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Abstract: 

The responsiveness towards orally delivered dsRNA and the potency of a subsequent environmental RNA 

interference (RNAi) response strongly differs between different insect species. While some species are very 

sensitive to dsRNA delivery through the diet, others are not. The underlying reasons for this may vary, but 

degradation of dsRNA by nucleases in the gut lumen is believed to play a crucial role. The Colorado potato 

beetle, Leptinotarsa decemlineata, is a voracious defoliator of potato crops worldwide, and is currently under 

investigation for novel control methods based on dsRNA treatments. Here we describe the identification and 

characterization of two nuclease genes exclusively expressed in the gut of this pest species. Removal of 

nuclease activity in adults increased the sensitivity towards dsRNA and resulted in improved protection of 

potato plants. A similar strategy in the desert locust, Schistocerca gregaria, for which we show a far more 

potent nuclease activity in the gut juice, did however not lead to an improvement of the RNAi response. 

Possible reasons for this are discussed. Taken together, the present data confirm a negative effect of nucleases 

in the gut on the environmental RNAi response, and further suggest that interfering with this activity is a 

strategy worth pursuing for improving RNAi efficacy in insect pest control applications.  
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1. INTRODUCTION 

Over the past decade, RNA interference (RNAi) has been rapidly gaining attention as a loss-of-function research 

tool, but it also shows great potential for therapeutic applications in the treatment of many diseases, and as a 

novel biological control mechanism for the protection of crops against different pests (Bellés, 2010; Burand and 

Hunter, 2013; Huvenne and Smagghe, 2010; Kim and Rossi, 2008; Price and Gatehouse, 2008). Its intracellular 

mode of action is highly conserved and well described (Hammond, 2005; Vodovar and Saleh, 2012). The 

inherent sequence specific nature of the mechanism allows for selectively targeting organisms, such as insect 

pests, by optimizing dsRNA fragments corresponding to species-specific gene sequences. It is obvious that the 

RNAi technology, allowing for in vivo post-transcriptional silencing of essential genes, thereby causing mortality 

with little effect on non-target species, gained significant interest in pest management research over the past 

years (Yu et al., 2013; Zhang et al., 2013). Indeed, several studies have demonstrated that this technique shows 

great potential for the development of novel biological strategies for selectively controlling agricultural pests 

(Baum et al., 2007; Zhu et al., 2011). Nevertheless, an important aspect in exploiting the RNAi response 

remains the introduction of dsRNA in the cells, and while the intracellular mechanisms appear highly 

conserved, the degree of sensitivity towards RNAi varies strongly among insects, with many (economically 

important) species being refractory to environmentally delivered dsRNA (Scott et al., 2013; Swevers et al., 

2013b; Wynant et al., 2014a). Low sensitivity to RNAi is often observed in dipteran and lepidopteran species, 

although gene silencing in the latter has been reported in, amongst others, Plutella xylostella, Spodoptera 

exigua and Manduca sexta (reviewed by Terenius et al., 2011). In contrast, many members of the Hemiptera, 

Orthoptera and Coleoptera seem to be more responsive, making RNAi more feasible for pest control in these 

orders (Baum et al., 2007; Gong et al., 2014; Santos et al., 2014). However, there does not appear to be a clear 

rule to determine the sensitivity of an insect species. In addition, the method of dsRNA delivery is of crucial 

importance. In order to use RNAi as an efficient method in the control of insect pests, a potent knockdown 

through feeding of dsRNA is typically required. Yet, in several insect species, injection of naked dsRNA into the 

body cavity can successfully trigger RNAi, while feeding of the same dsRNA is less efficient, or completely 

ineffective. This was for instance observed in locusts, which are highly sensitive to injected dsRNA, while orally 

delivered dsRNA does not induce an efficient RNAi response (Luo et al., 2013; Wynant et al., 2014b). 

Low efficacy of orally delivered dsRNA is often attributed to extracellular degradation in the gut lumen. In the 

digestive juice of larvae of the silkworm, Bombyx mori, an alkaline nuclease that could digest dsRNA has been 

isolated (Arimatsu et al., 2007). Later, high nuclease activity also has been demonstrated in the gut juice of 

locusts (Luo et al., 2013; Wynant et al., 2014b),  as well as in salivary secretions of the pea aphid, Acyrthosiphon 

pisum (Christiaens et al., 2014), and the tarnished plant bug, Lygus lineolarus (Allen and Walker, 2012), to name 

a few. It is therefore very plausible that dsRNA degradation in the alimentary tract of insects contributes to a 

lowered RNAi efficiency upon feeding on dsRNA. This prompted us to hypothesize that removal of dsRNase 

activity in the insect midgut would have a beneficial effect on the RNAi potency, and could be sufficient to 

generate a more efficient knockdown through feeding in insect species that are less sensitive to orally induced 
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RNAi, but nonetheless possess the necessary cellular dsRNA uptake mechanisms and the subsequent means to 

generate a full RNAi response. 

The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major crop pest of potato plants in large 

parts of the world, including North-America, Europe, and Asia. It is characterized by the ability to quickly 

develop resistance to a wide range of chemical pesticides, urging the need to develop alternative management 

strategies (Zhu et al., 2011). Several studies have shown that CPB is able to take up dsRNA from the gut lumen 

and subsequently induce a potent systemic RNAi response, suggesting that RNAi could be a feasible novel 

control method for this insect pest (Cappelle et al., 2016; Zhu et al., 2011). Until now no high nuclease activity 

has been demonstrated in the gut juice of CPB. Nevertheless, a survey of the gut transcriptome revealed the 

presence of potential DNA/RNA-non specific nuclease encoding genes (Swevers et al., 2013a). Considering the 

above, CPB constitutes an excellent insect model to study the involvement of extracellular nuclease 

degradation of dsRNA on the efficiency of the environmental RNAi response. Therefore, we aimed at 

identifying and further characterizing nuclease genes in CPB. Furthermore, we tried to deliver proof for 

extracellular dsRNA degradation in the gut lumen as a major contributor determining RNAi efficiency by 

knocking down the responsible nuclease encoding transcripts, and by simulating increased degradation by 

orally administering predigested dsRNA. Finally, we tried a similar approach in the desert locust, Schistocerca 

gregaria, an infamous pest insect, capable of forming huge devastating swarms when in the gregarious phase 

