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The biological underpinnings and the pathological lesions of
psychiatric disorders are centuries-old questions that have yet
to be understood. Recent studies suggest that schizophrenia and
related disorders likely have their origins in perturbed neurode-
velopment and can result from a large number of common
genetic variants or multiple, individually rare genetic altera-
tions. It is thus conceivable that key neurodevelopmental path-
ways underline the various genetic changes and the still
unknown pathological lesions in schizophrenia. Here, we report
that mice defective of the nicastrin subunit of �-secretase in
oligodendrocytes have hypomyelination in the central nervous
system. These mice have altered dopamine signaling and display
profound abnormal phenotypes reminiscent of schizophrenia.
In addition, we identify an association of the nicastrin gene with
a human schizophrenia cohort. These observations implicate
�-secretase and its mediated neurodevelopmental pathways
in schizophrenia and provide support for the “myelination
hypothesis” of the disease. Moreover, by showing that schizo-
phrenia and obsessive-compulsive symptoms could be modeled
in animals wherein a single genetic factor is altered, our work
provides a biological basis that schizophrenia with obsessive-
compulsive disorder is a distinct subtype of schizophrenia.

Psychiatric diseases such as schizophrenia, obsessive-com-
pulsive disorder, attention deficit hyperactivity disorder, and
autism exert devastating impact on the well-being of those
affected and the society at large. The clinical symptoms and
etiologies of these diseases are complex, obscure, and often
overlap, and characteristics of these diseases can only be par-
tially and incompletely captured in existing animal models. In
contrast to classical neurological disorders such as Alzheimer
disease, psychiatric disorders do not display overt neuropatho-
logical lesions but rather are attributed to changes in synaptic
transmission, neuronal homeostasis, and neuronal networks.
Both genetic and environmental factors contribute to these
changes, which can result from multiple, individually rare
genetic alterations or from large numbers of common genetic
variants. Often, psychiatric disorders have their origins in per-
turbed neurodevelopment. It is therefore conceivable that key
neurodevelopmental factors and pathways contribute to their
neurobiological underpinnings.

Several important neurodevelopmental pathways are con-
trolled by �-secretase, a multisubunit, multitransmembrane-
spanning proteolytic complex that cleaves a host of type I trans-
membrane proteins within the lipid bilayer (1). Although
�-secretase is perhaps best known for its role in cleaving the
amyloid precursor protein in Alzheimer disease, key �-secre-
tase substrates have also been implicated in schizophrenia,
most notably neuregulin-1 (Nrg1) and its receptor ErbB4 (2, 3).
A recent study also demonstrated a functional interaction
between the amyloid precursor protein and disrupted-in-schiz-
ophrenia-1 in cortical development (4). Moreover, multiple
�-secretase substrates have been directly or indirectly impli-
cated in regulating myelination (5– 8). In humans, white matter
abnormality has long been suggested as a pathological lesion
or a biomarker of schizophrenia, and a decrease in a host of
myelin-related genes have been identified in chronic schizo-
phrenia (2). Recent studies also point to defective myelination
and the resulting changes in neural circuitry as an underlying
cause of the disorder (9). It is in this context that we sought to
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examine the roles of oligodendrocyte �-secretase in myelina-
tion and in psychiatric behaviors.

Here, we describe a conditional knock-out (cKO)3 mouse in
which nicastrin, the substrate receptor of �-secretase, was
deleted from oligodendroctyes, the myelinating cells of the cen-
tral nervous system. We present evidence for the role of
�-secretase in schizophrenia-like behaviors, including the iden-
tification of putative SNPs in the nicastrin locus in a human
schizophrenia/bipolar disorder cohort. The model described
herein provides a powerful new tool for the dissection of several
endophenotypes that belie multiple psychiatric disorders.
Indeed, the cKO mouse presented here may help to reconcile
the longstanding observation of comorbidity between schizo-
phrenia and obsessive-compulsive behavior, indicating that
this may indeed be a distinct— but substantial—subclass of
schizophrenia.

