponding es-

timators. An alternative could be to use an appropriate bootstrap, but that is out of the

scope of this paper.

Note however that these confidence intervals will not allow us to take the uncertainty

about the copula model into account, since the whole asymptotic theory relies on the as-

sumption that the copula is known and correctly specified. On the other hand, the confidence

intervals allow to have an idea of the uncertainty coming from the other components of the

model.

In addition, the latter result can also be used as a first big step for constructing asymp-

totic confidence bands for the true unknown functions m(·) and σ(·), similarly as was done

in Claeskens and Van Keilegom (2003) in the context of multiparameter local likelihood

estimating equations, or for testing hypotheses concerning these functions.

4 Simulations

In this section we will illustrate the finite sample behavior of our estimators m̂(x) and σ̂(x) by

means of Monte Carlo simulations. We will compare our estimators with the ones proposed

by Van Keilegom and Akritas (1999). These estimators are based on the assumption that

Y and C are conditionally independent, and are defined as follows :

m̃(x) =

∫ 1

0

F̃−1(s|x)J(s)ds and σ̃2(x) =

∫ 1

0

[
F̃−1(s|x)− m̃(x)

]2
J(s)ds, (4.1)

where F̃ (·|x) is the Beran estimator :

F̃ (y|x) = 1−
∏

Ti≤y,∆i=1

{
1−

Wni(x, hn)∑n
j=1 I(Tj ≥ Ti)Wnj(x, hn)

}
.

We expect that when the conditional dependence between Y and C is strong, the estimators

m̃(x) and σ̃(x) will behave poorly compared to the new estimators m̂(x) and σ̂(x), that

take this dependence into account. The results will therefore illustrate the importance of

correctly specifying the dependence between Y and C. We measure the performance of the

estimators by means of their mean squared error (MSE) and by means of 90% confidence
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intervals. The simulations are carried out for samples of size n = 100, n = 200 and n = 400,

and the results are obtained by using 2000 Monte Carlo simulations.

We generate i.i.d. data from the following regression model :

Y = 6(X − 0.5)2 + 0.5ε1, (4.2)

where X has a uniform distribution on [0, 1] and the error ε1 has a standard normal distribu-

tion and is independent ofX . The censoring variable C satisfies C = α1(X−0.5)2+α2+0.5ε2

for certain choices of α1 and α2, where ε2 is standard normal and independent of X . The

constants α1 and α2 are chosen so that the global censoring rate is 45% and the local cen-

soring rate (for a fixed value of x) is between 42% and 48%. We further assume that the

dependence between Y and C given X = x (i.e. the dependence between ε1 and ε2 given

X = x) is described via a Gumbel copula :

Cx(u1, u2) = exp
{
−
[
− (log u1)

γ(x) − (log u2)
γ(x)

]1/γ(x)}
,

where γ(x) = max(5 − 5x,1). This means that the corresponding Archimedean copula

generator equals φx(u) = −(log u)γ(x). With this construction the conditional dependence

between Y and C given X = x decreases from strong positive dependence to complete

independence as x goes from 0 to 0.8, and it continues to be independent on [0.8, 1]. Note

that Kendall tau’s coefficient decreases from 0.8 to 0.

Note that, in the above setting, an equivalent way of writing the estimator σ̂2(x) is

σ̂2(x) =

n∑

i=1

[
Yi − m̂(x)

]2[
F̂b(Yi|x)− F̂b(Y

−
i |x)

]
J(F̂b(Yi|x)),

where F̂b(y|x) = min{F̂ (y|x), b} and b is any value larger than sup{s : J(s) 6= 0}, and this

is close to
n∑

i=1

[
Yi − m̂(Xi)

]2[
F̂b(Yi|x)− F̂b(Y

−
i |x)

]
J(F̂b(Yi|Xi)).

It can be easily seen that both estimators are asymptotically equivalent under certain con-

ditions on the bandwidth. In the sequel we work with the latter estimator, since simulations

showed that it outperforms somewhat the former (which is not too surprising given that

Yi−m(Xi) is a proper ‘error’, whereas Yi −m(x) is not). The same applies to the estimator

σ̃(x), for which we also work with the asymptotically equivalent variant.

For the weights that appear in our estimators m̂(x) and σ̂(x), and also in the estimators

m̃(x) and σ̃(x), we use the kernel function K(u) = (15/16)(1− u2)2I(|u| ≤ 1), and we work

with the score function J(s) = b−1I(0 ≤ s ≤ b). In order to estimate the functionals m(·)

and σ(·) consistently the constant b has to be smaller than or equal to infx∈RX
F̂ (+∞|x).

Therefore, we choose b = 0.8 which is smaller than the average of 1000 simulated infima.
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For each of the four estimators m̂, σ̂, m̃ and σ̃ we use a different bandwidth hn. In the

first step, to select the bandwidth for m̂, we minimize the integrated mean squared error

IMSE(m̂) =
∫ 0.8

0.2
E[m̂(x) − m(x)]2dFX(x) over a grid of 15 equidistant possible values of

hn between 0.05 and 0.40 (note that we do not take into account values of x close to the

boundary of the support of X to avoid boundary effects of the Nadaraya-Watson weights).

To calculate this IMSE(m̂), we use 2000 simulated data sets. For each simulated data

set, we compute the integrated squared error ISE(m̂) =
∫ 0.8

0.2
[m̂(x)−m(x)]2dFX(x), and we

approximate IMSE(m̂) by taking the average over these 2000 values of ISE(m̂). In the

second step, to select the bandwidth for σ̂ we first write

n∑

i=1

[
Yi − m̂1(Xi)

]2[
F̂1b(Yi|x)− F̂1b(Y

−
i |x)

]
J(F̂2b(Yi|Xi)),

where m̂1 and F̂1b are the estimators based on the optimal bandwidth chosen in the first

step, and F̂2b is based on a second bandwidth. Now, we select this second bandwidth by

minimizing the empirical IMSE(σ̂) (which is estimated in the same way as in the first step)

over the grid 0.05, 0.1, 0.2, ..., 0.9. The bandwidths for the estimators m̃ and σ̃ are chosen in

an analogous way.

Note that we prefer to select the bandwidth for m̂, σ̂, m̃ and σ̃ by directly minimizing the

IMSE of these estimators, instead of minimizing the IMSE of the estimators F̂ (·|x) and

F̃ (·|x). This ensures that we control the quality of these estimators instead of controlling the

quality of the intermediate estimators F̂ (·|x) and F̃ (·|x), which are of secondary importance

in our estimation procedure.

