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Foreword

What soon became the Kadison–Singer conjecture was formulated by Kadison and
Singer in 1959 and was proved (against the negative advice on its validity by the
originators!) by Marcus, Spielman, & Srivastava in 2014, after important earlier
contributions by Anderson (1979, [1]), Weaver (2004, [26]), and others. Despite its
seemingly technical setting within operator (algebra) theory, the conjecture and its
resolution have generated considerable interest from the mathematical community,
as exemplified by e.g. specialized conferences, a Seminar Bourbaki by Valette, a
widely read blog by Tao, coverage by the Quanta magainze, and even by the press.
This interest may be explained by the unexpectedly large scope of the conjecture
(see Casazza et al, 2005, [4]) as well as by the closely related depth of its proof,
which used techniques from diverse fields of mathematics (it may also have helped
that Singer shared the 2004 Abel Prize with Atiyah, though for unrelated work).

Despite this interest, a relatively elementary account of the conjecture and its
proof was lacking so far. This monograph, which is a revised version of the author’s
M.Sc Thesis at Radboud University Nijmegen, fills this gap. In fact, it does far more
than that; for example, it includes a clean proof that in the so-called ‘continuous’
case the conjecture (which indeed was never posited for that case) would be false,
which is perhaps as surprising as its truth in the ‘discrete case’ (see below for this
terminology). This was already established by Kadison and Singer themselves, but
in a very contrived way. Furthermore, this book contains a detailed proof of the clas-
sification of maximal abelian subalgebras of the algebra B(H) of all bounded opera-
tors on a separable Hilbert space H that are closed under hermitian conjugation (i.e.,
MASA’s), which lies at the basis of the Kadison–Singer conjecture. There are many
other results like those, which make this treatise as complete and self-contained as
can be expected given its modest length.

All that remains to be added is a brief account of the historical context of the
Kadison–Singer conjecture, which, as the originators acknowledge, was at least in
part inspired by quantum mechanics. At the time, the Hilbert space approach to
quantum mechanics proposed by von Neumann in 1932 was about 25 years old. In
the meantime, von Neumann, Gelfand, and Naimark had created the new mathe-
matical discipline of operator algebras, to which Kadison (who had been a student
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vi Foreword

of another Hilbert space pioneer, Stone) and Singer’s PhD advisor Segal had made
important contributions. Moreover, the formalism of quantum mechanics in Hilbert
space per se continued to be developed by mathematicians, as exemplified by the
famous papers by Gleason (1957, [9]) and Mackey (1957, [15]).

Kadison and Singer (1959, [12]) combined these trends, in analyzing a potential
ambiguity in the Hilbert space formalism in terms of operator algebras. To begin
with, assume that H is a finite-dimensional Hilbert space, and consider some set
a = (a1, . . . ,an) of commuting self-adjoint operators on H that is maximal in the
sense that the (commutative) algebra A generated by the operators ai cannot be
extended to some larger commutative subalgebra of B(H). Note that A is closed
under hermitian conjugation a 7→ a∗; as such it is called a ∗-algebra. Then H has an
orthonormal basis of joint eigenvectors υλ of a, labelled by the joint eigenvalues λ =
(λ1, . . . ,λn), i.e., aiυλ = λiυλ . Physicists call unit vectors in Hilbert space “states”,
but in the operator algebra literature a state on some operator algebra A ⊆ B(H)
(which for simplicity we assume to contain the unit operator 1H on H) is defined as
a linear map ω : A→C such that: (i) ω(a∗a)≥ 0 for each a∈ A, and (ii) ω(1H) = 1.
Clearly, each unit vector |λ 〉 defines a state ωλ on B(H) by means of

ωλ (a) = 〈υλ ,aυλ 〉,

where 〈 , 〉 is the inner product in H (note that physicists would write this as some-
thing like 〈a〉λ = 〈λ |a|λ 〉). This state is pure, in being an extreme element of the
(compact) convex set of all states on B(H) (i.e., a pure state has no nontrivial de-
composition as a convex sum of other states). In fact, as long as dim(H) < ∞, any
pure state ω on B(H) takes the form ω(a) = 〈ψ,aψ〉 (a ∈ B(H)), where ψ ∈ H is
some unit vector. By restriction, ωλ also defines a state on A (which need not be
pure). Does its restriction to A conversely determine the original state on B(H)?

This question is mathematically non-trivial even for finite-dimensional H (though
easy to answer in that case), and is physically interesting for two related reasons.
First, the labeling λ only refers to A, which would make the (Dirac) notation |λ 〉
(which is meant to define a state on B(H)) ambiguous in case the answer to the above
question is no. Second, in Bohr’s ‘Copenhagen Interpretation’ of quantum mechan-
ics both the measurement apparatus and the outcome of any measurement must
be recorded in the language of classical physics, which roughly speaking means
that the apparatus is mathematically represented by some commutative subalgebra
A⊆ B(H), whereas the outcome (assumed sharp, i.e., dispersion-free) defines a pure
state on A. The question, then, is whether such a measurement outcome also fixes
the state of the quantum system as a whole.

In the finite-dimensional case it is easy to show that any maximal commutative
subalgebra A of B(H) ∼= Mn(C) is (unitarily) conjugate to the algebra of diagonal
matrices Dn(C), from which in turn it is straightforward to show that any pure state
on A indeed has a unique extension to a pure state on Mn(C). So everything is fine
in that case.

The infinite-dimensionality of H leads to a number of new phenomena:
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• There exist pure states ω on B(H) that are not represented by any unit vector ψ;
such pure states are called singular (as opposed to normal).

• There exist maximal abelian ∗-algebras in B(H) that are not (unitarily) conjugate.

To proceed, Kadison and Singer assumed that H is separable, in having a countable
orthonormal basis. In that case, von Neumann himself had already classified the
possible maximal abelian ∗-algebra A ⊆ B(H) up to unitary equivalence, with the
result (proved in detail in this book) that A must be equivalent to exactly one of the
following:

1. Ac = L∞(0,1)⊆ B(L2(0,1)), called the continuous case;
2. Ad = `∞(N)⊆ B(`2(N)), called the discrete case;
3. Aκ = L∞(0,1)⊕ `∞(κ)⊆ B(L2(0,1)⊕ `2(κ)), called the mixed case,

where either κ = {1, . . . ,n}, in which case one has `2(κ)∼=Cn with `∞(κ)∼=Dn(C),
or κ = N (the inclusions are given by realizing each commutative algebra by multi-
plication operators).

In all cases, normal pure states on A uniquely extend to (necessarily normal) pure
states on B(H). As already mentioned, Kadison and Singer already showed that Ac
has singular pure states whose extension to B(H) is far from unique (in fact, every
singular pure state on Ac has this property), which also settles the mixed case (i.e.
in the negative).

This leaves the discrete case, about which the Kadison–Singer conjecture claims
that every pure state on `∞(N) has a unique extension to a pure state on `2(N). So
this conjecture is now a theorem and the best way to find out about it is to continue
reading.

Nijmegen, August 2016 Klaas Landsman
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Chapter 1
Introduction

In 1959, Richard Kadison and Isadore Singer published the article ‘Extensions of
pure states’ ([12]) where they formulated the following question: given a Hilbert
space H and a maximal abelian subalgebra A of the operator algebra B(H), does
every pure state on A extend to a unique pure state on B(H)? In their article, they
showed that this question was only open for one algebra: `∞(N), considered as a
subalgebra of B(`2(N)), realized via the multiplication operator. They were not able
to answer the question for this algebra, but believed the answer was negative.

This question became known as the Kadison-Singer conjecture. It took 54 years
before Adam Marcus, Daniel Spielman and Nikhil Srivastava proved ([16]) that in
fact the question had a positive answer for the algebra `∞(N). For this, they used
another conjecture that was formulated in 2004 by Nik Weaver ([26]), which was
already known to imply the Kadison-Singer conjecture. In order to prove Weaver’s
conjecture, Marcus, Spielman and Srivastava proved two major results involving
random variables with matrix values.

In this text, we embed the Kadison-Singer conjecture in the classification of
abelian subalgebras with the Kadison-Singer property. In chapter 2, we introduce
the concept of pure state extensions by means of a concrete example, namely within
the context of a matrix algebra with the algebra of diagonal matrices as a subalge-
bra. For this finite dimensional case, we can describe states and pure states explicitly
and show that any pure state on the diagonal matrices can be uniquely extended to
a pure state on the whole matrix algebra.

In chapter 3, we generalize the concept of states on matrix algebras to states on
C∗-algebras. Compared to chapter 2, the role of the matrix algebra is played by
the operator algebra B(H), where H is some Hilbert space, and the subalgebra of
diagonal matrices is replaced by some abelian C∗-subalgebra A⊆B(H). Then again,
we pose the question: does every pure state on the subalgebra extend uniquely to a
pure state on the whole operator algebra? If it does, we say the subalgebra has the
Kadison-Singer property.

In the rest of the text, we try to classify all abelian subalgebras with the Kadison-
Singer property. In chapter 4, we show that an abelian subalgebra with the Kadison-
Singer property is necessarily maximal abelian. At this point, we can appreciate the

1



2 1 Introduction

question of Kadison and Singer in its natural context. In the same chapter, we also
give three main examples of maximal abelian subalgebras: the discrete, continu-
ous and mixed subalgebra. Here, the discrete subalgebra can be seen as the proper
generalization of the algebra of diagonal matrices.

These three examples are all subalgebras of an operator algebra B(H), where H is
separable. In chapter 5 we show that we only have to consider these examples when
considering separable Hilbert spaces, since for these Hilbert spaces, every maximal
abelian subalgebra A⊆ B(H) is unitarily equivalent to one of these three examples.
We prove this using the arguments used by Kadison and Ringrose ([21]), which are
based on the concept of minimal projections.

In chapter 6, 7, and 8, we complete the classification of abelian subalgebras with
the Kadison-Singer property in the separable case. First of all, in chapter 6 we in-
troduce the concept of ultrafilters and show that we can construct the Stone-Čech
compactification of Tychonoff spaces using ultrafilters on zero-sets. We use this in
chapter 7, to show that the continuous subalgebra does not have the Kadison-Singer
property, based on the work of Joel Anderson([1]). As a consequence of this, the
mixed subalgebra does not have the Kadison-Singer property either.

By then, it is clear that Kadison-Singer conjecture is the only question left in
order to complete the classification. In chapter 8, we first discuss the results of Mar-
cus, Spielman and Srivastava. After that, we prove Weaver’s theorem and use this to
prove the Kadison-Singer conjecture. For this, we use the adaptation of these results
as formulated by Terence Tao ([25]).

In the appendices, we give some extra material. Appendices A and B provide
background knowledge, where appendix A contains a broad range of preliminaries
and appendix B is focussed on functional analysis and operator algebras. Appendix
C contains some further results that rely on concepts introduced in the main text,
but that are at the same time also needed to prove some results there. They are not
included in the main text themselves, since they would only distract from the main
results there. Finally, in appendix D, we have included some notes and remarks on
the main text. Especially, we give a survey of the use of existing literature and we
discuss in what way we have improved upon these sources.



Chapter 2
Pure state extensions in linear algebra

In this chapter we introduce the concept of a pure state extension by means of a
concrete example: we consider the matrix algebra

M := Mn(C),

for some fixed n ∈ N. We often denote an element a ∈M by

a = ∑
i, j

ai j |ei〉〈e j| ,

where {ei} is the standard basis of Cn and we use the shorthand notation |x〉〈y| for
the operator which satisfies |x〉〈y|(z) = 〈y,z〉x. This means that ai j is the element in
the i-th row and j-th column of the matrix a. Furthermore, we consider the diagonal
matrices

D := {a ∈M|ai j = 0 if i 6= j},

which form a unital subalgebra of M.
The algebra M also has a ∗-operation that is an involution, defined by:

a∗ = ∑
i, j

a ji |ei〉〈e j| .

We call a∗ the adjoint of a. Note that D is also closed under this operation.

2.1 Density operators and pure states

M is not merely an algebraic object; it also has its defining action on Cn, which is
a vector space with a natural inner product 〈x,y〉= ∑i xiyi (i.e. we take the standard
inner product that is linear in the second argument). Using this, we can define a
special class of matrices.

3



4 2 Pure state extensions in linear algebra

Definition 2.1. a ∈M is called positive if for each x ∈ Cn we have 〈x,ax〉 ≥ 0. We
write this condition as a≥ 0.

Now we can define our main object of study: states.

Definition 2.2. A state on M is a linear map f : M→ C that is positive, meaning
that f (a) ≥ 0 for all a ≥ 0, and unital, i.e. f (1) = 1. The set of all states on M is
denoted by S(M), which we call the state space of M.

In turns out that all states on M are of a specific form. To make this more precise,
we need two more definitions.

Definition 2.3. The trace of a matrix a ∈M is defined as Tr(a) = ∑i aii.

Lemma 2.4. 1. Tr(ab) = Tr(ba) for all a,b ∈M
2. For any basis {vi} of Cn, we have Tr(a) = ∑i〈vi,avi〉

Proof. 1. Tr(ab) = ∑i(ab)ii = ∑i ∑k aikbki = ∑k ∑i bkiaik = ∑k(ba)kk = Tr(ba).
2. Note that by definition, Tr(a) = ∑i〈ei,aei〉. For another basis {vi} there is a uni-

tary u ∈M, i.e. uu∗ = u∗u = 1, such that uei = vi for all i. Then:

∑
i
〈vi,avi〉= ∑

i
〈uei,auei〉= ∑

i
〈ei,u∗auei〉= Tr(u∗au) = Tr(auu∗) = Tr(a),

where we used part 1 of this lemma. ut

There is a connection between states on M and so-called density operators.

Definition 2.5. A density operator ρ ∈ M is a positive operator that satisfies
Tr(ρ) = 1. We write D(M) for the set of all density operators in M.

Theorem 2.6. There is a bijective correspondence between states f on M and den-
sity operators ρ ∈M, given by f (a) = Tr(ρa) for all a ∈M.

Proof. We prove that S(M)∼= D(M) as sets. We construct Φ : S(M)→D(M) via

Φ( f ) = ∑
i, j

ρi j |ei〉〈e j| ,

where ρi j = f (|e j〉〈ei|).
To see that Φ is well defined, note that

Tr(Φ( f )) = ∑
i

f (|ei〉〈ei|) = f (∑
i
|ei〉〈ei|) = f (1) = 1

and for x ∈ Cn, say x = ∑i ciei,

〈x,Φ( f )x〉= ∑
i, j

cic j〈ei,Φ( f )e j〉= ∑
i, j

cic j f (|e j〉〈ei|) = f (|x〉〈x|)≥ 0,

which means that Φ( f ) is indeed a density operator.
Next, define Ψ : D(M)→ S(M) by
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Ψ(ρ)(a) = Tr(ρa)

for all a ∈M.
To see that Ψ is well defined, first note that Ψ(ρ)(1) = Tr(ρ) = 1. Next, let

ρ ∈D(M) and a ∈M positive. Then ρ has a spectral decomposition

ρ = ∑
i

pi |vi〉〈vi| ,

for some orthonormal basis (vi), where all pi ≥ 0. Since a is positive,

a = ∑
i, j

λi j |vi〉〈v j| ,

with all λii ≥ 0. Then ρa = ∑i, j piλi j |vi〉〈v j|, so

Ψ(ρ)(a) = Tr(ρa) = ∑
i

piλii ≥ 0,

so Ψ(ρ) is positive, and hence a state. Now, note that

Ψ(Φ( f ))(a) = Tr(Φ( f )a) = Tr((∑
i, j

ρi j |ei〉〈e j|)(∑
l,k

alk |el〉〈ek|))

= ∑
i, j

ρi ja ji = ∑
i, j

a ji f (|e j〉〈ei|) = f (∑
i, j

a ji |e j〉〈ei|)

= f (a),

meaning that Ψ ◦Φ = Id.
Next,

Φ(Ψ(ρ))i j =Ψ(ρ)(|e j〉〈ei|) = Tr(ρ |e j〉〈ei|) = 〈ei,ρe j〉= ρi j,

meaning that Φ ◦Ψ = Id. Hence, D(M)∼= S(M) as sets, and writing Ψ(ρ) = f the
given formula f (a) = Tr(ρa) holds. ut

Note that S(M) and D(M) have more structure than that of a set, since they are
also convex. A function f : A→ B between two convex sets is called affine if it
preserves the convex structure, i.e. if f (tx+(1− t)y) = t f (x)+ (1− t) f (y) for all
t ∈ [0,1] and x,y ∈ A. Note that the bijection in theorem 2.6 is an affine function.

For a convex set C, a point c ∈ C is called extreme if for any c1,c2 ∈ C and
t ∈ (0,1) such that c = tc1 + (1− t)c2 we have c1 = c2 = c. The set of extreme
points of a convex set C is called the extreme boundary of C, often denoted as ∂eC.

Since S(M) is a convex set, we can consider its boundary, which plays a crucial
role in our discussion. For the elements in this boundary, i.e. the extreme points of
S(M), we have a special name.

Definition 2.7. A state f ∈ S(M) is called a pure state if it is an extreme point of
S(M).



6 2 Pure state extensions in linear algebra

To determine the pure states on M, we use the following lemma.

Lemma 2.8. Suppose that C and D are convex sets and that there is an affine iso-
morphism between them. Then ∂eC is isomorphic to ∂eD.

Proof. Suppose that the map φ : C→ D is an affine isomorphism. First of all, we
claim that φ(∂eC)⊆ ∂eD.

To see this, first note that φ−1 is an affine isomorphism as well. Now suppose
x ∈ ∂eC and t ∈ [0,1], a,b ∈ D such that φ(x) = ta+(1− t)b. Then

x = φ
−1(ta+(1− t)b) = tφ−1(a)+(1− t)φ−1(b).

Then, since x ∈ ∂eC, x = φ−1(a) = φ−1(b), but then also φ(x) = a = b, so we have
that φ(x) ∈ ∂eD.

Hence φ(∂eC) ⊆ ∂eD, so by the same token φ−1(∂eD) ⊆ ∂eC, whence φ maps
∂eC bijectively to ∂eD. Therefore ∂eC and ∂eD are isomorphic. ut

We can now give an explicit description of the pure states on M.

Corollary 2.9. There is a bijective correspondence between pure states f on M and
one-dimensional projections |ψ〉〈ψ|, such that f (a) = 〈ψ,aψ〉 for all a ∈M.

Proof. By theorem 2.6 we know that S(M) corresponds bijectively to D(M) via the
formula f (a) = Tr(ρa). Since this formula is affine and the pure states on M are
exactly ∂eS(M), we only need to determine ∂eD(M), by lemma 2.8.

Suppose that ρ ∈ ∂eD(M) and let ρ =∑i pi |vi〉〈vi| be its spectral decomposition.
Then since ρ is positive and has unit trace, we know that the {vi} are orthonormal,
all pi ≥ 0 and ∑i pi = 1. Clearly, all pi ∈ [0,1].

Now suppose that there is a j ∈ {1, . . . ,n} such that p j ∈ (0,1). Then there must
be a k 6= j such that pk ∈ (0,1) as well. Then there is a ε > 0 such that we have
[p j− ε, p j + ε]⊆ [0,1] and [pk− ε, pk + ε]⊆ [0,1]. Now define

ri =

 pi− ε : i = j
pi + ε : i = k
pi : i 6∈ { j,k}

and

qi =

 pi + ε : i = j
pi− ε : i = k
pi : i 6∈ { j,k}.

By construction, ρ1 := ∑i ri |vi〉〈vi| and ρ2 := ∑i qi |vi〉〈vi| are density operators
too, and ρ = 1

2 ρ1 +
1
2 ρ2. However, ρ1 6= ρ 6= ρ2, so ρ is not an extreme point of

D(M). Contradiction, since ρ ∈ ∂eD(M) by assumption. Therefore, all pi ∈ {0,1}.
Combined with ∑i pi = 1, this gives a unique j such that p j = 1 and pk = 0 for all
k 6= j. But then, ρ = |v j〉〈v j|, so we see that every extreme point of D(M) is indeed
a one-dimensional projection.
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It is clear that every one-dimensional projection is positive and has unit trace,
so every one-dimensional projection is clearly a density operator. Now take a one-
dimensional projection ρ = |ψ〉〈ψ|, i.e. a unit vector ψ . Suppose that there are
ρ1,ρ2 ∈D(M) and a t ∈ (0,1) such that ρ = tρ1 +(1− t)ρ2.