Experimental Procedures

Reagents—TRIzol was purchased from Invitrogen; High
Capacity cDNA Reverse Transcription Kit and SYBR green was
from Applied Biosystems. All other reagents were reagent
grade.

Mice—Floxed nicastrin and olig1-cre mice have been
described elsewhere (10, 11). The mice were kept on a 12-h
light/12-h dark cycle and given access to food and water ad
libitum. To minimize variability in behavior caused by genomic
heterogeneity, conditional knock-out mice were tested against
littermate controls. Olig1-cre mice (olig1�/Cre) were first
crossed with floxed nicastrin mice (nicastrinflox/flox) to generate
single heterozygote (olig1�/�;nicastrin�/flox) and double
heterozygote (olig1�/Cre;nicastrin�/flox) mice, nonsibling pairs
of which in turn were crossed to one another to generate all
three genotypes (olig1�/Cre;nicastrin�/�, olig1�/�;nicastrinflox/flox,
and olig1�/Cre;nicastrinflox/flox) as littermates. The mice were
genotyped by standard PCR of ear tissue (for genotyping details,
see Ref. 10 and 11). All behavioral testing was conducted on
sex-matched mice between 18 and 24 weeks of age unless stated
otherwise. Experimentalists were blinded to genotype. All ani-
mal procedures conform to the Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee at University of Texas South-
western Medical Center.

Quantitative Real Time PCR (qRT-PCR)—RNA was ex-
tracted from either a pool of six pairs of optic nerves or cells
purified by immunopanning using TRIzol (Invitrogen). cDNA
was synthesized using a high capacity cDNA reverse transcrip-
tion kit (Applied Biosystems). qRT-PCR was performed using
the ABI 7500 fast real time PCR system, with an initial denatur-
ation for 20 min at 95 °C, followed by 40 cycles of 3 s of dena-
turation at 95 °C, and 30 s of annealing at 60 °C. Amplification
of target genes was measured using the fluorescent dye SYBR
green (Applied Biosystems), and data were collected during
each annealing phase. Each qRT-PCR run was performed in
triplicate, with data representing three experimental replicates

(i.e. three separate sets of six optic nerve pairs). Fluorescence
intensity was plotted against cycle number for each sample to
extract Ct values, which in turn were standardized to the house-
keeping gene u36b. The data are presented as fold change of
mRNA relative to transcript levels in the Cre mice. The primers
used are as follows: u36b, forward 5�-cgtcctcgttggagtgac-3�,
reverse 5�-cggtgcgtcagggattg-3�; cyclophilin, forward 5�-ggaga-
tggcacaggaggaa-3�, reverse 5�-gcccgtagtgcttcagctt-3�; actinB,
forward 5�-ggtgggtatgggtcagaaggac-3�, reverse 5�-ggctggggtgt-
tgaaggtctc-3�; and nicastrin, forward 5�-gggcaagctcttcaccagag-
atgta-3�, reverse 5�-ggcaagaccagcgattctactggt-3�.

Electron Microscopy—Details for the collection, staining, and
analysis of tissues are provided elsewhere (11). Measurements
for the quantification of g ratios were taken from electron
micrographs of three 6-month-old animals per genotype and at
least 100 myelinated axons per micrograph. The degree of
myelination can vary by axonal diameter, with smaller axons
typically having lower g ratios (see Fig. 1). Therefore, to elimi-
nate any confounder of the distribution of axonal diameters
within a sample, axons were binned by 0.1 �m, and randomized
block design using repeated measures two-way (genotype and
axonal diameter bin) ANOVA was used to calculate the mean g
ratio � S.E. across the three examined genotypes. Cumulative
frequency plots with respect to g ratio were also constructed.

