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1 Introduction

Censored data appear in a broad variety of research studies with practical applications. Random

right censoring is one of the most common types of censoring. For example in medical, economic

or engineering studies, it frequently happens that the variable of interest T is only partially

observed due to the earlier occurrence of a censoring event. In such studies, the estimation

of the probability density and hazard function of T has received considerable attention in the

literature, as it allows to visualize and explore the distribution of data.

In this paper we wish to estimate the density and hazard function when T is subject to

right censoring, by using a hybrid estimation method that has at the same time nonparametric

and parametric ingredients. These two extremal estimation approaches have rather opposite

characteristics. The fully parametric approach is accurate and powerful when the parametric

family is correctly chosen, otherwise it can lead to incorrect inference. The fully nonparametric

approach includes several methods, among which the popular kernel smoothing procedure. It

is very flexible, since it does not rely on any restrictive assumptions about the form of the

underlying density or hazard function. However, the resulting estimator has typically a slower

rate of convergence.

In the case where the data are not subject to censoring, there is a large variety of approaches

to estimate the density and the hazard function that are either semiparametric or that use

aspects from both the nonparametric and the parametric school, and that are hence situated in

between these two extreme approaches. One of these approaches is the parametrically guided

nonparametric estimator proposed by Hjort and Glad (1995). Apart from reducing the bias

compared to the classical kernel approach, the parametrically guided nonparametric approach

allows for a theoretically unbiased estimator, which is impossible with the classical kernel

approach. The basic idea of this approach is to start with any parametric density estimator

and then to adjust this first stage parametric approximation using a nonparametric kernel-type

estimator of a particular correction factor. More precisely, the key identity underlying the

parametrically guided nonparametric approach is

f(t) = fθ̂(t)rθ̂(t),

where rθ̂(t) = f(t)
f
θ̂
(t)

, fθ̂(t) is a first stage parametric density approximation and θ̂ is an estimator

of the least false value θ∗ according to a certain distance measure between f(·) and fθ(·) (see As-

sumption 3.3, below). Hjort and Glad (1995) defined the parametrically guided nonparametric
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estimator by

f̂θ̂(t) = fθ̂(t)r̂θ̂(t), (1.1)

where r̂θ̂(·) is a kernel-type nonparametric estimator of the correction factor rθ̂(·). Essentially,

this multiplicative correction does not affect the variance but can reduce the bias. The intuitive

idea behind this approach is that if the parametric estimator fθ̂(·) is close to the true density

f(·), the multiplicative correction function rθ̂(·) will be smoother than the true density f(·) and

therefore simpler to estimate using kernel smoothing, resulting in an improved f̂θ̂(·) compared

to the traditional kernel estimator. If the true density is far from the parametric estimator,

then there is not much loss in accuracy for the parametrically guided nonparametric estimator.

The aim of this paper is to extend their method to the case of censored data. To the best

of our knowledge, except for the recent work of Talamakrouni et al. (2014), who studied a

guided local linear estimator of a regression function when the response is subject to censoring,

the parametrically guided nonparametric method has never been investigated in the context of

censored data. In addition to studying the estimation of the density function, we also propose

and study a parametrically guided nonparametric estimator of the hazard rate function in the

presence of censoring.

Apart from the above parametrically guided nonparametric estimator of Hjort and Glad

(1995), there have been other proposals in the literature that combine the nice features of both

the parametric and the nonparametric approach. These methods are quite different but can

also achieve bias reduction compared to the fully nonparametric method. As far as we are aware

of, except for the paper of Copas (1995) who adapted a local maximum likelihood estimator to

censored data, none of them has been considered so far in the context of censored data. First

of all, we find the projection pursuit density estimation developed by Friedman et al. (1984)

for a multivariate density using a similar multiplicative correction. Hjort (1986) and Buckland

(1992) introduced similar ideas using an estimated orthogonal expansion for the multiplicative

correction factor. Hjort and Jones (1996) proposed a local parametric density estimator based

on a local kernel smoothed likelihood function. This approach has a similar intention as the

approach of Copas (1995) but is somehow more general. Another class of local likelihood

methods has been discussed by Eguchi and Copas (1998). Efron and Tibshirani (1996) combined

the maximum likelihood and the kernel estimator by putting an exponential family through

a kernel estimator. Other semiparametric estimators involving an extra parameter have been

proposed in the literature. For example, Olkin and Spiegelman (1987) and Faraway (1989)
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considered a convex combination of a parametric and a nonparametric estimate, and afterwards,

Naito (2004) constructed a class of semi-parametric estimators using a local L2-fitting criterion

to estimate the correction factor. Finally, more recently, Veraverbeke et al. (2014) discussed a

parametrically pre-adjusted nonparametric density estimator.

Parallel to this vast literature on parametrically guided density estimation, there also exists

a large literature on parametrically guided nonparametric regression. We mention for example

Glad (1998), Martin-Filho et al. (2008) and Fan et al. (2009), among others.

The paper is organized as follows. The next section explains in detail the proposed method-

ology. Section 3 provides some asymptotic results for the proposed estimators, while Section

4 investigates the finite sample properties of the new estimators. In Section 5 we apply the

proposed method to data on the time to return to drug use from a study of the AIDS research

unit of the University of Massachusetts. Finally, some general conclusions are drawn in Section

6. The proofs are collected in the Appendix.

2 Methodology

Let T be a variable of interest with density f and distribution function F , and let C be a

censoring variable with continuous distribution function G. We assume throughout our paper

that T is independent of C. Under random right censoring, the variable T is not completely

observed. One can only observe (X, δ), where X = min(T,C), δ = I(T ≤ C) and I(·) is the

indicator function. Our first objective is to estimate the probability density function f using

the observed i.i.d sample (Xi, δi), i = 1, . . . , n of (X, δ).

The kernel-based density estimator that we are currently investigating has been extended

to censored data by Blum and Susarla (1980), among others. The estimator is based on the

Kaplan-Meier (1958) estimator F̂ of the distribution function F and is defined as follows:

f̂(t) =
1

h

∫ +∞

−∞
K
(t− s

h

)
dF̂ (s), (2.2)

where K is a kernel function, 0 < h ≡ hn is a bandwidth and F̂ (t) is defined by (in the absence

of ties)

F̂ (t) = 1−
∏
i:Xi≤t

(
1− 1∑n

j=1 1{Xj≥Xi}

)δi
. (2.3)

4



We also aim to estimate the hazard function λ(·) defined by λ(t) = f(t)/(1 − F (t)). A

natural nonparametric estimator for the hazard function can be formed by dividing the kernel

density estimator by the Kaplan-Meier estimator of the survival function 1− F (·):

λ̂(t) = f̂(t)/1− F̂ (t).