The practical performance of the above bandwidth selection procedure is illustrated in

Figures 1 and 2. The figures show the IMSE as a function of the bandwidth for each consid-

ered estimator and each sample size. We see that the IMSE for m̂ and m̃ have a convexly

shaped curve and that the optimal bandwidth decreases with the sample size. We also see

that the bandwidths for the estimators of σ are much larger than those for the correspond-

ing estimators of m, which is natural since σ is constant in our model. This highlights the

importance of choosing different bandwidths when estimating m and σ. Finally, we notice

that the IMSE-curves for m̃ and σ̃ are quite a bit higher than the corresponding curves for

m̂ and σ̂, and also the minimal values of these curves differ quite a lot, which suggests that

m̂ and σ̂ are, globally speaking, behaving better than m̃ and σ̃.

Figures 3 and 4 show the MSE of the estimators m̂(x), σ̂(x), m̃(x) and σ̃(x) for the

bandwidths that minimize the corresponding IMSE of these four estimators. The band-

widths that minimize the IMSE corresponding to n = 100, 200 and 400 are 0.200, 0.150 and

0.125 for m̃, and 0.250, 0.225 and 0.175 for m̂, respectively, while the optimal bandwidths
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Figure 1: IMSE(m̂) (thick lines) and IMSE(m̃) (thin lines) for samples of size n = 100

(dotted line), n = 200 (dashed line) and n = 400 (solid line).
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Figure 2: IMSE(σ̂) (thick lines) and IMSE(σ̃) (thin lines) for samples of size n = 100

(dotted line), n = 200 (dashed line) and n = 400 (solid line).

for both σ̃ and σ̂ are 0.9 independently of n. As we expected, the new estimators m̂(x) and

σ̂(x) outperform the estimators m̃(x) and σ̃(x), since the latter are incorrectly assuming that

Y and C are independent given X = x for all x, whereas this is only true for 0.8 ≤ x ≤ 1.

We see how the difference between the estimators becomes larger as x decreases, i.e. as the

conditional dependence between Y and C given X = x becomes stronger. The ratio of the

two MSE’s can be as high as 10 in case of the location function m and up to 3 in case of

the scale function σ. Note that for x = 0.8, the two estimators are not equal in Figures 3

and 4, although m̂(x) and σ̂(x) reduce to m̃(x) and σ̃(x), respectively, when Y and C are
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Figure 3: MSE of m̂(x) (left panel) and m̃(x) (right panel) for samples of size n = 100

(dotted line), n = 200 (dashed line) and n = 400 (solid line).
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Figure 4: MSE of σ̂(x) (left panel) and σ̃(x) (right panel) for samples of size n = 100

(dotted line), n = 200 (dashed line) and n = 400 (solid line).

conditionally independent. This is because the bandwidths used to calculate the estimators

are not the same, and are in fact determined by the behavior of the estimators for all values

of the covariate.

Figure 5 shows the quantiles of order 0.05 and 0.95 of the distribution of m̂(x) −m(x)

and m̃(x) − m(x) respectively. The reason why we consider the ‘standardized’ quantity

m̂(x) − m(x) instead of the more natural quantity m̂(x), is that in the non-standardized

graph the scale of the vertical axis is much wider, and the curves are therefore very close

together and hard to distinguish. We see that as we are moving to the area of stronger
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dependence (small values of x) the new estimator m̂(x) continues to behave well, while the

estimator m̃(x) becomes increasingly biased and also slightly more variable. The same can

be said for the estimators of σ(x) shown in Figure 6 (which we do not standardize since the

true σ-curve is already constant). Again, the figure shows that the new estimator is only

slightly biased, whereas the estimator σ̃(x) shows consistent biased behavior and slightly

larger variance.

0.2 0.4 0.6 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
0.2 0.4 0.6 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

Figure 5: Quantiles of order 0.05 and 0.95 of the distribution of m̂(x) − m(x) (left panel)

and m̃(x) − m(x) (right panel) for samples of size n = 100 (dotted line), n = 200 (dashed

line) and n = 400 (solid line).

5 Example

In this section we will illustrate our estimation method via the analysis of the bone marrow

transplantation data, which are described in Klein and Moeschberger (1997). The data are

collected during a study in which 137 patients are followed in their recovery from acute

leukemia after bone marrow transplantation. We are interested in the disease-free survival

time Y , i.e. the time until a patient has a relapse of leukemia. However, patients can be

censored by two possible events : disease-free death or disease-free and alive at the end of

the study. The censoring time C is the time until the first of these two events takes place. It

seems natural to believe that the time until relapse Y depends on the age X of the patient

at transplantation, and on the time until disease-free death (for a given age). This indirectly

implies that Y and C are dependent for a given covariate X . In Figure 7, we show a scatter

plot of age versus disease-free survival time, where we distinguish between non-censored
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Figure 6: Quantiles of order 0.05 and 0.95 of the distribution of σ̂(x) (left panel) and σ̃(x)

(right panel) for samples of size n = 100 (dotted line), n = 200 (dashed line) and n = 400

(solid line).

(relapsed) and censored patients. We note that the censoring rate is as high as 69%, caused

by the rather short length of the study (less than 8 years).
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Figure 7: Scatterplot of age versus disease-free survival time.
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First, from these data, for every fixed covariate x ranging between 20 and 40 (the area

containing most of the data) we will estimate the average of the lower 30% of relapse times.

Also we will estimate the standard deviation of the lower 30% of relapse times. We have to

restrict to 30%, because of the rather high proportion of censoring. In fact, for some values

of x, the estimator of the conditional distribution function of Y given x is only consistent up

to the 0.3-th quantile. The score function corresponding to this location and scale functional

is J(s) = 10
3
I[0,0.3)(s) (see (1.2)). To estimate these functionals we use the biweight kernel

function K(u) = (15/16)(1− u2)2I(|u| ≤ 1).

Second, it is important to note that our estimation procedure assumes that the depen-

dence structure between the survival time Y and the censoring time C is completely known.

Therefore, in a real data application we have to select the dependence structure based on

external information. For instance, we can model the dependence based on an expert’s opin-

ion or estimate it from additional data. To capture the expert’s opinion on the strength and

direction of the dependence between Y and C we will use Kendall’s tau, which is defined as

τ(x) = 1 + 4
∫ 1

0
(φx(t) / φ

′
x(t)) dt (Nelsen (2006)) and has a range from −1 to 1. The associ-

ation gets stronger as τ(x) gets further away from zero, while the concordance/discordance

is determined by the sign.
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Figure 8: Estimator of the average of the lower 30% of relapse times for several

choices of φx(t), not depending on x: independence (solid curve), Fréchet-Hoeffding

lower bound (long dashed curve) and Frank family for φx corresponding to τ(x) =

−0.5,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.5 and 0.9 (dotted curves going from highest to lowest,

respectively).
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Figure 9: Estimator of the standard deviation of the lower 30% of relapse times for sev-

eral choices of φx(t), not depending on x: independence (solid curve), Fréchet-Hoeffding

lower bound (long dashed curve) and Frank family for φx corresponding to τ(x) =

−0.5,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.5 and 0.9 (dotted curves going from highest to lowest,

respectively).