(Verlinden et al., 2009). Four nuclease genes were previously characterized in this species (Wynant et al., 

2014b). Here, they were knocked down simultaneously in an effort to improve the RNAi sensitivity upon 

feeding of dsRNA. 
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2. MATERIAL AND METHODS 

2.1 In silico detection and phylogeny 

A tBLAST-N search using different insect dsRNase protein sequences as a query was used to search a combined 

assembly of three CPB data sets containing all available transcript sequences from adults, larvae and larval 

midguts (Kumar et al., 2014) (http://www.bio.unipd.it/~grapputo/CPB-Webpage). Retrieved transcripts were 

further assembled into contigs using Geneious. Obtained full length contig sequences were translated into 

amino acid sequences using the Expasy translate tool. For a multiple sequence alignment, two dsRNase 

sequences from Tribolium castaneum and one from Locusta migratoria were retrieved through BLAST searches 

against public databases on the NCBI website. In addition, Sg_dsRNase1 and Bm_dsRNase1 were selected from 

S. gregaria and B. mori based on previously published research (Liu et al., 2012; Wynant et al., 2014b). 

Translated protein sequences were aligned with the MUSCLE alignment software and manually verified. Signal 

peptides were predicted using SignalP 4.1 (Petersen et al., 2011), and possible disulfide bonds were predicted 

using the DiANNA web server (Ferrè and Clote, 2005). 

Phylogenetic analysis was performed by using the tBLAST-N algorithm to search all public NCBI databases, using 

multiple insect dsRNase protein sequences as a query. Retrieved sequences were scanned to confirm the 

presence of a DNA/RNA non-specific endonuclease domain by the NCBI conserved domain scan (Marchler-

Bauer et al., 2015). The translated coding regions of 45 selected sequences were aligned with the MUSCLE 

alignment software, manually verified and trimmed to obtain aligned regions with the highest homology. A full 

list of the sequences that were used can be found as Supplementary data S1. Phylogenetic analysis was 

performed using MEGA (Tamura et al., 2011). A maximum likelihood tree was constructed using a WAG 

substitution model and was tested by the bootstrap method, using 100 replications. Gaps were partially 

deleted with a site coverage cutoff of 95%. The phylogenetic tree was constructed using a bacterial DNA/RNA 

non specific endonuclease from Salmonella enterica as root.  

2.2 Rearing of animals and sample collection  

Colorado potato beetles (L. decemlineata) were reared on potato plants at controlled temperature (25°C), 

relative humidity (40%), and a 14h photoperiod. Larvae were developmentally synchronized at the moment of 

hatching, and 4
th

 instar larvae or adults were used for experiments. To collect samples for total RNA extraction, 

larvae or adults were snap frozen in liquid nitrogen, and stored at -80°C until further use. For tissue distribution 

analysis, animals were dissected to collect separate tissues (head, gut, remainder of the body) before snap 

freezing. Locusts (S. gregaria) were reared under crowded conditions with controlled temperature (32 °C), 

relative humidity (40-60%), and a 14h photoperiod. They were fed daily with fresh cabbage leafs. Locusts were 

further developmentally synchronized by transferring them to a different cage immediately after the day of the 

final molt. For extraction of total RNA, guts of the animals were dissected and transferred to liquid nitrogen. 

Samples were stored at -80°C. In order to obtain biologically active gut juice, both CPB and locusts were 

http://www.bio.unipd.it/~grapputo/CPB-Webpage/
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stimulated to vomit, so that regurgitated gut juices could be collected. Gut juice samples were stored at -20°C 

until further use.  

2.3 Synthesis of dsRNA 

Double stranded RNA fragments targeting Ld_vATPaseE (432 bp), Ld_arf4 (631 bp), Ld_dsRNase1 (608 bp), 

Ld_dsRNase2 (636 bp), Ld_Lethtgt (1505), Sg_dsRNase1 (616 bp), Sg_dsRNase2 (386 bp), Sg_dsRNase3 (536 

bp), Sg_dsRNase4 (686 bp), and Sg_tubu (564 bp) were prepared using the MEGAscript RNAi kit (Ambion). In 

brief, DNA templates containing T7 RNA polymerase promoter sequences on both ends were generated in a 

PCR reaction. These were subsequently used in a transcription reaction with the T7 RNA polymerase to 

generate dsRNA fragments.  Remaining DNA and any single stranded RNA was removed with nuclease 

digestion. Finally, the dsRNA is purified by a solid-phase adsorption purification protocol, according to the 

manufacturers’ instructions (Ambion). All primer sequences are presented in Supplementary data, Table S2. 

The PCR reactions were performed using the REDTaq ready mix (Sigma). Concentration of dsRNA was 

determined with a NanoDrop spectrophotometer (Thermo Fisher Scientific). The purity and integrity of PCR 

products and purified dsRNA fragments were assessed by performing 1% agarose gel electrophoresis.  

2.4 In vitro degradation of dsRNA 

To estimate nuclease activity in collected midgut juice samples, different dilutions were prepared using ringer 

solution (8.77 g/l NaCl, 0.19 g/l CaCl2, 0.75 g/ l KCl, 0.41 g/l MgCl2, 0.34 g/l NaHCO3, 30.81 g/l sucrose, 1.89 g/l 

trehalose, pH 7.2) and incubated for ten minutes with 250 ng of dsRNA. The incubation was performed at 25°C 

or 30°C, and at pH 6 or 7.5, for L. decemlineata or S. gregaria, respectively, corresponding to their optimal 

breeding temperature and pH of their gut lumen. Next, 6X loading dye was added to the samples and the 

dsRNA integrity was analyzed by means of 1% agarose gel electrophoresis. As a positive control, 250 ng of 

dsRNA was incubated in buffer. The total protein content of the gut juice samples was measured using the 

bicinchoninic acid (BCA) asay (Walker, 1994).  

2.5 Marker gene selection  

Depending on the experimental setup different genes were knocked down throughout this work. To assess 

sensitivity of the RNAi response in larval CPB, the expression of vATPase subunit E was targeted. Knockdown of 

this gene has been shown before to induce a potent gene knockdown and to induce larval mortality through 

feeding (Zhu et al., 2011). For further studies, Ld_arf4 was selected as a marker gene. The arf4 gene codes for 

ADP-ribolysation factor 4, which is ubiquitous in cells of all tissues. Therefore it forms a good marker for 

assessing the systemic knockdown efficiency in whole body after environmental uptake of dsRNA from the 

lumen of the gut on a transcript level. In addition, a lethal target gene (Ld_Lethtgt) was chosen. A knockdown 

of this transcript was shown to halt food intake and induce mortality in larvae as well as adults (Raemaekers et 
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al., 2014), making this gene an excellent marker to further study the phenotypic effects of a nuclease 

knockdown in adult beetles.  