In this framework, the properties of the kernel density and hazard estimators have been

studied by Blum and Susarla (1980), Földes et al. (1981), Tanner and Wong (1983), Padgett

and McNichols (1984), Mielniczuk (1986), Lo et al. (1989), Xiang (1994) and Giné and Guillou

(2001), among others.

Note that, the kernel estimators defined above are by construction completely nonparamet-

ric. In the uncensored data context, Hjort and Glad (1995) proposed a parametrically guided

kernel density estimator (PGK) as an alternative to the traditional kernel density estimator

(TK). As argued in the introduction, the PGK estimator combines the advantages of both

parametric and nonparametric approaches and includes a prior information that allows the

bias reduction of the PGK estimator compared to the TK estimator.

For censored data, we propose to multiply the first stage parametric estimator fθ̂(t) in ex-

pression (1.1) with the following nonparametric kernel-type estimator of the correction function

rθ̂(t) adapted to censored data:

r̂θ̂(t) =
1

h

∫ +∞

−∞
K
(t− s

h

) 1

fθ̂(s)
dF̂ (s).

The ensuing PGK density estimator is

f̂θ̂(t) =
1

h

∫ +∞

−∞
K
(t− s

h

) fθ̂(t)
fθ̂(s)

dF̂ (s)

=
1

h

n∑
i=1

K
(t−Xi

h

) fθ̂(t)

fθ̂(Xi)
Wi, (2.4)

where Wi is the size of the jump of F̂ at Xi .

Note that when the data are completely observed, the weights W(i) are all equal to 1/n and

the PGK estimator given above reduces to the estimator defined by Hjort and Glad (1995).

Naturally the PGK estimator that we propose for the hazard function λ(·) is

λ̂θ̂(t) = f̂θ̂(t)/(1− F̂ (t)). (2.5)
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As we will see in the following section, the multiplicative correction used in the PGK density

and hazard function estimators does not affect the variance but can reduce the bias compared

to the traditional kernel estimators defined above.

3 Asymptotic results

This section is devoted to the development of the asymptotic normality of the PGK estimators

f̂θ̂(·) and λ̂θ̂(·). For the PGK density estimator, we split the problem into two parts. First,

we establish in Theorem 3.1 the asymptotic normality of f̂∗(·), an estimator of f(·) based on

a given non-random guide f∗(·). Then, in Theorem 3.2, we extend this result to the case of

a data-driven guide. Finally, in Theorem 3.3 we prove the asymptotic normality of the PGK

estimator of the hazard function λ̂θ̂(·).
As stated in the previous section, under random right censoring the PGK estimator depends

on the Kaplan-Meier estimator F̂ , which is defined as a product (see expression (2.3)). This

adds some extra complexity to the PGK estimation approach compared to the uncensored case.

To circumvent these technical difficulties we mainly use the asymptotic i.i.d. representation of

the Kaplan-Meier estimator investigated in Lo et al. (1989).

Let τ < τH , where τH = sup{t : H(t) < 1} is the right endpoint of the distribution function

H(t) = P (X ≤ t). Also, let H1(t) = P (X ≤ t, δ = 1), and define µ2
K =

∫
u2K(u)du. The

kernel function K : R → R, the bandwidth h and the density f(·) are assumed to satisfy the

following conditions for a fixed value t ≤ τ .

Assumption 3.1.

(A.1) The kernel K is a symmetric, continuously differentiable probability density function with

compact support [−1, 1].

(A.2) The bandwidth sequence h satisfies h→ 0 and nh2(log n)−2 →∞.

(A.3) f is twice continuously differentiable in a neighborhood of t and f(t) > 0.
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3.1 Guided kernel density estimator with a fixed guide

Let f∗(t) be a non-random density function that approximates f(t), and let f̂∗(t) be the corre-

sponding PGK estimator defined as

f̂∗(t) =
1

h

∫ +∞

−∞
K

(
t− s
h

)
f∗(t)

f∗(s)
dF̂ (s). (3.6)

In the next section we will replace f∗(·) by the best approximation of f(·) within a certain

parametric class, but for the time being f∗(·) can be any deterministic density.

Note that if f∗(t) would be a uniform density, then f̂∗(t) reduces to the TK estimator,

which means that the PGK estimator is a generalization of the TK estimator. The following

additional conditions are required for a fixed point t ≤ τ at which we want to estimate the

density.

Assumption 3.2.

(B.1) The density f∗(·) is twice continuously differentiable in a neighborhood of t.

(B.2) The density f∗(·) satisfies f∗(t) > 0.

The following theorem provides the asymptotic distribution of the PGK estimator f̂∗(·)
using a non-random guide.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold.

1. Then,

f̂∗(t)− f(t) =
1

nh

n∑
i=1

Uin(t) +
1

h

∫ +∞

−∞
K

(
t− s
h

)
f∗(t)

f∗(s)
dF (s)− f(t) +Op(n

−1/2),

where

Uin(t) =

∫ 1

−1

ξi(t− uh)K ′(u)du,

ξi(t) =

∫ Xi∧t

−∞

dH1(s)

(1−H(s))2
+
I{Xi ≤ t, δi = 1}

1−H(Xi)
.

2. Moreover,

√
nh
(
f̂∗(t)− f(t)−B∗(t) + o(h2)

)
d→ N

(
0, σ2(t)

)
, (3.7)
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where

B∗(t) =
1

2
h2µ2

Kr
′′
∗(t)f∗(t),

r∗(t) = f(t)/f∗(t) and σ2(t) = [f(t)/(1−G(t))]
∫ 1

−1
K2(u)du.

Note that the choice of the guide has an obvious impact on the expression of the asymptotic

bias B∗(t), whilst the variance σ2(t) is invariant under this choice and is the same as for the

TK estimator.