In Figure 8 we show the estimator m̂(x) for h = 8 and h = 15, while Figure 9 shows

the estimator σ̂(x) for h = 8 and h = 15. Each of the plots contains estimators constructed

for different choices of the copula generator φx(t) : the generator that assumes conditional

independence between Y and C (φx(t) = − log(t) and τ(x) = 0), the Fréchet-Hoeffding lower

bound (φx(t) = 1− t and τ(x) = −1), which assumes that Y and C are discordant, and the

generators from the Frank family (φx(t) = − log(exp{−tθ} − 1) + log(exp{−θ} − 1)) with θ

taking values corresponding to τ(x) = −0.5,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.5 and 0.9.

From Figure 8 we can see that, for all choices of the copula and the bandwidth, the

average of the lower 30% of relapse times is decreasing as age grows from 20 to 40. This

means that for the 30% of worst recipients, older people have a shorter time to relapse than

younger people. From Figure 9 we see that, again in all cases, the standard deviation of the

lower 30% of relapse times decreases as age grows from 20 to 40. This indicates that there

is more uncertainty in how younger recipients respond to transplantation.

Next, the figures also show that for the Frank copula, the value of Kendall’s tau is not

influencing the overall pattern of the functions m̂ and σ̂ as long as the dependence between

Y and C does not change in an extreme way with X . Hence, the overall shape of the curves

is relatively robust to the value of Kendall’s tau. On the other hand, the value of the curves
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Figure 10: Estimator of the average of the lower 30% of relapse times for several choices

of φx(t), not depending on x: Clayton family (long dashed curves), Frank family (dotted

curves) and Gumbel family (solid curves), for φx corresponding to τ(x) = 0.1, 0.5 and 0.8

(curves going from highest to lowest, respectively).
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Figure 11: Estimator of the standard deviation of the lower 30% of relapse times for several

choices of φx(t), not depending on x: Clayton family (long dashed curves), Frank family

(dotted curves) and Gumbel family (solid curves), for φx corresponding to τ(x) = 0.1, 0.5

and 0.8 (curves going from highest to lowest, respectively).
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at a specific point is heavily influenced by the value of Kendall’s tau, which illustrates the

importance of having accurate external information regarding the strength and direction of

the dependence between Y and C.

In practice, it might not be an easy task to select the best copula family based on external

information. Therefore, we want to investigate the robustness of the estimators m̂ and σ̂ to

the choice of the copula family under the same value of Kendall’s tau. In Figures 10 and

11 we show again the estimators m̂(x) and σ̂(x), respectively, for h = 8 and h = 15 and

several choices of φx(t) (not depending on x) : the Clayton family (φx(t) =
1
θ
(t−θ − 1)), the

Frank family and the Gumbel family (φx(t) = −(log t)θ), for θ corresponding to τ = 0.1, 0.5

and 0.8 (representing small, significant and very strong positive dependence, respectively).

In this investigation we restrict ourselves to positive values of τ , since the Gumbel family

is only able to produce positive correlation. Note that the dependence structure between

Y and C differs a lot from one copula family to another : the Clayton family gives lots of

weight to the left lower corner (or left tail) of the unit square, the Gumbel family to the left

and the right tail, and the Frank family is distributed more homogeneously along all points

close to the bisector.

Both Figures 10 and 11 show that, for a fixed τ , the difference between the estimators

caused by different choices of the copula family is not exceeding 25%. All figures strongly

indicate the general tendency of the curves, independently of the choice of the copula family,

as long as the dependence between Y and C does not change in an extreme way with X .

(Note that even though the copula generators φx used in the figures do not depend on x,

one can easily see how the estimator would behave if φx would change with x.) Hence,

the figures show that for a fixed value of Kendall’s tau, our estimators are quite robust to

misspecification of the copula family.

To conclude, the choice of the copula family (Gumbel, Clayton, . . .) is less important

than the correct specification of the strength of the dependence between Y and C (via e.g.

Kendall’s tau), and the way this dependence depends on X . In many situations in practice,

we do have an idea of the strength of this dependence, e.g. we know whether the dependence

is negative or positive and whether it is strong or rather weak. This can help in choosing an

appropriate copula function.

A Appendix : Proofs

Proof of Proposition 3.1. Let x be an arbitrary value in RX and let y ≤ T̃x. Throughout

this proof we will use that any random process αn(x, y) that lies between H(y|x) and Ĥ(y|x)
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for n large enough, can be a.s. bounded from below for n large enough :

αn(x, y) > γ on {(x, y) : x ∈ RX , y ≤ T̃x} (A.1)

for some γ > 0. This follows from the uniform consistency of Ĥ(y|x) (see Proposition 1 in

Akritas and Van Keilegom (2001)) and from the definition of T̃x.

Using similar calculations as in the proof of Theorem 1 in Braekers and Veraverbeke

(2005), we can write

F̂ (y|x)− F (y|x)

=

[
−φ−1

x

{
−

∑

Ti≤y,∆i=1

[
φx

(
Ĥ(T−

i |x)
)
− φx

(
Ĥ(T−

i |x)−Wni(x, hn)
)]}

+φ−1
x

{
−

∑

Ti≤y,∆i=1

φ′
x

(
Ĥ(T−

i |x)
)
Wni(x, hn)

}]

−

[
φ−1
x

{
−

∫ y

−∞

φ′
x

(
Ĥ(s−|x)

)
dĤu(s|x)

}
− φ−1

x

{
−

∫ y

−∞

φ′
x

(
H(s|x)

)
dHu(s|x)

}]

:= Q1(x, y) +Q2(x, y).

Next, we will calculate the order of convergence of each of these terms. Starting with the

second term, we apply the mean value theorem and obtain

Q2(x, y) (A.2)

=
−1

φ′
x

(
φ−1
x (α1(x, y))

)
[
−

∫ y

−∞

φ′
x

(
Ĥ(s−|x)

)
dĤu(s|x) +

∫ y

−∞

φ′
x

(
H(s|x)

)
dHu(s|x)

]
,

where α1(x, y) lies between −
∫ y

−∞
φ′
x

(
Ĥ(s−|x)

)
dĤu(s|x) and −

∫ y

−∞
φ′
x

(
H(s|x)

)
dHu(s|x).