Clearly, we have 〈ψ,ρψ〉= 1. Using the spectral decomposition ∑i pi |vi〉〈vi| of
ρ1, where the {vi} are orthonormal, all pi ≥ 0 and ∑i pi = 1, we see that:

〈ψ,ρ1ψ〉= ∑
i

pi|〈ψ,vi〉|2 ≤∑
i

pi = 1,

by the Cauchy-Schwarz inequality.
By the same token, 〈ψ,ρ2ψ〉 ≤ 1. Therefore,

1 = 〈ψ,ρψ〉= t〈ψ,ρ1ψ〉+(1− t)〈ψ,ρ2ψ〉 ≤ t +(1− t) = 1.

Therefore, we must have 〈ψ,ρ1ψ〉 = 1, so for all j such that p j 6= 0, we have
|〈ψ,v j〉|2 = 1. Since ψ is a unit vector and {vi} is an orthonormal set, this means
that there is a unique j such that p j 6= 0 and ψ = zvi with z ∈ C such that |z|= 1.

But then necessarily p j = 1 and ρ1 = |v j〉〈v j|= |ψ〉〈ψ|= ρ . Likewise, ρ2 = ρ ,
so indeed, ρ is an extreme point.

So ∂eD(M) consists exactly of the one-dimensional projections. Now, under the
correspondence of theorem 2.6,

f (a) = Tr(|ψ〉〈ψ|a) = 〈ψ, |ψ〉〈ψ|aψ〉= 〈ψ,aψ〉,

where we used an orthonormal basis with ψ as one of the basis vectors for evaluating
the trace. ut

In the same fashion we can also define (pure) states on D and derive their specific
forms. Note that for a∈D the notion of positivity when considering it as an element
of M, i.e. 〈x,ax〉 ≥ 0 for all x ∈ Cn, is equivalent to saying that all aii ≥ 0.

Definition 2.10. A state on D is a linear function f : D→ C that is positive and
unital, meaning that f (a) ≥ 0 for all a ≥ 0 and f (1) = 1. The set of all states on D
is denoted by S(D) and is called the state space of D.

In our discussion about the the specific form of states on D, we need (to repeat)
the notion of a probability distribution on finite sets.

Definition 2.11. A probability distribution on a finite set X is a map p : X→ [0,∞)
such that ∑x p(x) = 1. The set of all probability distributions on X is denoted by
Pr(X).

Note that a probability distribution p on a finite set X is equivalently defined as a
map p : X → [0,1] such that ∑x p(x) = 1.

Theorem 2.12. There is a bijective correspondence between states f on D and
probability distributions p on {1, . . . ,n} such that f (a) = ∑i p(i)aii for all a ∈ D.
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Proof. We want to show that S(D)∼= Pr({1, . . . ,n}) as sets.
Define Φ : S(D)→ Pr({1, . . . ,n}) by

Φ( f )(k) = f (|ek〉〈ek|)

for all k. Then since f is a state, each Φ( f )(k) is positive. Furthermore,

∑
i

Φ( f )(i) = ∑
i

f (|ei〉〈ei|) = f (∑
i
|ei〉〈ei|) = f (1) = 1,

so Φ( f ) is indeed a probability distribution. Next, define Ψ : Pr({1, . . . ,n})→ S(D)
by

Ψ(p)(a) = ∑
i

p(i)aii.

Since all p(i) are positive, it is clear that Ψ(p) is positive too. Furthermore,

Ψ(p)(1) = ∑
i

p(i) = 1,

so Ψ(p) is indeed a state. Now note that

Ψ(Φ( f ))(a) = ∑
i

Φ( f )(i)aii = ∑
i

aii f (|ei〉〈ei|) = f (∑
i

aii |ei〉〈ei|) = f (a),

showing that Ψ ◦Φ = Id.
Furthermore,

Φ(Ψ(p))(k) =Ψ(p)(|ek〉〈ek|) = ∑
i

p(i)(|ek〉〈ek|)ii = p(k),

whence Φ ◦Ψ = Id.
So, indeed, S(D) ∼= Pr({1, . . . ,n}) as sets and writing p = Φ( f ), the given for-

mula f (a) = ∑i p(i)aii holds for every a ∈ D. ut

Next, we note that just like in the case of M, the state space S(D) is in fact a
convex set, just like Pr({1, . . . ,n}). Hence we can again determine the boundary of
S(D) and call it the pure state space of D. Once, again, these pure states have a
specific form.

Corollary 2.13. For every pure state f on D there is an i ∈ {1, . . . ,n} such that
f (a) = aii for all a ∈ D.

Proof. By theorem 2.12 we know that the states on D correspond to Pr({1, . . . ,n}),
and by lemma 2.8 we then know that we only have to determine the boundary of
Pr({1, . . . ,n}). If we show that these are exactly those probability distributions that
have a unique j such that p( j) = 1 and p(k) = 0 for all k 6= j, we are done.

So, suppose that p ∈ ∂ePr({1, . . . ,n}). By definition of a probability distribution,
we have p( j) ∈ [0,1] for all j. Suppose that p( j) ∈ (0,1) for some j. Then there
must be a k 6= j such that p(k) ∈ (0,1) as well. Then there is a ε > 0 such that
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[p( j)− ε, p( j)+ ε]⊆ [0,1]

and
[p(k)− ε, p(k)+ ε]⊆ [0,1].

By the same reasoning as in the proof of corollary 2.9, p is not an extreme point.
Contradiction. Hence there is no j such that p( j)∈ (0,1), so all p( j)∈{0,1}. There-
fore, there is a unique j such that p( j) = 1 and p(k) = 0 for all k 6= j.

Now suppose p is a probability distribution such that there is a unique j such
that p( j) = 1 and p(k) = 0 for all k 6= j. Then suppose that we have a t ∈ (0,1)
and r,q ∈ Pr({1, . . . ,n}) such that p = tr +(1− t)q. Suppose that r( j) 6= 1. Then
r( j)< 1, since all r(k)≥ 0 and ∑k r(k) = 1. Then q( j)> 1, which is a contradiction.
Hence r( j) = 1. Likewise, q( j) = 1. Then, since r,q∈Pr({1, . . . ,n}, r(k) = 0= q(k)
for all k 6= j. Therefore p = q = r and p is an extreme point. ut

2.2 Extensions of pure states

We have now established the ingredients to get to the main point of this chapter. By
definition of the state spaces, it is clear that when restricting a state on M one obtains
a state on D. The question we can now ask ourselves is whether this restriction
determines the original state completely, i.e. whether we can uniquely extend a state
on D to a state on M. It turns out that it does when we consider pure states, as
formulated in the following theorem.

Theorem 2.14. For every pure state f on D there is a unique pure state g on M that
extends f .

Proof. Let f be a pure state on D. By corollary 2.13, there is an i ∈ {1, . . . ,n} such
that f (a) = aii for all a ∈ D.

Now simply define the linear function g : M→ C by

g(a) = aii

for all a ∈M. Then clearly, g(a) = aii = 〈ei,aei〉 ≥ 0 for all a ≥ 0, so g is positive.
Furthermore, g is obviously unital, so g is a state that extends f .

Suppose that g′ is another pure state that extends f . Then by corollary 2.9, there
is a ψ ∈ Cn such that g′(a) = 〈ψ,aψ〉 for all a ∈M.

Let us write ψ = ∑k ckek. Then, since |ek〉〈ek| ∈ D for all k:

|ck|2 = g′(|ek〉〈ek|) = f (|ek〉〈ek|) = δik

Therefore, ψ = ciei, with |ci|= 1. Then for any a ∈M,

g′(a) = 〈ψ,aψ〉= cici〈ei,aei〉= |ci|2aii = aii = g(a),

so g′ = g, and g is the unique pure state extension of f . ut





Chapter 3
State spaces and the Kadison-Singer property

In chapter 2 we discussed the extension of pure states from the algebra of diagonal
matrices D to the algebra of matrices M. In this chapter, we formulate the question
whether this is possible in a much broader setting. Instead of M we consider B(H)
for some Hilbert space H, and instead of D we consider abelian C∗-subalgebras A of
B(H). Having again defined (pure) states, we will likewise ask the question whether
a unique extension property holds. This property is the so-called Kadison-Singer
property.

3.1 States on C∗-algebras

Using the notion of positivity as introduced in definition B.18, we can define states.

Definition 3.1. Let A be a unital C∗-algebra. A state on A is a linear map f : A→C
that is positive (i.e. f (a) ≥ 0 for all a ≥ 0) and unital (i.e. f (1) = 1). The set of all
states on A is denoted by S(A) and is called the state space of A.

The condition of being positive has a very important consequence for states.

Proposition 3.2. Suppose A is a unital C∗-algebra and f ∈ S(A). Then

sup{| f (a)| : a ∈ A, ‖a‖= 1}

is finite, i.e. S(A)⊆ A∗.

Proof. First suppose that sup{| f (a)| : ‖a‖ = 1,a ≥ 0} is infinite. Then there is a
sequence {an}n∈N such that | f (an)| ≥ 2n, an ≥ 0 and ‖an‖ = 1 for all n ∈ N. Then
a = ∑

∞
n=1 2−nan exists and is positive too. Then, by linearity, 1 ≤ f (2−nan) for all

n ∈ N. Hence we have

N ≤
N

∑
n=1

f (2−nan) = f (
N

∑
n=1

2−nan)≤ f (a),

11
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i.e. N ≤ f (a) for all N ∈ N. This is a contradiction, so

M := sup{| f (a)| : ‖a‖= 1,a≥ 0}

is finite. Now let a ∈ A be an arbitrary element such that ‖a‖ = 1. Then a can
be written as a = ∑

3
k=0 ikak where all ak ≥ 0 and ‖ak‖ ≤ 1 by proposition B.20.

Therefore,

| f (a)|=
∣∣∣ f ( 3

∑
k=0

ikak)
∣∣∣= ∣∣∣ 3

∑
k=0

ik f (ak)
∣∣∣≤ 3

∑
k=0
‖ak‖ f ( ak

‖ak‖
)≤ 4M,

i.e. sup‖a‖=1| f (a)| is finite too. ut

When considering states, the following result is often useful.

Lemma 3.3. Suppose A is a C∗-algebra and f ∈ S(A). Then the map

A2→ C,(a,b) 7→ f (a∗b)

is a pre-inner product and hence for every a,b ∈ A we have

| f (a∗b)| ≤ f (a∗a)1/2 f (b∗b)1/2.

Proof. Since f is positive, this is immediate from corollary A.2 and the Cauchy-
Schwarz inequality for pre-inner products. ut

This has the following corollary:

Corollary 3.4. Suppose A is a unital C∗-algebra and f ∈ S(A). Furthermore, let
a ∈ A. Then f (a∗) = f (a).

Proof. We use lemma 3.3 to see that f (a∗) = f (a∗1) = f (1∗a) = f (a). ut

Since every state is bounded by proposition 3.2, we can consider its norm. Using
this, we can give a different characterization of states.

Proposition 3.5. Suppose that H is a Hilbert space and A is a unital C∗-subalgebra
of B(H). Furthermore, let f : A→ C be a bounded functional such that f (1) = 1.
Then f is positive (and hence a state) iff ‖ f‖= 1.

Proof. First suppose that f is positive. Since ‖1‖= 1, ‖ f‖ ≥ | f (1)|= 1.
Now let a ∈ A such that ‖a‖= 1. Then, using lemma 3.3,

| f (a)|2 = | f (1a)|2 ≤ f (1∗1) f (a∗a)≤ f (1)‖ f‖‖a∗a‖= ‖ f‖

Therefore,
‖ f‖2 = sup

‖a‖=1
| f (a)|2 ≤ ‖ f‖,

whence ‖ f‖ ≤ 1. So ‖ f‖= 1.
For the converse, suppose that ‖ f‖= 1. Let a ∈ A be self-adjoint and let n ∈ Z.
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Since f (a)∈C, we can write f (a) = α + iβ , with α,β ∈R. Furthermore, denote
c := ‖a2‖.

Then:

| f (a+ in1)|2 ≤ ‖ f‖2‖a+ in1‖2 = ‖(a+ in1)∗(a+ in1)‖
= ‖(a− in1)(a+ in1)‖= ‖a2 +n21‖
≤ ‖a2‖+n2‖1‖= c+n2

Moreover,

| f (a+ in1)|2 = | f (a)+ in f (1)|2 = |α + iβ + in|2

= α
2 +(β +n)2 = α

2 +β
2 +2βn+n2.

Collecting this, we obtain the inequality:

α
2 +β

2 +2βn+n2 ≤ c+n2.

Rewriting this, we obtain:

2βn≤ c−α
2−β

2.

If β 6= 0, then we obtain for every n ∈ Z:

n≤ c−α2−β 2

2β
,

which is a contradiction since the right hand side is independent of n. Hence β = 0,
so f (a) = α , i.e. f (a) is real.

Now let a ≥ 0, a 6= 0 and write b = a
‖a‖ . Since a is self-adjoint, b is self-adjoint

and ‖b‖= 1. We claim that 1−b is positive. To see this, let x ∈ H and compute:

〈x,(1−b)x〉= 〈x,x〉−〈x,bx〉 ≥ ‖x‖2−‖x‖‖bx‖ ≥ ‖x‖2−‖b‖‖x‖2 ≥ 0.

So, indeed 1−b is positive and hence also self-adjoint. Since 0≤ 1−b≤ 1 we also
have ‖1−b‖ ≤ 1. Then:

1− f (b) = f (1)− f (b) = f (1−b)≤ | f (1−b)| ≤ ‖ f‖‖1−b‖ ≤ 1,

whence f (b)≥ 0. Then also f (a) = ‖a‖ f (b)≥ 0. Since we obviously also have that
f (0)≥ 0, f is positive. ut

Since all states on a unital C∗-algebra A are bounded by proposition 3.2, S(A)
inherits the weak∗-topology from A∗ (see section B.1). With respect to this topology,
S(A) has an important property.

Proposition 3.6. Let A be a unital C∗-algebra. Then S(A)⊆ A∗ is a compact Haus-
dorff space.
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Proof. We first claim that S(A) ⊆ A∗ is closed with respect to the weak∗-topology.
To see this, suppose that { fi} is a net of states converging to a certain f ∈ A∗. By
the definition of the weak∗-topology, this means that f (a) = lim fi(a) for all a ∈ A.

So, certainly, when taking a = 1, it follows that f (1) = lim fi(1) = lim1 = 1,
since every fi is a state. Furthermore, if a ≥ 0, then fi(a) ≥ 0 for every i, so then
f (a) = lim fi(a) ≥ 0 as well. So, indeed, f ∈ S(A), i.e. S(A) is closed with respect
to the weak∗-topology on A∗.

Now, by the Banach-Alaoglu theorem (see theorem B.1), the closed unit ball
A∗1 of A∗ is compact with respect to the weak∗-topology and by proposition 3.5
S(A)⊆ A∗1. Hence S(A) is closed with respect to the relative topology on A∗1, which
is a compact space. Hence S(A) is compact with respect to the relative topology and
therefore with respect to the weak∗-topology.

Next, to see that S(A) is Hausdorff, suppose f ,g ∈ S(A) such that f 6= g. Then
there is an a ∈ A such that f (a) 6= g(a). Therefore, δ := | f (a)− g(a)| > 0. Now
consider U = B( f ,a, δ

2 )∩ S(A) and V = B(g,a, δ

2 )∩ S(A). Then both U,V ⊆ S(A)
are open and f ∈U , g ∈V . Furthermore, h ∈U ∩V implies

| f (a)−g(a)| ≤ | f (a)−h(a)|+ |h(a)−g(a)|< δ

2
+

δ

2
= δ ,

which is a contradiction. Hence U ∩V = /0. Therefore, S(A) is Hausdorff. ut

3.2 Pure states and characters

Just like in chapter 2, we note that S(A) is convex for every unital C∗-algebra A.
Therefore, we can again consider its boundary ∂eS(A) and call this the pure state
space of A. It turns out that in the case that A is abelian, the pure states are exactly the
characters (see definition B.23). To prove this, we first need an equivalent definition
of pure states in terms of positive functionals.

Lemma 3.7. Suppose H is a Hilbert space and A ⊆ B(H). Furthermore, suppose
f ∈ S(A). Then f ∈ ∂eS(A) if and only if for all g : A→ C such that 0 ≤ g ≤ f we
have g = t f for some t ∈ [0,1].

Proof. Suppose f ∈ ∂eS(A) and g : A→ C such that 0 ≤ g ≤ f . Since 1 ≥ 0, then
0≤ g(1)≤ f (1) = 1.

Now, there are a few cases. First of all, suppose g(1) = 0. Then let a ∈ A be
positive. Then by lemma B.22, 0≤ a

‖a‖ ≤ 1, whence 0≤ a≤ ‖a‖1. Therefore,

0≤ g(a)≤ g(‖a‖1) = ‖a‖g(1) = 0.

Since every b ∈ A can be written as b = ∑
3
k=0 ikbk for some bk ≥ 0, g(b) = 0 for

every b ∈ A, i.e. g = 0.
As a second case, suppose g(1) = 1. Then f − g ≥ 0 and ( f − g)(1) = 0, so by

the same reasoning as in the first case, f −g = 0, i.e. g = f .
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Lastly, there is the case 0 < g(1)< 1. In this case, define two functionals g1 and
g2 by g1 =

1
1−g(1) ( f − g) and g2 =

1
g(1)g. Then clearly, g1 and g2 are both positive

and g1(1) = g2(1) = 1, so g1,g2 ∈ S(A). Furthermore,

(1−g(1))g1 +g(1)g2 = f −g+g = f

and f ∈ ∂eS(A), so g1 = g2 = f . Therefore, g = g(1)g2 = g(1) f .
In all cases, we see that g = g(1) f , and g(1) ∈ [0,1].
For the converse, suppose that for all g : A→ C such that 0 ≤ g ≤ f there is a

t ∈ [0,1] such that g = t f . Then suppose that h1,h2 ∈ S(A) and s ∈ (0,1) such that
f = sh1 +(1− s)h2. Then f − sh1 = (1− s)h2 ≥ 0, so 0≤ sh1 ≤ f . Hence, there is a
t ∈ [0,1] such that sh1 = t f . However, s = sh1(1) = t f (1) = t, so h1 = f . Then also
h2 = f , so f ∈ ∂eS(A). ut

Now we can come to our main point; the pure states are exactly the characters,
which are defined as in definition B.23. In chapter 2, we already saw that every
pure state on D was of the form f (a) = aii, which is clearly multiplicative on the
diagonal matrices, i.e. ∂eS(D) ⊆ Ω(D). Therefore, the following theorem can be
seen as a generalization.

Theorem 3.8. Suppose H is a Hilbert space and let A⊆ B(H) be an abelian unital
C∗-algebra. Then ∂eS(A) = Ω(A).

Proof. First let f ∈ ∂eS(A). Let a,c ∈ A and first suppose that 0 ≤ c ≤ 1. Now let
b ∈ A such that b≥ 0.

Then c = d∗d, 1− c = u∗u and b = v∗v for some c,u,v ∈ A. Therefore,

bc = v∗vd∗d = d∗v∗vd = (vd)∗vd ≥ 0

and
b−bc = b(1− c) = v∗vu∗u = u∗v∗vu = (vu)∗vu≥ 0,

so 0≤ bc≤ b.
Now define g : A→C by g(z) = f (zc) for all z∈ A. Combining the fact that f ≥ 0

and the above observation that bc≥ 0 for all b≥ 0, we see that g≥ 0.
Furthermore, for b≥ 0, b≥ bc and hence

( f −g)(b) = f (b)− f (bc) = f (b−bc)≥ 0,

so g≤ f . Now using lemma 3.7, we know that g = t f for some t ∈ [0,1]. Now

f (ac) = g(a) = t f (a) = t f (1) f (a) = g(1) f (a) = f (c) f (a) = f (a) f (c).

