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Abstract Consider a semiparametric transformation model of the form Λθ(Y )
= m(X)+ε, where Y is a univariate dependent variable, X is a d-dimensional
covariate, and ε is independent of X and has mean zero. We assume that
{Λθ : θ ∈ Θ} is a parametric family of strictly increasing functions, while m
is an unknown regression function. The goal of the paper is to develop tests
for the null hypothesis that m(·) belongs to a certain parametric family of
regression functions. We propose a Kolmogorov-Smirnov and a Cramér-von
Mises type test statistic, which measure the distance between the distribution
of ε estimated under the null hypothesis and the distribution of ε without
making use of this null hypothesis. The estimated distributions are based on
a profile likelihood estimator of θ and a local polynomial estimator of m(·).
The limiting distributions of these two test statistics are established under the
null hypothesis and under a local alternative. We use a bootstrap procedure to
approximate the critical values of the test statistics under the null hypothesis.
Finally, a simulation study is carried out to illustrate the performance of our
testing procedures, and we apply our tests to data on the scattering of sunlight
in the atmosphere.
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1 Introduction

Consider the following semiparametric transformation model :

Λθ(Y ) = m(X) + ε , (1)

where Λθ(·) belongs to a parametric family of strictly increasing functions and
the function m(·) is unknown. We assume that X is a d-dimensional covariate,
Y is a univariate response variable, the error term ε is independent of X, and
E(ε) = 0. Let θ belong to a finite dimensional compact subset Θ of Rk, and
denote the true but unknown values of θ and m(·) by θ0 and m0(·).

The motivation for considering this model comes from the rich literature
on parametric transformations in regression, starting from the seminal paper
by Box and Cox (1964). They proposed a parametric family of power trans-
formations that includes as special cases the logarithm and the identity. They
suggested that when this power transformation is applied to the response in a
linear regression model, the regression function of the new model might have
an additive structure, and the new error might be approximately normal and
homoscedastic. Other transformations have been proposed in the literature,
like for example, the Zellner and Revankar (1969) transform and the Bickel
and Doksum (1981) transform. See also the book by Carroll and Ruppert
(1988) and the review paper by Sakia (1992) for more details and references
on this topic.

Whereas the above references restrict attention to models in which the re-
gression function (as well as the transformation) is parametric, we will focus
in this paper on model (1), which assumes that the regression function is non-
parametric. The estimation of this (semiparametric) transformation model has
been studied by Linton, Sperlich and Van Keilegom (2008). They proposed
two different estimators of the transformation parameter θ and developed
the asymptotic properties of these estimators. Moreover, Colling, Heuchenne,
Samb and Van Keilegom (2013) and Heuchenne, Samb and Van Keilegom
(2014) studied nonparametric estimators of the density and of the distribution
function of the error term ε under this model. Other papers that have stud-
ied the estimation of this model include Vanhems and Van Keilegom (2013),
who suppose that some of the regressors are endogenous as a result of e.g.
omitted variables, measurement error or simultaneous equations. We also like
to mention the work by Horowitz (1996), who worked with a nonparametric
transformation Λ and a parametric regression function m, and the papers by
Horowitz (2001) and Jacho-Chavez, Lewbel and Linton (2008), who suppose
that both Λ and m are nonparametric.

All the above papers focus on the problem of estimation of a transformation
model (that can be of parametric, semiparametric or nonparametric nature).
As far as we know, no paper has considered so far the problem of testing in a
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transformation model. Several aspects of the model can be tested, like the form
of the transformation, the form of the regression function, the homoscedasticity
of the error term, or the separability of the regression model. In this paper,
we like to test the hypothesis

H0 : m ∈M, (2)

where M = {mβ : β ∈ B} is some parametric class of regression functions
and B ⊂ Rq. We will construct two test statistics, which measure a certain
distance between the distribution function of ε estimated in a semiparametric
way and the distribution function of ε estimated under the null hypothesis. We
will show that the two distributions are equal if and only if the null hypothesis
H0 is true.

The idea of testing the form of the regression function by comparing two
estimators of the distribution of the error term was introduced for the first time
by Van Keilegom, González-Manteiga and Sánchez-Sellero (2008). Their test
was developed for a nonparametric location-scale model without transforming
the response variable. In the present paper we will see how their ideas and
methodology can be carried over to a transformation model. For the same
location-scale model, a similar testing approach was also used (among others)
by Pardo-Fernández, Van Keilegom and González-Manteiga (2007) for testing
the equality of regression curves, and by Dette, Neumeyer and Van Keilegom
(2007) for testing the form of the variance function. All these papers build
further on the work of Akritas and Van Keilegom (2001), who studied the
asymptotic properties of a nonparametric estimator of the error distribution
in a location-scale model without transforming the response variable.

Instead of using the idea based on the comparison of error distributions,
other approaches could be used as well. We refer to the nice review paper by
González-Manteiga and Crujeiras (2013) for a recent overview of developments
on goodness-of-fit tests for regression models. Among the possible alternative
testing procedures are the tests in the spirit of the seminal papers by Härdle
and Mammen (1993) and Stute (1997). They will be considered in forthcoming
papers.