3.2 Guided kernel density estimator with an estimated guide

In this section, we investigate the situation where the guide is derived from the data by

a first stage estimation procedure. We consider a possibly misspecified parametric model

{fθ(·) : θ ∈ Θ} and assume that there exists an estimator θ̂ that converges in probability to a

finite limit θ∗. We need the following additional conditions for a fixed point t ≤ τ .

Assumption 3.3.

(C.1) The parametric density function fθ belongs to a parametrically indexed class defined by

the following characteristics:

1. θ ∈ Θ, where Θ is a compact subset of Rp.

2. The function (t, θ) 7→ fθ(t) is twice continuously differentiable with respect to t and the

components of θ in a neighborhood of t and θ∗.

(C.2) The parameter θ∗ ∈ Θ satisfies the following conditions:

1. θ̂ − θ∗ = Op(n
−1/2).

2. The density fθ∗(·) satisfies fθ∗(t) > 0.

In order to be as general as possible, in this paper, we don’t restrict ourselves to a particular

parametric estimation procedure. However, to illustrate the idea and give an example of an

estimator that satisfies the conditions above, especially assumption (C.2.1), we discuss now the

case of the maximum likelihood estimator (MLE). Define

θ∗ = arg max
θ∈Θ

∫ +∞

−∞
log(fθ(t))dF (t).
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This is the minimizer of KL(f, fθ) =
∫

log f(t)
fθ(t)

dF (t), the Kullback-Leibler distance measure

between the true density f and the parametric density model fθ. If the parametric model is

correct, i.e. if there exists a θ0 ∈ Θ such that f(·) = fθ0(·), then θ∗ = θ0. In the uncensored case,

it is well known that the usual MLE given by θ̂ = arg maxθ∈Θ n
−1
∑

i log(fθ(Xi)) is consistent

for θ∗, even under misspecification. In the censored case, the analogue of θ̂ is the approximate

maximum likelihood estimator (AMLE) proposed by Oakes (1986) and defined as

θ̂ = arg max
θ∈Θ

∫ +∞

−∞
log(fθ(t)) dF̂ (t),

where F̂ (·) is the Kaplan-Meier estimator. Note that, in the uncensored case, the Kaplan-Meier

estimator coincides with the empirical distribution function and therefore the AMLE reduces

to the MLE. The properties of the AMLE estimator have been investigated by Suzukawa et al.

(2001). Assuming that τF := sup{t : F (t) < 1} ≤ τG := sup{t : G(t) < 1} and under certain

regularity assumptions, the authors prove that θ̂ is
√
n−consistent.

Remark 3.1. Even if the data are censored, the usual MLE estimator θ̂ can still be used. How-

ever, under misspecification, this estimator does not convergence to θ∗ but to another quantity;

see Suzukawa et al. (2001) for more details.

The following theorem is the most important result of the paper. It establishes that the

PGK estimator with an estimated guide fθ̂(t) is asymptotically equivalent to the PGK estimator

with the fixed guide fθ∗(t).

Theorem 3.2. Suppose Assumptions 3.1 and 3.3 hold. Then,

√
nh
(
f̂θ̂(t)− f(t)−Bθ∗(t) + o(h2)

)
d→ N

(
0, σ2(t)

)
,

where Bθ∗(t) = 1
2
h2µ2

Kr
′′
θ∗(t)fθ∗(t) and rθ∗(t) = f(t)/fθ∗(t).

First, notice that the expression of the asymptotic variance is independent of the parametric

estimating procedure and is equal to that of the TK estimator. As revealed in the previous

section by Theorem 3.1, the main difference between the behavior of the PGK estimator and

the TK estimator appears in the term of the asymptotic bias Bθ∗(t), which depends on the

parametric guide. Remind that, if the parametric guide is the uniform density, then the PGK

estimator becomes the traditional kernel density estimator and Bθ∗(t) coincides with B(t) =
1
2
h2µ2

Kf
′′(t), the asymptotic bias of the TK estimator; see, for example, Lo et al. (1989). So,
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with an appropriate choice of the guide, i.e. when |r′′θ∗(t)fθ∗(t)| ≤ |f ′′(t)|, the bias of the PGK

estimator will be reduced in absolute value compared to that of the TK estimator, whilst the

variance remains unchanged. If the parametric density is a good guess, then the correction

function rθ∗(·) will be nearly constant and its second derivative r′′θ∗(·) should be very small. In

this case the bias reduction will be attained. Finally, in the ideal case when the parametric

guide coincides with the true density we have that Bθ∗(t) = 0. In such a case, the PGK

estimator is unbiased and one can choose an arbitrarily large bandwidth to reduce the variance

to its minimal possible value, which can never be achieved by the TK estimator even with an

optimal bandwidth.

Remark 3.2. In practice, the choice of the bandwidth is a crucial issue in kernel-based density

estimation. The theoretical optimal bandwidth that minimizes the asymptotic mean integrated

squared error (MISE) criterion is given by

hopt =

( ∫
σ2(t)dt

µ4
K

∫
(r′′θ∗(t)fθ∗(t))2dt

)1/5

n−1/5.

This expression can hardly be used in practice, since it depends on many unknown components.

To select the bandwidth h in our case, one can use for example the least squares cross validation

method or the bootstrap method discussed in Sánchez-Sellero et al. (1999). In our data analysis,

see Section 5, we adopt the cross validation method as discussed in Wang and Wang (2007).

We also point out that, the PGK method will work even if the parametric guide is not

optimally chosen. However, an optimal choice of the parametric guide will improve the quality

of the PGK estimator. One can for example use goodness-of-fit tests to choose the parametric

guide; see for example Castro-Kuriss (2011).

3.3 Guided kernel hazard estimator with an estimated guide

The hazard function λ(·) has been extensively studied in the literature. The estimation by

means of kernel methods has been investigated by Gefeller and Dette (1992), Gefeller and

Michels (1992), Patil (1993), Müller and Wang (1994) and González-Manteiga et al. (1996),

among others. The PGK estimator for the hazard function λ(·) that we proposed in the previous

section is

λ̂θ̂(t) = f̂θ̂(t)/[1− F̂ (t)],
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where f̂θ̂(t) is the PGK density estimator given in (2.4) and F̂ (t) is the Kaplan-Meier estimator.