From (A4)(iii) we know that the first factor on the right hand side of (A.2) is uniformly

bounded. Now, by adding and subtracting terms, we further obtain

Q2(x, y) = O(1)
[
Q

(1)
2 (x, y) +Q

(2)
2 (x, y)

]
,

where

Q
(1)
2 (x, y) = −

∫ y

−∞

[
φ′
x

(
Ĥ(s−|x)

)
− φ′

x

(
H(s|x)

)]
dĤu(s|x),

Q
(2)
2 (x, y) = −

∫ y

−∞

φ′
x

(
H(s|x)

)
d
[
Ĥu(s|x)−Hu(s|x)

]
.

Applying the mean value theorem on the term Q
(1)
2 (x, y) we get:

Q
(1)
2 (x, y) = −

∫ y

−∞

φ′′
x

(
α2(x, s)

)[
Ĥ(s−|x)−H(s|x)

]
dĤu(s|x),
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where α2(x, s) lies between Ĥ(s−|x) and H(s|x). This gives us that

sup
x∈RX

sup
y≤T̃x

∣∣∣Q(1)
2 (x, y)

∣∣∣ ≤ sup
x∈RX

sup
y≤T̃x

∣∣∣φ′′
x(α2(x, y))

∣∣∣ sup
x∈RX

sup
y≤T̃x

∣∣∣Ĥ(y−|x)−H(y|x)
∣∣∣.(A.3)

From Proposition 1 in Akritas and Van Keilegom (2001), we have that

sup
x,y

∣∣∣Ĥ(y−|x)−H(y|x)
∣∣∣ = O

(
(nhn)

−1/2(logn)1/2
)

a.s.

Hence, applying (A.1) on the first supremum at the right hand side of (A.3) yields that

sup
x∈RX

sup
y≤T̃x

∣∣∣Q(1)
2 (x, y)

∣∣∣ = O
(
(nhn)

−1/2(log n)1/2
)

a.s. (A.4)

For Q
(2)
2 (x, y) we integrate by parts, and using similar calculations as for Q

(1)
2 (x, y), we easily

obtain that

sup
x∈RX

sup
y≤T̃x

∣∣∣Q(2)
2 (x, y)

∣∣∣ ≤ sup
x∈RX

sup
y≤T̃x

∣∣∣φ′
x(H(y|x))

∣∣∣ sup
x∈RX

sup
y≤T̃x

∣∣∣Ĥu(y|x)−Hu(y|x)
∣∣∣

+ sup
x∈RX

sup
y≤T̃x

∣∣∣φ′′
x(H(y|x))

∣∣∣ sup
x∈RX

sup
y≤T̃x

∣∣∣Ĥu(y|x)−Hu(y|x)
∣∣∣

= O
(
(nhn)

−1/2(log n)1/2
)

a.s. (A.5)

Now, combining results (A.4) and (A.5), yields

sup
x∈RX

sup
y≤T̃x

∣∣∣Q2(x, y)
∣∣∣ = O

(
(nhn)

−1/2(logn)1/2
)

a.s. (A.6)

For Q1(x, y), we repeatedly apply the mean value theorem to get

Q1(x, y) =
−1

φ′
x

(
φ−1
x (α3(x, y))

)
{
−

∑

Ti≤y,∆i=1

φx

(
Ĥ(T−

i |x)
)
− φx

(
Ĥ(T−

i |x)−Wni(x, hn)
)

+
∑

Ti≤y,∆i=1

φ′
x

(
Ĥ(T−

i |x)
)
Wni(x, hn)

}

=
1

2φ′
x

(
φ−1
x (α3(x, y))

)
∑

Ti≤y,∆i=1

φ′′
x

(
α4(x, i)

)
W 2

ni(x, hn),

where α3(x, y) lies between −
∑

Ti≤y,∆i=1

[
φx(Ĥ(T−

i |x)) − φx(Ĥ(T−
i |x) − Wni(x, hn))

]
and

−
∑

Ti≤y,∆i=1 φ
′
x

(
Ĥ(T−

i |x)
)
Wni(x, hn), and α4(x, i) lies between Ĥ(T−

i |x) and Ĥ(T−
i |x) −

Wni(x, hn). This leads to

sup
x∈RX

sup
y≤T̃x

∣∣∣Q1(x, y)
∣∣∣

≤
1

2

[
inf

x∈RX

inf
y≤T̃x

∣∣∣φ′
x

(
φ−1
x

(
α3(x, y)

))∣∣∣
]−1

sup
x∈RX ,i=1,...n

∣∣∣φ′′
x(α4(x, i))

∣∣∣
n∑

i=1

W 2
ni(x, hn).
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The infimum is bounded from below because of (A4)(iii) and the supremum is bounded

thanks to (A4) and equation (A.1). On the other hand,
∑n

i=1W
2
ni(x, hn) is of orderO((nhn)

−1)

a.s., since we know from standard kernel smoothing theory that supx maxi=1,...n Wni(x, hn) =

O((nhn)
−1) a.s. It now follows that

sup
x∈RX

sup
y≤T̃x

∣∣∣Q1(x, y)
∣∣∣ = O

(
(nhn)

−1/2(logn)1/2
)

a.s. (A.7)

The proof is finished by combining (A.7) and (A.6).

Proof of Proposition 3.2. Using the notation U(x, y) := φx(F (y|x)) and Un(x, y) :=

φx(F̂ (y|x)), we calculate

∂

∂x

[
U(x, y)− Un(x, y)

]
= −φ′

x(F (y|x))Ḟ (y|x) + φ̇x(F (y|x))

+φ′
x(F̂ (y|x))

˙̂
F (y|x)− φ̇x(F̂ (y|x))

= φ′
x(F (y|x))

[ ˙̂
F (y|x)− Ḟ (y|x)

]
+
[
φ′
x(F̂ (y|x))− φ′

x(F (y|x))
] ˙̂
F (y|x)

+φ̇′
x(α(x, y))

[
F̂ (y|x)− F (y|x)

]
,

where α(x, y) is between F̂ (y|x) and F (y|x). From here we can write

˙̂
F (y|x)− Ḟ (y|x) =

1

φ′
x(F (y|x))

{
−

[
φ′
x(F̂ (y|x))− φ′

x(F (y|x))
] ˙̂
F (y|x)

−φ̇′
x(α(x, y))

[
F̂ (y|x)− F (y|x)

]
+

∂

∂x

[
U(x, y)− Un(x, y)

]}
.