The paper is organized as follows. In the section 2 we explain in detail the
testing procedure. Section 3 contains the main asymptotic results concerning
the proposed test statistics. In Section 4 we explain how the critical values
of these test statistics can be obtained using a bootstrap procedure, and a
simulation study is carried out to illustrate the performance of our tests. Sec-
tion 5 is devoted to the application of our testing procedures to data on the
scattering of sunlight in the atmosphere, and in Section 6 we give some gen-
eral conclusions. Finally, Section 7 contains the technical assumptions and the
supplementary material contains the proofs of the main results.
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2 The proposed test

2.1 Notations and definitions

Suppose that we have randomly drawn an iid sample (X1, Y1), . . . , (Xn, Yn)
from model (1), where the components of Xi are denoted by (Xi1, . . . , Xid)
for i = 1, . . . , n. Denote by FX and Fε the distribution functions of X and
ε respectively. The probability density functions of X and ε will be denoted
respectively by fX and fε. Moreover, assume that X has compact support
χ ⊂ Rd, define the regression function

m(x, θ) = E[Λθ(Y )|X = x] ,

and let σ2 = V (ε) <∞. Note that m(x, θ0) = m(x). Also, denote

∂

∂x
fX(x) =

(
∂

∂x1
fX(x), . . . ,

∂

∂xd
fX(x)

)t
,

which is a (d× 1)-vector where x = (x1, . . . , xd)
t, and let

Λ̇θ(y) =

(
∂

∂θ1
Λθ(y), . . . ,

∂

∂θk
Λθ(y)

)t
be a (k × 1)-vector where θ = (θ1, . . . , θk)t. Similar notations will be used
for other functions. For any function ϕ, define ϕ′(u) = ∂ϕ/∂u. Finally, let
ε(θ) = Λθ(Y ) − m(X, θ) and let Fε(θ) and fε(θ) be the distribution and the
density function of ε(θ), respectively.

2.2 Estimation of the model

We start by estimating the parameter θ. Linton, Sperlich and Van Keilegom
(2008) proposed two estimation methods for the unknown true parameter vec-
tor θ0 : a profile likelihood method and a mean squared distance from inde-
pendence method. Here, we will use the profile likelihood estimator, since it
was shown in the latter paper that it outperforms the other estimator. Note
however that our model and estimation method are slightly different from
what Linton, Sperlich and Van Keilegom (2008) did : we assume that m(·)
is completely unspecified (whereas they assume an additive or multiplicative
structure on m(·)), and we will use local polynomial smoothing (instead of
kernel smoothing based on higher order kernels). This has however no impact
on how the profile likelihood estimator of θ is constructed.

The idea of the profile likelihood method is to calculate the log-likelihood
function of Y given X and to replace all unknown expressions by nonparamet-
ric estimators. The log-likelihood function of Y given X is given by :

n∑
i=1

{
log fε(θ0)(Λθ0(Yi)−m(Xi, θ0)) + logΛ′θ0(Yi)

}
.
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In this expression, Λθ0(·) and Λ′θ0(·) are known (except for the parameter
θ0), unlike m(·, θ0) and fε(θ0)(·). These two quantities will be replaced by
nonparametric estimators. First, for an arbitrary point x = (x1, . . . , xd)

t in
the support χ of X, we start by estimating the regression function m(x, θ) by
a local polynomial estimator of degree p (like in Neumeyer and Van Keilegom

(2010)), i.e. m̂(x, θ) = b̂0(θ) where b̂0(θ) is the first component of the vector

b̂(θ), which is the solution of the following local minimization problem :

min
b

n∑
i=1

(Λθ(Yi)− Pi(b, x, p))2K1

(
Xi − x
h

)
,

where Pi(b, x, p) is a polynomial of order p built up with all products of 0 ≤
l ≤ p factors of the form Xij −xj for j = 1, . . . , d. Moreover, h = (h1, . . . , hd)

t

is a d-dimensional bandwidth vector and for u = (u1, . . . , ud)
t, K1(u) is a d-

dimensional product kernel of the form K1(u) =
∏d
j=1 k1(uj) where k1 is a

univariate kernel. Introduce also the following notation :

K1h(u) =

d∏
j=1

k1(uj/hj)/hj .

Second, the error density function fε(θ)(y) is estimated by the classical kernel
estimator of a density function :

f̂ε(θ)(y) =
1

ng

n∑
i=1

k2

(
y − ε̂i(θ)

g

)
,

where ε̂i(θ) = Λθ(Yi) − m̂(Xi, θ), k2 is a kernel (which can be different from
k1) and g is a bandwidth. Define k2g(u) = k2(u/g)/g. The profile likelihood
estimator of θ is now defined by :

θ̂ = arg max
θ∈Θ

n∑
i=1

{
log f̂ε(θ)(Λθ(Yi)− m̂(Xi, θ)) + logΛ′θ(Yi)

}
.

The asymptotic properties of this estimator have been established by Lin-
ton, Sperlich and Van Keilegom (2008). In their Theorem 4.1, they prove the

following asymptotic representation for θ̂ − θ0 :

θ̂ − θ0 = −n−1Γ−1
n∑
i=1

ξ(θ0, Xi, Yi) + oP (n−1/2) ,

where

ξ(θ,X, Y ) =
1

fε(θ)(ε(θ))
[f ′ε(θ)(ε(θ))(Λ̇θ(Y )− ṁ(X, θ)) + ḟε(θ)(ε(θ))] +

Λ̇′θ(Y )

Λ′θ(Y )
,

and

Γ =
∂

∂θ
E[ξ(θ,X, Y )]

∣∣∣∣
θ=θ0

.
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Also, denote
g(X,Y ) = Γ−1ξ(θ0, X, Y ) . (3)

However, as mentioned before, our model and estimation method are slightly
different from those considered in Linton, Sperlich and Van Keilegom (2008). In
the supplementary material, it will be shown that their Theorem 4.1 continues
to hold true in our case, under appropriate regularity conditions. Finally, let
(for reasons of simplicity of notation)

m̂(x) = m̂(x, θ̂) .