Note that one can also replace the Kaplan-Meier estimator by a parametrically guided non-

parametric version of the distribution function F or by any other estimator that has parametric

and nonparametric ingredients (see e.g. Veraverbeke et al. (2014), Section 7.1, for an overview

of possible estimators). However, given that the rate of convergence of the estimator of F (t)

will always be faster than the rate of convergence of the density estimator f̂θ̂(t), the choice of

the estimator of F (t) has no impact on the asymptotic distribution of the estimator of λ(t).

For simplicity we therefore estimate F (t) by the Kaplan-Meier estimator F̂ (t).

The following theorem deals with the asymptotic normality of the PGK hazard rate esti-

mator.

Theorem 3.3. Suppose Assumptions 3.1 and 3.3 hold. Then,

√
nh
(
λ̂θ̂(t)− λ(t)− βθ∗(t) + o(h2)

)
d→ N

(
0, τ 2(t)

)
,

where

βθ∗(t) =
1

2
h2µ2

Kr
′′
θ∗(t)fθ∗(t)/[1− F (t)],

and τ 2(t) = [λ(t)/(1−H(t))]
∫
K2(u)du.

As for the density estimator, the asymptotic bias of the PGK hazard rate estimator depends

on the parametric guide, while the asymptotic variance remains unchanged compared to the

TK hazard estimator.

4 Simulation results

In this section we evaluate the finite sample performance of the PGK estimator by means of

Monte Carlo simulations. To check the theoretical results and compare the PGK estimator

with the TK estimator we investigate two examples. In the first example we study the classical

class of normal mixture densities of Marron and Wand (1992), and in the second example

we investigate the Weibull density and perform a comparison with the logspline approach of

Kooperberg and Stone (1991, 1992). Along the simulations we consider the Epanechnikov kernel

function K, and, for every estimator, we only show the results corresponding to the optimal

tuning parameters, i.e. those which minimize the empirical mean squared error (MSE).
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4.1 Normal mixture model

The class of normal mixture densities of Marron and Wand (1992) includes fifteen densities that

cover a broad variety of shapes. In the context of uncensored guided density estimation, this

class was investigated by Hjort and Glad (1994) and Naito (2004), among others. We studied

all the fifteen densities but for the sake of brevity we only show the results of the following

ones: the normal density, #1, the bimodal density, #6, the separated bimodal density, #7,

the asymmetric bimodal density, #8, the trimodal density, #9, the claw density, #10, the

double claw density, #11, the asymmetric double claw density, #13, and the smooth comb

density, #14. See Figure 1 for a plot of all these densities. In each case, independent and

identically distributed variables Ti, i = 1, . . . , 400, are drawn. Independently, we drawn the

censoring variables Ci from the same distribution. This leads to 50% rate of censoring. As for

the parametric guide, we consider a standard normal density whose parameters are estimated

by maximum likelihood. So the first case (#1) is the only situation where the guide is correctly

specified. We compute the PGK and the TK density estimators at t = 0 taking 100 equally

spaced bandwidths over the interval [0.01, 4]. The squared bias (Bias2 × 104), the variance

(Var×104) and the empirical mean squared error (MSE ×104) of each estimator were computed.

Table 1 provides the results with 1000 replications for cases #1,#6,#7,#8,#9,#10,#11,#13,

and #14. As already mentioned, #1 corresponds to the case where the guide is a good guess

of the true density. As expected, in this case, the bias of the PGK estimator is almost zero and

is substantially reduced compared to that of the TK estimator. For cases #8, #9 and #11 the

PGK estimator is significantly better than the TK estimator. For case #10 the MSE becomes

very large and reveals unstable behavior for both estimators. In addition, although the MSE is

not greatly enhanced, the bias and the MSE of the PGK estimator remain the smallest. Cases

#7 and #14 show a quite similar behavior of the PGK and the TK estimators. However, even

if the bias is still reduced, the TK estimator beats the PGK estimator in terms of the MSE,

for cases #6 and #13. Finally, we point out that the selected bandwidths for both competitors

were the same for most of the non-normal situations.

Figure 2 shows how the MSE changes with h for three cases: #1, #10 and #13. As expected,

in case #1, where the guide is correct, the bias is almost zero. In this situation increasing

the bandwidth reduces the MSE of the PGK estimator compared to that of the TK estimator.

For case #10 the parametric guide is well specified and the MSE of the PGK estimator is

significantly reduced especially for large bandwidths. For case #13 the parametric guide is
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completely misspecified and the MSE of the PGK estimator is now larger than that of the TK

estimator for most choices of h. Finally, in all cases, similar behavior of both competitors is

observed for small values of h. This is not surprising since with a small bandwidth only the

X ′is quite close to t are used and the ratio fθ̂(t)/fθ̂(Xi) defined in expression (2.4) is close to 1

in that case.

Figure 1: Standard normal and normal mixture target densities.
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Table 1: Squared bias (×104), Variance (×104), MSE (×104) and the optimal bandwidth h of

the estimators of several normal mixture densities, for samples of size n = 400, with a censoring

rate of 50% and N = 1000 replications.

Method Bias2 Var MSE h

#1 PGK 0.015 4.376 4.391 0.332

TK 3.764 8.556 12.32 0.736

#6 PGK 0.003 2.352 2.355 3.234

TK 0.008 0.350 0.358 1.582

#7 PGK 0.207 0.866 1.073 0.171

TK 0.196 0.860 1.056 0.171

#8 PGK 0.008 3.067 3.075 3.435

TK 2.467 5.372 7.839 0.777

#9 PGK 0.001 2.663 2.664 2.307

TK 3.479 1.161 4.640 0.856

#10 PGK 18.72 135.3 154.0 0.050

TK 19.40 135.1 154.5 0.050

#11 PGK 0.006 2.977 2.983 0.775

TK 37.99 1.590 39.58 0.735

#13 PGK 0.001 1.563 1.564 3.476

TK 0.012 0.305 0.317 1.783

#14 PGK 0.381 1.210 1.591 0.131

TK 0.368 1.204 1.572 0.131
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Figure 2: The MSE as a function of h for cases #1, #10 and #13 for the PGK estimator (solid

curve), the TK estimator (dashed curve), and the parametric guide (dotted curve).