Hence,

[ ˙̂
F (y|x)− Ḟ (y|x)

][
1 +

φ′
x(F̂ (y|x))− φ′

x(F (y|x))

φ′
x(F (y|x))

]
(A.8)

=
1

φ′
x(F (y|x))

{
−

[
φ′
x(F̂ (y|x))− φ′

x(F (y|x))
]
Ḟ (y|x)

−φ̇′
x(α(x, y))

[
F̂ (y|x)− F (y|x)

]
+

∂

∂x

[
U(x, y)− Un(x, y)

]}
.

Hence, it follows from Proposition 3.1 and the conditions on φx that the statement of the

proposition follows provided we can show that

sup
x∈RX

sup
y≤T̃x

∣∣∣ ∂
∂x

[Un(x, y)− U(x, y)]
∣∣∣ = O((nh3

n)
−1/2(log n)1/2) a.s.
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Consider

∂

∂x

[
U(x, y)− Un(x, y)

]
=

∂

∂x

[
−

∑

Ti≤y,∆i=1

{
φx

(
Ĥ(T−

i |x)
)
− φx

(
Ĥ(T−

i |x)−Wni(x, hn)
)}

+
∑

Ti≤y,∆i=1

φ′
x

(
Ĥ(Ti|x)

)
Wni(x, hn)

]

−
∂

∂x

[∫ y

−∞

φ′
x

(
Ĥ(s|x)

)
dĤu(s|x)−

∫ y

−∞

φ′
x

(
H(s|x)

)
dHu(s|x)

]

:= Q1(x, y) +Q2(x, y).

The second term Q2(x, y) can be further decomposed in the sum of three terms :

Q
(1)
2 (x, y) = −

∂

∂x

∫ y

−∞

[
φ′
x

(
Ĥ(s|x)

)
− φ′

x

(
H(s|x)

)]
dHu(s|x),

Q
(2)
2 (x, y) =

∂

∂x

∫ y

−∞

φ′
x

(
H(s|x)

)
d
[
Hu(s|x)− Ĥu(s|x)

]
,

Q
(3)
2 (x, y) = −

∂

∂x

∫ y

−∞

[
φ′
x

(
Ĥ(s|x)

)
− φ′

x

(
H(s|x)

)]
d
[
Ĥu(s|x)−Hu(s|x)

]
.

We will show that Q
(1)
2 (x, y) is of the desired order. The terms Q

(2)
2 (x, y) and Q

(3)
2 (x, y) can

be dealt with in a similar way with additional use of integration by parts. Write

Q
(1)
2 (x, y)

= −

∫ y

−∞

[
φ′′
x

(
Ĥ(s|x)

) ˙̂
H(s|x) + φ̇′

x

(
Ĥ(s|x)

)
− φ′′

x

(
H(s|x)

)
Ḣ(s|x)− φ̇′

x

(
H(s|x)

)]
hu(s|x)ds

−

∫ y

−∞

[
φ′
x

(
Ĥ(s|x)

)
− φ′

x

(
H(s|x)

)] ∂

∂x
hu(s|x)ds

= −

∫ y

−∞

{
φ′′
x

(
Ĥ(s|x)

)[ ˙̂
H(s|x)− Ḣ(s|x)

]
+ φ(3)

x

(
α1(x, s)

)[
Ĥ(s|x)−H(s|x)

]
Ḣ(s|x)

+φ̇′′
x

(
α2(x, s)

)[
Ĥ(s|x)−H(s|x)

]}
hu(s|x)ds

−

∫ y

−∞

φ′′
x

(
α3(x, s)

)[
Ĥ(s|x)−H(s|x)

] ∂

∂x
hu(s|x)ds,

where αj(x, s) is between H(s|x) and Ĥ(s|x) (j = 1, 2, 3). From assumption (A4) we know

that supx∈RX
supy≤T̃x

|φ′′
x(H(y|x))| < ∞ and similarly for φ

(3)
x and φ̇′′

x. Hence, it follows

from Proposition 1 in Akritas and Van Keilegom (2001) that supx∈RX
supy≤T̃x

|Q
(1)
2 (x, y)| =

O((nh3
n)

−1/2(log n)1/2) a.s.

To finish the proof it remains to show that Q1(x, y) is of the desired order. We use

the abbreviated notation Ĥ ix = Ĥ(Ti|x), Ĥ i−x = Ĥ(T−
i |x) and similarly for

˙̂
H ix and

˙̂
H i−x.
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Write

Q1(x, y)

= −
∑

Ti≤y,∆i=1

{
φ̇x

(
Ĥ i−x

)
+ φ′

x

(
Ĥ i−x

) ˙̂
H i−x − φ̇x

(
Ĥ ix

)
− φ′

x

(
Ĥ ix

) ˙̂
H ix

}

+
∑

Ti≤y,∆i=1

{
φ̇′
x

(
Ĥ ix

)
Wni(x, hn) + φ′

x

(
Ĥ ix

)
Ẇni(x, hn) + φ′′

x

(
Ĥ ix

)
Wni(x, hn)

˙̂
H ix

}

= −
∑

Ti≤y,∆i=1

{
φ̇′
x

(
Ĥ ix

)
Wni(x, hn) +

1

2
φ̇′′
x

(
α1(x, i)

)
W 2

ni(x, hn)

+φ′
x

(
Ĥ i−x

)
Ẇni(x, hn) + φ′′

x

(
Ĥ ix

)
Wni(x, hn)

˙̂
H ix +

1

2
φ(3)
x

(
α2(x, i)

)
W 2

ni(x, hn)
˙̂
H ix

}

+
∑

Ti≤y,∆i=1

{
φ̇′
x

(
Ĥ ix

)
Wni(x, hn) + φ′

x

(
Ĥ ix

)
Ẇni(x, hn) + φ′′

x

(
Ĥ ix

)
Wni(x, hn)

˙̂
H ix

}

= −
∑

Ti≤y,∆i=1

{
1

2
φ̇′′
x

(
α1(x, i)

)
W 2

ni(x, hn) + φ′′
x

(
α3(x, i)

)
Ẇni(x, hn)Wni(x, hn)

+
1

2
φ(3)
x

(
α2(x, i)

)
W 2

ni(x, hn)
˙̂
H ix

}
, (A.9)

where αj(x, i) is between Ĥ ix and Ĥ i−x (j = 1, 2, 3). From Proposition 1 in Akritas and

Van Keilegom (2001) it follows that infx∈RX
mini:Ti≤T̃x

αj(x, i) > 0 for j = 1, 2, 3 and for n

large enough. This together with assumption (A4) implies that

sup
x∈RX ,y≤T̃x

|Q1(x, y)| ≤ C1

n∑

i=1

W 2
ni(x, hn) + C2

n∑

i=1

|Ẇni(x, hn)|Wni(x, hn)

for some 0 < C1, C2 < ∞. The first term is of the order O((nhn)
−1) a.s. because

maxi supx∈RX
Wni(x, hn) = O((nhn)

−1) a.s., whereas the second term is O((nh2
n)

−1) =

O((nh3
n)

−1/2(log n)1/2) a.s., since maxi supx∈RX
|Ẇni(x, hn)| = O((nh2

n)
−1) a.s.