If we now drop the requirement that 0 ≤ c ≤ 1, we observe that we still have
c = ∑

3
k=0 ikck for some ck ≥ 0, by proposition B.20.

Then c = ∑
3
k=0 ik‖ck‖ ck

‖ck‖
and 0≤ ck

‖ck‖
≤ 1 by lemma B.22, whence
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f (ac) = f (a
3

∑
k=0

ik‖ck‖ ck
‖ck‖

) =
3

∑
k=0

ik‖ck‖ f (a ck
‖ck‖

)

=
3

∑
k=0

ik‖ck‖ f (a) f ( ck
‖ck‖

) = f (a) f (
3

∑
k=0

ik‖ck‖ ck
‖ck‖

)

= f (a) f (c),

i.e. f ∈Ω(A), since f (1) = 1 and hence f 6= 0. Therefore ∂eS(A)⊆Ω(A).
For the converse, suppose c∈Ω(A). Then c(1)= 1 by lemma B.24. Furthermore,

for a ∈ A, by lemma B.24,

c(a∗a) = c(a∗)c(a) = c(a)c(a) = |c(a)|2 ≥ 0,

so c≥ 0. Since c is also linear, c ∈ S(A).
Now we claim that in fact c ∈ ∂eS(A). To see this, suppose that t ∈ (0,1) and

c1,c2 ∈ S(A) such that c = tc1 +(1− t)c2. Furthermore, suppose that a = a∗ ∈ A.
Then c1(a) ∈ R, since c1 ≥ 0 and c1(a)2 = |c1(1∗a)|2 ≤ c1(1∗1)c1(a∗a) = c1(a2).
Likewise, c2(a)2 ≤ c2(a2).

Since c is a character, we can compute:

0 = c(a2)− c(a)2

= tc1(a2)+(1− t)c2(a2)− (tc1(a)+(1− t)c2(a))2

= tc1(a2)+(1− t)c2(a2)− t2c1(a)2− (1− t)2c2(a)2−2t(1− t)c1(a)c2(a)

≥ tc1(a)2 +(1− t)c2(a)2− t2c1(a)2− (1− t)2c2(a)2−2t(1− t)c1(a)c2(a)

= (t− t2)c1(a)2 +((1− t)− (1− t)2)c2(a)2−2t(1− t)c1(a)c2(a)

= t(1− t)(c1(a)2 + c2(a)2−2c1(a)c2(a))

= t(1− t)(c1(a)− c2(a))2 ≥ 0,

i.e. c1(a) = c2(a) for all a = a∗ ∈ A. Therefore, for any b ∈ A, b = a1 + ia2 with
a1 = a∗1,a2 = a∗2 ∈ A, whence c1(b) = c2(b) by linearity. Therefore c1 = c2 = c and
c ∈ ∂eS(A). ut

The above theorem is remarkable, since the algebra B(H) for a Hilbert space H
of dimension at least 2 does not even admit any characters. This follows directly
from the fact that B(H) is non-commutative in this case.

Furthermore, theorem 3.8 has the following corollary.

Corollary 3.9. Suppose A is an abelian unital C∗-algebra. Then ∂eS(A) is compact
Hausdorff with respect to the weak∗-topology.

Proof. Since ∂eS(A) ⊆ S(A) and S(A) is Hausdorff, we know that ∂eS(A) is Haus-
dorff too. In fact, we only need to show that Ω(A) = ∂eS(A) is closed in S(A), since
S(A) is compact by proposition 3.6. To prove this, we show that U := S(A)\Ω(A)
is open in S(A). For this, suppose f ∈ U . Then there are a,b ∈ A such that
f (a) f (b) 6= f (ab). Since every element of A can be written as a sum of positive
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elements (see proposition B.20) we know that we can then assume that a and b are
positive.

Now, since A is abelian we then also know that ab is positive. Hence f (a), f (b)
and f (ab) are positive numbers. If we now suppose that f (a) f (b)> f (ab), we can
define δ = f (a) f (b)− f (ab) > 0. Next, define ε1 = δ

f (a)+ f (b)+1 . Using this, we
define ε = min{ε1, f (a), f (b)}> 0.

Then, take g ∈ B( f ,a,ε)∩B( f ,b,ε)∩B( f ,ab,ε)∩S(A). Then we have

g(a)g(b)−g(ab)≥ g(ab)> ( f (a)− ε)( f (b)− ε)− ( f (ab)+ ε)

= f (a) f (b)− f (ab)− ε( f (a)+ f (b)+1)+ ε
2

> δ − ε( f (a)+ f (b)+1)
≥ δ −δ = 0,

i.e. g(a)g(b) 6= g(ab). Hence g∈U . A similar argument works if f (a) f (b)< f (ab).
Hence U is open. Therefore, ∂eS(A) = Ω(A)⊆ S(A) is closed and hence a compact
Hausdorff space. ut

3.3 Extensions of pure states

Recall that our goal is to generalize the concept of the extension of pure states
from the algebra of diagonal matrices D to the algebra of all matrices, M. We have
already generalized D⊆M to A⊆ B(H) for a Hilbert space H and an abelian unital
C∗-subalgebra A. In this case it is important to note that the pure states on A are
in fact characters. These cannot be extended to characters on all of B(H), since the
latter do not exist. However, they might be extended to states on all of B(H). The
question whether this is possible is the one we are interested in.

Definition 3.10. Let H be a Hilbert space and A an abelian unital C∗-subalgebra of
B(H). Furthermore, let f ∈ S(A). We define the set of extensions of f to be:

Ext( f ) = {g ∈ S(B) : g|A = f}.

In chapter 2 we showed that for the case H =Cn and A = D, for each f ∈ ∂eS(D)
the set Ext( f )∩ ∂eS(M) consists of exactly one element, i.e. every pure state on D
extends to a unique pure state on M. This motivates the following definition.

Definition 3.11. Let H be a Hilbert space and A an abelian unital C∗-subalgebra of
B(H). We say that A has the first Kadison-Singer property if for every f ∈ ∂eS(A),
Ext( f )∩∂eS(B(H)) consists of exactly one element.

We may also drop the requirement that the unique extension must be pure. Then
we obtain another property.
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Definition 3.12. Let H be a separable Hilbert space and A an abelian unital C∗-
subalgebra of B(H). We say that A has the second Kadison-Singer property if for
every f ∈ ∂eS(A), Ext( f ) consists of exactly one element.

A priori, it is unclear whether the first Kadison-Singer propery implies the sec-
ond, since Ext( f ) might contain more elements than Ext( f )∩∂eS(B(H)). Likewise,
the one element in Ext( f ) might not be in ∂eS(B(H)), whence the second Kadison-
Singer property might not imply the first. However, it turns out that the first and
second Kadison-Singer property are in fact equivalent. To prove this, we first need
a lemma and note that for every f ∈ S(A), Ext( f ) is a convex set, whence we can
consider its boundary.

Lemma 3.13. Let H be a separable Hilbert space and A an abelian unital C∗-
subalgebra of B(H). For every f ∈ ∂eS(A) we have the following identity:

∂e Ext( f ) = Ext( f )∩∂eS(B(H)).

Proof. ⊆ : It is clear that ∂e Ext( f ) ⊆ Ext( f ). To see that ∂e Ext( f ) ⊆ ∂eS(B(H)),
suppose that g ∈ ∂e Ext( f ), that h1,h2 ∈ S(B(H)) and that t ∈ (0,1) such that
g = th1 +(1− t)h2.
Let k1 and k2 be the restrictions of h1 and h2 to A, respectively. Then, clearly, k1
and k2 are both states on A and we have f = tk1 +(1− t)k2. Since f is a pure
state on A, this means that k1 = k2 = f .
Therefore, h1,h2 ∈ Ext( f ), and since g ∈ ∂e Ext( f ), this means that g = h1 = h2.
Therefore g ∈ ∂eS(B(H)). Hence ∂e Ext( f )⊆ Ext( f )∩∂eS(B(H)).

⊇ : Suppose that g ∈ Ext( f )∩ ∂eS(B(H)) and t ∈ (0,1) and h1,h2 ∈ Ext( f ) such
that g = th1 +(1− t)h2. Then also h1,h2 ∈ S(B(H)) and since g ∈ ∂eS(B(H)) we
then have h1 = h2 = g. Therefore g ∈ ∂e Ext( f ). ut

Theorem 3.14. Let H be a Hilbert space and A an abelian unital C∗-subalgebra of
B(H). Then A has the first Kadison-Singer property if and only if it has the second
Kadison-Singer property.

Proof. Suppose A has the first Kadison-Singer property and let f ∈ ∂eS(A). Then,
by assumption Ext( f )∩∂eS(B(H)) consists of exactly one element, so by lemma
3.13, ∂e Ext( f ) consists of exactly one element.

Now, note that Ext( f ) is convex and is a closed subset of the compact set
S(B(H)). Therefore, Ext( f ) is convex and compact and the Krein-Milman theo-
rem (B.4) can be applied to it, i.e. Ext( f ) = co(∂e Ext( f )). However, ∂e Ext( f ) con-
sists of exactly one element, whence co(∂e Ext( f )) consists of exactly one element.
Therefore, Ext( f ) contains exactly one element, and A has the second Kadison-
Singer property.

For the converse, suppose that A has the second Kadison-Singer property and
let f ∈ ∂eS(A). Then Ext( f ) contains exactly one element, so ∂e Ext( f ) = Ext( f )
and hence ∂e Ext( f ) consists of one element as well. By lemma 3.13, we then know
that Ext( f )∩∂eS(B(H)) consists of one element, i.e. A has the first Kadison-Singer
property. ut
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By the above theorem, we can drop the adjectives ‘first’ and ‘second’ and just
speak of one property.

Definition 3.15. Let H be a Hilbert space and A an abelian unital C∗-subalgebra of
B(H). Then we say that A has the Kadison-Singer property if it has either (and
hence both) the first or second Kadison-Singer property.

From now on, the main goal of this text is to classify the examples of a Hilbert
space H and an abelian unital C∗-subalgebra A⊆B(H) that have the Kadison-Singer
property.

3.4 Properties of extensions and restrictions

The Kadison-Singer property concerns two parts; existence and uniqueness. The
following theorem shows that the first is never an issue.

Theorem 3.16. Let H be a Hilbert space and A a unital abelian C∗-subalgebra of
B(H). Furthermore, let f ∈ S(A). Then Ext( f ) 6= /0.

Proof. f ∈ S(A), so by proposition 3.5 ‖ f‖ = 1. Since A ⊆ B(H) is a linear sub-
space, there is a functional g : B(H)→C that is an extension of f and ‖g‖= ‖ f‖= 1,
by the Hahn-Banach theorem (see theorem B.2).

Since 1 ∈ A ⊆ B(H), g(1) = f (1) = 1. Using proposition 3.5 in the reverse di-
rection, it follows that g ∈ S(B(H)). Therefore, g ∈ Ext( f ), i.e. Ext( f ) 6= /0. ut

Now that we know that an extension always exists, we only have to focus on
uniqueness when we want to answer the question whether a given algebra has the
Kadison-Singer property. By the following proposition, we know more about an
extension in the case it is unique. For this, we use the notion of state-like functionals,
which is introduced in definition C.9.

Proposition 3.17. Suppose H is a Hilbert space and suppose that A ⊆ B(H) is a
unital abelian C∗-subalgebra. Furthermore, let f ∈ ∂eS(A) such that Ext( f ) = {g}.
Then for each self-adjoint a ∈ B(H),

g(a) = sup{ f (b) : b ∈ A,b≤ a}.

Proof. By positivity of f , it is clear tat the equation holds for any a ∈ A.
Next, suppose a 6∈ A. Then note that A+Ca is a self-adjoint linear subspace of

B(H) that contains the unit. Then define

α = sup{ f (b) : b ∈ A,b≤ a},

and, using this, define h : A+Ca→ C, by

x+λa→ f (x)+λα.
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Note that this is well defined, since x+λa = y+µa for some x,y ∈ A and λ ,µ ∈C
implies (µ − λ )a = x− y ∈ A, so µ − λ = 0, since a 6∈ A. Therefore, µ = λ and
x = y.

Now, h is obviously linear and h also preserves adjoints, since f is a state. Next,
we want to show that h is positive on the positive elements of A+Ca. So, suppose
that x+λa≥ 0.

If λ = 0, then x ≥ 0, so h(x + λa) = f (x) ≥ 0. If λ > 0, then x ≥ −λa, so
−λ−1x≤ a and −λ−1x ∈ A, so f (−λ−1x)≤ α . Therefore,

h(x+λa) = f (x)+λα = λ (α− f (−λ
−1x))≥ 0.

Finally, if λ < 0, then −λ−1x ≥ a, so f (−λ−1x) ≥ f (b) for every b ∈ A such that
b≤ a≤−λ−1x. Therefore, f (−λ−1x)≥ α . So certainly,

h(x+λa) = f (x)+λα =−λ ( f (−λ
−1x)−α)≥ 0.

Therefore, h is positive on the positive elements of A +Ca, i.e. h is a state-like
functional (see definition C.9). Therefore, by theorem C.10, h extends to a state-like
functional k on B(H). However, state-like functionals on a C∗-algebra are clearly
states, so k ∈ S(B(H)). Furthermore, for x ∈ A ⊆ A+Ca, k(x) = h(x) = f (x), i.e.
k ∈ Ext( f ) = {g}. Therefore, since a ∈ A+Ca, g(a) = k(a) = h(a) = α . ut

In studying extensions of pure states, it is also useful to understand the reverse
direction: restriction. For this, we have the following lemma.

Lemma 3.18. Suppose A is a C∗-algebra and C ⊆ A a C∗-subalgebra. Then the
restriction map

Φ : S(A)→ S(C), f 7→ f |C,

is continuous.

Proof. Note that the state spaces S(A) and S(C) are endowed with the weak∗-
topology (see section B.1). Therefore, let f ∈ S(C), c ∈ C and ε > 0, i.e. let
B( f ,c,ε) ⊆ S(C) be an arbitrary subbase element. We now prove that the set
Φ−1(B( f ,c,ε))⊆ S(A) is open.

To do this, let g∈Φ−1(B( f ,c,ε)). Then |Φ(g)(c)− f (c)|< ε , so there is a δ > 0
such that |Φ(g)(c)− f (c)|< ε−δ . Then let h ∈ B(g,c,δ ). Then

Φ(h)(c)− f (c)| ≤ |Φ(h)(c)−Φ(g)(c)|+ |Φ(g)(c)− f (c)|
< |h(c)−g(c)|+ ε−δ

< δ + ε−δ

= ε,

whence h ∈ Φ−1(B( f ,c,ε)). Therefore, B(g,c,δ ) ⊆ Φ−1(B( f ,c,ε)), i.e. the set
Φ−1(B( f ,c,ε)) is open. Hence Φ is continuous. ut



Chapter 4
Maximal abelian C∗-subalgebras

In chapter 3 we introduced the Kadison-Singer property and declared our main goal
to be classifying Hilbert spaces H and abelian unital C∗-subalgebras A⊆ B(H) that
have this property. In this chapter we show that in order to satisfy the Kadison-
Singer property, the subalgebra A needs to be maximal. Next, we will discuss some
important examples of such maximal abelian C∗-subalgebras.

4.1 Maximal abelian C∗-subalgebras

For a fixed Hilbert space H, we can consider all unital abelian C∗-subalgebras of
B(H) and collect them in C(B(H)). For every element of A ∈ C(B(H)), we can
ask ourselves whether A has the Kadison-Singer property with respect to B(H). It
turns out that only maximal elements of C(B(H)) can possibly have the Kadison-
Singer property with respect to the canonical partial order ≤ on C(B(H)) given by
inclusion, i.e. for A1,A2 ∈ C(B(H)) we have A1 ≤ A2 iff A1 ⊆ A2. Since it would
only be tedious to use the symbol ≤, we just use the inclusion symbol ⊆ to denote
the partial order.

Since (C(B(H)),⊆) is now a partially ordered set, we can consider its maximal
elements.

Definition 4.1. Suppose H is an Hilbert space and A1 ∈C(B(H)). Then A1 is called
maximal abelian if it is maximal with respect to the partial order ’⊆’ on C(B(H)),
i.e. if A1 ⊆ A2 for some A2 ∈C(B(H)), then necessarily A1 = A2.

Maximal abelian elements of C(B(H)) have a very nice description in terms of
the commutant.

Definition 4.2. Suppose X is an algebra and S ⊆ X is a subset. We define the com-
mutant of S to be

S′ := {x ∈ X | sx = xs ∀s ∈ S},

i.e. the set of all x ∈ X that commute with all of S.

21
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We denote the double commutant of a subset S of an algebra X by S′′ := (S′)′

and likewise S′′′ = (S′′)′. The proofs of the following properties of the commutant
are trivial.

Lemma 4.3. Suppose X is an algebra and S,T ⊆ X are subsets. Then:

1. S⊆ S′ iff S is abelian.
2. If S⊆ T , then T ′ ⊆ S′.
3. S⊆ S′′.
4. S′ = S′′′.

We can now give a description of maximal abelian subalgebras in terms of the
commutant.

Proposition 4.4. Suppose A is a subalgebra of B(H), for some Hilbert space H.
Then the following are equivalent:

1. A ∈C(B(H)) and A is maximal abelian;
2. A = A′.

Proof. Suppose A ∈C(B(H) is maximal abelian. Since A is abelian, A⊆ A′.
Now let b ∈ A′ and let C be the smallest C∗-subalgebra of B(H) that contains

A and b. Then since b commutes with all of A, C is abelian and unital, since we
have 1 ∈ A ⊆C. Therefore, C ∈C(B(H)) and A ⊆C. However, A was assumed to
be maximal, whence C = A. Hence b ∈C = A and A′ ⊆ A, so A′ = A.

For the converse, suppose that A = A′. First note that 1 ∈ A′ = A and A ⊆ A′, so
A ∈C(B(H)). Now suppose that C ∈C(B(H)) such that A ⊆C. Then C is abelian,
so C ⊆C′ ⊆ A′ = A, whence A =C and A is maximal. ut

The above proposition justifies dropping the adjective ’unital’ when we defined
maximal abelian subalgebras.

We now come to the main result in this chapter: only maximal abelian subalge-
bras can possibly have the Kadison-Singer property.

Theorem 4.5. Suppose that H is a Hilbert space and that A ∈ C(B(H)) has the
Kadison-Singer property. Then A is maximal abelian.

Proof. Suppose C ∈ C(B(H)) such that A ⊆ C. We will show that the pure state
spaces ∂eS(C) and ∂eS(A) are isomorphic. To do this, first construct the map:

Φ : ∂eS(C)→ ∂eS(A), f 7→ f |A

Since the pure states are exactly the characters on an abelian C∗-subalgebra (see
theorem 3.8) and f |A is therefore a non-zero restriction of a character, we know that
f |A ∈Ω(A) = ∂eS(A) for all f ∈ ∂eS(C). Therefore, Φ is well defined.

For any g ∈ ∂eS(A), we know that Ext(g) contains exactly one element. Denote
this element by g̃. Using this, we can construct the following map:

Ψ : ∂eS(A)→ ∂eS(C), g 7→ g̃|C
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To show that this map is well defined, let g ∈ ∂eS(A). Note that g̃ is a state on
B(H), and g̃|C is therefore a state on C, since positivity and unitality are clearly
preserved under restriction. Now write h = g̃|C and suppose h = th1 +(1− t)h2 for
some t ∈ (0,1) and h1,h2 ∈ S(C). By theorem 3.16 we can find k1 ∈ Ext(h1) and
k2 ∈ Ext(h2). Then k1|A = h1|A and k2|A = h2|A, so

g = g̃|A = h|A = th1|A +(1− t)h2|A = tk1|A +(1− t)k2|A.