2.3 The test statistics

The main idea of the test statistics is to compare the distribution function of
the error term ε = Λθ0(Y ) −m(X) estimated in a semiparametric way with
the distribution function of ε estimated under H0. That this leads to a valid
testing procedure, is shown in the next theorem.

Theorem 1 Let m be a continuous function. Then, H0 is valid if and only if
the random variables

Λθ0(Y )−m(X) and Λθ0(Y )−mβ̃0
(X)

have the same distribution, where β̃0 = arg minβ∈B E[(m(X)−mβ(X))2].

The proof is given in the supplementary material. Clearly, when H0 is true,
then β̃0 = β0 where β0 is the true value of β under H0. Remind that Fε(y) =
Fε(θ0)(y) = P (Λθ0(Y )−m(X) ≤ y), and define Fε0(y) = P (Λθ0(Y )−mβ̃0

(X) ≤
y). Next, we explain how to estimate Fε(·) and Fε0(·) in order to construct
the test statistics. First, define

F̂ε(y) = n−1
n∑
i=1

I(ε̂i ≤ y) , (4)

where ε̂i = Λθ̂(Yi)−m̂(Xi) are the semiparametric residuals. Second, estimate
mβ̃0

(x) by the least squares method for nonlinear regression, i.e. estimate

mβ̃0
(x) by mβ̂(x), where β̂ is a minimizer over β ∈ B of the expression

Sn(β) = n−1
n∑
i=1

(Λθ̂(Yi)−mβ(Xi))
2 . (5)

Next, we follow the idea of Härdle and Mammen (1993) and we smooth the
function mβ̂(x) by a local polynomial estimator of degree p, i.e. we define

m̂β̂(x) = ĉ0, where ĉ0 is the first component of the vector ĉ, which is the
solution of the following local minimization problem :

min
c

n∑
i=1

(mβ̂(Xi)− Pi(c, x, p))2K1

(
Xi − x
h

)
,
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where Pi(c, x, p) is a polynomial of order p built up with all products of 0 ≤
l ≤ p factors of the form Xij − xj for j = 1, . . . , d. Note that we use here the
same d-dimensional kernel K1, the same d-dimensional bandwidth h and the
same order p of the local polynomial as in the local polynomial estimator of
the regression function m(x). This is to ensure that these two estimators have
the same asymptotic bias under H0. Hence, we obtain the following estimator
of the distribution function of ε under H0 :

F̂ε0(y) = n−1
n∑
i=1

I(ε̂i0 ≤ y) , (6)

where ε̂i0 = Λθ̂(Yi)− m̂β̂(Xi) are the residuals estimated under H0. The test
statistics that we will use are Kolmogorov-Smirnov and Cramér-von Mises
type statistics defined by

TKS = n1/2 sup
y∈R
|F̂ε(y)−F̂ε0(y)| and TCM = n

∫
(F̂ε(y)−F̂ε0(y))2 dF̂ε(y) .

Next, to study the power of the test statistics, consider the following local
alternative hypothesis :

H1n : m(x) = mβ0(x) + n−1/2r(x) for all x

for some fixed function r 6= 0. Note that the local alternative H1n only affects
the regression function m(x) and not the error distribution.

3 Asymptotic results

Before stating the main results of this paper, we need to introduce the following
notations :

Ω =

{
E

[
∂mβ0(X)

∂βr

(
∂mβ0

(X)

∂βs

)t]}
r,s=1,...,q

,

ηβ(x, y) = Ω−1
∂mβ(x)

∂β
(Λθ0(y)−mβ(x)),

where

∂mβ(x)

∂β
=

(
∂mβ(x)

∂β1
, . . . ,

∂mβ(x)

∂βq

)t
is a (q×1)-vector and β = (β1, . . . , βq)

t. The regularity conditions under which
the results of this section are valid, can be found in Section 7.
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3.1 Results under H0

First, under H0, the following theorem states an asymptotic representation for
F̂ε(y)− F̂ε0(y) and gives the limiting distribution of the process n1/2(F̂ε(·)−
F̂ε0(·)).

Theorem 2 Assume (A1)-(A9) and suppose that H0 holds.

(i) Then,

F̂ε(y)− F̂ε0(y) = fε(y) n−1
n∑
i=1

H(Xi, Yi, θ0, β0) +Rn(y) ,

where

H(X,Y, θ, β) = Λθ(Y )−m(X)−
∫ (

∂mβ(x)

∂β

)t
dFX(x) ηβ(X,Y )

−E[(Λ̇θ(Y ))t]g(X,Y ) +

∫ (
∂mβ(x)

∂β

)t
dFX(x)

Ω−1E

[
∂mβ(X)

∂β
(Λ̇θ(Y ))t

]
g(X,Y ) ,

where supy∈R |Rn(y)| = oP (n−1/2) and g(X,Y ) is defined in (3).

(ii) Moreover, the process n1/2(F̂ε(y) − F̂ε0(y)) (−∞ < y < +∞) converges
weakly to fε(y)W , where W is a zero mean normal random variable with
variance

V (W ) = E[H2(X,Y, θ0, β0)] .

This theorem states that the difference between the two empirical distribution
functions factorizes in the error density function and a certain sum of iid
terms, plus negligeable terms. Note that the second term in this asymptotic
expansion is due to the estimation of β and the third and the last terms are
due to the estimation of θ. If β and θ would be known, then V (W ) would
simply be equal to σ2.

As a consequence, we obtain the following corollary, which gives the limit-
ing distribution of the Kolmogorov-Smirnov and Cramér-von Mises statistics
under H0.