Proof of Proposition 3.3. When |x − x′| ≥ hn, then Proposition 3.3 is trivially true. In

what follows we consider the case when |x− x′| < hn. By using decomposition (A.8) we can

easily see that

∣∣∣ ˙̂F (y|x)− Ḟ (y|x)−
˙̂
F (y|x′) + Ḟ (y|x′)

∣∣∣|x− x′|−δ

≤
∣∣∣Q1(x, y)−Q1(x

′, y)
∣∣∣|x− x′|−δ +

∣∣∣Q2(x, y)−Q2(x
′, y)

∣∣∣|x− x′|−δ (A.10)

+O((nh1+2δ
n )−1/2(log n)1/2) a.s.,
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where Q1(x, y) and Q2(x, y) are defined in the proof of the previous proposition. For the

first term on the right hand side of (A.10) we use (A.9), which leads to

Q1(x, y)−Q1(x
′, y)

= −
∑

Ti≤y,∆i=1

{
1

2
φ̇′′
x

(
α1(x, i)

)
W 2

ni(x, hn)−
1

2
φ̇′′
x′

(
α1(x

′, i)
)
W 2

ni(x
′, hn) (A.11)

+φ′′
x

(
α3(x, i)

)
Ẇni(x, hn)Wni(x, hn)− φ′′

x′

(
α3(x

′, i)
)
Ẇni(x

′, hn)Wni(x
′, hn)

+
1

2
φ(3)
x

(
α2(x, i)

)
W 2

ni(x, hn)
˙̂
H(Ti|x)−

1

2
φ
(3)
x′

(
α2(x

′, i)
)
W 2

ni(x
′, hn)

˙̂
H(Ti|x

′)

}
.

By adding and subtracting terms we can see that the sum of the first two terms of (A.11)

equals

−
1

2

∑

Ti≤y,∆i=1

[
φ̇′′
x

(
α1(x, i)

)
− φ̇′′

x′

(
α1(x

′, i)
)]
W 2

ni(x, hn)

−
1

2

∑

Ti≤y,∆i=1

φ̇′′
x′

(
α1(x

′, i)
)
[W 2

ni(x, hn)−W 2
ni(x

′, hn)],

which under assumption (A4) when multiplied with |x−x′|−δ is of the orderO((nh1+δ
n )−1) a.s.

In a similar way we can show the order of the other terms of (A.11).

By straightforward algebra and assumption (A4) the second term on the right hand side

of (A.10) can be written in terms of
∣∣ ˙̂H(y|x)− Ḣ(y|x)−

˙̂
H(y|x′) + Ḣ(y|x′)

∣∣|x− x′|−δ, which

by Lemma 4.2 in Van Keilegom and Akritas (1999) is of the desired order.

Lemma A.1. Under the assumptions of Proposition 3.4, we have

sup
x∈RX

sup
y≤T̃x

∣∣∣∣
∫ y

−∞

[
φ′
x(Ĥ(t|x))−φ′

x(H(t|x))
]
d
[
Ĥu(t|x)−Hu(t|x)

]∣∣∣∣ = O
(
(nhn)

−3/4(logn)3/4
)
a.s.

Proof. First note that it follows from Lemma 4.4 in Du and Akritas (2002) that

sup
x∈RX

sup
|M(y2)−M(y1)|≤an

∣∣∣Ĥ(y2|x)−H(y2|x)− Ĥ(y1|x) +H(y1|x)
∣∣∣

= O
(
(nhn)

−3/4(log n)3/4
)
a.s., (A.12)

where an = O
(
(nhn)

−1/2(log n)1/2
)
and M = M1 + M3, and where the functions M1 and

M3 come from assumption (A6). Equality (A.12) also holds for Hu with the function M =

M2+M4. Note that the result in Du and Akritas (2002) is in fact slightly less general, since

they impose that y1 and y2 are bounded by some finite T , but it is easy to see that this is by

no means necessary. Further note that after redefining the functionM asM := M1+...+M4,

equality (A.12) holds for both H and Hu.
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Now, because of assumption (A6) we can partition IR into m = Ca−1
n subintervals [ti, ti+1]

such that |M(ti+1)−M(ti)| ≤ an. Consequently, we have

sup
x∈RX

sup
y≤T̃x

∣∣∣∣
∫ y

−∞

[
φ′
x

(
Ĥ(t|x)

)
− φ′

x

(
H(t|x)

)]
d
[
Ĥu(t|x)−Hu(t|x)

]∣∣∣∣

≤ sup
x∈RX

sup
y≤T̃x

∣∣∣∣
k(y)∑

i=2

∫ ti

ti−1

[
φ′
x

(
Ĥ(t|x)

)
− φ′

x

(
H(t|x)

))]
d
[
Ĥu(t|x)−Hu(t|x)

]

+

∫ y

tk(y)

[
φ′
x

(
Ĥ(t|x)

)
− φ′

x

(
H(t|x)

)]
d
[
Ĥu(t|x)−Hu(t|x)

]∣∣∣∣

:= sup
x∈RX

sup
y≤T̃x

∣∣αn1(x, y) + αn2(x, y)
∣∣,

where tk(y) ≤ y < tk(y)+1. The term αn2(x, y) can be treated in the same way as αn1(x, y), so

we will restrict ourselves to showing that supx∈RX
supy≤T̃x

|αn1(x, y)| = O
(
(nhn)

−3/4(logn)3/4
)

a.s. Write

sup
x∈RX

sup
y≤T̃x

|αn1(x, y)|

≤ sup
x∈RX

m(x)∑

i=2

∣∣∣∣
∫ ti

ti−1

[
φ′
x

(
Ĥ(t|x)

)
− φ′

x

(
H(t|x)

)
− φ′

x

(
Ĥ(ti|x)

)
+ φ′

x

(
H(ti|x)

)]

d
[
Ĥu(t|x)−Hu(t|x)