However, g ∈ ∂eS(A), so k1|A = k2|A = g, i.e. k1,k2 ∈ Ext(g). So k1 = k2 = g̃.
Then h1 = k1|C = g̃|C = h and likewise h2 = h, i.e. h ∈ ∂eS(C), as desired.
The only thing left to show is that Φ and Ψ are each other’s inverse. First, let

g ∈ ∂eS(A). Then (Φ ◦Ψ)(g) = g̃|A = g, since g̃ ∈ Ext(g). Hence Φ ◦Ψ = Id.
Next, let f ∈ ∂eS(C). Choose h ∈ Ext( f ), which exists by theorem 3.16. Then

certainly h ∈ Ext( f |A). However, by assumption Ext( f |A) contains exactly one ele-
ment, so h = f̃ |A. Hence

(Ψ ◦Φ)( f ) = (̃ f |A)|C = h|C = f ,

since h ∈ Ext( f ). Therefore, Ψ ◦Φ = Id.
Hence Φ : ∂eS(C)→ ∂eS(A) is a bijection. It is also continuous by lemma 3.18.

By corollary 3.9 we know that ∂eS(C) and ∂eS(A) are both compact Hausdorff, so by
lemma A.13 Φ is in fact a homeomorphism. Therefore, Φ induces an isomorphism

Φ
∗ : C0(∂eS(A))→C0(∂eS(C))

given by Φ∗(F)( f ) = F(Φ( f )).
Using the Gelfand representation (theorem B.25) twice, i.e. using the isomor-

phisms
GA : A→C0(Ω(A)) =C0(∂eS(A)),(GA(a))( f ) = f (a)

and
GC : C→C0(Ω(C)) =C0(∂eS(C)),(GC(c))( f ) = f (c),

we can construct an isomorphism F = G−1
C ◦Φ∗ ◦GA such that the following dia-

gram commutes:

A
GA−−−−→ C0(∂eS(A))yF

yΦ∗

C
GC−−−−→ C0(∂eS(C))

We now claim that F is in fact given by the inclusion map i : A→C. To see this,
let a ∈ A and f ∈ ∂eS(C). Then:
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((Φ∗ ◦GA)(a))( f ) = Φ
∗(GA(a))( f ) = GA(a)(Φ( f ))

= Φ( f )(a) = f |A(a) = ( f ◦ i)(a)

= f (i(a)) = GC(i(a))( f )

= ((Gc ◦ i)(a))( f ).

Hence Φ∗ ◦GA = GC ◦ i, so indeed i = G−1
C ◦Φ∗ ◦GA = F . So the inclusion map

i : A→C is an isomorphism, i.e. A =C.
Therefore, A is maximal abelian. ut

Thus, in our search for a classification of subalgebras with the Kadison-Singer
property, we now merely have to focus on maximal abelian subalgebras.

4.2 Examples of maximal abelian C∗-subalgebras

It is time to give some key examples of maximal abelian C∗-subalgebras, since these
are the only ones that can possess the Kadison-Singer property. In chapter 2 we
proved that D ⊆M has the Kadison-Singer property (theorem 2.14). Together with
theorem 4.5, this implies that D ⊆ M is maximal abelian. However, one can also
prove this directly by an easy proof.

For infinite-dimensional separable Hilbert spaces, examples of maximal abelian
C∗-subalgebras become more involved.

4.2.1 The discrete subalgebra

One of the most important examples of a Hilbert space is the space `2(N), defined
as

`2(N) = { f : N→ C | ∑
n∈N
| f (n)|2 < ∞}.

This space has a natural inner product

〈 f ,g〉= ∑
n∈N

f (n)g(n),

which makes `2(N) a Hilbert space. `2(N) is separable because the functions
{δn}n∈N defined by δn(m) = δnm form a countable basis.

We can also consider the bounded functions on N, given by

`∞(N) = { f : N→ C | sup
n∈N
| f (n)|< ∞}.



4.2 Examples of maximal abelian C∗-subalgebras 25

It is clear that `∞(N) is an abelian algebra under pointwise operations. Defining the
adjoint operation pointwise as f ∗(n) = f (n), `∞(N) becomes a C∗-algebra in the
norm

‖ f‖∞ = sup
n∈N
| f (n)|.

We can now define the very important map

M : `∞(N)→ B(`2(N)), f 7→M f ,

defined by
(M f (φ))(n) = f (n)φ(n).

This is a well-defined norm-preserving injective ∗-homomorphism, and is called the
multiplication operator. The proof of this is rather tedious, but mostly trivial.

Because of this fact, we can identify `∞(N) with the subalgebra M(`∞(N)) of
B(`2(N)). We will tacitly use this identification.

Proposition 4.6. The subalgebra `∞(N)⊆ B(`2(N)) is maximal abelian.

Proof. `∞(N) is abelian, so `∞(N)⊆ `∞(N)′.
Now let T ∈ `∞(N)′. Define f : N→ C by

f (n) := (T (δn))(n).

For every n ∈ N, ‖δn‖= 1, so

| f (n)|2 = |(T (δn))(n)|2 ≤ ∑
m∈N
|(T (δn))(m)|2 = ‖T (δn)‖2 ≤ ‖T‖2.

Therefore, supn∈N| f (n)| ≤ ‖T‖, i.e., f ∈ `∞(N).
Now take φ ∈ `2(N). Then for any n,m ∈ N we have:

(Mδn(φ))(m) = δnmφ(m) = φ(n)δnm = φ(n)δn(m),

i.e. Mδn(φ) = φ(n)δn for all n ∈ N.
Therefore, for all n ∈ N:

T (φ))(n) = ((MδnT )(φ))(n) = ((T Mδn)(φ))(n)

= φ(n)(T (δn))(n) = φ(n) f (n) = (M f (φ))(n),

where we used the fact that T ∈ `∞(N)′ and hence commutes with Mδn .
So, T (φ) = M f (φ), but φ ∈ `2(N) was arbitrary, so T = M f ∈ `∞(N). This proves

that `∞(N)′ ⊆ `∞(N). Therefore `∞(N) = `∞(N)′, so `∞(N)⊆ B(`2(N)) is maximal
abelian. ut

There is considerable similarity between the case D⊆M that we treated in chap-
ter 2 and `∞(N) ⊆ B(`2(N); the latter can be viewed as the infinite-dimensional
version of the first. We can make this observation more precise by rewriting the case
D⊆M in a suitable fashion.



26 4 Maximal abelian C∗-subalgebras

To do this, for every n ∈ N write n = {1, . . . ,n} and define

`(n) = { f : n→ C}.

Note that in comparison with the infinite case, in this case it does not matter whether
we take all functions (like we did now), or the square-summable functions (which
would give `2(n)) or the bounded functions (`∞(n)), since these are all the same.

Furthermore, we can endow `(n) with a canonical inner product

〈 f ,g〉= ∑
k∈n

f (k)g(k)

which makes `(n) a Hilbert space. As a Hilbert space, `(n) is clearly isomorphic to
Cn under the canonical isomorphism

`(n)→ Cn, f 7→ ( f (1), . . . , f (n)).

This isomorphism induces an isomorphism between operators on `(n) and oper-
ators on Cn, explicitly given by

ϕ : B(`(n))→Mn(C), ϕ(T )i j = (T (δ j))(i).

Just as in the infinite-dimensional case, we can define a multiplication operator

M : `(n)→ B(`(n)), f 7→M f ,M f (φ)(m) = f (m)φ(m)

Since we are now dealing with the finite case, there is no question whether this map
is well defined, since all linear operators are automatically bounded. Just like in the
infinite case, we can identify `(n) with M(`(n))⊆ B(`(n)).

The main point is the following: it is easy to see that the diagonal matrices,
as discussed in chapter 2, exactly correspond to the multiplication operators. To
be more precise, we have that for every n ∈ N the restriction of the isomorphism
ϕ : B(`(n))→Mn(C) to `(n) gives an isomorphism between `(n) and Dn(C).

Summarizing, we see that the finite-dimensional case and the infinite-dimensional
case are not that different. Therefore, we introduce one general description. Let ℵ0
denote the cardinality of N and write ℵ0 = N. The expression ‘1≤ j ≤ℵ0’ means
‘either j ∈ N or j = ℵ0’. This can be made more precise by adding a maximal
element ℵ0 to the totally ordered set N.

Definition 4.7. Let 1≤ j≤ℵ0. Then Ad( j) is the subalgebra `∞( j)⊆ B(`2( j)) that
acts on the Hilbert space `2( j) via the multiplication operator. We call Ad( j) the
discrete subalgebra of cardinality j.

Note that we have used the identification `( j) = `2( j) = `∞( j) for j ∈N. Discrete
subalgebras provide key examples of maximal abelian subalgebras and will play a
major role in our further discussion.
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4.2.2 The continuous subalgebra

Another important example of a maximal abelian subalgebra is non-discrete. As an
introduction to this example, we consider all measurable functions from [0,1] to C:

F (0,1) := { f : [0,1]→ C | f is measurable},

where we use the standard Lebesgue measure µ on [0,1]. We define a relation ∼ on
F (0,1) by

f ∼ g⇐⇒ µ({x ∈ [0,1] : f (x) 6= g(x)}) = 0.

We sometimes denote the latter condition as µ( f 6= g) = 0. It is clear that ∼ is
an equivalence relation on F (0,1), so we can define:

F(0,1) := F (0,1)/∼ .

We denote equivalence classes in F(0,1) by [ f ], where f ∈F (0,1) is a representa-
tive. F(0,1) is an algebra under the canonical operations λ [ f ]+ [g] = [λ f +g] and
[ f ][g] = [ f g]. Using this, it is easy to see that the function

I2 : F(0,1)→ [0,∞], [ f ] 7→
∫
[0,1]
| f (x)|2dx

is well defined.
Then, we can define a new space, which we call the space of square-integrable

functions:
L2(0,1) := {ψ ∈ F(0,1) | I2(ψ)< ∞}.

One of the most important results of basic functional analysis is that L2(0,1) is a
Hilbert space with respect to the inner product 〈 , 〉, given by:

〈[ f ], [g]〉=
∫
[0,1]

f (x)g(x)dx.

The equivalence relation ∼ is necessary in the construction of L2(0,1) in order
for the inner product on L2(0,1) to be positive definite. Note that the norm induced
by this inner product satisfies ‖ψ‖2 = I2(ψ).

There is a certain kind of analogy between L2(0,1) and `2(N), by replacing sums
by integrals. Just as in the case of `2(N) one could again want to define the space of
bounded functions. Because we are dealing with equivalence classes of functions,
we need to define this properly: we put

L∞(0,1) := {ψ ∈ F(0,1) | ∃ f ∈ ψ : sup
x∈[0,1]

| f (x)|< ∞}.

This is called the space of essentially bounded functions, coming with a natural
norm:

‖ψ‖(ess)
∞ = inf

f∈ψ
{k ∈ [0,∞) : | f (x)| ≤ k ∀x ∈ [0,1]}.
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If we include the operation [ f ]∗ = [ f ], then L∞(0,1) becomes a C∗-algebra.
Now we have made our set-up: similar to the previous example, we want to regard

L∞(0,1) as a subalgebra of B(L2(0,1)). Again, we do this by means of a multipli-
cation operator:

M : L∞(0,1)→ B(L2(0,1)), ψ 7→Mψ ,

where M[ f ]([g]) = [ f g].
Just as in the discrete case, it can be shown that M is a well-defined injective,

norm-preserving, ∗-homomorphism. Therefore, we can regard L∞(0,1) as a C∗-
subalgebra of B(L2(0,1)), where we tacitly identify L∞(0,1) with its image under
M. Of course, L∞(0,1) is an abelian subalgebra. We introduced this example since
it is maximal abelian.

Theorem 4.8. L∞(0,1)⊆ B(L2(0,1)) is maximal abelian.

Proof. L∞(0,1) is abelian, so L∞(0,1)⊆ L∞(0,1)′.
For the other inclusion, suppose that T ∈ L∞(0,1)′. Note that I2([1]) = 1, so

[1] ∈ L2(0,1). Therefore, we can define ψ = T ([1]) ∈ L2(0,1). We claim that
ψ ∈ L∞(0,1).

To see this, we argue by contraposition, so we suppose that ψ 6∈ L∞(0,1). Now
let f ∈ ψ and for every N ∈ N, define:

AN := {x ∈ [0,1] : | f (x)| ≥ N}.

Since ψ 6∈ L∞(0,1), for every N ∈ N, µ(AN) 6= 0. Since 1AN ∈ L∞(0,1), we can
compute:

T ([1AN )] = T (M[1AN ]([1])) = M[1AN ](T ([1])) = M[1AN ]([ f ]) = [ f ·1AN ].

Therefore, we also have:

N2
µ(AN)≤

∫
AN

| f (x)|2dx = ‖[ f ·1AN ]‖
2 = ‖T ([1AN ])|

2

≤ ‖T‖2‖[1AN ]‖
2 = ‖T‖2

µ(AN).

Since µ(AN) 6= 0, N ≤ ‖T‖ for all N ∈ N. However, T ∈ B(L2(0,1)), so this is a
contradiction. Hence ψ ∈ L∞(0,1).

We now claim that T = Mψ . To see this, let φ ∈ L2(0,1) and let g ∈ φ . For each
n ∈ N define

Un := {x ∈ [0,1] : |g(x)| ≤ n},

and gn := g · 1Un . Note that the sequence of functions fi : [0,1] → [0,∞) de-
fined by fi(x) = |gi(x)|2 is pointwise non-decreasing and has f : [0,1]→ [0,∞),
f (x) = |g(x)|2, as its pointwise limit. Hence, by Lebesgue’s monotone convergence
theorem,

lim
n→∞
‖[gn]‖2 = lim

n→∞

∫
[0,1]
|gn(x)|2 dx =

∫
[0,1]
|g(x)|2 dx = ‖[g]‖2.
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Furthermore,

‖[g]− [gn]‖2 =
∫
[0,1]\Un

|g(x)|2 dx =
∫
[0,1]
|g(x)|2 dx−

∫
Un

|g(x)|2 dx

= ‖[g]‖2−‖[gn]‖2,

whence limn→∞‖[g]− [gn]‖= 0, i.e. limn→∞[gn] = [g].
Choose h ∈ ψ . Since [gn] ∈ L∞(0,1), we can compute:

T ([gn]) = T (M[gn]([1])) = M[gn](T ([1]))

= M[gn]([h]) = [gnh]

= M[h]([gn]) = Mψ([gn]).

Then also, by continuity of both T and Mψ ,

T ([g]) = T ( lim
n→∞

[gn]) = lim
n→∞

T ([gn]) = lim
n→∞

Mψ([gn]) = Mψ( lim
n→∞

[gn]) = Mψ([g]).

Therefore, T (φ)=Mψ(φ). Since φ ∈L2(0,1) was arbitrary, T =Mψ . So, we con-
clude that T ∈ L∞(0,1). Hence L∞(0,1)′⊆ L∞(0,1). Therefore, L∞(0,1)′= L∞(0,1),
i.e. L∞(0,1) is maximal abelian. ut

Along the lines of the definition of the discrete subalgebra of cardinality j, we
introduce a special short notation for the subalgebra L∞(0,1)⊆ B(L2(0,1)).

Definition 4.9. We denote the maximal abelian subalgebra L∞(0,1) of B(L2(0,1))
by Ac, realized via multiplication operators. We call Ac the continuous subalgebra.

4.2.3 The mixed subalgebra

Combining two different examples of maximal abelian subalgebras, one can con-
struct another example of a maximal abelian subalgebra. Here, we use the notation
as introduced in the appendix, most notably in section B.2.

Proposition 4.10. Suppose A1 ⊆ B(H1) and A2 ⊆ B(H2) are both maximal abelian
C∗-subalgebras. Then A1⊕A2 ⊆ B(H1⊕H2) is maximal abelian.

Proof. Since A1⊕A2( j) is a pointwise defined subalgebra of B(H1⊕H2) and both
A1 and A2 are abelian, A1⊕A2 is abelian. Therefore A1⊕A2 ⊆ (A1⊕A2)

′. Next,
suppose that T ∈ (A1⊕A2)

′. Define T1 = π1 ◦T ◦ ι1 and T2 = π2 ◦T ◦ ι2. Since T is
bounded, T1 ∈ B(H1) and T2 ∈ B(H2).

Now note that for any x ∈ H1 and y ∈ H2,
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T (x,y) = T (ι1(x)+ ι2(y))

= T (ι1(x))+T (ι2(y))

= (T ◦ (1,0)◦ ι1)(x)+(T ◦ (0,1)◦ ι2)(y)

= ((1,0)◦T ◦ ι1)(x)+((0,1)◦T ◦ ι2)(y)

= ((π1 ◦T ◦ ι1)(x),0)+(0,(π2 ◦T ◦ ι2)(y))

= (T1(x),0)+(0,T2(y))

= (T1(x),T2(y)),

where we used the fact that T commutes with (1,0) and (0,1), since T ∈ (A1⊕A2)
′.

Therefore, T = (T1,T2). Now, for all a ∈ A1,

(T1 ◦a,0) = T ◦ (a,0) = (a,0)◦T = (a◦T1,0)

Therefore, T1 ∈ A′1 = A1. Likewise, T2 ∈ A2. Hence T = (T1,T2) ∈ A1 ⊕ A2, i.e.
(A1⊕A2)

′ ⊆ A1⊕A2. Therefore

(A1⊕A2)
′ = A1⊕A2,

i.e. A1⊕A2 ⊆ B(H1⊕H2) is maximal abelian. ut

Since we are interested in the question whether a maximal abelian subalgebra
possesses the Kadison-Singer property, we would like to make a connection be-
tween the Kadison-Singer property for a direct sum A1⊕A2 and the Kadison-Singer
property of A1 and A2 separately. It turns out that we can do this. First of all, we
need to describe the characters (and hence the pure states) of a direct sum. For this,
note that for any map f : Ai→C, the pullback over the projection πi : A1⊕A2→ Ai,
i.e. π∗i ( f ) = f ◦πi, gives a map π∗i ( f ) : A1⊕A2→ C.

Proposition 4.11. Suppose A1 and A2 are both C∗-algebras. Then

Ω(A1⊕A2) = π
∗
1 (Ω(A1))∪π

∗
2 (Ω(A2)).

Proof. Suppose f ∈Ω(A1⊕A2). Then

f ((0,1))2 = f ((0,1)2) = f ((0,1)),

so f ((0,1)) ∈ {0,1}. Likewise f ((1,0)) ∈ {0,1}. However, we also have

f ((0,1))+ f ((1,0)) = f ((1,1)) = f (1) = 1,

so there are two cases. Either f ((1,0)) = 1 and f ((0,1)) = 0, or f ((1,0)) = 0 and
f ((0,1)) = 1.

Suppose the first case is true. Then define g : A1 → C by g(a) = f (a,0). Then
g(1) = 1, so g is non-zero and for any a1,a2 ∈ A1 we have

g(a1a2) = f ((a1a2,0)) = f ((a1,0)) f ((a2,0)) = g(a1)g(a2),
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so g ∈Ω(A1). Furthermore, for any (a1,a2) ∈ A1⊕A2 we have

f ((a1,a2)) = f ((a1,0))+ f ((0,a2)) = f ((a1,0)) f ((1,0))+ f ((0,a2))

= f (a1,0) = g(a1) = (g◦π1)((a1,a2)),

i.e. f = π∗1 (g), so f ∈ π∗1 (Ω(A1)).
If the second case is true, it follows likewise that f ∈ π∗2 (S(A2)). Hence

Ω(A1⊕A2)⊆ π
∗
1 (Ω(A1))∪π

∗
2 (Ω(A2)).

Now suppose h ∈ π∗1 (Ω(A1)). Then h = k ◦π1 for some k ∈Ω(A1), so

h(1) = h((1,1)) = k(1) = 1,

i.e. h is non-zero. Furthermore, h is clearly linear and for any pair of elements
(a1,a2),(b1,b2) ∈ A1⊕A2, we have

h((a1,a2)(b1,b2)) = h((a1b1,a2b2)) = k(a1b1)

= k(a1)k(b1) = h((a1,a2))h((b1,b2)),

i.e. h ∈ Ω(A1 ⊕ A2). Therefore, π∗1 (A1) ⊆ Ω(A1 ⊕ A2). Likewise, we have that
π∗2 (Ω(A2))⊆Ω(A1⊕A2), so indeed, Ω(A1⊕A2) = π∗1 (Ω(A1))∪π∗2 (Ω(A2)). ut

The above proposition gives us information about the pure states on a direct sum
of abelian subalgebras, since the pure states are exactly the characters. Next, we
need to make a connection between the concepts of positivity and direct sums of
operator algebras.