Corollary 1 Assume (A1)-(A9). Then, under H0,

TKS
d−→ sup

y∈R
|fε(y)| |W | and TCM

d−→
∫
f2ε (y) dFε(y)W 2 .
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3.2 Results under H1

First, we define S0(β) = σ2 + E[(mβ(X)−mβ0
(X))2], and

S̃0n(β) = σ2 + E[(mβ(X)−m(X))2] , (7)

and let β̃0n be a minimizer over β ∈ B of S̃0n(β), which depends on n un-
der H1n. Similarly to Section 3.1, but now under H1n, the following theorem
states an asymptotic representation for F̂ε(y)− F̂ε0(y) and gives the limiting

distribution of the process n1/2(F̂ε(·)− F̂ε0(·)).

Theorem 3 Assume (A1)-(A10) and suppose that H1n holds.

(i) Then,

F̂ε(y)− F̂ε0(y) = fε(y) n−1
n∑
i=1

H(Xi, Yi, θ0, β̃0n) + n−1/2fε(y)b+Rn(y) ,

where supy∈R |Rn(y)| = oP (n−1/2), H(X,Y, θ, β) is defined in Theorem 2
and

b = −
∫ (

∂mβ0(x)

∂β

)t
dFX(x) Ω−1

∫
r(x)

∂mβ0(x)

∂β
dFX(x)

+

∫
r(x) dFX(x) .

(ii) Moreover, the process n1/2(F̂ε(y) − F̂ε0(y)) (−∞ < y < +∞) converges
weakly to fε(y)(W + b), where W is the same normal random variable as
in Theorem 2(ii).

Note that the bias term fε(y)b equals zero under H0, i.e. when r ≡ 0. Finally,
the following corollary states the limiting distribution of the two test statistics
under the local alternative H1n.

Corollary 2 Assume (A1)-(A10). Then, under H1n,

TKS
d−→ sup

y∈R
|fε(y)| |W + b| and TCM

d−→
∫
f2ε (y) dFε(y) (W + b)2 .

One advantage of our approach is that our tests can detect alternatives at
the rate n−1/2, which is faster than the rate n−1/2h−d/4 obtained by other
approaches in the literature, see for example the seminal paper by Härdle and
Mammen (1993), or any other paper based on their approach. Note however
that there are situations in which the random variable W defined in Theorem
2 is non degenerate, and the bias term b in Theorem 3 is equal to zero. Take
e.g. the case where X is uniform on [−1, 1], r(x) = x and we are interested
in testing H0 : m(x) = βx2 for all x. Then, it is easily seen that b = 0,
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whereas in generalH(X,Y, θ0, β0) will be a.s. different from zero. Although this
example shows that cases can be constructed where the tests have no power
under the local alternative H1n, there are very many cases where the test is
consistent under H1n. Similar features have been found in other papers, see
e.g. Van Keilegom, González-Manteiga and Sánchez-Sellero (2008) and Pardo-
Fernández, Van Keilegom and González-Manteiga (2007), among others. Also,
remind that our test is consistent in the sense of Theorem 1.

In order to apply the result of Corollary 1 in practice, we need to estimate
the limiting distribution of TKS and TCM by plugging in estimators of fε,
ḟε, f

′
ε, ṁ and fX . Although this is in principle possible, it is not an easy

task, as it requires the introduction of new bandwidths. Therefore, we prefer
to approximate the distribution of the test statistics under H0 by using a
bootstrap procedure. This will be described in detail in the next section.

4 Simulations

In this section, we carry out simulations to evaluate the performance of our
proposed tests for small samples. The simulated model is Λθ(Yi) = 3 + βXi +
c(Xi) + εi, where Λθ is the Box-Cox (1964) transformation

Λθ(y) =

{
yθ−1
θ , θ 6= 0

log(y), θ = 0.

Moreover, X1, . . . , Xn are independent, of dimension d = 1 and uniformly
distributed on [0,1], and ε1, . . . , εn are independent standard normal random
variables truncated on [-3,3]. We consider the following null hypothesis :

H0 : m(x) = 3 + βx for all x .

We perform simulations for three different values of the parameter θ : θ0 = 0
which corresponds to a logarithmic transformation, θ0 = 0.5 which corresponds
to a square root transformation and θ0 = 1 which corresponds to the identity.
The true value of the parameter β is β0 = 2. The term c(x) represents different
deviations from the null hypothesis and we consider here c(x) = 5x2, c(x) =
7.5x2, c(x) = 10x2, c(x) = 0.5 exp(x), c(x) = exp(x), c(x) = 2 exp(x), c(x) =
3 exp(x), c(x) = 0.25 sin(2πx), c(x) = 0.5 sin(2πx), c(x) = sin(2πx) and c(x) =
1.5 sin(2πx) for sample size n = 200.

Next, we use the Epanechnikov kernel k1(x) = k2(x) = 3
4

(
1− x2

)
1{|x|≤1}

for both the estimator of the regression function and the density function.
For the estimation of θ, h, g and β, we proceed as follows. We maximize the
following function with respect to θ for some optimal values of h and g :

lθ(h, g) =

n∑
i=1

{
log f̂ε(θ)(Λθ(Yi)− m̂(Xi, θ, h)) + logΛ′θ(Yi)

}
,
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where m̂(x, θ, h) denotes m̂(x, θ) constructed with a bandwidth h. For each
value of θ, let h∗(θ) be the bandwidth obtained by least squares cross-validation
:

h∗(θ) = arg min
h

n∑
i=1

(Λθ(Yi)− m̂−i,θ(Xi))
2 ,

where

m̂−i,θ(Xi) =

∑n
j=1,j 6=i Λθ(Yj)k1

(
Xj−Xi

h

)
∑n
j=1,j 6=i k1

(
Xj−Xi

h

) .