4.2 Weibull density with an exponential guide

In this model, the variable of interest T is generated from a Weibull distribution with a scale

parameter b = 4 and a shape parameter taking three values a = 1, 2, 4. The graphs of the

resulting densities are plotted in Figure 3. The censoring variable is also drawn from a Weibull

distribution with shape parameter a and scale parameter given by b((1 − p)/p)1/a, ensuring

a degree of censoring equal to p. We consider two censoring rates p = 10% and p = 40%,

and two sample sizes n = 150 and n = 400. As a parametric guide we use the exponential

density fθ(t) = θ exp(−θt), where θ is estimated using the approximated maximum likelihood

estimator given by θ̂ = 1/
∑n

i=1W(i)X(i), where X(i) are the ordered values of the observed

variables Xi = min(Ti, Ci) and W(i) is the size of the jump of the Kaplan-Meier estimator at

X(i) (see Suzukawa et al. (2001)). Note that the case a = 1 is the only situation where the guide

is correctly specified. If a 6= 1 then the parametric guide is incorrect and deviates gradually

from the true density. Our goal is to compare the performance of the PGK estimator with

that of the TK estimator and the logspline estimator (LSP) (Kooperberg and Stone (1992)) for

both the density and the hazard function. To this end, we run 1000 simulations and for every

generated data set we calculate the estimators at the point t = 3. We look for the optimal
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bandwidths via a grid on [0.1, 5]. For the LSP estimator we select the optimal number of knots

which minimizes the MSE over a set on {3, . . . , 10}. The results are summarized in Tables 2

and 3 for the density and the hazard function, respectively.

Figure 3: Weibull density with shape parameters a = 1, 2, 4 and scale parameter b = 4.

We start with the simulation results for the density estimators. As expected, with a correct

parametric guide (a = 1) we get the best results for the PGK estimator. The bias of the

PGK estimator is significantly reduced compared to that of the TK and the LSP estimator.

Regarding the MSE, it is also reduced for the PGK estimator compared to the MSE of the

LSP and the TK estimator, except for the case of sample size 150 and censoring rate 40%,

where we observe a slightly larger variance and MSE for the PGK estimator compared to

the TK estimator, but this is corrected with a larger sample size n = 400. For a = 2 and

a = 4, even if the parametric guide is incorrect, the PGK estimator remains significantly better

than the TK estimator, while the LSP estimator has a significantly smaller bias than both

the PGK and the TK estimator. Regarding the variance, as expected, the PGK and the TK

estimator have similar behavior except for the case a = 4 where the TK estimator has a larger

variance. The LSP estimator has in general substantially larger variance and MSE, compared

to the two kernel-based estimators, except for the case a = 2 with sample size 400, where the
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LSP estimator outperforms both kernel-based estimators. In general, the MSE of the PGK

estimator is not substantially reduced compared to that of the TK estimator, because in this

example the variance dominates the bias.

For the hazard function, we computed the PGK, the TK and the LSP estimator using the

same data generating procedure as for density function. The results are summarized in Table

3 and show that the PGK estimator generally outperforms the TK and the LSP estimator

even if the parametric guide is not correctly specified. Note that for both the density and the

hazard function, increasing the sample size enhances the performance of the PGK estimator.

Another point to remark is that for the density and the hazard function, the selected optimal

bandwidths for the PGK and the TK estimator are often close. In addition, we compared the

PGK estimator based on the MLE and the PGK estimator based on the approximate MLE

(AMLE). Simulations not given here show that when the guide is correct the PGK estimator

based on the MLE outperforms the PGK estimator based on the AMLE. This is to be expected,

since in this case the MLE is consistent, while the PGK estimator based on the AMLE behaves

better when the guide is misspecified (see Remark 3.2 and Suzukawa et al. (2001)).

Finally, we compared the performance of the PGK and the TK density estimator at different

time points. We computed both competitors at 100 different equally spaced time points from 0

to 7. We compared the performance for all cases given in Table 2, but, for sake of brevity, we

only show three cases. Figure 4 gives the squared bias, the variance and the MSE as a function

of t for the cases a = 1, 2 and 4, respectively. When the guide is correct (a = 1) the bias of

the PGK estimator is reduced to zero for most values of t. This is not the case for the MSE

because as said before, the variance dominates the bias. For the case a = 2, the bias and the

MSE are reduced considerably for many values of t. In the last case a = 4, the PGK and the

TK estimator behave similarly for most values of t.
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Table 2: Squared bias (×106), Variance (×106), MSE (×106), the optimal bandwidth h and the

optimal number of knots nknot for the estimators of several Weibull densities for a = (1, 2, 4), two

censoring rates p = (10%, 40%), two sample sizes n = (150, 400) and N = 1000 replications.

p 10% 40%

n a Method Bias2 Var MSE h/nknot Bias2 Var MSE h/nknot

150

1 PGK 0.009 114.6 114.6 5 0.579 194.2 194.8 5

TK 23.60 99.70 123.3 5 26.60 153.7 180.3 5

LSP 22.95 162.2 185.2 6 20.97 251.6 272.6 6

2 PGK 99.60 251.1 350.7 3.367 123.7 334.2 457.9 3.713

TK 114.5 274.1 388.6 3.020 152.9 345.7 498.6 3.268

LSP 81.90 332.7 414.6 3 10.90 627.9 638.8 6

4 PGK 98.91 258.1 357.0 3.169 94.40 377.0 471.4 3.268

TK 246.6 514.4 761.0 2.228 303.7 629.2 932.9 2.327

LSP 21.10 835.0 856.1 5 410.2 900.8 1311 4

n a Method Bias2 Var MSE h/nknot Bias2 Var MSE h/nknot

400

1 PGK 0.020 40.58 40.60 5 0.01 68.66 68.67 5

TK 20.63 39.89 60.52 4.802 22.35 58.59 80.94 5

LSP 3.36 55.81 59.17 6 8.340 85.10 93.44 6

2 PGK 50.70 124.8 175.5 2.872 62.80 177.7 240.5 3.020

TK 54.20 146.0 200.2 2.525 75.00 189.3 264.3 2.723

LSP 0.450 150.4 150.9 5 0.778 207.5 208.3 6

4 PGK 44.20 136.3 180.5 2.822 51.80 187.6 239.4 2.921

TK 117.5 293.8 411.3 1.882 141.8 330.5 472.3 1.981

LSP 20.90 319.1 340.0 5 0.523 520.2 520.7 6
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Table 3: Squared bias (×105), Variance (×105), MSE (×105), the optimal bandwidth h and the

optimal number of knots nknot for the estimators of several Weibull hazards for a = (1, 2, 4), two

censoring rates p = (10%, 40%), two sample sizes n = (150, 400) and N = 1000 replications.