Lemma 4.12. Suppose H1 and H2 are Hilbert spaces and b∈B(H1⊕H2) is positive.
Then for j ∈ {1,2}, π jbi j ∈ B(H j) is positive.

Proof. Let (x,y) ∈ H1⊕H2. Then compute:

〈(π1bi1)(x),x〉= 〈(π1b)((x,0),x〉
= 〈(π1b)((x,0),x〉+ 〈(π2b)(x,0),0〉
= 〈b(x,0),(x,0)〉 ≥ 0,

since b is positive. Therefore, π1bi1 is positive. Likewise, π2bi2 is positive. ut

We use these results to prove the following theorem about the connection be-
tween direct sums and the Kadison-Singer property.

Theorem 4.13. Suppose H1 and H2 are Hilbert spaces. Furthermore, suppose that
A1 ⊆ B(H1) and A2 ⊆ B(H2) are abelian unital C∗-subalgebras such that the sub-
algebra A1⊕A2 ⊆ B(H1⊕H2) has the Kadison-Singer property. Then A1 ⊆ B(H1)
and A2 ⊆ B(H2) have the Kadison-Singer property.
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Proof. Suppose f ∈ ∂eS(A1) and g1,g2 ∈ Ext( f ) ⊆ B(H1). Then f ∈ Ω1, so by
proposition 4.11, π∗1 ( f ) ∈Ω(A1⊕A2) = ∂eS(A1⊕A2).

Now define the linear functionals k1,k2 : B(H1⊕H2)→ C by k j(b) = g j(π1bi1)
for all b ∈ B(H1⊕H2) and j ∈ {1,2}. Then for j ∈ {1,2},

k j(1) = g j(π1i1) = g j(1) = 1,

since g j is a state. Furthermore for a positive b ∈ B(H1⊕H2), π1bi1 ∈ B(H1) is pos-
itive by lemma 4.12. Therefore, k j(b) = g j(π1bi1) ≥ 0, since g j is positive. Hence
k1,k2 ∈ S(B(H1⊕H2)).

Now, for an element (a1,a2) ∈ A1⊕A2, π1(a1,a2)i1 = a1, so

k j((a1,a2)) = g j(π1(a1,a2)i1) = g j(a1)

= f (a1) = ( f ◦π1)(a1,a2) = π
∗
1 ( f )((a1,a2)),

i.e. k1,k2 ∈ Ext(π∗1 ( f )). However, by assumption, A1⊕A2 ⊆ B(H1⊕H2) has the
Kadison-Singer property, so Ext(π∗1 ( f )) has at most one element, i.e. k1 = k2.

For any b ∈ B(H1), b = π1(b,0)i1, so we have

g1(b) = g1(π1(b,0)i1) = k1((b,0)) = k2((b,0)) = g2((π1(b,0)i1) = g2(b),

i.e. g1 = g2. Therefore, Ext( f ) has at most one element. Combined with theo-
rem 3.16, we know Ext( f ) has exactly one element. Therefore, A1 ⊆ B(H1) has
the Kadison-Singer property. Likewise, A2 ⊆ B(H2) has the Kadison-Singer prop-
erty. ut

As a special example of a direct sum, we can combine the discrete subalgebra
Ad( j) for some 1≤ j ≤ℵ0 with the continuous example Ac. To do this, define

H j := L2(0,1)⊕ `2( j).

We will call the maximal abelian subalgebra Ac⊕Ad( j)⊆ B(H j) the mixed sub-
algebra. As it will turn out later, this is in some way the only direct sum that we
need to consider.

By now, we have constructed three different examples: the discrete, continuous
and mixed subalgebra. These are all examples with a separable Hilbert space. In
our search for examples of maximal abelian subalgebras that satisfy the Kadison-
Singer property, we will restrict ourselves to this kind of Hilbert spaces, since it
turns out that we can make a complete classification of abelian subalgebras with the
Kadison-Singer property when we only consider separable Hilbert spaces.



Chapter 5
Minimal projections in maximal abelian von
Neumann algebras

Recall that we are considering maximal abelian C∗-subalgebras of B(H), for some
Hilbert space H. Note that a maximal abelian C∗-subalgebra A⊆ B(H) satisfies the
equation A′ = A and A′ is a von Neumann algebra by proposition B.31. Therefore,
every maximal abelian C∗-subalgebra is a von Neumann algebra. Furthermore, ev-
ery von Neumann algebra is a C∗-algebra (viz. proposition B.30), so certainly every
maximal abelian von Neumann algebra (i.e. a von Neumann algebra A that satisfies
A′ = A) is a maximal abelian C∗-algebra. Hence we see that the maximal abelian
von Neumann algebras are exactly the maximal abelian C∗-algebras.

We will first show that it is only necessary to classify all maximal abelian sub-
algebras up to unitary equivalence, in order to determine whether they satisfy the
Kadison-Singer property. Next, we restrict ourselves to separable Hilbert spaces
and by considering maximal abelian subalgebras to be von Neumann algebras, we
can classify these subalgebras up to unitary equivalence, by using the existence and
properties of minimal projections. Together, this greatly simplifies the classification
of subalgebras with the Kadison-Singer property in the case of separable Hilbert
spaces.

5.1 Unitary equivalence

The classification of maximal abelian von Neumann algebras is up to so-called uni-
tary equivalence. For this, we need unitary elements.

Definition 5.1. Suppose H and H ′ are Hilbert spaces. Then u ∈ B(H,H ′) is called
unitary if for all x,y ∈ H, 〈ux,ux〉= 〈x,y〉 and u(H) = H ′.

The above conditions for being unitary are not always the easiest to check. How-
ever, it is easy to show that u∈B(H,H ′) is unitary if and only if u∗u= 1 and uu∗= 1.

Using unitary elements, we can define the notion of unitary equivalence of sub-
algebras of B(H).

33
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Definition 5.2. Suppose H1 and H2 are Hilbert spaces and A1 ⊆ B(H1), A2 ⊆ B(H2)
are subalgebras. Then A1 is called unitarily equivalent to A2 if there is a unitary
u ∈ B(H1,H2) such that uA1u∗ = A2. We denote this by A1 ∼= A2.

Of course, it is easily proven that unitarily equivalence is indeed an equivalence
relation. One of the crucial steps in this chapter is the following theorem: it shows
that we only have to consider subalgebras up to unitary equivalence when determin-
ing whether the subalgebra satisfies the Kadison-Singer property.

Theorem 5.3. Suppose that H1 and H2 are Hilbert spaces and that A1 ⊆ B(H1) and
A2 ⊆ B(H2) are unital abelian subalgebras that are unitarily equivalent. Then A1
has the Kadison-Singer property if and only if A2 has the Kadison-Singer property.

Proof. Suppose that A1 has the Kadison-Singer property. By assumption, there is a
unitary u ∈ B(H1,H2) such that uA1u∗ = A2.

Now let f ∈ ∂eS(A2). Then define g : A1→ C by g(a) = f (uau∗). We first claim
that g ∈ S(A1). To see this, first let a ∈ A1 and observe that

g(a∗a) = f (ua∗au∗) = f ((au∗)∗au∗)≥ 0,

since f is positive. Hence g is positive. Furthermore, g(1) = f (uu∗) = f (1) = 1, so
g is unital too. Hence, indeed g ∈ S(A1).

Next, we prove that in fact g ∈ ∂eS(A1). To see this, suppose that h1,h2 ∈ S(A1)
and t ∈ (0,1) such that g= th1+(1−t)h2. Now define the functional k1 : A2→C by
k1(a) = h1(u∗au) for all a∈ A2 and likewise define k2 : A2→C by k2(a) = h2(u∗au)
for all a ∈ A2. Then by the same reasoning as above, k1,k2 ∈ S(A2). Furthermore,
for a ∈ A2,

f (a) = f (uu∗auu∗) = g(u∗au)

= th1(u∗au)+(1− t)h2(u∗au)

= tk1(a)+(1− t)k2(a),

i.e. f = tk1 +(1− t)k2. However, f ∈ ∂eS(A2) by assumption, so f = k1 = k2. Then
for a ∈ A1:

h1(a) = h1(u∗uau∗u) = k1(uau∗) = f (uau∗) = g(a),

i.e. h1 = g. Likewise, h2 = g, so indeed g ∈ ∂eS(A1).
We want to prove that Ext( f ) contains exactly one element. By theorem 3.16,

we know that Ext( f ) 6= /0. Therefore, suppose that c,d ∈ Ext( f ) ⊆ S(B(H2)). Then
define c̃ : B(H1)→ C by c̃(b) = c(ubu∗) and likewise define d̃ : B(H1)→ C by
d̃(b) = d(ubu∗). Then by the same reasoning as above, c̃, d̃ ∈ S(B(H1)).

Now for a ∈ A1, uau∗ ∈ A2, so

c̃(a) = c(uau∗) = f (uau∗) = g(a),

since c ∈ Ext( f ). Hence c̃ ∈ Ext(g). Likewise, d̃ ∈ Ext(g). However, A1 has the
Kadison-Singer property, so Ext(g) has exactly one element, i.e. c̃ = d̃.
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Let b ∈ B(H2). Then

c(b) = c(uu∗buu∗) = c̃(u∗bu) = d̃(u∗bu) = d(uu∗buu∗) = d(b),

i.e. c = d. Hence Ext( f ) contains exactly one element, so A2 has the Kadison-Singer
property.

Likewise, if A2 has the Kadison-Singer property, then A1 has the Kadison-Singer
property. ut

So, using the above theorem, our first main goal is now to classify all maximal
abelian subalgebras up to unitary equivalence. We can make this classification when
restricting ourselves to separable Hilbert spaces, so we will only consider those from
now on.

5.2 Minimal projections

An important property of a von Neumann algebra is that it is generated by its projec-
tions (see proposition B.32). Considering maximal abelian von Neumann algebras,
the set of projections becomes even more important, because it has more structure
than in the general case.

To be more precise, write P(A) = P(H)∩A for the set of projections in some
maximal abelian von Neumann algebra A ⊆ B(H). Since A is abelian, the product
of any two elements in P(A) is again an element of P(A) and since A is unital, P(A)
is a monoid.

Now write Pm(A) for the set of minimal projections in P(A), where minimal pro-
jections are defined as in definition B.14. The key in the classification of maximal
abelian von Neumann algebras lies in the properties of these sets of minimal projec-
tions.

As a first step in this classification, we determine Pm(A) for the cases that A is
the discrete, continuous, or mixed subalgebra.

Proposition 5.4. Let 1 ≤ j ≤ ℵ0. Then Pm(Ad( j)) = {δn : j→ C : n ∈ j}, where
δn(m) = δnm.

Proof. Let us first determine the projections in Ad( j). So, suppose that p ∈ Ad( j) is
a projection. Then p : j→ C such that p2 = p∗ = p. Then for any n ∈ j,

p(n)2 = p(n) = p(n),

i.e. p(n) ∈ {0,1}. Therefore, p = 1A for some subset A⊆ j.
Since supn∈ j|1A(n)| ≤ 1, we also have that 1A ∈ Ad( j) for every A ⊆ j. Since it

is clear that 12
A = 1∗A = 1A for every A⊆ j, we conclude that the set of projections in

Ad( j) is exactly given by {1A : A⊆ j}.
Now note that 1A = 0 if and only if A = /0 and 1B−1A ≥ 0 if and only if A⊆ B.

Now suppose A ⊆ j is such that 1A is a minimal projection. Then A 6= /0. Suppose
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B ⊆ A. Then 0 ≤ 1B ≤ 1A, so 1B = 0 or 1B = 1A, i.e. B = /0 or B = A. Hence A
consists of exactly one element.

By the same reasoning, for every A ⊆ j that has exactly one element, 1A is a
minimal projection. Hence the set of minimal projections in Ad( j) is exactly given
by

{1A : A⊆ j,#A = 1}= {δn : n ∈ j}. ut

For the discussion of the continuous subalgebra, we first need a few extra ingre-
dients. For any measurable function f : [0,1]→ C, define

U f = {x ∈ [0,1] : f (x) 6∈ {0,1}}.

Lemma 5.5. The map χ : Ac→ [0,1] given by χ([ f ]) = µ(U f ) is well defined.

Proof. Since f : [0,1]→C is measurable if [ f ] ∈ Ac, U f ⊆ [0,1] is a measurable set
for every [ f ] ∈ Ac and hence µ(U f ) ∈ [0,1] is well-defined.

Therefore, the only thing left to check is that the definition of χ is independent
of the choice of representative. So, suppose [ f ] = [g] ∈ Ac.

Then let C := {x ∈ [0,1] : f (x) 6= g(x)}. By assumption, µ(C) = 0. Now suppose
x 6∈Ug∪C. Then f (x) = g(x) ∈ {0,1}, so x 6∈U f . Therefore, U f ⊆Ug∪C. Then

µ(U f )≤ µ(Ug∪C)≤ µ(Ug)+µ(C) = µ(Ug).

By symmetry, we also have µ(Ug) ≤ µ(U f ), so µ(U f ) = µ(Ug) and hence χ is
well-defined. ut

We can now characterize the projections in Ac using the map χ .

Lemma 5.6. Suppose ψ ∈ Ac. Then ψ is a projection if and only if χ(ψ) = 0.

Proof. Suppose χ(ψ) 6= 0. Then for f ∈ ψ , µ(U f ) 6= 0, so

µ({x ∈ [0,1] : f (x)2 = f (x)}) = µ({x ∈ [0,1] : f (x) 6∈ {0,1}}) = µ(U f ) 6= 0,

whence [ f ]2 = [ f 2] 6= [ f ]. Therefore, ψ = [ f ] is not a projection.
Now suppose that χ(ψ) = 0. Again, take an f ∈ψ . Then µ(U f ) = 0. Now define

h : [0,1]→ C by h = f · 1[0,1]\U f
. Then by construction h is measurable and we

have [h] = [ f ] = ψ . Furthermore, h(x) ∈ {0,1} for every x ∈ [0,1], so certainly
h(x)2 = h(x) = h(x) for every x ∈ {0,1}. Therefore [h]2 = [h] = [h]∗. Since ψ = [h],
ψ is a projection. ut

Using this characterization of projections in Ac, we can prove the following state-
ment.

Proposition 5.7. Ac has no minimal projections.

Proof. Suppose ψ ∈ Ac is a non-zero projection. Choose a f ∈ ψ . Then by lemma
5.6, χ(ψ) = 0, so µ(U f ) = 0. Then define h = f ·1[0,1]\U f

and observe that we then
have [h] = [ f ] = ψ .
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Since ψ 6= 0, Nh = {x ∈ [0,1] : h(x) 6= 0} has non-zero measure, so there is a
M ⊆ Nh such that 0 < µ(M) < µ(Nh). Now note that (h− 1M) ≥ 0 and [1M] is a
projection, whence [1M] ≤ h. Furthermore, µ(M) 6= 0, so [1M] 6= 0 and [1M] 6= [h]
since µ(Nh)> µ(1M). Therefore, ψ = [h] is not a minimal projection.

Since ψ was an arbitrary non-zero projection, Ac has no minimal projections. ut

Combining the above results, we can also determine the minimal projections in
the mixed subalgebra.

Proposition 5.8. Let 1≤ j ≤ℵ0. Then Pm(Ac⊕Ad( j)) = {(0,δn) : n ∈ j}.

Proof. Suppose (p,q)∈ Ac⊕Ad( j) is a projection. Then (p,q) = (p,q)2 = (p2,q2),
so p2 = p and q2 = q. By the same reasoning, p∗ = p and q∗ = q, whence p ∈ Ac
and q ∈ Ad( j) are both projections. Since the converse is trivial, we conclude that
the projections in Ac⊕Ad( j) are exactly formed by pairs of projections (p,q).

Now suppose (p,q) is a non-zero projection in Ac⊕Ad( j). Suppose p 6= 0. Then,
since p∈Ac and Ac has no minimal projections, there is a non-zero projection p′ 6= p
in Ac such that 0 ≤ p′ ≤ p. Then 0 ≤ (p′,q) ≤ (p,q), but we have (p′,q) 6= 0 and
(p′,q) 6= (p,q). Hence (p,q) is not a minimal projection.

Therefore, minimal projections in Ac⊕Ad( j) are necessarily of the form (0,q),
where q is a projection in Ad( j). Since clearly (p′,q′)≤ (p,q) if and only if p′ ≤ p
and q ≤ q′, we see that (0,q) is a minimal projection in Ac⊕Ad( j) if and only if
q is a minimal projection in Ad( j). Using proposition 5.4 we therefore see that the
minimal projections in Ac⊕Ad( j) are exactly given by {(0,δn) : n ∈ j}. ut

Hence we see that Ac is qualitatively different from Ad( j) and from Ac⊕Ad( j) for
some 1≤ j ≤ℵ0, since the first does not contain any minimal projections, whereas
the latter two do. Moreover, we can distinguish the discrete and the mixed subalge-
bras when considering the von Neumann algebra generated by the minimal projec-
tions. It is clear from proposition 5.8 that the von Neumann algebra generated by the
minimal projections in the mixed algebra is a subalgebra of 0⊕Ad( j) and is then
certainly not equal to the whole mixed subalgebra itself. At the same time, we have
the following statement about the discrete subalgebra. Note that 〈X〉vN denotes the
von Neumann algebra generated by the set X , as discussed in section B.4.

Proposition 5.9. Let 1≤ j ≤ℵ0. Then 〈Pm(Ad( j))〉vN = Ad( j).

Proof. The minimal projections in Ad( j) are exactly {δn : n ∈ j}, by proposition
5.4. Now make a distinction between j ∈ N and j = ℵ0. If j ∈ N and f ∈ Ad( j),
then

f =
j

∑
n=1

f (n)δn ∈ 〈{δn : n ∈ j}〉vN ,

since a von Neumann algebra is closed under taking finite linear combinations.
Hence

Ad( j)⊆ 〈{δn : n ∈ j}〉vN ,
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if j ∈ N. We now prove the same statement for j = ℵ0. In this case Ad( j) = `∞(N).
So, take a f ∈ `∞(N) and define fm = ∑

m
n=1 f (n)δn for all m ∈ N.

Then certainly fm ∈ 〈{δn : n∈ j}〉vN for all m∈N. Now let ϕ ∈ `2(N) and observe
that

‖M f (ϕ)−M fm(ϕ)‖2 =
∞

∑
n=m+1

| f (n)ϕ(n)|2 ≤ ‖ f‖∞

∞

∑
n=m+1

|ϕ(n)|2.

Since ϕ ∈ `2(N), it therefore follows that limm→∞‖M f (ϕ)−M fm(ϕ)‖= 0, i.e.

lim
m→∞

M fm(ϕ) = M f (ϕ).

Since ϕ ∈ `2(N) was arbitrary, it follows that f is the strong limit of { fm}∞
m=1,

whence f ∈ 〈{δn : n ∈ N}〉vN . Therefore,

Ad( j)⊆ 〈{δn : n ∈ j}〉vN

if j = ℵ0 too.
Since Ad( j) is a von Neumann algebra containing {δn : n ∈ j}, we have

〈{δn : n ∈ j}〉vN ⊆ Ad( j),

whence Ad( j) = 〈{δn : n ∈ j}〉vN . ut

So, we can distinguish our three examples (the discrete, continuous and mixed
subalgebras) by considering minimal projections and the question whether they gen-
erate the whole algebra. Note that these two properties together divide up the col-
lection of maximal abelian subalgebras in three classes:

• There are no minimal projections (like Ac),
• There are minimal projections that do not generate the whole algebra (as in the

case of Ac⊕Ad( j))
• There are minimal projections that do generate the whole algebra (like Ad( j)).

In fact, this turns out to be the key to the classification of maximal abelian subal-
gebras.