Note that the kernels k1 and k2 and the bandwidths h and g do not satisfy some
of the requirements in assumptions (A1) and (A2). However, we believe that
these requirements are sufficient but not strictly necessary, and they help to
simplify the technical arguments in the proofs in the supplementary material.
Also, note that a bandwidth obtained by cross-validation may not be optimal
for testing purposes. We therefore also consider the case where the bandwidth h
is fixed by the user in order to compare the results obtained with both methods.
We choose here h = 0.1, h = 0.15 and h = 0.2. Moreover, we select g by a
classical bandwidth selection rule for kernel density estimation. For simplicity,
we choose here the normal reference rule, i.e. ĝ(θ) = (40

√
π)1/5n−1/5σ̂ε̂(θ,h∗(θ)),

where σ̂ε̂(θ,h∗(θ)) is the classical estimator of the standard deviation of the error
term ε̂(θ, h∗(θ)) = Λθ(Y ) − m̂(X, θ, h∗(θ)). Consequently, the optimal value

of θ, θ̂ = arg maxθ lθ(h
∗(θ), ĝ(θ)), is obtained iteratively with the function

optimize in R over the interval [θ0 − 2, θ0 + 2]. Finally, to estimate β, we
minimize the following expression over the interval [−20, 20] :

β̂ = arg min
β

n∑
i=1

(Λθ̂(Yi)−mβ(Xi))
2 .

The critical values of the test statistics TKS and TCM will be approximated by
means of the following bootstrap procedure. First, we standardize the residuals
ε̂1, . . . , ε̂n in order to have mean zero :

ε̌i = ε̂i −
1

n

n∑
k=1

ε̂k i = 1, . . . , n

Let F̌ε be the empirical distribution of these standardized residuals. Let ζ∗1 , . . . ,
ζ∗n be bootstrap samples of the errors drawn with replacement from this distri-
bution. Moreover, let ξ1, . . . , ξn be independent standard normally distributed
random variables and independent from the original sample {(X1, Y1), . . . ,
(Xn, Yn)}. We define the bootstrap errors by ε∗i = ζ∗i + bnξi, i = 1, . . . , n,
where bn is some small bandwidth. We choose here bn = 0.1. Finally, we can
see that ε∗i has a smooth distribution function given by

F̃ε(y) =
1

n

n∑
j=1

Φ

(
y − ε̌j
bn

)
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Table 1 Percentage of rejection under the null hypothesis (nominal level 5%) when the
bandwidth h is obtained by cross-validation and for samples of size n = 200.

θ0 = 0 θ0 = 0.5 θ0 = 1
c(x) TKS TCM TKS TCM TKS TCM

0 5.2 7.8 5.8 8.0 6.6 7.4

Table 2 Percentage of rejection under the null hypothesis (nominal level 5%) for fixed
bandwidth h and for samples of size n = 200.

θ0 = 0 θ0 = 0.5 θ0 = 1
c(x) h TKS TCM TKS TCM TKS TCM

0 0.1 2.2 4.2 4.4 6.2 6.8 7.0
0 0.15 3.8 7.0 7.2 9.0 7.0 8.2
0 0.2 3.6 6.4 6.6 9.0 7.0 7.4

where Φ is the standard normal distribution function. Note that we have to
work with a smoothed distribution in the bootstrap procedure, because the
asymptotic representation of F̂ε(y) − F̂ε0(y) given in Theorem 2 involves the
density fε(y) (see e.g. Silverman and Young (1987) or Neumeyer (2009) for
similar bootstrap procedures).

The bootstrap procedure can now be described as follows. For fixed B and
for b = 1, . . . , B :

1. Let ε∗1b, . . . , ε
∗
nb be independent random errors drawn from F̃ε, and let

X∗ib = Xi (i = 1, . . . , n).
2. Define new responses Y ∗ib = Λ−1

θ̂
(mβ̂(X∗ib) + ε∗ib), i = 1, . . . , n, obtained

under the null hypothesis.
3. Let T ∗KS,b and T ∗CM,b be the test statistics obtained from the bootstrap

sample (X∗ib, Y
∗
ib), i = 1, . . . , n.

Then, the [(1 − α)B]-th order statistic of T ∗KS,1, . . . , T
∗
KS,B approximates the

(1−α)-th quantile of the distribution of TKS , and similarly for TCM . We refer
to Neumeyer (2009) for the consistency of this bootstrap procedure in the
case where one is interested in the distribution of the estimator of the error
distribution in a nonparametric location-scale model without transformation
of the response. In our simulations, we take B = 250.

Tables 1 and 3 show respectively the percentage of rejection under the null
hypothesis and under the different deviations c(x) we have introduced above
when the bandwidth h is obtained by cross-validation. Tables 2 and 4 show
respectively the percentage of rejection under the null hypothesis and under
different deviations c(x) when the bandwidth h is fixed by the user. These
percentages of rejection are obtained with the test statistics TKS and TCM for
500 samples. The nominal level is 5%.

We see that the different estimations of the nominal level under H0 are
globally good and we note that the results for TKS are slightly better. Indeed,
the percentages of rejection given by TCM are a little bit too high. Nevertheless,
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Table 3 Percentage of rejection under the alternative hypothesis (nominal level 5%) when
the bandwidth h is obtained by cross-validation and for samples of size n = 200.