p 10% 40%

n a Method Bias2 Var MSE h/nknot Bias2 Var MSE h/nknot

150

1 PGK 0.360 90.77 91.13 5 1.300 145.0 146.3 5

TK 14.69 113.0 127.7 4.901 18.60 168.6 187.2 5

LSP 20.91 73.22 94.13 5 5.430 189.5 194.9 6

2 PGK 37.10 128.0 165.1 3.664 43.90 167.1 211.0 4.010

TK 35.40 166.4 201.8 3.168 52.40 206.9 259.3 3.515

LSP 0.140 179.2 179.3 5 1.105 325.3 326.4 6

4 PGK 24.20 91.4 115.6 3.366 24.70 119.6 144.2 3.465

TK 48.00 169.2 218.2 2.327 71.90 189.4 261.3 2.525

LSP 6.343 258.4 264.7 5 4.548 411.3 415.8 5

n a Method Bias2 Var MSE h/nknot Bias2 Var MSE h/nknot

400

1 PGK 0.190 34.91 35.10 5 0.220 57.13 57.35 5

TK 8.200 47.40 55.60 4.307 13.30 68.50 81.80 4.901

LSP 0.810 41.42 42.23 6 1.860 75.25 77.11 6

2 PGK 17.20 63.50 80.70 3.020 21.80 85.10 106.9 3.218

TK 15.80 80.90 96.70 2.574 22.90 102.3 125.1 2.822

LSP 0.340 66.92 67.26 5 0.870 120.4 121.3 6

4 PGK 10.36 46.39 56.75 2.971 12.06 56.66 68.72 3.070

TK 24.50 87.10 111.6 1.981 26.40 98.70 125.1 2.030

LSP 5.300 101.8 107.1 5 0.800 153.2 154.0 5
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Figure 4: Squared bias, variance and MSE (×104) as a function of t, for the PGK estimator

(solid curve) and the TK estimator (dotted curve). The figures correspond to a = 1 (top), a = 2

(middle) and a = 4 (bottom). The sample size is n = 150 and the proportion of censoring is

p = 0.10.
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5 Application

To illustrate our method with a real dataset, we consider the UIS dataset from the University

of Massachusetts Aids Research Unit (UMARU) IMPACT Study. The goal of this study is to

model time until return to drug use for patients enrolled in two different residential treatment

programs that differed in length (treat=0 is the short program and treat=1 is the long program).

Among a total of 628 observations, there are 120 censored observations, which corresponds to a

censoring rate of 19.12%. The data as well as a detailed description of the study can be found

in Section 1.3 of Hosmer et al. (2008).

As a first step, before proceeding to more complicated analyses, it is always useful to have an

idea about the distribution of the variable of interest without considering explanatory variables.

This basic univariate analysis is given in Section 5.1 and is in general informative but not

sufficient in practice. A more complete analysis including explanatory variables is performed in

a second step as an extension of the PGK method to the Cox model, see Section 5.3 for more

details.

We also explain in Section 5.2 how to obtain confidence intervals for the density and hazard

function.

5.1 Density and hazard estimation for the UIS data

In this section, we use the PGK, the TK and the logspline (LSP) estimator (Kooperberg and

Stone (1992)) for the analysis of the time to return to drug use in the UIS dataset. We

consider the PGK estimator using two different guides, an exponential density and a Weibull

density for which the parameters are estimated using maximum likelihood. For the kernel-based

estimators, we use the Epanechnikov kernel and the choice of the bandwidths is achieved by

a data driven bandwidth selection based on the least squares cross-validation method adapted

to each estimator (see for example Wang and Wang (2007)). The selected bandwidths are:

h = 671.21 for the PGK estimator with an exponential guide, h = 716.66 for the PGK estimator

with a Weibull guide and h = 663.63 for the TK estimator. For the LSP estimator, we specify

that the density equals zero to the left of 0, we use a BIC penalty and a stepwise knot deletion

procedure (see Kooperberg and Stone (1991)), which selected four knots of the original 10

knots.

The plots of the different estimators of the density and the hazard function are given in

Figure 5. From the plot of the hazard function it can be seen that the risk to return to drug
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use increases slowly during the first 200-300 days, after which it decreases to zero. While the

overall shape is the same for all four estimators, there are some absolute differences especially

during the first 400 days. We do not know which estimator is closer to the true curve, but

given the results of our simulation study, we suspect that the TK method has tendency to

either overestimate or underestimate the hazard function and so the real risks to return to drug

use. Finally, concerning the density function we see that the PGK and LSP estimators are

quite close. Moreover, it seems that our PGK estimators remove a considerable part of the

boundary effect on the left endpoint of the distribution compared to the TK estimator.

Figure 5: Estimation of the density and hazard function for the UIS data by means of the

TK estimator (solid curve), the LSP estimator (dot-dashed curve), the PGK estimator with

exponential guide (dashed curve), and the PGK estimator with Weibull guide (dotted curve).

5.2 Asymptotic confidence intervals

Based on the asymptotic normality of our PGK estimators, we construct confidence intervals

for the density and the hazard function of the time to return to drug use for the UIS data. In

order to remove the asymptotic bias, we use the undersmoothing technique; see for example

Horowitz (2001) and Fiorio (2004). The pointwise 100(1 − α)% confidence interval for the
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density function f(t) and the hazard function λ(t) are given respectively by

f̂θ̂(t)± z1−α/2σ̂(t)/
√
nh, λ̂θ̂(t)± z1−α/2τ̂(t)/

√
nh,

where σ̂2(t) = [f̂θ̂(t)/(1 − Ĝ(t))]
∫
K2(u)du, τ̂ 2(t) = [λ̂θ̂(t)/(1 − Ĥ(t))]

∫
K2(u)du, and h =

hoptn
1/5/nτ = 486.36. Here, τ = 1/4 is the undersmoothing parameter, hopt is the optimal

bandwidth selected via the cross-validation method used in the previous section, Ĝ(·) is the

Kaplan Meier estimator of G(·) and Ĥ(·) is the empirical distribution function of H(·). The

undersmoothed PGK density and hazard estimator with exponential guide and their respective

confidence intervals are plotted in Figure 6. After the 500th day, the intervals become larger

because most censoring occurs after this date.