Behavioral Tests—For the force plate actimeter/open field,
mice were habituated to the test room for 1 h prior to testing.
Mice were then placed into the center of a 44 � 44-cm platform
of a force plate actimeter (BASi). The mice were allowed to
explore the platform for 30 min, and data were collected at 100
points per second and 1024 s per frame. The first 10 min of
activity was considered as a period of habituation to the appa-
ratus and was therefore discarded from analysis. The displayed
tracings are representative of the median four mice of each
genotype from a pool of at least 18 mice and comprise 5 min of
activity 15 min into the experiment. Details for the elevated plus
maze are found in Ref. 12; those for prepulse inhibition and
grooming are provided in Ref. 13.

Haloperidol Treatment—Haloperidol (Sigma) powder was
dissolved in glacial acetic acid to form a 50 mg/ml concentrated
stock. The stock solution was dissolved 1000-fold in 0.9% bac-
teriostatic saline and brought to pH 6.5 by the dropwise addi-
tion of 1 N NaOH, vortexing vigorously. Vehicle was prepared
likewise. The mice were injected intraperitoneally at a dose of
0.25 mg/kg haloperidol (ED50 of haloperidol � 0.2 mg/kg (14).
Higher doses of haloperidol rendered the mice catatonic.

Statistical Analysis of Behavioral Data—All data are pre-
sented as means � S.E. Behavioral data were first analyzed by
sex, with a minimum of four mice per sex. Student’s t tests
revealed no statistically significant difference in the perfor-
mance of male and female mice on any of the measured behav-
ioral tests. Data from both sexes were pooled for a given geno-
type with a minimum of eight mice per genotype. After pooling
of data, single outliers were removed within an experiment only
if justified by using the Grubbs’ outlier test. One-way ANOVA
with a Bonferroni post hoc test was used for tests containing the
three genotypes and one parameter (e.g. open field locomotion).
Two-way ANOVA with a Bonferroni post hoc test was used for
tests containing the three genotypes and two parameters (e.g.

3 The abbreviations used are: cKO, conditional knockout; qRT-PCR, quantita-
tive real time PCR; SNP, single nucleotide polymorphism; ANOVA, analysis
of variance.
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genotype and arena in elevated plus maze). To determine the
significance of drug treatment, a comparison of differences was
used with an accompanying two-way ANOVA and a Bonferroni
post hoc test as described (15). Statistical analysis was per-
formed using Prism software (GraphPad, Inc.).

Subjects for Human Genetics Analysis—All participants are
Caucasians and originate from a geographically isolated popu-
lation living in Northern Sweden. In total, 351 patients diag-
nosed with bipolar disorder, 486 patients diagnosed with schiz-
ophrenia, and 512 healthy controls were included in this study.
The mean ages at examination were 56.3 and 58.5 years and
male percentages were 47.2 and 65.3% for bipolar disorder and
schizophrenia patients, respectively. Experienced psychiatrists
evaluated patients, and diagnosis was made according to
DSM-IV criteria (48). Healthy controls were selected randomly
from a longitudinal population-based study (the Betula project)
and screened for history of psychotic events; their mean age at
examination and the male/female ratio were similar to those of
the patients. The control group was recruited from the same
geographical region of northern Sweden as the patients, and
there was no evidence of population stratification in these sam-
ples (using the Structure program for the analysis of several
unlinked microsatellites). More information about these
cohorts and the advantages of this isolated population for gene
mapping can be found elsewhere (16). All subjects signed an
informed consent and the project was approved by the institu-
tional ethics committees of the Universities of Umea and
Antwerp.

Selection and Genotyping of Nicastrin SNPs—To cover as
much as possible genetic variation for nicastrin, the CEU gen-
otype data were used from the HapMap database (17). Haplo-
type-tagging SNPs were chosen as predicted by Haploview
(confidence interval minima for strong linkage disequilibrium;
upper: 0.9 and lower: 0.65; upper confidence interval maximum
for strong recombination: 0.9; fraction of strong linkage dis-
equilibrium in informative comparisons must be at least: 0.9;
exclude markers below 0.01 minor allele frequency). Only hap-
lotypes with an estimated overall frequency of 5% or greater
were considered in the selection analyses. Tagging SNPs not
covered with the haplotype-tagging SNPs selection were added
using the r2 option of Tagger (using a cutoff point of r2 � 0.8 and
minor allele frequencies � 0.01). SNPs located in regions with
a high repeat content were excluded. The genomic locations of
the 10 tagging SNPs analyzed in the nicastrin (NCSTN) gene
are presented in Table 2. Genomic DNA was extracted from
peripheral blood using standard methods. The genotyping of all
SNPs was performed using the MassARRAY iPLEX Gold tech-
nology (Sequenom Inc., San Diego, CA), following the protocol
provided by Sequenom. The PCR and extension primers were
designed using Assay Design 3.0 (Sequenom Inc.). Analysis and
scoring were performed using Typer 3.3 (Sequenom Inc.). All
genotypes were manually checked by two independent
researchers, and internal controls showed a good consistency of
genotype results.