θ0 = 0 θ0 = 0.5 θ0 = 1
c(x) TKS TCM TKS TCM TKS TCM

5x2 100.0 100.0 57.4 60.8 13.4 14.4
7.5x2 99.6 99.6 96.4 96.4 76.0 77.2
10x2 99.0 99.0 96.6 96.0 87.2 86.4
0.5 exp(x) 30.8 38.6 17.2 19.0 10.0 12.6
exp(x) 86.8 92.0 36.4 39.8 20.2 22.6
2exp(x) 99.8 99.8 68.0 69.2 45.8 46.6
3exp(x) 98.6 98.4 72.8 72.0 54.8 56.2
0.25sin(2πx) 17.0 19.6 11.2 13.0 11.8 14.2
0.5sin(2πx) 29.2 32.4 19.8 22.0 18.8 20.8
sin(2πx) 49.6 50.6 25.4 27.4 23.8 26.0
1.5sin(2πx) 68.6 66.6 26.8 27.8 19.2 19.4

Table 4 Percentage of rejection under the alternative hypothesis (nominal level 5%) for
fixed bandwidth h and for samples of size n = 200.

θ0 = 0 θ0 = 0.5 θ0 = 1
c(x) h TKS TCM TKS TCM TKS TCM

5x2 0.1 100.0 100.0 57.8 59.8 9.6 9.4
5x2 0.15 100.0 100.0 53.2 53.8 12.6 11.4
5x2 0.2 100.0 100.0 41.6 43.6 8.8 8.8
7.5x2 0.1 100.0 100.0 98.0 98.2 79.2 79.8
7.5x2 0.15 100.0 100.0 96.2 96.4 69.6 73.0
7.5x2 0.2 100.0 100.0 85.8 87.8 50.4 53.2
10x2 0.1 100.0 100.0 99.2 99.2 91.6 91.4
10x2 0.15 100.0 100.0 99.4 99.4 91.6 91.8
10x2 0.2 100.0 100.0 96.6 97.0 75.8 78.0

we expect that the procedure can be finetuned so as to obtain more accurate
nominal levels. For instance, increasing the number of bootstrap iterations
(currently B = 250) will improve the level and it is also expected that the
selection of the bandwidths can be further improved. The testing procedure
relies on a complicated estimation procedure, involving many parameters and
functions, and this definitely influences the precision of the nominal level. Next,
under the alternative, the power is largest for θ0 = 0, followed by θ0 = 0.5
and then θ0 = 1. This result seems logical, because Linton, Sperlich and Van
Keilegom (2008) showed that the mean squared error of the profile likelihood
estimator of θ is largest for θ0 = 1, followed by θ0 = 0.5 and then θ0 = 0.
Finally, we see that the percentages of rejection are slightly larger for TCM
than for TKS , which is in line with what happens under H0.

Moreover, under the null hypothesis and when the bandwidth h is fixed,
the best results are in majority obtained for h = 0.1, both for TKS and TCM .
Under the alternative, the power decreases when h increases and especially
for θ0 = 0.5 and θ0 = 1, which suggests that among the three tested values
of the bandwidth, h = 0.1 is the most adapted value for this test. Finally, we



14 Benjamin Colling, Ingrid Van Keilegom

Table 5 Percentage of rejection under the null and the alternative hypothesis (nominal
level 5%) for samples of size n = 200.

θ0 = 0 θ0 = 0.5 θ0 = 1
c(x1, x2) TKS TCM TKS TCM TKS TCM

0 0.8 0.4 2.0 2.0 5.2 5.4
2.5x1x2 20.2 7.4 5.4 4.6 5.0 5.6
5x1x2 52.6 39.8 11.4 10.8 6.2 6.6
7.5x1x2 66.4 67.0 24.2 26.2 11.6 11.4
10x1x2 67.6 74.2 41.0 41.6 17.8 18.6
2(x1 + 1)/(x2 + 1) 94.8 96.0 9.0 10.0 6.8 7.0
3(x1 + 1)/(x2 + 1) 96.6 97.6 34.6 38.4 11.4 13.2
4(x1 + 1)/(x2 + 1) 97.0 97.8 50.6 53.8 21.2 23.0
5(x1 + 1)/(x2 + 1) 94.6 95.0 65.8 67.8 33.4 35.4

notice that sometimes the power is better when the bandwidth h is estimated
by cross-validation, for example when c(x) = 5x2, and sometimes the power
is better when h is fixed, for example when c(x) = 7.5x2 and h = 0.1.

We finish this section by presenting the results of a simulation study that
shows the performance of our test in higher dimensions. We consider d = 2,
q = 2 and the simulated model is Λθ(Yi) = 3+β1X1i+β2X2i+c(X1i, X2i)+εi,
where Λθ is again the Box-Cox (1964) transformation. Moreover, X11, . . . , X1n

andX21, . . . , X2n are independent and uniformly distributed on the unit square,
and ε1, . . . , εn are independent standard normal random variables truncated
on [-3,3]. We consider the following null hypothesis :

H0 : m(x) = 3 + β1x1 + β2x2 for all x .

We perform simulations for the same three different values of the parameter
θ as before : θ0 = 0, θ0 = 0.5 and θ0 = 1. The true value of the parameter
β = (β1, β2) is (β10, β20) = (3, 5). The term c(x1, x2) represents different de-
viations from the null hypothesis and we consider here c(x1, x2) = 2.5x1x2,
c(x1, x2) = 5x1x2, c(x1, x2) = 7.5x1x2, c(x1, x2) = 10x1x2, c(x1, x2) = 2x1+1

x2+1 ,

c(x1, x2) = 3x1+1
x2+1 , c(x1, x2) = 4x1+1

x2+1 , c(x1, x2) = 5x1+1
x2+1 , for samples of size

n = 200. We use here the product of two Epanechnikov kernels for the estima-
tor of the regression function and the Epanechnikov kernel for the estimator
of the density function. For the estimation of θ, β, h and g and the bootstrap
procedure, we proceed exactly as before. Note that we estimate h by cross val-
idation. Table 5 shows the percentage of rejection under the null hypothesis
and under the different deviations c(x1, x2) we have introduced above.