For experiments with the desert locust, Sg_tubu was used as a marker gene to assess knockdown efficacy after 

feeding. It encodes the α-tubulin subunit of microtubules, which are part of the cytoskeleton of eukaryotic 

cells. The Sg_tubu dsRNA fragment was shown before to be able to induce a potent systemic knockdown after 

injection (Wynant et al., 2012), which makes it a good marker to assess a potential knockdown after ingestion 

of dsRNA in S. gregaria. 

2.6 Feeding and injection of dsRNA 

Larvae and adults of CPB were fed dsRNA that was administered via potato leaf disks of around 6 mm in size. A 

total volume of 10 µl was typically applied on the disks. The disks were air-dried before being fed to individual 

insects. Doses of dsRNA that were applied were 500, 50, 5, 1 ng to determine RNAi sensitivity in third instar 

larvae, 100 ng undigested or predigested dsRNA, to assess the effects of predigestion, and 500, 50, and 5 ng for 

adult beetles after knockdown of nuclease transcripts. Knockdown of the nucleases themselves was obtained 

by administering 700 ng of dsRNA directed against both transcripts, Ld_dsRNase1 and Ld_dsRNase2, twice, 

once before pupation, and once right after the emergence of the adults. After the disks were finished the 

animals were always transferred to plastic cages with fresh potato leaf material for the remainder of the time. 

In case of adult feeding experiments after nuclease knockdown, mortality was scored and potato plants were 

investigated for signs of feeding and egg-laying. As a control for all dsRNA treatments, dsgfp was used. 

Locusts were first injected and then fed dsRNA. In case of injections adult locusts were injected ventrally 

between two segments of the abdomen with 6 µl of dsRNA. The solution contained 250 ng against all known 

nuclease genes from S. gregaria, Sg_dsRNase1, Sg_dsRNase2, Sg_dsRNase3, and Sg_dsRNase4 (Wynant et al., 

2014b), so a total of 1 µg was injected. To assess the subsequent feeding response, locusts were orally 

administered 10 µl of dsRNA (20 µg) by means of a micropipette, after which the animals were allowed to feed 

on fresh cabbage leafs. Care was taken that the animals did not vomit after orally delivering the dsRNA. As a 

control for dsRNA treatments, locusts were given dsgfp. 

2.7 Total RNA extraction and cDNA synthesis 

Total RNA from whole body CPB larvae was extracted utilizing the SV96 Total RNA isolation system (Promega) 

according to the manufacturers’ instructions. Because of size, adult CPB and S. gregaria samples were 

processed using the Lipid tissue total RNA extraction kit (Qiagen), also according to the manufacturers’ 

instructions. In all cases DNaseI treatment was performed to remove traces of genomic DNA contamination. 

RNA concentration and quality was assessed using a Nanodrop spectrophotometer and 1% agarose gel 

electrophoresis. Equal quantities of RNA were used as template to produce cDNA. Copy DNA synthesis was 
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performed using the Primescript First Strand cDNA synthesis kit (Takara Bio), following the manufacturers’ 

protocol.  

2.8 Quantitative real time qRT-PCR  

The Primer3plus web tool was used to design quantitative real time qRT-PCR primers. All primer sequences are 

displayed as Supplementary data in Table S2. Primers were validated with a standard curve based on a serial 

dilution of cDNA to determine primer annealing efficiency. Each qRT-PCR reaction was performed in duplicate 

and contained 5 µl SYBR green solution (Invitrogen), 0.5 µl of forward and reverse primer (10mM) (Sigma), 2 µl 

milliQ water and 4 µl of cDNA. The PCR reaction was performed in a 96 well plate and analyzed by the StepOne 

System (ABI Prism, Applied Biosystems). Relative expression levels were calculated using the delta delta Ct 

method (Livak and Schmittgen, 2001). To correct for sample variation, expression was normalized against the 

geometric mean of two stably expressed reference genes (Vandesompele et al., 2002). Expression in CPB was 

normalized against Ld_arf1 and Ld_rp4 (Shi et al., 2013), expression in S. gregaria was normalized against 

Sg_rp49 and Sg_gapdh (Van Hiel et al., 2009).   

2.9 Statistical analysis 

Data were tested for normality using the Shapiro-Wilk normality test (Razali and Wah, 2011). Significant 

differences in gene expression were determined by t-tests, when comparing two groups, or when comparing 

multiple groups, by ANOVA with Tukey comparisons for post-hoc tests. All statistical analyses were performed 

in Graphpad Prism 6 software.  
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3. RESULTS 

3.1 Identification and sequence analysis of nuclease genes 

A combined assembly of three CPB data sets containing transcript sequences from whole adult, whole larvae 

and larval midguts (Kumar et al., 2014), was searched for transcripts encoding possible nucleases. Five 

transcript sequences were retrieved (Ld_rep_c46402, Ld_rep_c32902, Ld_rep_c29028, Ld_repc25652, and 

Ld_c8070). The first two and the other three together could be further assembled into two different 

sequences, which were named Ld_dsRNase1 and Ld_dsRNase2, respectively. Both nucleotide sequences span 

the entire open reading frame of the protein, and code for a single DNA/RNA non specific endonuclease 

domain. In addition, both proteins contain a predicted signal peptide, suggesting secretion to the extracellular 

medium, in accordance with their presumed function as nucleases that are active in the gut lumen. The full 

nucleotide and corresponding protein sequences were uploaded to GenBank (accession numbers KX652406 

and KX652407, Ld_dsRNase1 and Ld_dsRNase2, respectively), and can be found as supplementary data (Supp. 