Statistical Analysis of SNPs—The PLINK and UNPHASED
programs (18, 19) were used for Hardy-Weinberg equilibrium
analysis, case-control comparisons of single SNPs (using a chi-
squared test) and haplotypes in sliding windows (using 1.000

permutations). Block-wide haplotype determination and their
case-control comparisons were carried out using the Haplo-
view and UNPHASED programs (using 1.000 permutations)
(20). Empirical p values for single SNPs were derived by permu-
tation using PLINK and UNPHASED programs. Haplotype
block structures and linkage disequilibrium patterns were visu-
alized with Haploview.

Results

Construction of the Nicastrin cKO Mouse—We conditionally
deleted nicastrin, one of four core subunits of �-secretase (21–
23), from oligodendrocytes by crossing olig1-cre mice (11)
(“Cre,” olig1�/Cre) with floxed nicastrin mice (10, 22) (“flox,”
nicastrinflox/flox) to yield the nicastrin conditional knock-out
mouse (“cKO,” olig1�/Cre;nicastrinflox/flox; Fig. 1a). cKO mice
were viable, fertile, and born at Mendelian ratios. Deletion of
the nicastrin gene from oligodendrocytes was confirmed by
both recombination-specific PCR and qRT-PCR of the optic
nerve, a heavily myelinated fiber tract rich in oligodendrocytes
(Fig. 1, b and c). Recombination and restricted Cre expression to
white matter tracts in the brain were also confirmed by using
tdTomato reporter mice (data not shown). Direct visualization of
nicastrin localization, however, was hampered by lack of antibod-
ies suitable for immunostaining and will need to be addressed in
the future. (Thus far, none of the commercial and noncommercial
nicastrin antibodies we tested can specifically stain endogenous
nicastrin when knock-out cells were used as controls.)

Hypomyelination in the Nicastrin cKO Mouse—Because of
the nature of the conditional knock-out, i.e. selective deletion of
nicastrin from oligodendrocytes, we asked whether conditional
knock-out mice displayed altered myelination relative to con-
trol animals. Histological staining of whole brains with hema-
toxylin and eosin or Luxol fast blue/periodic acid Schiff did not
reveal any gross pathology in neuroanatomy or myelination,
particularly in white matter regions, such as the corpus callo-
sum, striatum, and optic chiasm (data not shown). Ultrastruc-
tural inspection by electron microscopy, however, revealed
thinner myelin sheaths in the optic nerve of cKO animals (Fig.
1d). Quantification of g ratios confirmed hypomyelination in
the optic nerve, particularly of axons less than one micron in
diameter (Fig. 1e; mean g ratio � S.D. for Cre � 0.789 � 0.081,
flox � 0.778 � 0.100; cKO � 0.847 � 0.071, p � 0.0001). The
effect on myelination was localized to the brain, because g ratio
analysis in the spinal cord and sciatic nerve showed no differ-
ence between control and cKO mice (Fig. 1, f and g). These
observations show that loss of nicastrin in oligodendrocytes
leads to defective myelination in the brain.