Table 5 shows that the nominal level is in general too low, especially for
θ0 = 0 and θ0 = 0.5. This bad behavior can be explained by the poor quality
of the estimation of the function m(·). Since we are estimating m(·) in two
dimensions in a completely nonparametric way, the method is clearly suffering
from curse-of-dimensionality problems, which are very common in nonpara-
metric regression. So, a sample size of n = 200 is not sufficient for the method
to work well. For that reason, we perform an additional simulation under H0 to
check whether the problem disappears for a larger sample size. Table 6 shows
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Table 6 Percentage of rejection under the null hypothesis (nominal level 5%) for samples
of size n = 500.

θ0 = 0 θ0 = 0.5 θ0 = 1
c(x1, x2) TKS TCM TKS TCM TKS TCM

0 2.4 2.0 6.2 6.8 6.4 6.4

Table 7 p-values of the lth degree polynomial fit for the sunlight data.

l = 1 l = 2 l = 3 l = 4

TKS 0.333 0.734 0.737 0.475
TCM 0.208 0.748 0.666 0.549

the percentage of rejection under the null hypothesis for sample size n = 500.
We see in this table that the nominal level is now much better approximated
even if the precision can still be improved for the same reasons as explained
in the analysis of the results in dimension 1.

5 Application

We apply our testing procedure to a data set composed of 355 observations
resulting from an experiment on the scattering of sunlight in the atmosphere
(see Bellver (1987)). The data can be found in Cleveland (1993). The response
Y is the scattering angle at which the polarization of sunlight vanishes, called
the Babinet point. Note that the response is positive, which justifies the use
of a Box-Cox transformation. Moreover, the covariate X is the cube root of a
measure of particulate concentration in the atmosphere and we standardize it.

This data set has already been analyzed, but without transformation of
the response variable, in different articles, like in Hart (1997), in Zhang (2003)
and in Van Keilegom, González-Manteiga and Sánchez-Sellero (2008). A test
for linearity of the underlying regression function was realized in Hart (1997),
while different tests for lth degree polynomial regression (l = 1, 2, 3, 4) were re-
alized in Zhang (2003) and in Van Keilegom, González-Manteiga and Sánchez-
Sellero (2008), both with their own testing procedure.

Here, a Box-Cox transformation of the response variable is considered and
we check the goodness-of-fit of the lth degree polynomial regression (l =
1, 2, 3, 4) by using the Kolmogorov-Smirnov and the Cramér-von Mises test
statistics defined in this paper. The distributions and p-values of these two
test statistics are approximated by bootstrap on the basis of 1000 replicates.
The results are given in Table 7.

First, note that the profile likelihood estimator of θ is equal to θ̂ = 1.9428.
This implies that we transform the response variable Y by taking approxima-
tively its square. Table 7 indicates that there is no evidence against a polyno-
mial fit of order l = 2, 3, 4, similarly as in Van Keilegom, González-Manteiga
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and Sánchez-Sellero (2008). Moreover, there is also no evidence against a lin-
ear fit, which is different from the conclusions in Hart (1997), Zhang (2003)
and Van Keilegom, González-Manteiga and Sánchez-Sellero (2008). This can
be explained by the transformation realized on the response variable Y , which
has an important impact on the regression function.

6 Conclusions and future research

In this paper, we constructed a test for the parametric form of the regression
function in a semiparametric transformation model. The transformation of the
dependent variable in this model was supposed to belong to some parametric
family of strictly increasing functions. We defined a Kolmogorov-Smirnov and
a Cramér-von Mises test statistic, where the main idea was to compare the
distribution of the error term estimated in a semiparametric way to the one
estimated under H0. We established the limiting distribution of these two test
statistics under the null hypothesis and under a local alternative. We evaluated
the performance of our test by means of some simulations and we applied our
method on a real data set.

It would be interesting to extend the paper of Pardo-Fernández, Van Kei-
legom and González-Manteiga (2007) by constructing a test for the equality
of regression curves in the case of semiparametric transformation models. An-
other possibility of future research could be the extension of this paper to the
case of censored data. Finally, the extension of the methods of Härdle and
Mammen (1993) and Stute (1997) to the context of transformation models
would be an useful alternative for the tests developed in this paper, and it
would then be informative to know under which model conditions which test
behaves best.

7 Technical assumptions

In this section, we introduce a number of notations and state the assumptions
under which the main results of this paper are valid. For 0 < α < δ/2, where δ
is defined as in condition (A2) (see below), let Cd+α1 (χ), be the set of d-times
differentiable functions f : χ→ R such that :

||f ||d+α := max
j.≤d

sup
x∈χ
|Djf(x)|+ max

j.=d
sup
x,x′∈χ

|Djf(x)−Djf(x′)|
||x− x′||α

≤ 1

where j = (j1, . . . , jd), j. =
∑d
i=1 ji, D

j = ∂j.