Figure 6: Estimation of the density and hazard function for the UIS data by means of the un-

dersmoothed PGK estimator with exponential guide (solid curve), together with 95% pointwise

asymptotic confidence intervals (dotted curve).

5.3 Extending the PGK estimation to the Cox model

In this section, we extend the PGK method to the estimation of the baseline and the conditional

density and hazard functions in the Cox model. First, the PGK estimator that we propose
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for the baseline hazard function is λ̂θ̂,B(t) = f̂θ̂,B(t)/(1 − F̂B(t)), where F̂B(·) is the baseline

distribution function estimated after fitting a semiparametric Cox model and f̂θ̂,B(t) is the PGK

estimator of the baseline density defined as

f̂θ̂,B(t) =
1

h

n∑
i=1

K
(t−Xi

h

) fθ̂,B(t)

fθ̂,B(Xi)
WBi,

where fθ̂,B(·) is a parametric baseline guide estimated via a parametric proportional hazards

model (PPH) and WBi is the jump size of F̂B(·) at Xi.

Now, to extend the PGK estimator to the conditional survival and hazard function, we

propose the following estimators:

λ̂θ̂(t | Z) = λ̂θ̂,B(t) exp(Ztβ̂), Ŝθ̂(t | Z) = exp
(
−
∫ t

0

λ̂θ̂(s | Z)ds
)
,

where Z is a vector of covariates and β̂ are the estimated parameters of the Cox model using

the partial likelihood maximization.

We apply the proposed estimators to the UIS data. In addition to the time to return to drug

use, we now consider Z = (Z1, Z2, Z3, Z4) a vector of four covariates: Z1 is the age in years, Z2

is the drug use history (1=never, 2=previous, 3=recent), Z3 is the number of prior drug treat-

ments at admission, and Z4 is the treatment randomization assignment (0=short, 1=long). As

parametric guide, we use a Weibull baseline density estimated after fitting a PPH model. The

bandwidth is selected as before using the cross-validation method. The selected bandwidth is

hcv = 590. Figure 7 shows the plots of the PGK baseline density and hazard estimators. We see

that, except for the beginning of the study, the estimators are monotonically decreasing, mean-

ing that at the start of the study the participants are at high risk to restart using drugs. The

estimated parameters for the fitted Cox model are β̂ = (−0.030, 0.208, 0.029,−0.235). Based on

this model, we conclude that increasing the participant age or the treatment period reduces the

risk of returning to drug use, while increasing the drug use history or the number of previous

treatments increases the risk of returning to drug use. Since the parametric guide has no effect

on the asymptotic distribution of β̂, asymptotic confidence intervals can be computed as in

the classical Cox model. We investigated pointwise confidence intervals for every parameter.

Note that all parameters are significant but for sake of brevity we only give the 95% pointwise

confidence interval for the parameter β4, which is [−0.42,−0.05] and shows a significant effect

of the treatment randomization assignment on the risk to return to drug use. Figure 8 shows

the plots of the PGK conditional survival and hazard function estimators for Z = (36, 2, 1, 1).
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It appears from the plot of the conditional survival function that for a participant aged 36

years, receiving a long treatment, with a previous history of drug use and one prior treatment,

the median time to return to drug use is about 200 days.

Figure 7: Estimation of the baseline density and hazard function in the Cox model for the UIS

data, by means of the PGK estimator with Weibull guide.

Figure 8: Estimation of the conditional survival and hazard function in the Cox model for

the UIS data, by means of the PGK estimator with Weibull guide. The covariate equals

Z = (36, 2, 1, 1).
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6 Conclusion

In this paper, we extended the parametrically guided kernel density and hazard estimators to

the censored data framework. The proposed estimators are obtained by multiplying an initial

parametric estimator by a nonparametric kernel type estimator of a certain correction function.

We established the asymptotic normality of the proposed estimators and obtained asymptotic

expressions of the bias and variance. Under certain regularity conditions, we proved that

the bias of the proposed estimator can be reduced compared to that of the traditional kernel

estimator, while the variance does not change. Simulations confirmed the theoretical results

and provide the following remarks for the density and the hazard functions: the PGK estimator

with censored data outperforms the TK estimator if the parametric guide is equal or close to the

true target function and performs as the TK estimator if the parametric guide is misspecified.

The comparison to the logspline estimator shows that the PGK estimator is generally better

in terms of the MSE. The application of the PGK estimator to the UIS dataset reveals that,

in addition to bias reduction, the estimator also seems to correct in an automatic way for

possible boundary effects. Moreover, confidence intervals and an extension to the Cox model

are developed and applied to the UIS data.

Finally, as pointed out by Hjort and Glad (1995) in the uncensored case, the advantages

of the multiplicative PGK method come with some drawback caused by the correction factor

fθ̂(t)/fθ̂(X(i)), see equation (2.4). Small values of fθ̂(X(i)) may affect the numerical stability

of the resulting estimator especially with a “large” bandwidth and this affects also the MSE.

One may correct for this by adding a small ε to both the numerator and the denominator or

by adopting an additive parametric correction (instead of a multiplicative one). This method

is under investigation and will be the subject of a future publication.

7 Appendix

Proof of Theorem 3.1. The PGK density estimator based on the non random parametric

guide f∗(·) can be decomposed as follows:

f̂∗(t)− f(t) = (f̂∗(t)− f̃(t)) + (f̃(t)− f(t)), (7.8)

where

f̃(t) =
1

h

∫ +∞

−∞
K

(
t− s
h

)
f∗(t)

f∗(s)
dF (s).
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1. For t ≤ τ , we have

f̂∗(t)− f̃(t) =
f∗(t)

h

∫ t+h

t−h
K

(
t− s
h

)
1

f∗(s)
d(F̂ (s)− F (s))

=
f∗(t)

h

∫ 1

−1

(F̂ (t− uh)− F (t− uh))d
(
K(u)/f∗(t− uh)

)
=

f∗(t)

h

∫ 1

−1

(F̂ (t− uh)− F (t− uh))
K ′(u)

f∗(t− uh)
du

+f∗(t)

∫ 1

−1

(F̂ (t− uh)− F (t− uh))
K(u)f ′∗(t− uh)

f 2
∗ (t− uh)

du

= A1,n + A2,n.