Behavioral Analysis of Nicastrin cKO Mice—We next ana-
lyzed behavioral and functional outcomes of nicastrin deletion
from the oligodendrocytes. We observed that nicastrin cKO
mice were hyperactive and had increased exploratory behavior,
as exhibited in positional activity recordings (Fig. 2a). (Here,
“hyperactivity” is defined as increased movement without
regard to the arena in which activity is measured, whereas
“increased exploratory behavior” is defined as increased activity
within a normally anxiogenic environment, e.g. the central
arena in the open field maze). Hyperactivity was seen in both
the open field (Fig. 2, b and c) and elevated plus maze (Fig. 2d).
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Likewise, conditional knock-out mice demonstrated increased
exploratory behavior in both the open field and elevated plus
mazes (Fig. 2, e and f). Hyperactivity and increased exploratory
behavior are consistent with schizophrenia (24, 25). Indeed,
cKO mice likewise displayed deficits in prepulse inhibition, a
measure of sensorimotor gating, which is impaired in schizo-
phrenia (Fig. 2g). Student’s t tests with a minimum of four mice
from each sex revealed no statistically significant difference in
the performance of male and female mice on any of the mea-
sured behavioral tests (Table 1).

The neurotransmitter dopamine can modulate locomotor
activity and plays an important role in schizophrenia (26). We
therefore asked whether cKO mice were sensitive to haloperi-
dol, a dopamine receptor antagonist used as a typical antipsy-
chotic to treat schizophrenia. Acute intraperitoneal injection of
a low dose of haloperidol reversed the hyperactivity of cKO
animals to a level comparable with that of control animals (Fig.
3a). On the other hand, the low dose of haloperidol did not alter
the thigmotaxis of control or cKO mice in an open field maze
(Fig. 3b).

FIGURE 1. nicastrin conditional knock-out mice have hypomyelination in the optic nerve but not in the spinal cord or periphery. a, schematic for
conditional deletion of nicastrin. Exon 3 of nicastrin is flanked by loxP sites. In the presence of Cre recombinase, exon 3 is excised, resulting in a truncated and
nonfunctional nicastrin transcript. b, PCR of genomic DNA from optic nerves of the two control (Cre and flox) mice and the cKO mouse. Arrows represent
genotyping primers. In the wild-type allele, primers 1 and 3 anneal at a distance too far for efficient amplification under standard PCR conditions (a). c,
quantification of nicastrin transcripts from optic nerves of Cre, flox, and conditional knock-out mice. Also shown are two housekeeping genes as controls: actinB
and cyclophilin. All data are normalized to a third housekeeping gene, u36b. The data represent the means � S.E. of three experimental replicates, with each
experiment containing six pairs of optic nerves as sample material. n.s., p � 0.05; **, p � 0.01. d, electron micrographs of the optic nerves from 5-month-old
control or conditional knock-out mice. Scale bars, 2000 nm (upper row) and 500 nm (lower row). e, g ratio plots for the optic nerves of control and conditional
knock-out mice. f, g ratio plots for the spinal cords of control and conditional knock-out mice. g, g ratio plots for the sciatic nerve of control and conditional
knock-out mice. The g ratio is the ratio between the internal (i, i.e. axonal) and external (e, i.e. myelin) diameters (top); thus, an unmyelinated nerve has a g ratio
of 1.0. Insets, cumulative frequency plots with respect to g ratio.

Schizophrenia- and OCD-like Behaviors in Nicastrin cKO Mice
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Aged nicastrin cKO mice also exhibited extensive bald
patches localized specifically to the nape of the neck and upper
back; these bald patches progressed to full lesions with 100%
penetrance by 9 months of age (Fig. 4, a and b). cKO mice
displayed these lesions as early as 4 months of age, with a mean
age of onset of 28 � 5 weeks (Fig. 4b). In most cases, the lesions
were so severe as to warrant early termination under institu-
tional animal care guidelines because of undue discomfort and
distress. The lesions were self-inflicted and not caused by social
grooming (allogrooming), because (i) singly housed cKO mice
displayed the phenotype and (ii) when cohoused with control
littermates, only cKO mice displayed this phenotype. Hetero-
zygous nicastrin conditional knock-out mice (olig1�/Cre;
nicastrin�/flox) did not present with lesions by 9 months of age
(data not shown), suggesting that the lesion phenotype dis-
played by 9 months of age requires complete deletion of the
nicastrin gene. Given the link between nicastrin and acne
inversa (27), we examined skin pathology and itch response in
cKO mice. Skin necropsy revealed local inflammation, but this
appeared to be a secondary response to another primary insult.
Indeed, lesions were not responsive to topical antibiotic, anti-
inflammatory, or antihistamine treatment (data not shown).
Suspecting an acute itch response, we tested the sensitivity to
local injection of histamine but found no significant difference
in response (data not shown).