∂x
j1
1 ...∂x

jd
d

and ||.|| is the Euclidean

norm on Rd.
The main results of the asymptotic theory require the following regularity

conditions on the kernels, the bandwidths, the distributions of X and ε, the
transformation Λθ and the functions mβ(x), m(x) and r(x) :



Goodness-of-fit tests in semiparametric transformation models 17

(A1) The functions kj (j = 1, 2) are symmetric, have support [-1,1],
∫
k1(u) du =

1,
∫
ukk2(u) du = 0 for k = 1, . . . , q2 − 1 and

∫
uq2k2(u) du 6= 0 for some

q2 ≥ 4. Moreover, k1 is d-times continuously differentiable, k
(l)
1 (±1) = 0

for l = 0, . . . , d− 1 and k2 is twice continuously differentiable.
(A2) hl (for l = 1, . . . , d) satisfies hl/h → cl for some 0 < cl < ∞ and the

bandwidths h and g satisfy nh2p+2 → 0 for some p ≥ 3, nh3d+δ → ∞ for
some δ > 0, ng6(ln g−1)−2 →∞ and ng2q2 → 0 when n→∞, where q2 is
defined in condition (A1).

(A3) (i) The support χ of the covariate X is a compact subset of Rd.
(ii) The distribution function FX is 2d+1-times continuously differentiable.
(iii) infx∈χ fX(x) > 0.

(A4) (i) The error term ε = Λθ0(Y ) − m(X) has finite fourth moment and is
independent of X.

(ii) The distribution function Fε(θ)|X(y|x) is three times continuously dif-
ferentiable with respect to y and θ, and

sup
θ,y,x

∣∣∣∣ ∂i+j

∂yi∂θj11 . . . ∂θjkk
Fε(θ)|X(y|x)

∣∣∣∣ <∞
for all i and j such that 0 ≤ i+ j ≤ 2 where j =

∑k
l=1 jl.

(A5) (i) The transformation Λθ(y) is three times continuously differentiable with
respect to both y and θ, and there exists α > 0 such that :

E

[
sup

θ′:||θ′−θ||≤α

∣∣∣∣∣∣∣∣ ∂i+j∂yi∂θj
Λθ′(Y )

∣∣∣∣∣∣∣∣] <∞
for all θ ∈ Θ and all i and j such that 0 ≤ i+ j ≤ 3.

(ii) supx∈χ ||E[Λ̇4
θ0

(Y )|X = x]|| <∞.

(iii) supθ∈Θ,x∈χ ||E[Λ̇θ(Y )|X = x]|| <∞.

(iv) The density function of (Λ̇θ(Y ), X) exists and is continuous for all θ ∈
Θ.

(A6) (i) B is a compact subset of Rq and β0 is an interior point of B.
(ii) All partial derivatives of mβ(x) with respect to the components of x

and β of order 0, 1, 2 and 3 exist and are continuous in (x, β) for all x
and β.

(iii) For all ε > 0 :

inf
||β−β0||>ε

E[(mβ(X)−mβ0(X))2] > 0 .

(iv) Ω is non singular.
(A7) The functions m(x) and ∂

∂θm(x, θ) := ṁ(x) are p + 2 times continuously
differentiable with respect to the components of x on χ × N(θ0), where
N(θ0) is a neighbourhood of θ0 and all derivatives up to order p + 2 are
bounded, uniformly in (x, θ) in χ×N(θ0).

(A8) (i) For all η > 0, there exists ε(η) > 0 such that

inf
||θ−θ0||>η

||E(ξ(θ,X, Y ))|| ≥ ε(η) > 0 .
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(ii) The matrix Γ is of full rank.
(A9) Λθ0(α) = a and Λθ0(β) = b for some α < β and a < b, and the set

{x ∈ χ : ∂
∂xm(x) 6= 0} has nonempty interior.

(A10) E(r2(X)) <∞ and r(x) is twice continuously differentiable for all x.

Note that condition (A9) is needed for identifying the model (see Vanhems
and Van Keilegom (2013)), because

- The two conditions Λθ0(α) = a and Λθ0(β) = b for some α < β and a < b
are needed to fix the location and the scale of the model. More precisely,
consider the following transformation Λθ0(Y ) = cΛθ0(Y ) + d such that
Λθ0(α) = a, Λθ0(β) = b and where c and d are some constants. Then,
Λθ0(α) = cΛθ0(α) + d = a and Λθ0(β) = cΛθ0(β) + d = b, which implies
that c · a+ d = a and c · b+ d = b. We conclude that c = 1 and d = 0, and
then Λ = Λ.

- Suppose that ∂m
∂x (x) = 0 for all x, then m(x) = γ for some constant γ, and

the semiparametric transformation model becomes Λθ0(Y ) = γ + ε with

ε independent of X. Next, consider another transformation Λ̃θ0(Y ) of Y .

Then Λ̃θ0(Y ) = Λ̃θ0Λ
−1
θ0
Λθ0(Y ) = Λ̃θ0Λ

−1
θ0

(γ+ε) = Z−E(Z)+E(Z) where

Z = Λ̃θ0Λ
−1
θ0

(γ+ε). Finally Λ̃θ0(Y ) = γ̃+ ε̃ where γ̃ = E(Z), ε̃ = Z−E(Z),
ε̃ has zero mean and ε̃ is independent of X. The model is thus not identified.

Moreover, conditions (A6) and (A10) come from Van Keilegom, González-
Manteiga and Sánchez Sellero (2008), conditions (A4)(ii), (A5)(i) and (A8)
come from Linton, Sperlich and Van Keilegom (2008), condition (A3)(ii) come
from Neumeyer and Van Keilegom (2010) and conditions (A4)(i), (A5)(ii) and
(A5)(iv) come from Heuchenne, Samb and Van Keilegom (2014). Finally, note
that conditions (A1) and (A2), which are assumptions on the different kernels
and bandwidths and condition (A7) come partially from Linton, Sperlich and
Van Keilegom (2008) and partially from Neumeyer and Van Keilegom (2010).
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