Fig. S3). In Figure 1 a multiple sequence alignment is presented comparing the predicted amino acid sequences 

with two predicted nuclease sequences that were deduced from public databases of Tribolium castaneum 

(Tc_dsRNase1, Tc_dsRNase2; accession numbers XP_015840884 and XP_970494), a nuclease sequence 

identified from Locusta migratoria EST sequences (accession number KX652408), Sg_dsRNase1 from S. gregaria 

(accession number AHN55088; Wynant et al., 2014b), and the sequence from the alkaline nuclease that was 

purified from Bombyx mori gut juice (accession number AB254196; Arimatsu et al., 2007). Ld_dsRNase1 and 

Ld_dsRNase2 are similar and share 56% amino acid sequence identity. Both of them are most related to 

Tc_dsRNase2. Both locust sequences are also highly related, sharing 65% identity. The presence of eight 

conserved cysteine residues in all sequences points to possible disulfide bonds that could confer increased 

protein stability and similar protein architecture. For Ld_dsRNase1 possible bonds were predicted to be formed 

between cysteine residues 26-68 (1-2), 88-382 (3-8), 108-357 (4-7), and 123-148 (5-6). However, for 

Ld_dsRNase2 they were predicted between residues 24-66 (1-2), 86-146 (3-6), 106-356 (4-7), and 121-381 (5-

8). 

Additionally, a phylogenetic tree was constructed using 41 putative insect dsRNase sequences, retrieved from 

sequence data from 26 different insect species that belong to five different major insect orders (Lepidoptera, 

Diptera, Coleoptera, Orthoptera, and Hemiptera) (Figure 2). The insect sequences were supplemented with 

three homologous sequences identified from decapods. The tree was rooted using a bacterial putative 

DNA/RNA non-specific endonuclease from S. enterica. All sequences were confirmed to contain at least one 

DNA/RNA non-specific endonuclease domain by a NCBI conserved domain scan. In general, most sequences 

cluster in monophyletic groups that are well supported by high bootstrap values, with the exception of a 

putative dsRNase from Anopheles gambiae, which appears to cluster within the hemipteran sequences. 

Additionally, three coleopteran sequences also appear more closely related to the hemipteran cluster 

compared to the other coleopteran sequences. From the phylogenetic analysis it is clear that Ld_dsRNase1 and 

Ld_dsRNase2 are more closely related to each other than to sequences from related Coleoptera, indicating the 

duplication event of this gene likely occurred after the divergence from the common ancestor.  
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3.2 Nuclease expression and activity in the gut of CPB 

The relative transcript profile for both identified nucleases was determined for the gut, head, and remainder of 

the body of larval CPB. Expression occurs predominantly in the gut for both Ld_dsRNase1 and Ld_dsRNase2 

(Figure 3A-B), further suggesting that these enzymes are involved in extracellular nucleic acid digestion in the 

gut lumen. In addition, transcript levels were compared between larvae and adults. The results clearly show 

higher expression levels in adults, indicating that larvae might be more susceptible towards orally induced 

(environmental) RNAi (Figure 3C-D). 

To investigate if CPB effectively possesses active dsRNA digesting enzymes in its gut lumen that might influence 

the RNAi response, dsRNA was incubated with a dilution series of collected gut juice in vitro (Figure 4). To have 

a better idea on the potency of the degradation, it was compared with a dilution series of gut juice from S. 

gregaria, known for its very high nuclease activity and inability to generate an oral RNAi response (Wynant et 

al., 2014b). After incubation for ten minutes, the dsRNA had disappeared at much higher dilution factors in S. 

gregaria compared to L. decemlineata. Nevertheless, clear degradation of the dsRNA occurred in the gut juice 

of the CPB as well, indicating the presence of active nucleases in the gut lumen. In addition, in accordance with 

the expression data, adult CPB gut juice appeared more potent compared to larval gut juice. A 50-fold dilution 

of adult gut juice was still capable of degrading the dsRNA, while in a 50-fold dilution of larval gut juice the 

dsRNA was still clearly visible. For S. gregaria, no difference in potency between larval and adult gut juice could 

be observed. A 500-fold dilution showed a very faint band after incubation in gut juice from both 

developmental stages, and the dsRNA remained fully intact only after incubation in a 1000-fold dilution (Figure 

4). By comparing dilution series of pure gut juice, which contains a complex mixture of proteins, the 

physiological conditions of the gut lumen between the two species are compared in the most natural way. 

However, additionally, the total protein content of the undiluted gut juice samples was measured and averaged 

at 135 mg/ml for both S. gregaria adults and L4 larvae, while L. decemlineata larval gut juice averaged around 

96 mg/ml and that of adults at 92 mg/ml.  

3.3 The RNAi response in CPB is time and concentration dependent 

Prior to studying the effect of nuclease activity in more detail, a reference frame for the sensitivity and 

efficiency of the environmental RNAi response was established. Third instar CPB larvae were fed different 

concentrations of marker dsRNA (Ld_vATPase). Subsequently, whole larvae were collected at two different 

time points, 24 hours and 3 days after feeding, and transcript levels were determined. The results show that 24 

hours after ingestion of the dsRNA, transcript levels were significantly reduced with 89%, 79%, and 64% for 

500, 50, and 10 ng of dsRNA, respectively (Figure 5). Administration of 1 ng of dsRNA per individual did not 

significantly reduce the transcript levels compared to the controls, although a trend was visible. Extending the 

incubation time to 3 days further reduced the transcript levels to 95%, 96%, and 84% for 500, 50, and 10 ng, 

while 1 ng still did not have a significant effect on the transcript levels (Figure 5). 
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3.4 Predigesting of dsRNA in gut juice lowers the RNAi efficiency of CPB larvae 

Next, larvae of the CPB were fed a leaf disk containing dsRNA that was predigested through incubation with a 

diluted solution containing collected midgut enzymes. Incubating the dsRNA for 1 hour clearly digested it 

(Figure 6). However, a smear was still visible, suggesting that only partial degradation occurred at this point. 

The approximate size of the degraded dsRNA fragments that were applied on the leaf disk can be estimated 

between 100 bp and 200 bp, which is still above the known threshold for cellular uptake, which has been 

indicated to be around 30 bp in T. castaneum (Miller et al., 2012) and in Drosophila S2 cells (Saleh et al., 2006). 

Incubating the dsRNA for a longer period completely removed the smear, showing complete digestion after 16 

hours. Consequently, 1 hour of pre-digestion of the dsRNA significantly lowered the knockdown efficiency to 

42%, 24 hours after ingestion of the equivalent of 100 ng of dsRNA, compared to feeding of 100 ng undigested 

dsRNA, which induced a whole body knockdown of 70%. Increasing the incubation time further reduced the 

RNAi efficiency, up to a point that a knockdown could no longer be detected (Figure 6). Control animals 

received 100 ng of dsgfp that was incubated for 16 hours to rule out any effects of the ingestion of dsRNA or 

the diluted solution of gut juice. 