]∣∣∣∣

+ sup
x∈RX

m(x)∑

i=2

∣∣∣∣
[
φ′
x

(
Ĥ(ti|x)

)
− φ′

x

(
H(ti|x)

)] ∫ ti

ti−1

d
[
Ĥu(t|x)−Hu(t|x)

]∣∣∣∣,

where m(x) is such that tm(x) ≤ T̃x < tm(x)+1. Using the notation Jx
an = {(t1, t2) : M(t2)−

M(t1) < an, t1, t2 ≤ T̃x}, we have

sup
x∈RX

sup
y≤T̃x

|αn1(x, y)|

≤ 2 sup
x∈RX

sup
(t1,t2)∈Jx

an

∣∣∣φ′
x

(
Ĥ(t1|x)

)
− φ′

x

(
H(t1|x)

)
− φ′

x

(
Ĥ(t2|x)

)
+ φ′

x

(
H(t2|x)

)∣∣∣

+Ca−1
n sup

x∈RX

sup
t∈Jx

an

∣∣∣φ′
x

(
Ĥ(t|x)

)
− φ′

x

(
H(t|x)

)∣∣∣

× sup
x∈RX

sup
|M(y2)−M(y1)|≤an

∣∣∣Ĥu(t1|x)−Hu(t1|x)− Ĥu(t2|x) +Hu(t2|x)
∣∣∣

:= αn11 + αn12.

After applying a Taylor expansion we can bound the second term on the right hand side :

|αn12| ≤ Ca−1
n sup

x∈RX

sup
t≤T̃x

∣∣∣φ′′
x(ξt,x)

∣∣∣ sup
x∈RX

sup
t∈IR

∣∣∣Ĥ(t|x)−H(t|x)
∣∣∣

× sup
x∈RX

sup
|M(y2)−M(y1)|≤an

∣∣∣Ĥu(t1|x)−Hu(t1|x)− Ĥu(t2|x) +Hu(t2|x)
∣∣∣,
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where ξt,x is between H(t|x) and Ĥ(t|x). By Proposition 1 in Akritas and Van Keilegom

(2001) we know that for n large enough there is γ > 0 such that infx∈RX ,t≤T̃x
|ξt,x| > γ

a.s., from where we have that supx∈RX ,t≤T̃x
|φ′′

x(ξt,x)| is a.s. finite. Now, by using Proposition

1 in Akritas and Van Keilegom (2001) and (A.12) to bound the second and third factor

respectively, we get that αn12 is of the desired order O
(
(nhn)

−3/4(logn)3/4
)
a.s. By again

applying a Taylor expansion, we can bound αn11 :

|αn11| ≤ 2 sup
x∈RX

sup
(t1,t2)∈Jx

an

∣∣∣φ′′
x

(
H(t1|x)

)[
Ĥ(t1|x)−H(t1|x)

]

−φ′′
x

(
H(t2|x)

)[
Ĥ(t2|x)−H(t2|x)

]∣∣∣

+ sup
x∈RX

sup
(t1,t2)∈Jx

an

∣∣∣φ(3)
x

(
ξt1,x

)[
Ĥ(t1|x)−H(t1|x)

]2

−φ(3)
x

(
ξt2,x

)[
Ĥ(t2|x)−H(t2|x)

]2∣∣∣, (A.13)

where ξt,x is between Ĥ(t|x) and H(t|x). Following the same argument as for αn12, we have

that supx∈RX ,t≤T̃x
|φ

(3)
x (ξt,x)| is a.s. finite. Now, we can conclude that the second term on the

right hand side of (A.13) is of the order O
(
(nhn)

−1 logn
)
a.s. by Proposition 1 in Akritas

and Van Keilegom (2001). For the first term on the right hand side, we add and subtract

terms followed by a Taylor expansion, and obtain the following bound :

2 sup
x∈RX

sup
(t1,t2)∈Jx

an

∣∣∣φ′′
x

(
H(t1|x)

)[
Ĥ(t1|x)−H(t1|x)− Ĥ(t2|x) +H(t2|x)

]∣∣∣

+2 sup
x∈RX

sup
(t1,t2)∈Jx

an

∣∣∣φ(3)
x

(
ξt1,t2,x

)[
H(t2|x)−H(t1|x)

][
Ĥ(t2|x)−H(t2|x)

]∣∣∣,

where ξt1,t2,x is between H(t1|x) and H(t2|x). Following an analogous reasoning as before we

conclude that supx∈RX ,t≤T̃x
|φ′′

x(H(t|x))| and supx∈RX
sup(t1,t2)∈Jx

an
|φ

(3)
x (ξt1,t2,x)| are a.s. finite.

The second term above is of the order O
(
(nhn)

−1 logn
)
a.s. by the definition of Jx

an and

Proposition 1 in Akritas and Van Keilegom (2001). The first term is of the desired order

O
(
(nhn)

−3/4(logn)3/4
)
a.s. thanks to (A.12).

Proof of Proposition 3.4. Using a similar decomposition as in the proof of Theorem 1 in

Braekers and Veraverbeke (2005), we can write

F̂ (y|x)− F (y|x)

=
n∑

i=1

Wni(x, hn)g(Ti,∆i, y|x) +Rn1(y|x) +Rn2(y|x) +Rn3(y|x) +Rn4(y|x),

where we refer to the aforementioned paper for the precise definition of the remainder terms

Rnj(y|x) (j = 1, 2, 3, 4). We can easily show that the terms Rn1(y|x), Rn2(y|x) and Rn3(y|x)
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are uniformly of the order O
(
(nhn)

−1 log n
)
a.s. by following the same arguments as in

the proof of Theorem 1 in Braekers and Veraverbeke (2005). In fact, the most important

difference with their proof is that we use Proposition 1 in Akritas and Van Keilegom (2001)

(which gives the rate of convergence of Ĥ(y|x) − H(y|x) uniformly in x and y) instead of

Lemma A.4 in Van Keilegom and Veraverbeke (1997b) (which gives the same result but for

Gasser-Müller weights and for a fixed value of x). The order of the remainder term Rn4(y|x)

is given by O
(
(nhn)

−3/4(log n)3/4
)
a.s. uniformly in x and y ≤ T̃x by Lemma A.1.

This together with the uniform rate of convergence of F̂ (y|x)−F (y|x) given in Proposition

3.1, entails that

sup
x∈RX

sup
y≤T̃x

∣∣∣
n∑

i=1

Wni(x, hn)g(Ti,∆i, y|x)
∣∣∣ = O

(
(nhn)

−1/2(log n)1/2
)
a.s.,

and hence

F̂ (y|x)− F (y|x)

=
1

nhnfX(x)

n∑

i=1

K
(x−Xi

hn

)
g(Ti,∆i, y|x) +O

(
(nhn)

−3/4(logn)3/4
)
,

since supx |f̂X(x)− fX(x)| = O
(
(nhn)

−1/2(log n)1/2
)
a.s. This finishes the proof.