Observation in home cages showed that cKO mice displayed
compulsive grooming and trichotillomania (supplemental
Video S1). Measurement of presymptomatic cKO mice re-
vealed a trend toward excessive grooming both in terms of the
number of grooming bouts and their duration (Fig. 4, c and d).
The variability of grooming behavior among presymptomatic
cKO mice (Fig. 4, c and d) may be compounded by hyperactiv-
ity. Moreover, it may reflect the variability in the age of onset of
the lesion phenotype (Fig. 4b). Therefore, we observed these
same mice throughout 10 months of age. Correlation analysis
demonstrated that those mice that groomed most also were the
first to display lesions, with strong negative correlations (p �
0.005) between the extent of grooming and the age of lesion
onset (Fig. 4, e and f).

Identification of a SNP in Nicastrin in a Schizophrenia/Bipo-
lar Disorder Cohort—Because the nicastrin gene resides near a
schizophrenia susceptibility locus on chromosome 1 (28), we
sought to identify nicastrin SNPs in schizophrenia populations.
We analyzed 10 tagging SNPs in the nicastrin gene in 351 bipo-
lar patients, 486 schizophrenia patients, and 512 healthy con-
trols from Northern Sweden. All SNPs were in Hardy-Wein-
berg equilibrium, and the haplotype blocks compositions and
minor allele frequencies were similar to those from the Hap-
Map CEU samples (a “control” population). A significant asso-
ciation was found for SNP rs1802778 with the schizophrenia

FIGURE 2. nicastrin conditional knock-out mice display hyperlocomotion and increased exploratory behavior. a, representative activity recordings for
four individual mice of each genotype as measured on force plate actimeters. b, distance traveled in the open field. c, vertical (rearing/jumping) activity. d,
distance traveled in the elevated plus maze. e, open field test. f, elevated plus maze. g, inhibition to a prepulse tone ranging from 72 to 82 db. Models of
schizophrenia are less sensitive to the prepulse and therefore show reduced inhibition. The data are presented as means � S.E. n.s., p � 0.05; *, p � 0.05; **, p �
0.01; ***, p � 0.001. A full table of descriptive statistics is provided in Table 1.
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sample (p � 0.039; Table 2). We did not find significant associ-
ations with haplotypes using sliding windows or HapMap based
haplotype blocks. The nicastrin SNP identified (rs1802778)
resides in the 5� end of the gene and suggests a role in transcrip-
tional or post-transcriptional regulation. Query of a publicly
accessible database with genome-wide expression data (GTEx-
Portal (29)) revealed significant changes in expression of
nicastrin in both human whole blood (p � 1.1e-26) and the
caudate, a myelinated dopaminergic region of the striatum
in the brain (p � 1.3E-06). The SNP is also located in an
exonic region of COPA (coatomer protein complex, subunit
A), a protein involved in vesicular trafficking from the ER to
the Golgi. Expression data from GTExPortal does not show
any significant changes in COPA expression in the central

nervous system resulting from this SNP. Identification of
nonsense or missense mutations in the genes for nicastrin
and other �-secretase subunits may provide further insight
into the role of nicastrin/�-secretase activity in myelination
and psychiatric disease.