3.4 Knockdown of nuclease genes sensitizes the RNAi response in CPB adults 

To further assess the effects of nuclease activity in the gut on the sensitivity of the RNAi response, an RNAi-on-

RNAi approach was applied, where the effect of a knockdown of a target gene was studied by assessing the 

efficiency of a subsequent marker gene knockdown. The expression of both Ld_dsRNase1 and Ld_dsRNase2 

was targeted simultaneously by feeding last instar larvae, which were close to pupation, with a leaf disk 

containing a dose of 700 ng of dsRNA for each of both nuclease genes. The same treatment was repeated 

immediately after emergence of the adults, to ensure maximal knockdown of the nucleases at the protein level 

in the adult stage. Adults were chosen because the expression of Ld_dsRNase1 and Ld_dsRNase2 was higher at 

this stage and nuclease activity in the gut juice was clearly stronger. Three different concentrations of marker 

gene dsRNA were subsequently administered through another leaf disk. Transcript levels were measured 24 

hours after ingestion. Two distinct marker genes were used. In addition to Ld_arf4, which was solely used for 

qRT-PCR analysis, a second marker gene (Ld_lethtgt) was selected. Knockdown of this transcript leads to halting 

food intake, and is capable of inducing mortality in both CPB larvae and adults (Raemaekers et al., 2014). 

Both nuclease genes were significantly knocked down. Transcript levels were reduced with 84% and 86% for 

Ld_dsRNAse1 and Ld_dsRNase2, respectively (Figure 7A-B). Moreover, the removal of nuclease expression 

positively influenced the knockdown of the marker genes 24 hours after uptake of the dsRNA, especially at the 

lowest concentration of dsRNA. Ingestion of 500 ng of Ld_arf4 dsRNA by control animals resulted in a 60% 

reduction in transcript level, compared to 65% after nuclease knockdown. The difference increased to 11% for 

50 ng and 21% for 5 ng, corresponding to a knockdown increase from 49% to 51%, and 30% to 51%, 

respectively (Figure 7C). Ingestion of 5 ng of Ld_lethtgt dsRNA in control animals resulted in a knockdown of 

38%, compared to 57% after nuclease knockdown, which accounts for a difference of 19%. After ingestion of 50 
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ng, the transcript levels were reduced with 47% and 63%, for control and nuclease knockdown animals, 

respectively; a 16% difference. For 500 ng, knockdown values averaged at 68% and 70% (Figure 7D).  

Furthermore, from Figure 8A it is clear that higher concentrations of Ld_lethtgt dsRNA induced mortality, and 

that removal of nuclease activity increased the effect. After eight days 75% and 50% of the beetles that had 

ingested 500 and 50 ng of dsRNA, respectively, had died. However, from the beetles that had their nuclease 

activity removed, 82% were dead or moribund for both 500 and 50 ng. In addition, no more death events 

occurred after day 8 in control animals that received 50 and 500 ng. In the nuclease knockout condition, 

mortality further increased to 90% and 100%, respectively, after 14 days. Moreover, all control animals that 

only received 5 ng of dsRNA were still alive at day 8, and 90% survived the experiment, while from the nuclease 

knockout animals 45% had died after 14 days (Figure 8A).  

After ingestion of the final leaf disk containing the target dsRNA, beetles were transferred to potato plants for 

the remainder of the experiment. At day four after ingestion of the Ld_lethtgt dsRNA, potato plants were 

replaced. Three days later the fresh plants were assessed for signs of feeding and egg laying. Beetles from both 

control conditions (regular control and nuclease knockdown control) behaved normally. Multiple egg layings 

occurred, and the plants were almost completely devoured (Supplementary Fig. S4). Knockdown of the 

nucleases had no apparent phenotypic effect on the animals. In contrast, all beetles that received 500 ng of 

Ld_lethtgt dsRNA had no longer consumed anything at this point, and had not laid any eggs (Supplementary 

Fig. S4). Control beetles that received 50 ng of dsRNA showed only very small signs of feeding, while nuclease 

knockdown animals did not consume anything at all, with very little to no egg laying in either condition 

(Supplementary Fig. S4). However, at the lowest concentration of 5 ng a clear difference could be observed. 

Control beetles clearly still had fed on the plant and deposited several egg clutches, while no egg laying or 

feeding could be observed in nuclease knockout beetles that had received only 5 ng of Ld_lethtgt dsRNA 

(Figure 8B).  

Finally, we investigated the effect of a single dose of 500 ng marker gene dsRNA on the transcript levels of 

Ld_dsRNase1 and Ld_dsRNase2 in adult beetles after 24 hours, to evaluate if dsRNA exposure could quickly 

desensitize the animals by stimulating nuclease expression. No significant difference on the transcript levels 

could be observed (Supplementary Fig. S5). 

3.5 Knockdown of nuclease genes in Schistocerca gregaria does not improve the environmental RNAi response 

Four nuclease genes were previously characterized in the desert locust: Sg_dsRNase1, Sg_dsRNase2, 

Sg_dsRNase3, and Sg_dsRNase4. In an extensive tissue distribution they were shown to be expressed 

exclusively in the gut, and a knockdown of these dsRNases lowered the nuclease activity in the gut significantly, 

especially for Sg_dsRNase2 (Wynant et al., 2014b). Here we simultaneously knocked down all four dsRNases, 

by injection of 250 ng of dsRNA for each nuclease. The procedure was repeated after four days to ensure 

maximal knockdown. Two days later, 20 µg of marker gene dsRNA (Sg_tubu) was orally administered. 