Proof of Proposition 3.5. For every x ∈ RX we can write

m̂(x)−m(x) =

∫ 1

0

∫ +∞

−∞

I(F−1(s|x) ≤ t ≤ F̂−1(s|x))I(F̂−1(s|x) > F−1(s|x)) dt J(s) ds

−

∫ 1

0

∫ +∞

−∞

I(F̂−1(s|x) ≤ t ≤ F−1(s|x))I(F̂−1(s|x) ≤ F−1(s|x)) dt J(s) ds

=

∫ +∞

−∞

∫ F (t|x)

F̂ (t|x)

I(F̂−1(s|x) > F−1(s|x))J(s) ds dt

−

∫ +∞

−∞

∫ F̂ (t|x)

F (t|x)

I(F̂−1(s|x) ≤ F−1(s|x))J(s) ds dt

=

∫ +∞

−∞

∫ F (t|x)

F̂ (t|x)

J(s) ds dt

=

∫ +∞

−∞

[
L(F (t|x))− L(F̂ (t|x))

]
dt,

where L(u) =
∫ u

0
J(s)ds for all 0 ≤ u ≤ 1. Using the substitution t = F−1(s|x) we get

m̂(x)−m(x) =

∫ 1

0

[
L(s)− L(F̂ (F−1(s|x)|x))

]
dF−1(s|x)

=

∫ 1

0

[
L(s)− L(F̂ (F−1(s|x)|x))

] 1

f
(
F−1(s|x)|x

)ds.
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Finally, by using a Taylor expansion, it follows that

sup
x∈Rx

|m̂(x)−m(x)|

≤
[

inf
x∈RX

inf
s0≤s≤s1

f
(
F−1(s|x)|x

)]−1

sup
s0≤s≤s1

J(s) sup
x∈Rx

sup
F−1(s0|x)≤y≤F−1(s1|x)

∣∣F̂ (y|x)− F (y|x)
∣∣.

Note that for all x, [F−1(s0|x), F
−1(s1|x)] ⊂ (−∞, T̃x], since s1 ≤ infx F (T̃x|x) by assumption

(A2). The result now follows by using again assumption (A2) together with Proposition 3.1.

Part (b) can be shown in a similar way.

Proof of Proposition 3.6. The proof is very analogous to the proof of Proposition 4.6 in

Van Keilegom and Akritas (1999). The only difference is that we use our Proposition 3.2 for

the uniform rate of convergence of
˙̂
F (y|x)− Ḟ (y|x), whereas they use the second statement

of their Proposition 4.3.

Proof of Proposition 3.7. We follow exactly the same steps as in the proof of Proposition

4.7 in Van Keilegom and Akritas (1999), with the only exception that instead of using their

Proposition 4.4, we use our Proposition 3.3.

Proof of Proposition 3.8. Using the notation L(u) =
∫ u

0
J(s)ds we write

m̂(x)−m(x)

= −

∫ +∞

−∞

[
L
(
F̂ (y|x)

)
− L

(
F (y|x)

)]
dy

= −

∫ +∞

−∞

J
(
F (y|x)

)[
F̂ (y|x)− F (y|x)

]
dy +

1

2

∫ +∞

−∞

J ′
(
β(x, y)

)[
F̂ (y|x)− F (y|x)

]2
dy,

with β(x, y) between F̂ (y|x) and F (y|x). By Proposition 3.1, the second term above is

O
(
(nhn)

−1 logn
)
a.s. Using Proposition 3.4, the first term can be written as

−
1

nhnfX(x)

n∑

i=1

K
(x−Xi

hn

)∫ +∞

−∞

J
(
F (y|x)

)
g(Ti,∆i, y|x)dy

+

∫ +∞

−∞

J
(
F (y|x)

)
Rn(y|x)dy a.s.

The rate of convergence of the last term above is O
(
(nhn)

−3/4(log n)3/4
)
a.s., which completes

the proof for part (a).
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To prove the second assertion in Proposition 3.8, we mimic Van Keilegom and Akritas

(1999) and write

σ̂(x)− σ(x) =
σ̂2(x)− σ2(x)

2σ(x)
−

[
σ̂(x)− σ(x)

]2

2σ(x)
.

It follows from Proposition 3.5 that the second term above is O
(
(nhn)

−1 logn
)
a.s. uniformly

in x ∈ RX . For the first term, we have similarly as in the proof of part (a),

σ̂2(x)− σ2(x) =

∫ 1

0

[
F̂−1(s|x)2 − F−1(s|x)2

]
J(s)ds−

[
m̂2(x)−m2(x)

]

=−2

∫ +∞

−∞

[
L
(
F̂ (y|x)

)
− L

(
F (y|x)

)]
ydy −

[
m̂2(x)−m2(x)

]
. (A.14)

Now, by a Taylor expansion we have

∫ +∞

−∞

[
L
(
F̂ (y|x)

)
− L

(
F (y|x)

)]
ydy

=

∫ +∞

−∞

J
(
F (y|x)

)[
F̂ (y|x)− F (y|x)

]
ydy

+
1

2

∫ +∞

−∞

J
(
γ(x, y)

)[
L
(
F̂ (y|x)

)
− L

(
F (y|x)

)]2
ydy

= −
1

nhnfX(x)

n∑

i=1

∫ +∞

−∞

J
(
F (y|x)

)
K
(x−Xi

hn

)
g
(
Ti,∆i, y|x

)
ydy

+O
(
(nhn)

−3/4(logn)3/4
)
a.s., (A.15)

where γ(x, y) is between F (y|x) and F̂ (y|x). In the above, the second equality follows from

Proposition 3.1 and by using the same reasoning as at the end of part (a) of this proof. Next,

we write

m̂2(x)−m2(x) (A.16)

= 2m(x)
[
m̂(x)−m(x)

]
+
[
m̂(x)−m(x)

]2

= −
2m(x)

nhnfX(x)

n∑

i=1

K
(x−Xi

hn

)∫ +∞

−∞

J
(
F (y|x)

)
g
(
Ti,∆i, y|x

)
dy

+O
(
(nhn)

−3/4(log n)3/4
)
a.s.,

with the last equality following from part (a) and from Proposition 3.5(a). Combining (A.14),

(A.15) and (A.16), we get the result.
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