Discussion

In this work, we present evidence that loss of nicastrin regu-
lates myelination in vivo and that deficiency in the nicastrin
�-secretase subunit in oligodendrocytes results in hyperactivity
and compulsive behaviors reminiscent of schizophrenia and
obsessive-compulsive disorder. The mouse model from this
study thus provides a new tool to explore the connections
between myelination and psychiatric diseases and to dissect the

TABLE 1
Statistical analysis of mouse behavioral tests

Number of animals Parameter Comparison
Statistical test

F p value

Open field
Cre 33 Horizontal activity (Fig. 2b) Genotype One-way ANOVA
flox 25 F (2,73) � 19.25 �0.0001
cKO 18
Cre 35 Thigmotaxis (Fig. 2e) Genotype One-way ANOVA
flox 23 F (2,76) � 8.663 0.0004
cKO 21

Elevated plus maze
Cre 35 Horizontal activity (Fig. 2d) Genotype One-way ANOVA
flox 24 F (2,78) � 5.429 0.0062
cKO 22
Cre 35 Time spent in area (Fig. 2f) Genotype and arena Two-way ANOVA
flox 24 Genotype F (2,237) � 0.07 0.9284
cKO 22 Arena F (2,237) � 877.16 �0.0001

Interaction F (4,237) � 13.10 �0.0001
Prepulse inhibition

Cre 33 Inhibition (Fig. 2g) Genotype and intensity Two-way ANOVA
flox 28 Genotype F (2,414) � 11.42 �0.0001
cKO 47 Sound intensity F (3,414) � 68.80 �0.0001

Interaction F (6,414) � 0.50 0.8052
Haloperidol (open field)

Cre 15 Horizontal activity (Fig. 3a) Genotype and treatment Two-way ANOVA on comparison
of differences

flox 8
cKO 12 Differences between genotypes F (2,130) � 6.25 0.0026

Treatment F (1,130) � 7.25 0.0080
Interaction F (2,130) � 3.62 0.0295
Genotype within treatment One-way ANOVA
Vehicle F (2,63) � 5.312 0.0074
Haloperidol F (2,67) � 1.540 0.2218

Cre 15 Thigmotaxis (Fig. 3b) Genotype and treatment Two-way ANOVA on comparison
of differences

flox 8
cKO 12 Differences between genotypes F (2,126) � 7.08 0.0012

Treatment F (1,126) � 5.56 0.0199
Interaction F (2,126) � 0.43 0.6501

Comparison of differences One-way ANOVA
Vehicle F (2,63) � 4.909 0.0104
Haldol F (2,63) � 3.672 0.0310

Video recording
Cre 14 Vertical activity (Fig. 2c) Genotype One-way ANOVA
flox 16 F (2,50) � 6.585 0.0029
cKO 23
Cre 14 Grooming bouts (Fig. 4c) Genotype One-way ANOVA
flox 16 F (2,50) � 3.729 0.0309
cKO 23
cKO only 18 Grooming bouts vs. lesion age (Fig. 4e) Spearman correlation (nonparametric)

rs[18] � 	0.70 0.0012
Cre 14 Grooming duration (Fig. 4d) Genotype One-way ANOVA
flox 16 F (2,50) � 1.595 0.2130

23
cKO only 18 Grooming duration vs. lesion age (Fig. 4f) Genotype Spearman correlation (nonparametric)

rs[18] � 	0.65 0.0037
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FIGURE 3. Haloperidol restores the activity of nicastrin conditional knock-out mice. Mice were administered low doses of haloperidol immediately prior to testing,
and locomotion (a) and exploratory behavior (b) were measured in the open field as in Fig. 2. Left panels, statistical significance was determined by one-way ANOVA
within a treatment group. The data are presented as means � S.E. Right panels, comparison of differences from left panels (15). The pairwise differences between each
genotype and each treatment were then analyzed by two-way ANOVA as detailed under “Experimental Procedures.” Shown is the statistical significance taken from
Bonferroni post hoc tests. The data are presented as means � S.E. n.s., p � 0.05; *, p � 0.05; **. A full table of descriptive statistics is provided in Table 1.