Quantitative RT-PCR results show that expression of all four nuclease genes was clearly suppressed (91%, 94%, 

97%, and 96%) (Figure 9A). However, no effect on the transcript level of the orally administered marker could 
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be observed (Figure 9B). Injection of the same dsRNA did lead to effective down regulation of the 

corresponding transcript (Supplementary Fig. S6). Gut juice collected from dsRNase knockdown animals clearly 

showed less potent degradation of dsRNA compared to controls. Nevertheless, a 50-fold dilution of gut juice 

was still capable of degrading 250 ng of dsRNA in ten minutes (Figure 10), indicating the presence of residual 

nuclease activity in the gut.  
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4. DISCUSSION 

We confirmed that the Colorado potato beetle, L. decemlineata, has a very sensitive environmental RNAi 

response through feeding. Ingestion of as little as 10 ng of dsRNA by L3 stage larvae was sufficient to generate 

a significant knockdown after 24 hours. This seems to be close to the required minimal dose. One ng no longer 

led to significant differences on the transcript level, although did show a trend for suppression. The knockdown 

increased after three days for all concentrations, thereby showing a clear dose and time dependency of the 

RNAi response in CPB. 

It is difficult to directly compare the sensitivity of the observed response to previously published work on CPB, 

or to other insects that are known to be sensitive towards orally induced RNAi. In many cases quantities are 

used that appear (far) above the threshold. This ensures maximal knockdown of the target gene, which usually 

is the primary objective. Data on the exact amount of dsRNA that is necessary for a potent knockdown are 

often limited, and might be sequence dependent to some extent. To the best of our knowledge this is the first 

study describing the exact concentration dependency of naked dsRNA on the environmental RNAi response in 

CPB. In reports where the concentration dependency of RNAi was studied in insects, often different 

concentrations of dsRNA are administered without monitoring the exact intake of individuals. One recent study 

in CPB clearly describes a gradual decrease in transcript level depending on the administered dsRNA 

concentration, and also, interestingly, depending on the larval stage of the insect (Guo et al., 2015). However, 

dsRNA was applied via a leaf dip bioassay, using bacterial suspensions. In another example, in the Western corn 

rootworm, Diabrotica virgifera, a species that is regarded as highly responsive towards oral RNAi, a 

concentration of 100 ng of dsRNA topically applied on 200 µl of artificial diet was sufficient to generate a 

physiological response, while 10 ng appeared to be insufficient (Miyata et al., 2014). However, from both these 

examples, it is impossible to know exactly how much dsRNA was actually ingested by the animals. In another 

coleopteran species, T. castaneum, it was shown that dsRNA against a lethal target (vATPase) had an LC50 value 

of 2.5 µg/g diet (Whyard et al., 2009). In this regard, it is interesting to mention that we also tested the feeding 

response in T. castaneum (data not shown). Interestingly, a clear response could not be observed, suggesting 

that no potent environmental RNAi response exists in our lab strain of T. castaneum. It is noteworthy that this 

discrepancy was also mentioned by another recently published research paper (Miyata et al., 2014), while 

another research group more recently succeeded in delivering dsRNA through the diet of T. castaneum (Abd El 

Halim et al., 2016). This indicates that the ability to generate a potent environmental RNAi response in T. 

castaneum, and probably in other insects, might be strain dependent. Possible explanations for strain 

dependency of RNAi could be differences in nuclease activity, differences in the efficiency of dsRNA uptake 

from the gut, or even differences in viral load that could affect the RNAi response (Swevers et al., 2013b), 

although these possibilities should be investigated further.  

It is obvious that the CPB possesses a sensitive feeding RNAi response. However, despite this sensitivity, we 

were able to detect nuclease activity in the gut, which was higher in adults compared to larvae. We identified 

two nuclease sequences that are specifically expressed in the gut and that are responsible for the digestive 



14 
 

dsRNA degrading activity. The two sequences are very similar at the amino acid level. A multiple sequence 

alignment including sequences from T. castaneum, L. migratoria, S. gregaria, and B. mori further shows that 

dsRNases possess eight conserved cysteine residues, suggesting the presence of multiple disulfide bonds. These 

bonds could increase the stability of the protein in the hostile environment of the gut lumen. A feature they 

appear to have in common with many other digestive enzymes in the gut, such as digestive proteases (Spit et 

al., 2014). Disulfide bond prediction was indecisive on the exact positioning of the bonds. A link between 

cysteine residues 1 and 2, and 4 and 7 was suggested for both proteins. However, the other two bonds were 

predicted between cysteine residues 3-8 and 5-6, or between residues 3-6 and 5-8, for Ld_dsRNase1 and 

Ld_dsRNase2, respectively. Determining the exact disulfide bond linkages by for example reduction studies 

may be necessary (Tang and Speicher, 2004), and will provide more insight into the structure-activity 

relationship of the dsRNases. 

Detecting active nuclease activity in the gut of an insect species that is very sensitive towards orally delivered 

dsRNA raises some questions, since nuclease activity in the gut has often been suggested to be associated with 

resistance towards environmental RNAi through feeding (Luo et al., 2013; Wang et al., 2016; Yu et al., 2013; 

Zhang et al., 2013). Comparison of the dsRNA degrading activity in the gut juice of CPB and S. gregaria, which is 

insensitive towards orally delivered dsRNA, nonetheless showed that, while the beetles are able to degrade the 

dsRNA, the gut juice of locusts was far more potent in this regard. This is in full accordance with the hypothesis 

that the potency of nuclease activity in the digestive system and the sensitivity towards RNAi are correlated in 

insects. A dual approach was taken to further investigate the effect of the nuclease activity on the efficiency of 

the RNAi response. First, larvae of the CPB were fed with dsRNA that was predigested in diluted gut juice. This 

simulates an extracellular environment with an increased nuclease activity. Second, the nuclease activity in 

adults was lowered by RNAi of the two identified dsRNase genes. Both treatments had opposite effects, in line 

with the hypothesis. Increasing nuclease activity lowered the RNAi sensitivity, while decreasing it made the 

animals more sensitive towards orally delivered dsRNA. The latter was evidenced by both qRT-PCR analysis, 

and by a reduced food uptake and increased mortality in adult beetles that ingested dsRNA against a lethal 

target in addition to having both their dsRNase genes knocked down. 