5.3 Subalgebras without minimal projections

We will first focus on the maximal abelian subalgebras that are like the continuous
subalgebra, i.e. those that have no minimal projections. Our goal is to show that
such subalgebras are unitarily equivalent to Ac. First of all, we need two definitions
of special vectors.

Definition 5.10. Suppose H is a Hilbert space and A⊆ B(H) a C∗-subalgebra. Then
we say that x ∈ H is a separating vector for A if u ∈ A and u(x) = 0 implies that
u = 0.
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Definition 5.11. Suppose H is a Hilbert space and A⊆ B(H) a C∗-subalgebra. Then
we say that x ∈ H is a generating vector for A if Ax = H.

For maximal abelian subalgebras, it turns out that there is always a vector that is
both generating and separating.

Proposition 5.12. Suppose H is a separable Hilbert space and A⊆ B(H) is a max-
imal abelian von Neumann algebra. Then there is a unit vector x ∈ H that is sepa-
rating and generating for A.

Proof. We call a subset C⊆H orthogonal under A if it has the property that {Ax}x∈C
is an orthogonal family (see definition B.8). These subsets form a partially ordered
set under inclusion and any chain {Ci}i∈I is bounded by

⋃
i∈I Ci. Therefore, we can

apply Zorn’s lemma and obtain a maximal subset E ⊆H that is orthogonal under A.
Now note that K :=

⊕
x∈E Ax is a closed subspace of H. Suppose y ∈ K⊥. Then

for u,v ∈ A and x ∈ E, we have

〈u(y),v(x)〉= 〈y,(u∗v)(x)〉= 0,

since y ∈ K⊥ and u∗v ∈ A. Therefore, {u(y)} is orthogonal to {v(x)}. Since u,v ∈ A
were arbitrary, A(y) and A(x) are orthogonal. By continuity of the inner product,
therefore A(y) and A(x) are orthogonal. Since x ∈ E was arbitrary, this means that
E ∪{y} is orthogonal under A.

However, by maximality of E, it follows that y ∈ E. Since 1 ∈ A, y ∈ Ay⊆ K, so
y ∈ K∩K⊥. Therefore, y = 0. So K⊥ = {0}, i.e. K = H.

Since H is separable, we know that E is (at most) countable. Furthermore, by
maximality of E we know that 0 ∈ E. Since removing 0 from E and normalizing
the rest of E does not change the above properties, we can therefore find a subset
F = {xn ∈ H : n ∈ N} ⊆ H that consists of unit vectors, is orthogonal under A, and
satisfies

⊕
n∈N Axn = H.

Now define x := ∑n∈N 2−nxn. Then, since xn ∈ Axn for every n ∈ N, 〈xn,xm〉= 0
if n 6= m, so ‖x‖2 = ∑n∈N 2−n = 1, i.e. x is a unit vector. We claim that x is both
separating and generating for A.

For the first, suppose that u ∈ A such that u(x) = 0. Then:

0 = ‖u(x)‖2 = 〈u(x),u(x)〉= ∑
n,m∈N

1
2n+m 〈u(xn),u(xm)〉

= ∑
n∈N

1
22n 〈u(xn),u(xn)〉= ∑

n∈N

1
22n ‖u(xn)‖2,

where we used the fact that F is orthogonal under A. Therefore, for each n ∈ N, we
have ‖u(xn)‖= 0, i.e. u(xn)= 0. Now, for any v∈A, u(v(xn))= v(u(xn))= v(0)= 0,
since A is abelian, so u(y) = 0 for all y ∈ A(xn). So u(y) = 0 for all y ∈ A(xn),
so u(y) = 0 for every y ∈

⊕
n∈N A(xn) = H. Therefore, u = 0 and indeed, x is a

separating vector for A.
To see that x is a generating vector for A, denote D := Ax. Since D⊆H is closed,

H = D⊕D⊥. Let π be the canonical projection from H onto D, i.e.
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π : H→ H,(w,z) 7→ (w,0).

A is unital, so x ∈ D, whence π(x) = x and (1−π)(x) = 0.
We claim that 1−π ∈ A. To see this, note that for any u,v ∈ A,

u(v(x)) = (uv)(x) ∈ A(x),

so u(Ax)⊆ Ax. By continuity of u, then also u(D)⊆D. Furthermore, if y∈D⊥, then
y ∈ (Ax)⊥, so for any u,v ∈ A, 〈u(y),v(x)〉 = 〈y,(u∗v)(x)〉 = 0, so u(y) ∈ (Ax)⊥.
Then by continuity of the inner product, u(y) ∈ D⊥, too.

Hence every a ∈ A splits in (a1,a2) : D⊕D⊥→ D⊕D⊥. Then for any a ∈ A,

aπ = (a1,a2)(1,0) = (a1,0) = (1,0)(a1,a2) = πa,

i.e. π ∈ A′ = A, since A is maximal abelian. Then also 1−π ∈ A, because A is an
algebra.

So 1−π ∈A and (1−π)(x) = 0, while x is a separating vector for A, so 1−π = 0,
i.e. π = 1. Therefore,

Ax = D = H,

and x is indeed a generating vector for A. ut

A von Neumann algebra has the special property that it is generated by its pro-
jections (viz. proposition B.32). When it is also maximal abelian, there is an even
stronger statement.

Lemma 5.13. Suppose H is a separable Hilbert space and A⊆ B(H) is a maximal
abelian von Neumann algebra. Then there is a countable set of projections in A that
generates A as a von Neumann algebra.

Proof. By proposition 5.12 there is a separating and generating vector x ∈ H for A.
Now let D = {px : p ∈ P(A)}. Since D is a subspace of the separable topological
space H and is therefore also separable itself, D has a countable dense subspace

F = {pnx : n ∈ N, pn ∈ P(A)}.

Now let p ∈ P(A). Then p(x) ∈ D, so there is a sequence {n(i)}i∈N such that

p(x) = lim
i→∞

pn(i)(x).

Then for any a ∈ A,

pa(x) = ap(x) = a
(

lim
i→∞

pn(i)(x)
)
= lim

i→∞
apn(i)(x) = lim

i→∞
pn(i)a(x).

Now let y ∈ H be arbitrary. Since x is a generating vector, Ax = H, so there is a
sequence {a j} j∈N ⊆ A such that y = lim j→∞ a j(x). Then:
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p(y) = p( lim
j→∞

a j(x)) = lim
j→∞

p(a j(x)) = lim
j→∞

lim
i→∞

pn(i)(a j(x))

= lim
i→∞

pn(i)( lim
j→∞

a j(x)) = lim
i→∞

p(n(i)(y).

Therefore, p is the strong limit of pn(i). Since p was arbitrary,

P(A)⊆ 〈{pn : n ∈ N}〉vN .

Since 〈P(A)〉vN = A by proposition B.32, we then have that

A⊆ 〈{pn : n ∈ N}〉vN .

However, A is a von Neumann algebra and {pn : n ∈ N} ⊆ A, so in fact we have

A = 〈{pn : n ∈ N}〉vN . ut

Using lemma 5.13, we can construct another special subset of the projections in
the subalgebra. This one is no longer countable, but it has a lot more structure.

Lemma 5.14. Suppose H is a separable Hilbert space and A⊆ B(H) is a maximal
abelian von Neumann algebra. Then there is a maximal totally ordered family of
projections in A that generates A as a von Neumann algebra.

Proof. By lemma 5.13, we know that there is a countable set of projections {pn}n∈N
in A that generates A as a von Neumann algebra. We claim that for every n∈N there
is a finite, totally ordered set Fn of projections such that Fn ⊆ Fn+1 for all n ∈N and
the linear span of Fn contains pn. We prove this by induction.

For our induction basis n = 1, take F1 = {0, p1,1}.
Next, as our induction step, suppose that such an Fk has been constructed for all

k ≤ n. Since Fn is finite, totally ordered and contains F1, Fn = {q0, . . . ,qr} for some
projections 0 = q0 < q1 < · · ·< qr = 1.

Now define s j = q j+1− q j for all j ∈ {1, . . . ,r}. Since q j+1 > q j, s j is again a
projection in A, and satisfies q js j = 0. Define:

Fn+1 = Fn∪{q j + s j pn+1 : j ∈ {0, . . . ,r−1}}.

First of all, note that for all j ∈ {0, . . . ,r−1}, q j + s j pn+1 is a projection, since

(q j + s j pn+1)
∗ = q∗j + p∗n+1s∗j = q j + pn+1s j = q j + s j pn+1,

because A is abelian, and

(q j + s j pn+1)
2 = q2

j +q js j pn+1 + s j pn+1q j + s j pn+1s j pn+1

= q j +q js j pn+1 + s2
j p2

n+1

= q j + s j pn+1.
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So Fn+1 consists of projections and is finite by construction.
Clearly, s j pn+1 is a projection for every j ∈ {0, . . . ,r−1}, whence s j pn+1 ≥ 0, so

q j ≤ q j+s j pn+1. Furthermore, note that 1− pn+1 is a projection in A, too. Therefore,
s j(1− pn+1) is a projection in A, so is certainly positive. Hence

q j+1− (q j + s j pn+1) = s j− s j pn+1 = s j(1− pn)≥ 0,

so q j + s j pn+1 ≤ q j+1. Therefore,

q0 ≤ q0 + s0 pn+1 ≤ q1 ≤ q1 + s1 pn+1 ≤ q2 ≤ ·· · ≤ qr−1 ≤ qr−1 + sr−1 pn+1 ≤ qr,

i.e. Fn+1 is totally ordered.
By construction, Fn ⊆ Fn+1, so the only thing left to prove is that pn+1 is in the

linear span of Fn+1. To see this, denote the linear span of Fn+1 by V . Then for any
j ∈ {0, . . . ,r}, q j ∈ V and q j + s j pn+1 ∈ V , so s j pn+1 = (q j + s j pn+1)− q j ∈ V ,
since V is linear. Now observe that

r−1

∑
j=0

s j =
r−1

∑
j=0

(q j+1−q j) =
r

∑
j=1

q j−
r−1

∑
j=0

q j = qr−q0 = 1−0 = 1.

Therefore, pn+1 = ∑
r−1
j=0 s j pn+1 ∈ V . So, we have proven our induction step and

have therefore proven our claim.
Now define F∞ =

⋃
n∈N Fn. For any q,q′ ∈ F∞ there are l,m ∈ N such that q ∈ Fl

and q′ ∈ Fm, whence q,q′ ∈ Fmax(l,m), so either q ≤ q′ or q′ ≤ q. Therefore, F∞ is a
totally ordered set of projections in A as well.

Now consider totally ordered sets G of projections in A that contain F∞. The
collection of all such G is endowed with a canonical partial order given by inclusion.
Suppose

G1 ⊆ G2 ⊆ G3 ⊆ . . .

is a chain in this partial order. Then
⋃

n∈N Gn again contains F∞ and is totally ordered,
by the same argument as the one used to show that F∞ was totally ordered. Therefore,⋃

n∈N Gn is a member of the collection that we consider, i.e. every chain has an upper
bound. Therefore, this collection has a maximal element F by Zorn’s lemma.

For all n ∈ N, pn is in the linear span of Fn, so pn is in the linear span of F∞ and
hence pn is also in the linear span of F . Since 〈{pn : n ∈N}〉vN = A by construction,
A⊆ 〈F〉vN , but A is a von Neumann algebra and F ⊆ A, so A = 〈F〉vN .

Therefore, F is a maximal totally ordered family of projections in A that gener-
ates A as a von Neumann algebra. ut

Using this maximal totally ordered family of projections and the properties of
the projection lattice of a Hilbert space, we can prove the following rather technical
but decisive result.

Proposition 5.15. Suppose H is a separable Hilbert space and A is a maximal
abelian von Neumann algebra without minimal projections. Furthermore, suppose
that F is a maximal totally ordered set of projections in A and suppose that x is a
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generating and separating unit vector for A. Then the map ψ : F → [0,1], given by
ψ(p) = 〈px,x〉, is an isomorphism of partially ordered sets.

Proof. First of all, ψ is well-defined, since 0 ≤ 〈px,x〉 ≤ 1, by positivity of each
projection p ∈ F and the Cauchy-Schwarz inequality.

Now suppose that p,q∈ F such that ψ(p) = ψ(q). Since F is totally ordered, we
can assume that p≤ q. Then q− p is also a projection in A, so

‖(q− p)(x)‖2 = 〈(q− p)(x),(q− p)(x)〉= 〈(q− p)(x),x〉
= 〈q(x),x〉−〈p(x),x〉= ψ(q)−ψ(p) = 0,

i.e. (q− p)(x) = 0. However, x is a generating vector for A, so q− p = 0. So q = p,
i.e. ψ is injective. By the same computation, it is clear that for any p ≤ q, we have
ψ(q)−ψ(p) = ‖(q− p)(x)‖≥ 0, so ψ(p)≤ψ(q). Therefore, ψ is order preserving.

So, the only thing left to prove is that ψ is surjective. To see this, let t ∈ [0,1].
Define:

F0 := {p ∈ F : ψ(p)< t},

F1 := {p ∈ F : ψ(p)≥ t}.

Clearly, F is the disjoint union of F0 and F1. Define p0 = ∨F0 and p1 = ∧F1. By
proposition A.9, p0, p1 ∈ F .

Note that p0 ∈ Clstr(F0) by proposition C.11, so for every ε > 0 there is a p ∈ F0
such that ψ(p0)−ψ(p) = ‖(p0− p)(x)‖< ε . Therefore, ψ(p0)< ψ(p)+ε < t+ε .
Since ε > 0 is arbitrary, ψ(p0)≤ t.

Likewise, p1 ∈ Clstr(F1), so for every ε > 0 there is a q ∈ F1 such that

ψ(q)−ψ(p1) = ‖(q− p1)(x)‖< ε,

i.e. ψ(p1)> ψ(q)− ε ≥ t− ε , whence ψ(p1)≥ t.
So, we have the inequalities ψ(p0)≤ t ≤ψ(p1). Since ψ is order preserving, we

conclude that p0 ≤ p1. Then p1− p0 is a projection, so if p1 6= p0, then there is a
projection q ∈ B(H) such that 0 ≤ q ≤ p1− p0, but neither q = 0 nor q = p1− p0.
Then also p0 ≤ q+ p0 ≤ p1, p0 6= q+ p0 and q+ p0 6= p1. Since p0 = ∨F0, then
q+ p0 6∈ F0, and since p1 =∧F1, q+ p0 6∈ F1. Hence q+ p0 6∈ F . However, for every
r ∈ F0, r ≤ p0 ≤ q+ p0, and for every s ∈ F1, q+ p0 ≤ p1 ≤ s, so F ∪{q+ p0} is
totally ordered. This contradicts the maximality of F , so p1 = p0.

Then ψ(p0) ≤ tψ(p1) = ψ(p0), i.e. ψ(p0) = t. Since t ∈ [0,1] was arbitrary, ψ

is surjective. Hence ψ is an isomorphism of ordered sets. ut

Now, we are able to prove our main goal: whenever a maximal abelian subalgebra
has no minimal projections, it is unitarily equivalent to the continuous subalgebra.

Theorem 5.16. Suppose H is a separable Hilbert space and A⊆ B(H) is a maximal
abelian von Neumann algebra that has no minimal projections. Then A is unitarily
equivalent to Ac.
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Proof. By proposition 5.12 there is a separating and generating unit vector x ∈ H
for A. Furthermore, by lemma 5.14, there is a maximal totally ordered family of
projections F such that 〈F〉vN = A. Combining these, by proposition 5.15, the map
ϕ : F → [0,1], given by ϕ(p) = 〈px,x〉 is an isomorphism of ordered sets.

Now write qt = ϕ−1(t) ∈ F for all t ∈ [0,1]. Then 〈qtx,x〉= t for all t ∈ [0,1].
Furthermore, let χt : [0,1]→C be the characteristic function of the interval [0, t],

where t ∈ [0,1]. Then [χt ] ∈ L2(0,1) for all t ∈ [0,1].
We now claim that there is a unique u ∈ B(H,L2(0,1)) such that u(qsx) = [χs]

for all s ∈ [0,1]. To see this, first observe that qsqt = qmin(s,t) for all s, t ∈ [0,1] by
construction. Therefore, for s, t ∈ [0,1],

〈qsx,qtx〉= 〈qtqsx,x〉= 〈qmin(s,t)x,x〉= min(s, t),

and also
〈[χs], [χt ]〉=

∫
[0,1]

χs(x)χt(x) dx = min(s, t).

Using this, we obtain:

‖
n

∑
r=1

µrqsr x‖2 = 〈
n

∑
r=1

µrqsr x,
n

∑
m=1

µmqsmx〉=
n

∑
r=1

n

∑
m=1

µrµm〈qsr x,qsmx〉

=
n

∑
r=1

n

∑
m=1

µrµm〈[χsr ], [χsm ]〉= 〈
n

∑
r=1

µr[χsr ],
n

∑
m=1

µm[χsm ]〉

= ‖
n

∑
r=1

µr[χsr ]‖2,

for any {µr}n
r=1 ⊆ C and {sr}n

r=1 ⊆ [0,1].
Now write S for the linear span of {qsx : s ∈ [0,1]}. By the above computation, if

we have ∑r µrqsr x = ∑m λmqsmx ∈ S, then

0 = ‖∑
r

µrqsr x−∑
m

λmqsmx‖= ‖∑
r

µr[χsr ]−∑
m

λm[χsm ]‖,

i.e. ∑r µr[χsr ] = ∑m λm[χsm ]. Therefore, the map

v1 : S→ L2(0,1), ∑
r

µrqsr x 7→∑
r

µr[χsr ]

is well defined. By construction, v1 is also linear, and by the above computations, we
have ‖v1(y)‖= ‖y‖ for any y∈ S, so v1 is certainly bounded. Lastly, by construction,
v1(qsx) = [χs] for every s ∈ [0,1].

Since 〈F〉vN = A, S is dense in Ax. Therefore, there is a unique bounded linear
map v2 : Ax→ L2(0,1) that extends v1. Then certainly v2(qsx) = v1(qsx) = [χs] for
each s ∈ [0,1].

However, x is a generating vector for A = A′, so Ax is dense in H. So there is a
unique u ∈ B(H,L2(0,1)) that extends v2. Then also u(qsx) = v2(qsx) = [χs] for all
s ∈ [0,1], i.e. u satisfies our requirements.
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To see that u is the unique element of B(H,L2(0,1)) that satisfies u(qsx) = [χs]
for each s ∈ [0,1], suppose that u′ ∈ B(H,L2(0,1)) is such an element. Then by
linearity, u′|S = u|S = v1. Since S is dense in Ax, then u′|Ax = v2 and since Ax is
dense in H, u′ = u.

Hence indeed there is a unique u∈B(H,L2(0,1)) such that u(qsx) = [χs] for each
s ∈ [0,1]. We claim that u is unitary. First observe that for any s, t ∈ [0,1], we have

〈u(qsx),u(qtx)〉= 〈[χs], [χt ]〉= min(s, t) = 〈qsx,qtx〉,

so by linearity, 〈uy,uz〉= 〈y,z〉 for all y,z ∈H. However, S is dense in H, so we have
〈uy,uz〉= 〈y,z〉 for all y,z ∈ H, i.e. u is indeed unitary.

Now observe that [χt ]∈ L∞(0,1) too. Using this, we can compute, for s, t ∈ [0,1]:

(uqs)(qtx) = (u(qsqt))(x) = u(qmin(s,t)x) = [χmin(s,t)]

= [χsχt ] = M[χs]([χt ]) = M[χs](u(qtx)) = (M[χs]u)(qtx).

Therefore, (uqs)(y) = (M[χs]u)(y) for each y ∈ S and s ∈ [0,1]. Since S is dense
in H, uqs = M[χs]u for all s ∈ [0.1].