FIGURE 4. nicastrin conditional knock-out mice display compulsive grooming. a, representative image of a compulsively grooming female mouse 6
months of age. b, the age at which conditional knock-out mice develop lesions. c–f, number of grooming bouts (c and e) and duration of grooming (d and f) prior
to the onset of lesions (gray vertical dotted line at 120 days, e and f). Spearman correlation analysis revealed strong negative correlations between both the age
of lesion development and grooming bouts (e, rs[18] � 	0.70, p � 0.0012) and the age of lesion development and grooming duration (f, rs[18] � 	0.65, p �
0.0037). The data are presented as means � S.E. One-way ANOVA for c: F(2,50) � 3.729, p � 0.0309; one-way ANOVA for d: F(2,50) � 1.595, p � 0.2130. A full table
of descriptive statistics is provided in Table 1.
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molecular mechanisms underlying behavioral abnormalities in
the future. Of particular interest is the connection between
�-secretase and the Nrg1-ErbB4 pathway in schizophrenia.
Nrg1 and ErbB4 have been linked to schizophrenia, and both
proteins are substrates of �-secretase (2, 3, 30, 31). Moreover,
BACE1	/	 mice (the upstream protease for Nrg1 cleavage) also
show hyperactivity and prepulse inhibition deficits, as do our
cKO mice (32). It has been reported that Nrg1-dependent
ErbB4 cleavage by �-secretase renders its intracellular domain
to translocate to the nucleus to turn on myelin genes (33).
Indeed, preliminary analysis of cKO mice by RNA-seq and
quantitative PCR shows down-regulation of genes in the ErbB4
pathway, including myelin oligodendrocyte glycoprotein (mog)
and myelin basic protein (mbp), as well as erbb4 itself,4 provid-
ing further support for the “myelination hypothesis” of
schizophrenia.

The hyperactivity exhibited by our mice has also been shown
in rodents that are partially deficient in the Aph1 subunit of
�-secretase (34, 35), although it is yet to be tested whether this
is attributable to the loss of �-secretase activity in oligodendro-
cytes. White matter abnormalities and changes in myelin genes
have been linked to multiple psychiatric disorders (including
schizophrenia and obsessive-compulsive behavior (9, 36)), as
well as in Alzheimer disease (37). Meanwhile, recently identi-
fied models of compulsive grooming and trichotillomania sim-
ilar to that displayed by our conditional knock-out mice involve
genes important for neural (i.e. neuronal and glial) develop-
ment, even though the phenotype does not present until adult-
hood (38 – 40). Given the role of �-secretase in brain develop-
ment, our conditional knock-out mice provide further evidence
to support neural (including glial) development as a critical
window in determining the later presentation of psychiatric
disorders (41).

Psychiatric disorders are traditionally classified by clinical
symptoms and behavioral abnormalities, which often overlap
among different disorders. Hyperactivity or compulsive pheno-
types are manifested in schizophrenia, obsessive-compulsive
disease, attention deficit hyperactivity disorder, and autism.
Interestingly, beyond impairment of memory and cognition,
Alzheimer disease is also an attention disorder and as such
shares behaviors reminiscent of attention deficit hyperactivity
disorder and obsessive compulsive behavior (42). A subset of
Alzheimer patients also exhibits psychosis (43, 44). The current

study advances a plausible hypothesis that aspects of these
brain disorders are attributable to defective myelination and
deficiency of �-secretase, a pivotal developmental regulator for
multiple developmental pathways.

On the other hand, the comorbidity of psychiatric illnesses
has long been a challenge for classifying, studying, and treating
these diseases. The high comorbidity of obsessive-compulsive
and schizophrenic symptoms has puzzled clinicians and scien-
tists over the past two centuries (45– 47). Although schizophre-
nia and obsessive-compulsive disorder are now considered
separate entities, it is still unclear whether these conditions co-
occur simply by chance or they share a fundamental biological
basis. Our work now provides a conceptual and mechanistic
framework, as well as a unique animal model, for the shared
biology of these comorbid conditions, strongly supporting the
view that schizophrenia with obsessive-compulsive disorder is
a distinct subtype of schizophrenia.
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