In contrast, a similar strategy of knocking down the four identified nuclease genes in S. gregaria had no effect 

on the sensitivity of a second RNAi response for a marker gene. Several possible explanations exist. Even 

though we obtained knockdown values of over 90% for all four Sg_dsRNase genes, some residual nuclease 

activity could still be detected in the gut juice. The knockdown only describes relative differences in transcript 

level, which does not reflect the absolute amount of transcripts that are left. In addition, the proteins may have 

a long half-life time. Alternatively, yet unidentified nuclease genes may be expressed in the locust gut, which 

were not targeted for knockdown by our treatment. Initial digestion in locusts occurs mainly in the foregut 

under the influence of regurgitated enzymes from the midgut and gastric caeca (Terra et al., 1994). Since the 

foregut is lined by a cuticle, which is considered impermeable for dsRNA, the residual nuclease activity, even 

though noticeably lower compared to controls, could still be strong enough to degrade the ingested dsRNA 

before the food bolus is passed on to the midgut, where the dsRNA would be taken up by the cells. This shows 
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the potential relevance of the feeding method and the digestion process in determining success of an 

environmental RNAi response. In the future, a more complete removal of the dsRNase activity in the gut by 

applying potent nuclease inhibitors or gene knock-out technologies like for example CRISPR/Cas9 (Doudna and 

Charpentier, 2014) might further improve our understanding of the exact role(s) of these enzymes. Apart from 

degradation in the digestive system, other research has shown the importance of functional uptake 

mechanisms for dsRNA. In insects, the primary mode of cellular uptake of dsRNA appears to be scavenger 

receptor-mediated endocytosis (Cappelle et al., 2016; Ivashuta et al., 2015; Li et al., 2015; Saleh et al., 2006; 

Ulvila et al., 2006; Wynant et al., 2014; Xiao et al., 2015; Yoon et al., 2016). Interestingly, also in adults of S. 

gregaria, inhibiting scavenger receptor function led to decreased sensitivity towards injected dsRNA (Wynant 

et al., 2014). However, in the current study, the dsRNA was delivered through the diet. Therefore, based on our 

results, it cannot be excluded that locusts  simply do not possess the necessary mechanisms for uptake of 

dsRNA from the luminal side of the gut. Finally, it has been shown recently that even if the dsRNA is taken up 

efficiently by cells, incorrect further intracellular processing of the dsRNA molecules could also lead to reduced 

RNAi efficiency. This has been observed for lepidopteran cell lines derived from Spodoptera frugiperda and 

Heliothis virescens, where less efficient endosomal escape was suggested to lead to the accumulation of dsRNA 

in endosomal compartments, in contrast to cell lines from T. castaneum and L. decemlineata, where dsRNA was 

processed correctly (Shukla et al., 2016). However, since S. gregaria has been shown to possess a very potent 

systemic RNAi response upon injection (Wynant et al., 2012), it seems less likely that problems with 

intracellular processing would be responsible for the refractoriness towards orally delivered dsRNA in this 

species.Several reports mention that competition of dsRNA fragments might occur when they are administered 

together (Miller et al., 2012; Miyata et al., 2014; Tomoyasu et al., 2008). Nevertheless, here, simultaneous 

delivery of multiple dsRNA fragments resulted in potent knockdowns of all targeted genes at once, indicating 

that the RNAi machinery was not saturated, even with up to four dsRNA fragments in S. gregaria. It must 

however be noted that in order to minimize potential effects of dose and size dependent competition, we 

deliberately subjected the animals to the dsRNA treatment twice, administered the same concentration for all 

targets, and used dsRNA fragments of roughly a similar size. However, while the sequences of Sg_dsRNase3 

and Sg_dsRNase4 show less similarity, the transcript sequences of Sg_dsRNase1 and Sg_dsRNase2 are very 

similar, and it has to be mentioned that previous research has shown that the dsRNA construct directed against 

Sg_dsRNase1 might also influence the transcript levels of Sg_dsRNase2 to some extend and vice versa (Wynant 

et al., 2014b). It is unclear if under other circumstances competition might occur. It would also be interesting to 

find out if more, and how many, genes can be targeted at once in a similar setup as applied here, before the 

RNAi machinery gets saturated. Yet, this number might still depend on the specific experimental circumstances.  

In conclusion, the combined results deliver irrefutable proof that the environmental RNAi sensitivity in an 

insect is dependent on the potency of the dsRNA degradation in the gut lumen. The results also implicate that 

interfering with the nuclease activity, or protecting the dsRNA from degradation might be a good way to 

improve the RNAi response in some species. This could broaden the range of target pests, and reduce the 

economical and environmental costs of a dsRNA-based treatment, by lowering the necessary amount of active 

ingredient. However, the presented work also indicates that, next to many other possible mechanisms, 
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increasing the nuclease expression in the gut could be a very effective way of acquiring resistance of insect 

populations towards dsRNA. Nevertheless, while prolonged and continuous exposure might lead to this 

outcome, a single dsRNA exposure did not significantly increase the expression of nucleases in the gut of CPB. 

Finally, because degradation is independent of the dsRNA sequence it is important to assume the same initial 

mode of action for all naked dsRNA molecules, that will have similar cellular uptake mechanisms and survival 

properties in the gut lumen environment of the insect, even if the dsRNA molecules target completely different 

intracellular pathways. This is a valid concern, and will have to be carefully considered when developing novel 

pest control strategies based on the RNAi technology and when estimating the associated resistance risks. 
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FIGURES 

 

Figure 1. Multiple sequence alignment of identified Ld_dsRNase1 (KX652406) and Ld_dsRNase2 (KX652407) 

from L. decemlineata with Tc_dsRNase1 (XP_015840884) and Tc_dsRNase2 from T. castaneum (XP_970494), 

Lm_dsRNase from L. migratoria (KX652408), Sg_dsRNase1 (AHN55088) from S. gregaria, and Bm_dsRNase1 

from B. mori (AB254196). Alignment was carried out using MUSCLE. Threshold for shading is set at 70% 

identity. Identical residues are shaded black, similar amino acids are shaded in gray. Conserved cysteine 

residues that may be used for disulfide bridge formation are indicated with an arrowhead.  
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Figure 2. Circular maximum likelihood phylogenetic tree of putative dsRNase sequences from different insect 

orders, containing Ld_dsRNase1 and Ld_dsRNase2. The tree was rooted using a bacterial DNA/RNA non-specific 

endonuclease sequence and inferred from 100 bootstrap replicate. A condensed tree is presented, based on a 

bootstrap-value cutoff of 50. Accession numbers and species names are depicted. Sequences from Lepidoptera 

are indicated as blue circles, Diptera as red squares, Orthopera as purple diamonds, Coleoptera as green 

triangles, Hemiptera as yellow triangles, Decapoda as brown open circles, and the root of the tree as a black 

diamond. 
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Figure 3. Expression of Ld_dsRNase1 and Ld_dsRNase2 in different body parts (A,B) and life stages of L. 