First, write

A1,n =
1

h

∫ 1

−1

(F̂ (t− uh)− F (t− uh))K ′(u)du

+
f∗(t)

h

∫ 1

−1

(F̂ (t− uh)− F (t− uh))

(
K ′(u)

f∗(t− uh)
− K ′(u)

f∗(t)

)
du

= A11,n + A12,n.

We start with A12,n. We have

A12,n =
1

h

∫ 1

−1

(F̂ (t− uh)− F (t− uh))
f∗(t)− f∗(t− uh)

f∗(t− uh)
K ′(u)du

=
1

h

∫ 1

−1

(F̂ (t− uh)− F (t− uh))
f ′∗(t+ ρ)uh

f∗(t− uh)
K ′(u)du,

for some ρ between 0 and −uh. Therefore,

|A12,n| ≤ sup
s∈ℵt
|F̂ (s)− F (s)| sup

s∈ℵt
|f ′∗(s)|( inf

s∈ℵt
f∗(s))

−1

∫ 1

−1

|K ′(u)||u|du,

where ℵt is a small neighborhood around t. Hence, under assumptions 3.1 and 3.2, and

using the uniform rate of the Kaplan-Meier estimator (see e.g. Theorem 1 in Lo and Singh

(1986)) we have that A12,n = Op(n
−1/2). Now, we treat the term A11,n. We consider the

i.i.d. decomposition of F̂ given in Lemma 2.1 in Lo et al. (1989):

F̂ (s)− F (s) = n−1

n∑
i=1

ξi(s) + rn(s),
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where ξi(s) = −
∫ Xi∧s
−∞

(
1 − H(x)

)−2
dH1(x) +

(
1 − H(Xi)

)−1
I{Xi ≤ s, δi = 1} and

sups∈ℵt |rn(s)| = Op(n
−1 log n). Note that Lo et al. (1989) assume that the lifetimes

are non-negative, whereas we work with random variables defined on the whole real line.

However, it can be easily seen that their resuls remain valid in our setup. Then,

A11,n =
1

nh

n∑
i=1

Uin(t) +Op((nh)−1 log n),

where Uin(t) =
∫ 1

−1
ξi(t− uh)K ′(u)du. Therefore,

A1,n =
1

nh

n∑
i=1

Uin(t) +Op(n
−1/2), (7.9)

thanks to assumption (A.2).

Finally, we consider the term A2,n. Under assumptions 3.1 and 3.2, we have

|A2,n| ≤ f∗(t) sup
s∈ℵt
|F̂ (s)− F (s)| sup

s∈ℵt
|f ′∗(s)|( inf

s∈ℵt
f∗(s))

−2

= Op(n
−1/2).

Therefore,

f̂∗(t)− f̃(t) =
1

nh

∑
i

Uin(t) +Op(n
−1/2). (7.10)

The result now follows from expressions (7.8) and (7.10).

2. We have

f̃(t)− f(t) =
f∗(t)

h

∫ t+h

t−h
K

(
t− s
h

)
f(s)

f∗(s)
ds− f(t)

= f∗(t)

∫ 1

−1

K(u)r∗(t− uh)du− f(t)

= f∗(t)

∫ 1

−1

K(u)
(
r∗(t)− r′∗(t)uh+

1

2
h2r′′∗(t)u

2 + o(h2)
)
du− f(t)

=
1

2
h2r′′∗(t)f∗(t)µ

2
K + o(h2).

Now, the result is an immediate consequence of the first point, and of Theorem 3.2 and

Corollary 3.3 in Lo et al. (1989). �
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Proof of Theorem 3.2. Write

(nh)1/2(f̂θ̂(t)− f(t)) = (nh)1/2(f̂θ̂(t)− f̂θ∗(t)) + (nh)1/2(f̂θ∗(t)− f(t)),

where f̂θ∗(t) is the PGK density estimator based on the parametric guide fθ∗(·). From the

second point in Theorem 3.1 it follows that

√
nh

(
f̂θ∗(t)− f(t)− 1

2
h2µ2

Kr
′′
θ∗(t)fθ∗(t) + o(h2)

)
d→ N

(
0, σ2(t)

)
. (7.11)

On the other hand, we have

f̂θ̂(t)− f̂θ∗(t) =
1

h
(fθ̂(t)− fθ∗(t))

∫ t+h

t−h
K

(
t− s
h

)
1

fθ̂(s)
dF̂ (s)

−fθ
∗(t)

h

∫ t+h

t−h
K

(
t− s
h

)
fθ̂(s)− fθ∗(s)

fθ̂(s)fθ∗(s)
dF̂ (s)

= I1n − I2n.

By a Taylor expression we have, for an intermediate point θm between θ̂ and θ∗ and a constant

C <∞,

|I1n| ≤
C

h

∥∥∇θfθm(t)
∥∥ |θ̂ − θ∗| |F̂ (t+ h)− F̂ (t− h)|

≤ C

h

∥∥∇θfθm(t)
∥∥ |θ̂ − θ∗| |F̂ (t+ h)− F̂ (t− h)− F (t+ h) + F (t− h)|

+
C

h

∥∥∇θfθm(t)
∥∥ |θ̂ − θ∗| |F (t+ h)− F (t− h)|,

where ∇θfθ(t) = (∂fθ(t)/∂θj)
p
j=1. From Lemma 3 in Gijbels and Veraverbeke (1989), we have

F̂ (t+ h)− F̂ (t− h)− F (t+ h) + F (t− h) = Op(n
−1/2h1/2(log n)1/2).

Hence, I1n = op((nh)−1/2). In similar way it can be shown that I2n = op((nh)−1/2), and so

f̂θ̂(t)− f̂θ∗(t) = op((nh)−1/2). (7.12)

The result of Theorem 3.2 now follows from equations (7.11) and (7.12). �

Proof of Theorem 3.3. We have

(nh)1/2(λ̂θ̂(t)− λ(t))) = (nh)1/2f̂θ̂(t)

[
F̂ (t)− F (t)

(1− F̂ (t))(1− F (t))

]
+ (nh)1/2

[
f̂θ̂(t)− f(t)

1− F (t)

]
.
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Since the first term on the right hand side converges to zero in probability, the result of Theo-

rem 3.3 is a direct consequence of Theorem 3.2. �
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