Hence uqsu−1 = M[χs] ∈ Ac for all s ∈ [0,1], so uFu−1 ⊆ Ac.
Since 〈F〉vN = A and Ac is a von Neumann algebra, then also uAu−1 ⊆ Ac.
Then we have A⊆ u−1ACu. Now A is maximal abelian, so A = u−1Acu, i.e. A and

Ac are unitarily equivalent. ut

5.4 Subalgebras with minimal projections

Since we are now done with the case where the maximal abelian subalgebra has no
minimial projections, we can move on to the case where it does. We first have the
following two results.

Lemma 5.17. Suppose H is a Hilbert space and A⊆ B(H) a von Neumann algebra.
Furthermore, let p ∈ Pm(A), then pAp = Cp.

Proof. Suppose q∈ pAp is a projection. Then q = pap for some a∈ A and therefore
q∈ A and q(H)⊆ p(H), so q∈ A and q≤ p. However, p∈ Pm(A), so q = 0 or q = p,
so q ∈ Cp.

Now note that pAp is a von Neumann algebra by lemma B.33, whence we have
〈P(pAp)〉vN = pAp, by proposition B.32. However, P(pAp) ⊆ Cp by the above
argument, so

pAp = 〈P(pAp)〉vN ⊆ Cp.

For the reverse inclusion, let λ ∈ C. Then observe that 1 ∈ A, whence λ1 ∈ A.
Therefore, λ p = λ p2 = p(λ1)p ∈ pAp. So Cp⊆ pAp. ut
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Corollary 5.18. Suppose H is a Hilbert space and A ⊆ B(H) an abelian von Neu-
mann algebra. Furthermore, suppose p ∈ Pm(A) and a ∈ A. Then there is a λ ∈ C
such that ap = λ p.

Proof. Observe that ap = ap2 = pap ∈ pAp = Cp, by lemma 5.17 and since A is
abelian. Therefore, there is a λ ∈ C such that ap = λ p. ut

Now we need another technical result about subalgebras and projections.

Lemma 5.19. Suppose H is a Hilbert space, x ∈ H, and A ⊆ B(H) is a C∗-
subalgebra. Furthermore, let q be the projection onto Ax. Then q ∈ A′.

Proof. Ax is closed, so H = Ax⊕Ax⊥. We will show that any a ∈ A decomposes
over this splitting, i.e. that a = (a1,a2), with a1 : Ax→ Ax and a2 : Ax⊥→ Ax⊥.

First let a ∈ A and y ∈ Ax, say y = bx. Then ay = (ab)x ∈ Ax.
Now let z ∈ Ax, then z = limi∈I yi for some yi ∈ Ax for every i ∈ I. Then

az = a(lim
i∈I

yi) = lim
i∈I

ayi ∈ Ax,

since ayi ∈ Ax for all i ∈ I. Hence a(Ax)⊆ Ax for all a ∈ A.
Next, suppose a ∈ A, z ∈ Ax⊥ and y ∈ Ax. Then:

〈y,az〉= 〈a∗y,z〉= 0,

since a∗ ∈ A and y ∈ Ax, so a∗y ∈ Ax by the above. Hence az ∈ Ax⊥.
Therefore a(Ax⊥)⊆Ax⊥, so indeed, every a∈A decomposes over H =Ax⊕Ax⊥.
Now note that q = (1,0) : Ax⊕Ax⊥→ Ax⊕Ax⊥. Therefore, for any a ∈ A,

a◦q = (a1,a2)◦ (1,0) = (a1,0) = (1,0)◦ (a1,a2) = q◦a,

so q ∈ A′, as desired. ut

For a maximal abelian subalgebra A this has an important corollary, since then
A′ = A.

Corollary 5.20. Suppose H is a Hilbert space, x ∈ H, and A⊆ B(H) is a maximal
abelian subalgebra. Furthermore, let q be the projection onto Ax. Then q ∈ A.

Now, combining the above results, we can prove that the set of minimal projec-
tions in a maximal abelian subalgebra has an important structure.

Proposition 5.21. Suppose H is a Hilbert space and A⊆B(H) is a maximal abelian
subalgebra. Then Pm(A) is an orthogonal family of one-dimensional projections.

Proof. Suppose that p,q ∈ Pm(A). Then certainly we also have p,q ∈ A, so by
applying corollary 5.18 twice, we see that there are λ ,µ ∈ C such that we have
µq = pq = qp = λ p, since A is abelian. Again since A is abelian, pq is a projection
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too, whence λ 2 = λ and µ2 = µ . Therefore λ ,µ ∈ {0,1} and we also see that λ = 0
if and only if µ = 0, i.e. λ = µ ∈ {0,1}.

Therefore, either µ = 0 and then pq = 0 or q = p. Hence Pm(A) is an orthogonal
family of projections. To see that in fact all projections are one-dimensional, let
p ∈ Pm(A) and let x ∈ p(H) be a non-zero vector. Then let q be the projection onto
Ax. Then q ∈ A by corollary 5.20. Furthermore, for y ∈ Ax, say y = ax with a ∈ A,

py = pax = apx = ax = y,

so Ax⊆ p(H).
Therefore, q(H) = Ax ⊆ p(H) = p(H), so q ≤ p. However, q 6= 0, since 1 ∈ A,

whence x = 1x ∈ Ax ⊆ q(H). Since p ∈ Pm(A), it now follows that p = q, i.e. we
have p(H) = Ax.

Now note that by corollary 5.18, for every a ∈ A there is a λ ∈ C such that
ap = λ p. Then ax = apx = λ px = λx, so Ax ⊆ Cx, i.e. p(H) = Ax is at most one-
dimensional. Since x ∈ p(H) is non-zero, p(H) is one-dimensional. ut

Applying the above result to the case where the Hilbert space is separable, one
can even say more.

Proposition 5.22. Suppose H is a separable Hilbert space and A⊆B(H) a maximal
abelian von Neumann algebra. Then Pm(A) is countable.

Proof. For every p ∈ Pm(A), choose a unit vector xp ∈ p(H). Since Pm(A) is an
orthogonal family, {xp : p ∈ Pm(A)} is an orthonormal set in H and all xp are dif-
ferent. Therefore, #Pm(A) = #{xp : p ∈ Pm(A)} ≤ dim(H). Since H is separable,
0≤ dim(H)≤ℵ0, and therefore, Pm(A) is countable. ut

Now we come to one of our main points: every maximal abelian subalgebra that
is generated by its minimal projections is unitarily equivalent to the discrete subal-
gebra.

Theorem 5.23. Suppose H is a separable Hilbert space and A⊆ B(H) is a maximal
abelian von Neumann algebra that is generated by its minimal projections. Further-
more, let j be the cardinality of Pm(A). Then A is unitarily equivalent to Ad( j).

Proof. By proposition 5.22 we know that 1 ≤ j ≤ ℵ0, so it follows that there is a
bijection ϕ : j→ Pm(A). Denote ϕ(n) = pn ∈ Pm(A) for all n ∈ j. Now let

L :=
{ N

∑
r=1

µr pnr : µr ∈ C, nr ∈ j
}
,

i.e. L is the linear subspace of A spanned by Pm(A). Then L is in fact an algebra,
since for c1 = ∑r µr pnr ,c2 = ∑s λs pns ∈ L, we have:

c1c2 = ∑
r,s

µrλs pnr pns = ∑
r,s

µrλsδnrns pnr ∈ L.
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Furthermore, (∑r µr pnr)
∗ = ∑r µr pnr ∈ L, so L is a ∗-algebra. Hence Clstr(L) is a

von Neumann algebra. Clearly, Pm(A)⊆ Clstr(L), so 〈Pm(A)〉vN ⊆ Clstr(L). Further-
more, L⊆ 〈Pm(A)〉vN , so Clstr(L)⊆ 〈Pm(A)〉vN . Hence Clstr(L) = 〈Pm(A)〉vN = A.

Now, for all n ∈ j, choose a unit vector en ∈ pn(H) and let K be the closed linear
subspace spanned by {en}n∈ j. Then H = K⊕K⊥. Suppose x ∈ K⊥. Then for all
n ∈ j, pn(x) = λnen for some λn ∈ C, since pn(H) is one-dimensional. Then

λn = 〈en,λen〉= 〈en, pnx〉= 〈pnen,x〉= 〈en,x〉= 0,

for all n ∈ j. Hence pn(x) = 0 for all n ∈ j. So ψ(x) = 0 for all ψ ∈ L, so ψ(x) = 0
for all ψ ∈ Clstr(L) = A. Since 1 ∈ A, therefore x = 1x = 0.

Hence K⊥ = {0}, i.e. K = H. Since for every n,m ∈ j we also have that

〈en,em〉= 〈pnen, pmem〉= 〈pm pnen,em〉= δmn〈pnen,em〉= δmn〈en,em〉= δmn,

we see that {en}n∈ j is in fact a basis for H.
Now define u : `2( j)→ H by u( f ) = ∑n∈ j f (n)en. Then clearly, u is linear, and

for f ∈ `2( j):

‖u( f )‖2 = 〈∑
n∈ j

f (n)en, ∑
m∈ j

f (m)em〉= ∑
n∈ j
| f (n)|2 = ‖ f‖2.

Therefore, u ∈ B(`2( j),H). Furthermore, for f ,g ∈ `2( j),

〈u( f ),u(g)〉= 〈∑
n∈ j

f (n)en, ∑
m∈ j

g(m)em〉= ∑
n∈ j

f (n)g(n) = 〈 f ,g〉,

so u is unitary. Now we claim that

A = {∑
n∈ j

f (n)pn : f ∈ `∞( j)}.

To see this, first suppose x ∈ H. Then x = ∑n∈ j λ (n)en, for some λ ∈ `2( j), since
{en}n∈ j is a basis of H. Then

(∑
n∈ j

pn)(x) = ∑
m,n∈ j

pn(λ (m)em) = ∑
n∈ j

λ (n)en = x,

i.e. ∑n∈ j pn = 1.
Now, for every n ∈ j and a ∈ A, apn = λa(n)pn for some λa(n) ∈C, by corollary

5.18. Therefore,
a = a ·1 = ∑

n∈ j
apn = ∑

n∈ j
λa(n)pn,

while

|λa(n)|= |λa(n)|‖pn‖= ‖λa(n)pn‖= ‖apn‖ ≤ ‖a‖‖pn‖= ‖a‖,
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whence
sup
n∈ j
|λa(n)| ≤ ‖a‖,

i.e. λa ∈ `∞( j). Therefore, A⊆ {∑n∈ j f (n)pn : f ∈ `∞( j)}.
Now let f ∈ `∞( j) and x ∈ H. Then x = ∑n∈ j λ (n)en, with λ ∈ `2( j), since

{en}n∈ j is a basis for H. Then for all m ∈ j, ∑n≤m f (n)pn(x) = ∑n≤m f (n)λ (n)en,
so

‖∑
n≤m

f (n)pn(x)‖2 = ∑
n≤m
| f (n)|2|λ (n)|2 ≤ ‖ f‖2

∞ · ∑
n≤m
|λ (n)|2.

Hence ∑n∈ j f (n)pn(x) is well defined and

‖∑
n∈ j

f (n)pn(x)‖ ≤ ‖ f‖∞‖λ‖= ‖ f‖∞‖x‖,

so a := ∑n∈ j f (n)pn ∈ B(H). We now claim that a ∈ A. To see this, define for all
m ∈ j, bm = ∑n≤m f (n)pn ∈ A. Further, let again be x ∈ H, with x = ∑n∈ j λ (n)en,
where λ ∈ `2( j). Then:

‖bm(x)−a(x)‖2 = ‖∑
n>m

f (n)pn(x)‖2

= 〈∑
n>m

f (n)λ (n)en, ∑
k>m

f (k)λ (k)ek〉

= ∑
n>m
| f (n)|2|λ (n)|2

≤ ‖ f‖2
∞ ∑

n>m
|λ (n)|2.

Therefore, {bm(x)}m∈ j converges to a(x). Hence, {bm}m∈ j converges to a in the
strong topology. However, A is strongly closed, so a ∈ A. Therefore

A = {∑
n∈ j

f (n)pn : f ∈ `∞( j)}.

Now suppose f ∈ `∞( j) and g ∈ `2( j). Then:

(uM f )(g) = u(M f (g)) = ∑
n∈ j

(M f (g))(n)en

= ∑
n∈ j

f (n)g(n)en = ∑
n,m∈ j

f (n)g(m)pn(em)

= (∑
n∈ j

f (n)pn)(∑
m∈ j

g(m)em) = (∑
n∈ j

f (n)pn)(u(g))

= ((∑
n∈ j

f (n)pn)u)(g),
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whence uM f = (∑n∈ j f (n)pn)u, i.e. uM f u−1 = ∑n∈ j f (n)pn ∈ A.
Therefore, uAd( j)u−1 ⊆ A, so Ad( j) ⊆ u−1Au. However, Ad( j) is maximal

abelian and u−1Au is abelian, so Ad( j) = u−1Au. Therefore, A is unitarily equiv-
alent to Ad( j). ut

Finally, there is the case that the maximal abelian subalgebra does have minimal
projections, but is not generated by them.

Theorem 5.24. Let H be a separable Hilbert space and A ⊆ B(H) a maximal
abelian von Neumann algebra. Furthermore, let 1 ≤ j ≤ ℵ0 and suppose that
#Pm(A) = j and 〈Pm(A)〉vN 6= A. Then A is unitarily equivalent to Ad( j)⊕Ac.

Proof. By assumption, there is a bijection ϕ : j→ Pm(A). Now write pn = ϕ(n) and
define p = ∑n∈ j pn. Since Pm(A) is an orthogonal family, p ∈ B(H) is again a pro-
jection. Since A is strongly closed and p is the strong limit of the net {∑n≤m pn}m∈ j,
p ∈ A. Since p is a projection, K := p(H) is a closed linear subspace of H and
therefore H = K⊕K⊥.

Now we claim that A decomposes over K⊕K⊥. To see this, let a∈ A and observe
that a = ap+a(1− p). First let x ∈ K. Then

ax = apx+a(1− p)x = p(ax)+0 = p(ax) ∈ K,

where we used the assumption that A is abelian. Next, for x ∈ K⊥ = (1− p)(H),

ax = apx+a(1− p)x = 0+(1− p)ax = (1− p)(ax) ∈ K⊥.

Therefore a decomposes over K⊕K⊥ and therefore indeed A decomposes over
K⊕K⊥.

So, for every a ∈ A, there is a unique a1 ∈ B(K) and a unique a2 ∈ B(K⊥) such
that a = (a1,a2). Now define:

A1 := {a|K : a ∈ A,a2 = 0} ⊆ B(K),

and
A2 := {a|K⊥ : a ∈ A,a1 = 0} ⊆ B(K⊥).

Now we claim that A = A1⊕A2. To see this, first let a ∈ A. Then a = (a1,a2)
with a1 ∈ B(K) and a2 ∈ B(K⊥). Then clearly a1 = (a1,0)|K and we also have that
(a1,0) = (a1,a2)(1,0) = ap ∈ A, so a1 ∈ A1. Likewise, it follows that a2 ∈ A2, so
a = (a1,a2) ∈ A1⊕A2. Hence A⊆ A1⊕A2.

For the converse, suppose b1 ∈ A1 and b2 ∈ A2. Then (b1,0) ∈ A and (0,b2) ∈ A.
Therefore, (b1,b2) = (b1,0)+ (0,b2) ∈ A. Therefore, A1⊕A2 ⊆ A and hence we
have A = A1⊕A2.

Now let a,b ∈ A1. Then (a,0),(b,0) ∈ A, whence

(ab,0) = (a,0)(b,0) = (b,0)(a,0) = (ba,0),

since A is abelian. Therefore, ab = ba, i.e. A1 is abelian. Likewise, A2 is abelian.



5.4 Subalgebras with minimal projections 51

Now suppose A1 ⊆C ⊆ B(K) and C is an abelian subalgebra. Then

A = A1⊕A2 ⊆C⊕A2 ⊆ B(H),

and A is maximal abelian, so A = A1⊕A2 = C⊕A2. Therefore, A1 = C, and the
subalgebra A1 ⊆ B(K) is maximal abelian. With a similar argument, A2 ⊆ B(K⊥) is
maximal abelian.

Now we claim that Pm(A1) = {pn|K : n ∈ j}. To see this, let q ∈ Pm(A1). Then
q ∈ A1, so (q,0) ∈ A and (q,0) is a projection. Now suppose 0≤ s≤ (q,0) for some
projection s ∈ A. Then s = (s1,s2) for some projections s1 ∈ B(K) and s2 ∈ B(K⊥).
Then s1 = (s1,0)|K = (sp)|K and sp ∈ A, so s1 ∈ A1. We then have 0 ≤ s1 ≤ q and
0≤ s2 ≤ 0, so s2 = 0 and s1 = 0 or s1 = q, since q ∈ Pm(A1). Therefore, either s = 0
or s = (q,0), whence (q,0) ∈ Pm(A). So, we know that there is a n ∈ j such that
(q,0) = pn = (pn|K ,0), i.e. q = pn|K .

For the converse, suppose that n ∈ j and that q is a projection in A1, such that
we have 0 ≤ q ≤ pn|K . Then (0,0) ≤ (q,0) ≤ (pn|K ,0) = pn, so either (q,0) = 0
or (q,0) = (pn|K ,0), i.e. q = 0 or q = pn|K . Therefore, pn|K ∈ Pm(A1). So indeed,
Pm(A1) = {pn|K : n ∈ j}.

The next thing we want to prove is 〈Pm(A1)〉vN = A1. Clearly, 〈Pm(A1)〉vN ⊆ A1,
since A1 is a von Neumann algebra. For the converse, suppose a1 ∈ A1. Then we
have a = (a1,0) ∈ A, whence ap = (a1,0)(1,0) = (a1,0) = a, so

(a1,0) = a = ap = a ∑
n∈ j

pn

= ∑
n∈ j

apn = ∑
n∈ j

λa(n)pn

= ∑
n∈ j

λa(n)(pn|K ,0) = (∑
n∈ j

λa(n)pn|K ,0).

Here we used corollary 5.18 to find the λa(n) ∈ C. Therefore,

a1 = ∑
n∈ j

λa(n)pn ∈ 〈{pn|K : n ∈ j}〉vN = 〈Pm(A1)〉vN .

Hence, indeed, 〈Pm(A1)〉vN = A1. So A1 ⊆ B(K) is a maximal abelian von Neu-
mann algebra that is generated by its j minimal projections. Therefore, by theorem
5.23, there is unitary u1 ∈ B(K, `2( j)) such that

u1A1u−1
1 = Ad( j).

Next, we claim that A2 has no minimal projections. To see this, suppose that
q ∈ A2 is a non-zero projection. Then (0,q) ∈ A is a projection, and

(0,q) 6∈ Pm(A) = {pn = (pn|K ,0) : n ∈ j}.
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Therefore, there is a projection s ∈ A such that 0 ≤ s ≤ (0,q) and s 6= 0, s 6= (0,q).
Then s = (s1,s2) ∈ A1 ⊕ A2 for some projections s1 ∈ A1 and s2 ∈ A2. Then
0≤ (s1,s2)≤ (0,q), so s1 = 0 and 0 ≤ s2 ≤ q with s2 6= 0 and s2 6= q. Therefore,
q 6∈ Pm(A2). Since q ∈ A was an arbitrary projection, Pm(A2) = /0.

Therefore, A2 is a maximal abelian von Neumann algebra without minimal pro-
jections, so by theorem 5.16 there is a unitary u2 ∈ B(K⊥,L2(0,1)) such that

u2A2u−1
2 = Ac.

Now, (u1,u2) ∈ B(H, `2( j)⊕L2(0,1)) is a unitary such that

(u1,u2)A(u1,u2)
−1 = (u1,u2)(A1⊕A2)(u−1

1 ,u−1
2 )

= u1A1u−1
1 ⊕u2A2u−1

2

= Ad( j)⊕Ac

i.e. A is unitary equivalent to Ad( j)⊕Ac, as desired. ut

5.5 Classification

For a separable Hilbert space H and a maximal abelian von Neumann algebra, we
have showed in the previous sections that Pm(A) determines A up to unitary equiva-
lence. More explicitly, we have the following result.