decemlineata (C,D). Relative transcript levels were normalized against two reference genes, Ld_arf1 and 

Ld_rp4. Boxplots of the resulting data are presented (n ≥ 4). Means are indicated with a plus sign. For tissue 

distribution data, means were calculated against transcript levels in the body. Horizontal dotted line indicates 

RQ = 1. In case of larvae and adult expression comparison, the average relative quantity in the larvae has been 

set to 1.  
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Figure 4. Incubation of 250 ng of dsRNA in a serial dilution of regurgitated gut juices for 10 min. Samples were 

analyzed by means of 1% agarose gel electrophoresis in the presence of a 200 bp DNA ladder. Nuclease activity 

in the gut juice of fourth larval instars and adult L. decemlineata (top) was compared to that of fourth larval 

instar and adults from S. gregaria (bottom). As a positive control (PC) naked dsRNA was incubated in buffer 

solution in the absence of nuclease enzymes. 
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Figure 5. Concentration- and time dependency of the knockdown in larvae of L. decemlineata. Relative 

transcript levels of a marker gene (Ld_vATPase) were determined 24 and 72 hours after ingestion of the 

indicated amounts of dsRNA (1 ng to 500 ng). Control animals ingested 500 ng of dsgfp. Data were normalized 

against two reference genes, Ld_arf1 and Ld_rp4, and mean control values were set to RQ = 1. Boxplots of the 

resulting data are presented (n ≥ 6) and means are indicated with a plus sign. Statistical differences were 

determined using ANOVA with post hoc tests (levels of significance are indicated by * for p ≤ 0,05, ** for p ≤ 

0,005, *** for p ≤ 0,001, and ns for not significant). 
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Figure 6. Predigestion of dsRNA lowers RNAi efficiency in L. decemlineata larvae. (A) An equivalent of 100 ng of 

marker gene (Ld_arf4) dsRNA was incubated in a diluted solution containing gut enzymes for 1 hour or 16 

hours and fed to larvae. As a negative control, dsgfp was incubated for 1 hour in the same solution. Positive 

control knockdown values were determined by incubating dsRNA in MQ. Knockdown of gene expression was 

determined 24 hours after ingestion. Relative transcript levels were normalized against two reference genes, 

Ld_arf1 and Ld_rp4. Data is presented as boxplots (n ≥ 10), means are indicated with a plus sign. Mean relative 

quantity (RQ) was set to 1 for the control animals. Statistical differences in gene expression were determined 

using ANOVA with post hoc tests (levels of significance are indicated by ** for p ≤ 0,005, *** for p ≤ 0,001, and 

ns for not significant). (B) Amount of dsRNA degradation in the samples after incubation was analyzed by 

means of 1% agarose gel electrophoresis. A 100 bp and 10 bp ladder were also added on the gel, in addition to 

100 ng of untreated dsRNA as a positive control (PC). Arrow indicates smear of partially degraded marker 

dsRNA after 1 hour of incubation. Size of the partially degraded dsRNA can be estimated between 100 and 200 

bp. 

  



26 
 

 

Figure 7. Effect of nuclease knockdown (KD) in L. decemlineata adults. Both Ld_dsRNase1 (A) and Ld_dsRNase2 

(B) were significantly knocked down. Expression of both Ld_arf4 and Ld_lethtgt was subsequently targeted in 

two independent experiments. Both Ld_arf4 (C) and Ld_lethtgt (D) show improved RNAi efficiency after 

nuclease knockdown, 24 hours after ingestion of 50 ng and 5 ng of the marker dsRNA. Relative transcript levels 

were normalized against two reference genes, Ld_arf1 and Ld_rp4. Boxplots of the data are presented (n ≥ 6) 

as compared to the control situation (RQ = 1), means are depicted as a plus sign. Statistical differences in gene 

expression were determined using t-tests to compare Ld_dsRNase1 and Ld_ dsRNase2 expression between the 

two groups, or two-way ANOVA for the comparison of marker gene expression between different administered 

concentrations and both groups. For both Ld_arf4 and Ld_lethtgt both concentration of marker gene dsRNA 

and nuclease KD condition contribute significantly to the variation in marker gene transcript levels (levels of 

significance are indicated by * for p ≤ 0,05, ** for p ≤ 0,005, and *** for p ≤ 0,001). 
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Figure 8. (A) Mortality curve of L. decemlineata adults after ingestion of 5 ng, 50 ng, or 500 ng of Ld_lethtgt 

dsRNA (dslethtgt), or 500 ng of gfp dsRNA (dsgfp), in both control animals (Control) or animals that received 

dsRNA against both Ld_dsRNase1 and Ld_dsRNase2 (dsNuclease). (B) Comparison of defoliation and egg laying 

between controls and nuclease knockdown animals that ingested 5 ng of Ld_lethtgt dsRNA. Deposited egg 

clutches are indicated by black arrows.  
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Figure 9. Effect of nuclease knockdown (KD) in S. gregaria adults. (A) All four identified Sg_dsRNase sequences 

were significantly knocked down by injection of a dsRNA mixture. (B) Subsequent feeding of 20 µg of marker 

gene (Sg_tubu) dsRNA did not lead to any significant knockdown of the marker gene. Relative transcript levels 

were normalized against two reference genes, Sg_rp49 and Sg_gapdh. Boxplots of the data are presented (n ≥ 

6). Means are depicted as a plus sign. For all independently targeted genes, mean relative quantity of the 

controls has been calculated to RQ = 1. Statistical differences in gene expression were determined using t-tests 

(levels of significance are indicated by *** for p ≤ 0,001). 
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Figure 10. Incubation of 250 ng of dsRNA in a serial dilution (50x to 500x) of regurgitated gut juices from S. 

gregaria for 10 min. Samples were analyzed by means of 1% gel electrophoresis in the presence of a 100 bp 

DNA ladder. Nuclease activity in the gut juice of dsgfp treated locusts (control) was compared to that of locusts 

that had a simultaneous knockdown of Sg_dsRNase1, Sg_dsRNase2, Sg_dsRNase3, and Sg_dsRNase4 (nuclease 

KD). As a positive control (PC) naked dsRNA was incubated in buffer solution in the absence of nuclease 

enzymes.  

 