Corollary 5.25. Suppose H is a separable Hilbert space and A⊆B(H) is a maximal
abelian von Neumann algebra. Then A is unitarily equivalent to exactly one of the
following:

1. Ac ⊆ B(L2(0,1))
2. Ad( j)⊆ B(`2( j)) for some 1≤ j ≤ℵ0

3. Ad( j)⊕Ac ⊆ B(`2( j)⊕L2(0,1)) for some 1≤ j ≤ℵ0.

This classification has the following very important corollary for our main goal.

Corollary 5.26. Suppose H is a separable Hilbert space and A ⊆ B(H) a unital
abelian subalgebra that has the Kadison-Singer property. Then A is unitarily equiv-
alent to either Ad( j) for some 1≤ j ≤ℵ0, Ac or Ad( j)⊕Ac for some 1≤ j ≤ℵ0.

In the rest of this text, we will determine whether the discrete, continuous and
mixed subalgebra have the Kadison-Singer property. So far, we only know that
Ad( j) has the Kadison-Singer property if j ∈ N.



Chapter 6
Stone-Čech compactification

We will first focus on the question whether the continuous subalgebra has the
Kadison-Singer property. We will answer this question (negatively) in chapter 7, but
to do this, we first need to discuss the topological notion of a Stone-Čech compacti-
fication. This is a topological space that can be seen as the biggest compactification
of a given topological space. Its universal property is useful in a wide variety of
contexts and is also precisely what we will use in chapter 7.

Not every topological space admits a Stone-Čech compactification, but so-called
Tychonoff spaces do. In this chapter, we construct the Stone-Čech compactification
for such spaces using ultrafilters on zero-sets.

6.1 Stone-Čech compactification

Definition 6.1. Suppose X is a topological space. The Stone-Čech compactifica-
tion of X is a pair (βX ,S), where βX is a compact Hausdorff space βX , and S
is a continuous map S : X → βX having the following universal property: for any
compact Hausdorff space K and continuous function f : X → K, there is a unique
continuous β f : βX → K such that the following diagram commutes:

X S //

f   

βX

β f
��

K

The Stone-Čech compactification is unique up to homeomorphism. Therefore,
we can speak of ’the’ (rather than ’a’) Stone-Čech compactification of a topological
space. However, not every topological space admits a Stone-Čech compactification.
However, so-called Tychonoff spaces do, as we show in what follows.

53
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6.2 Ultrafilters

There a multiple constructions of the Stone-Čech compactification, but we will use
the construction based on ultrafilters.We will define these for meet-semilattices,
which can be seen as the most general setting for doing this.

Definition 6.2. A meet-semilattice is a partial order (Σ ,≤) with the property that
any two elements x,y ∈ Σ have a meet z, i.e. there exists an element z ∈ Σ such that
z ≤ x, z ≤ y and for all w ∈ Σ such that both w ≤ x and w ≤ y, we have w ≤ z. We
denote the meet of x and y by x∧ y.

We will often denote a meet-semilattice by Σ instead of (Σ ,≤) and imply that
the order is given by the symbol ≤. For some purposes, meet-semilattices need to
have some more structure.

Definition 6.3. A lattice is a meet-semilattice Σ with the property that any two
elements a,b ∈ Σ have a join, i.e. an element c ∈ Σ with the property that a ≤ c,
b≤ c and for any d ∈ Σ such that both a≤ d and b≤ d, we have c≤ d.

We can now define filters for meet-semilattices.

Definition 6.4. Suppose Σ is a meet-semilattice. A family F ⊆ Σ is called a filter
(for Σ ) if it satisfies the following axioms:

1. F 6= /0,
2. F 6= Σ ,
3. if a,b ∈ Σ , then a∧b ∈ F and
4. if a ∈ F and a≤ b, then b ∈ F .

An ultrafilter is now just a special kind of filter.

Definition 6.5. Suppose Σ is a meet-semilattice and F ⊆ Σ is a filter. Then F is
called an ultrafilter (for Σ ) if the only filter G ⊆ Σ that satisfies F ⊆ G is F itself.
We denote all ultrafilters on Σ by Ultra(Σ).

The property of being maximal does characterize an ultrafilter, but it is not always
the easiest to work with. Therefore, we introduce another description of ultrafilters
in the special case that the meet-semilattice has a minimal element.

Lemma 6.6. Suppose Σ is a meet-semilattice with a minimal element 0 and F ⊆ Σ

is a filter. Then F is an ultrafilter if and only if F has the following property: if a∈ Σ

and a∧b 6= 0 for all b ∈ F, then a ∈ F.

Proof. First suppose that F is an ultrafilter. Furthermore, suppose that a ∈ Σ such
that a∧b 6= 0 for all b ∈ F . Then define

F ′ = F ∪{c ∈ Σ | ∃b ∈ F : a∧b≤ c}.

We leave the straightforward computation that F ′ is a filter to the reader. By
construction, F ⊆ F ′ and F is an ultrafilter, so F ′ = F . Now, take any b ∈ F . Then
a∧b≤ a, so a ∈ F ′ = F .
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For the converse, suppose that a ∈ Σ and a∧b 6= 0 for all b ∈ F imply that a ∈ F .
Then suppose G⊆ Σ is a filter such that F ⊆G. Then let a ∈G. Then for any b ∈ F ,
a,b ∈ G, so a∧ b ∈ G, so a∧ b 6= 0. Therefore, a ∈ F , by our assumption. Hence
G⊆ F , i.e. G = F . Therefore, F is an ultrafilter. ut

In the case that a meet-semilattice has a minimal element, we can also prove the
following.

Lemma 6.7. Suppose Σ is a meet-semilattice with a minimal element. Then, for any
filter F on Σ , there is an ultrafilter G on Σ such that F ⊆ G.

Proof. We prove this using Zorn’s lemma, i.e. let F be a filter on Σ and consider the
set F consisting of all filters G on Σ such that F ⊆ G. Then let {Hi}i∈I be a chain
in F . Then define H =

⋃
i∈I Hi. Clearly, F ⊆ H. Furthermore, it is easy to see that

H is a filter, since {Hi}i∈I is totally ordered. Hence H ∈F and H is an upper bound
of {Hi}i∈I .

Therefore, F is a partially ordered set with the property that every chain has an
upper bound. Hence, by Zorn’s lemma, F has a maximal element G. To see that G
is in fact an ultrafilter, suppose that G′ is also a filter on Σ such that G ⊆ G′. Then
F ⊆ G′, so G′ ∈F . Since G⊆ G′ and G is a maximal element of F , then G′ = G,
i.e. G is an ultrafilter such that F ⊆ G. ut

For lattices, we can consider another class of filters.

Definition 6.8. Suppose Σ is a lattice and let F be a filter on Σ . Then F is called
prime if a∨b ∈ F implies a ∈ F or b ∈ F .

Prime filters become particularly interesting when the lattice is distributive.

Definition 6.9. Suppose Σ is a lattice. Σ is called distributive if for any a,b,c ∈ Σ ,
we have a∨ (b∧ c) = (a∨b)∧ (a∨b) and a∧ (b∨ c) = (a∧b)∨ (a∧ c).

For distributive lattice with a minimal elements, the prime filters are exactly the
ultrafilters.

Lemma 6.10. Suppose Σ is a distributive lattice with a minimal element 0. Then
every ultrafilter on Σ is prime.

Proof. Suppose F is a an ultrafilter on Σ . Furthermore, suppose that c1,c2 ∈ Σ such
that c1∨ c2 ∈ F and c1,c2 /∈ F . Then, by lemma 6.6, there are b1,b2 ∈ F , such that
c1∧b1 = 0 and c2∧b2 = 0. Then

(c1∨c2)∧(b1∧b2)= (c1∧b1∧b2)∨(c2∧b1∧b2)≤ (c1∧b1)∨(c2∧b2)= 0∨0= 0.

Therefore, (c1 ∨ c2)∧ (b1 ∧ b2) = 0, but both c1 ∨ c2 ∈ F and b1 ∧ b2 ∈ F , so then
0 ∈ F . This is in contradiction with F being a filter, so F is prime. ut
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6.3 Zero-sets

We now turn our attention to one specific example of a meet-semilattice, namely the
set of zero-sets of a topological space.

Definition 6.11. Suppose X is a topological space and let A⊆ X . A is called a zero-
set if there is a continuous function f : X → [0,1] such that A = f−1({0}). The
collection of all zero-sets in X is denoted by Z(X).

Note that every zero-set is closed, since {0} ⊆ [0,1] is closed. Furthermore, for
discrete spaces, we have Z(X) =P(X). The collection of zero-sets of a topological
space has the following property:

Lemma 6.12. Suppose X is a topological space and let A,B ∈ Z(X) be zero-sets
such that A∩B = /0. Then there are C,D ∈ Z(X) such that

A⊆ X \C ⊆ D⊆ X \B.

Proof. Since A,B ∈ Z(X), there are continuous functions f ,g : X → [0,1] such that
A = f−1({0}) and B = g−1({0}). Now define h : X → [0,1] by h = f

f+g . Then h is
well defined (since A∩B = /0) and continuous. Note that h−1({0}) = f−1({0}) = A
and h−1({1}) = g−1({0}) = B. Now, let

C := {x ∈ X | h(x)≥ 1
2},

D := {x ∈ X | h(x)≤ 1
2}.

Then C is the zero-set of the continuous function max{ 1
2 −h,0}, so C ∈ Z(X), and

likewise, D ∈ Z(X). Furthermore, we clearly have that A ⊆ X \C, X \C ⊆ D and
D⊆ X \B. ut

We now show that for a topological space X , Z(X) is in fact a lattice.

Lemma 6.13. Suppose X is a topological space. Then Z(X) is a sublattice of P(X)
that contains /0 and X.

Proof. It is clear that /0 and X are contained in Z(X). To see that Z(X) is in fact a
lattice, suppose A,B ∈ Z(X). Then there are continuous functions f ,g : X → [0,1]
such that f−1({0}) = A and g−1({0}) = B. Then h := f+g

2 gives A∩B as a zero-set
and k = f ·g gives A∪B as a zero-set. ut

Lemma 6.13 guarantees that for any topological space X , we can consider ultra-
filters on Z(X). In fact, Ultra(Z(X)) serves as the underlying set for the Stone-Čech
compactification of X , whenever X is a Tychonoff space.
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6.4 Ultra-topology

For a topological space X , we want to endow Ultra(Z(X)) with a topology.

Definition 6.14. Suppose X is a topological space and A ∈ Z(X). Then we define

U(A) = {F ∈ Ultra(Z(X)) | A /∈ F},

and
W (A) = Ultra(Z(X))\U(A) = {F ∈ Ultra(Z(X)) | A ∈ F}.

We use the sets U(A) to define a topology on Ultra(Z(X)). Namely, observe that
for any F ∈ Ultra(Z(X)), we have that F 6= Z(X), so there is an A ∈ Z(X) such that
A /∈ F , i.e. F ∈U(A). Hence ⋃

A∈Z(X)

U(A) = Ultra(Z(X)),

so {U(A) | A ∈ Z(X)} is a subbase for a topology on Ultra(Z(X)). We will call this
topology the ultra-topology.

From now on, we will consider Ultra(Z(X)) as a topological space, endowed
with the ultra-topology. In order to better understand this topology, observe that the
following identities hold.

For a topological space X and a subset {Ai}n
i=1 ⊆ Z(X), we have

U(
n⋂

i=1

Ai) =
n⋃

i=1

U(Ai)

and

U(
n⋃

i=1

Ai) =
n⋂

i=1

U(Ai).

The first identity can be obtained by a direct computation using the defining
relation W (A) = Ultra(Z(X)) \U(A), whereas the second is a corollary of the fact
that every ultrafilter on Z(X) is prime. These identities combined with the definition
of the ultra-topology has the following immediate corollary.

Corollary 6.15. Suppose X is a topological space. Then {U(A) | A ∈ Z(X)} is a
base for the ultra-topology on Ultra(Z(X)).

As we mentioned in section 6.3, Ultra(Z(X)) is the underlying set of the Stone-
Čech compactification for a Tychonoff space X . Since we have now endowed
Ultra(Z(X)) with the ultra-topology, we need to show that in fact this makes
Ultra(Z(X)) a compact Hausdorff space. First of all, we prove that it is Hausdorff.

Proposition 6.16. Suppose X is a topological space. Then Ultra(Z(X)) is Haus-
dorff.
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Proof. Suppose F 6= G ∈ Ultra(Z(X)). Then, since F is maximal, there is an A ∈ F
such that A /∈ G. Then, by lemma 6.6, there is a B ∈ G such that A∩B = /0.

Now, using lemma 6.12, there are C,D ∈ Z(X) such that

A⊆ X \C ⊆ D⊆ X \B.

Since A ∈ F , C ∈ F would imply /0 = A∩C ∈ F , so C /∈ F , i.e. F ∈U(C). Likewise,
since B ∈ G, G ∈U(D). Furthermore, U(C),U(D)⊆ Ultra(Z(X)) are open and

U(C)∩U(D) =U(C∪D) =U(X) = /0.

Therefore, Ultra(Z(X)) is Hausdorff. ut

Next, we prove that Ultra(Z(X)) is compact. We do this in three steps.

Lemma 6.17. Suppose X is a topological space and let A ∈ Z(X). Then W (A) = /0
if and only if A = /0.

Proof. Suppose A= /0. Then for every filter F on Z(X), /0 /∈F , so for every ultrafilter
G on Z(X), G /∈W ( /0), i.e. W ( /0) = /0.

Next, suppose A 6= /0. Then, clearly,

FA := {B ∈ Z(X) | A⊆ B}

is a filter on Z(X) containing A. Then, by lemma 6.7, there is an ultrafilter GA such
that A ∈ FA ⊆ GA. Hence GA ∈W (A), i.e. W (A) 6= /0.

So, indeed, W (A) = /0 if and only if A = /0. ut

Lemma 6.18. Suppose X is a topological space and let {Ai}i∈I ⊆ Z(X) such that
{W (Ai)}i∈I has the finite intersection property. Then

⋂
i∈I W (Ai) 6= /0.

Proof. Let {ik}n
k=1 ⊆ I be any finite subset. Then, by the properties of the ultra-

topology,

W (
n⋂

k=1

Aik) = Ultra(Z(X))\U(
n⋂

k=1

Aik) = Ultra(Z(X))\
n⋃

k=1

U(Aik)

=
n⋂

k=1

(
Ultra(Z(X))\U(Aik)

)
=

n⋂
k=1

W (Aik) 6= /0,

since {W (Ai)}i∈I has the finite intersection property. Hence by lemma 6.17, we have⋂n
k=1 Aik 6= /0. Since the above holds for any finite subset {ik}n

k=1 ⊆ I, we see that

F := {B ∈ Z(X) | ∃{ik}n
k=1 ⊆ I s.t.

n⋂
k=1

Aik ⊆ B}

is a filter. Hence there exists an ultrafilter G on Z(X) such that F ⊆G, by lemma 6.7.
Then for all i ∈ I, Ai ∈ F ⊆ G, so G ∈W (Ai) for all i ∈ I, i.e.

⋂
i∈I W (Ai) 6= /0. ut
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Proposition 6.19. Suppose X is a topological space. Then Ultra(Z(X)) is compact.

Proof. Suppose that {Ci}i∈I is a family of closed sets in Ultra(Z(X)) that has the
finite intersection property. Now let i ∈ I. Since Ci is closed, Di := Ultra(Z(X))\Ci
is open, so Di =

⋃
j∈Ji

U(A j) for some subset {A j} j∈Ji ⊆ Z(X). Then, clearly, we
have that Ci =

⋂
j∈Ji

W (A j).
Now define J =

⋃
i∈I Ji and suppose that { jk}n

k=1 is a finite subset. Then for every
k ∈ {1, . . . ,n} there is a ik ∈ I such that jk ∈ Jik . Hence

/0 6=
n⋂

k=1

Cik =
n⋂

k=1

⋂
j∈Jik

W (A j)⊆
n⋂

k=1

W (A jk)m

since {Ci}i∈I has the finite intersection property.
Therefore, {WA j} j∈J has the finite intersection property. Hence by lemma 6.18,⋂

j∈J W (A j) 6= /0. Therefore,⋂
i∈I

Ci =
⋂
i∈I

⋂
j∈Ji

W (A j) =
⋂
j∈J

W (A j) 6= /0,

so Ultra(Z(X)) is compact, since {Ci}i∈I was an arbitrary family of closed sets in
Ultra(Z(X)). ut

6.5 Convergence of ultrafilters for Tychonoff spaces

For a topological space X , we have now endowed Ultra(Z(X)) with a topology such
that it is a compact Hausdorff space. It is now time to discuss the construction of
the map S : X→Ultra(Z(X)). For this, we consider the notion of convergence. Note
that we use the notation Nx for the set of neighbourhoods of a given point x ∈ X .

Definition 6.20. Suppose X is a topological space, F is a filter on Z(X) and x ∈ X .
We say that F converges to x if Nx∩Z(X)⊆ F .

The following lemma is trivial.

Lemma 6.21. Suppose X is a topological space and let x ∈ X. Then Nx∩Z(X) is a
filter on Z(X).

Combined with lemma 6.7 applied to Z(X), this has the following corollary.

Corollary 6.22. Suppose X is a topological space and let x ∈ X. Then there is an
ultrafilter F on Z(X) that converges to x.

Although the above result is useful, it does not say anything about uniqueness.
First of all, an ultrafilter might converge to multiple points and secondly, there might
be multiple ultrafilters converging to the same point. However, for Tychonoff spaces
both these ’degeneracies’ do not exist.
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Definition 6.23. Suppose X is a topological space. Then X is called a Tychonoff
space if it is T1 and it satisfies the following property: for every closed C ⊆ X and
x∈X \C, there is a continuous function f : X→ [0,1] such that f (x)= 0 and f |C = 1.

Tychonoff spaces are also called completely regular or T3,5. Note that discrete
spaces are definitely Tychonoff. The following lemma is key in proving that the
degeneracies we described above do not occur for Tychonoff spaces.

Lemma 6.24. Suppose X is a Tychonoff space and let x ∈ X. Then, for any A ∈Nx,
there is a B ∈Nx∩Z(X) such that B⊆ A.

Proof. Since A ∈Nx, there is an open set U ∈ X such that x ∈U ⊆ A. Then X \U
is closed in X and x /∈ X \U . Hence there is a continuous function f : X → [0,1]
such that f (x) = 1 and f |X\U = 0. Then define g := max{ 1

2 − f ,0}. Then certainly,
g : X → [0,1] is continuous and

g−1({0}) = {z ∈ X | f (z)≥ 1
2
} ⊆U.

Furthermore, U ′ := {z ∈ X | f (z)> 1
2} is open and x ∈U ′ ⊆ g−1({0})⊆U . Hence

we have g−1({0}) ∈Nx∩Z(X) and g−1({0})⊆ A. ut

Using this, we can prove the first ’non-degeneracy’.

Proposition 6.25. Suppose X is a Tychonoff space. Then every filter on Z(X) con-
verges to at most one point.

Proof. Suppose F is a filter on Z(X) such that F converges to both x,y ∈ X . Then
Nx∩Z(X) ∈ F and Ny∩Z(X) ∈ F .

If x 6= y, there are open U,V ⊆ X such that U ∩V = /0, x ∈U and y ∈ V , since
X is a Tychonoff space and hence Hausdorff. Since U ∈Nx and V ∈Ny, lemma
6.24 then gives us A ∈Nx ∩Z(X) and B ∈Ny∩Z(X) such that A ⊆U and B ⊆ V .
However, by assumption, then A,B ∈ F , so /0 = A∩B ∈ F . This is a contradiction,
so x = y.

Hence F converges to at most one point. ut

Next, for a Tychonoff space, we can describe the ultrafilters that converge to a
certain point explicitly.

Proposition 6.26. Suppose X is a Tychonoff space and let x ∈ X. Furthermore,
suppose that F is an ultrafilter on Z(X) that converges to x. Then

F = {A ∈ Z(X) | x ∈ A}.

Proof. Suppose there is an A∈F such that x /∈A. Then A∈ Z(X), so certainly A⊆X
is closed. Hence X \A ∈Nx. So, by lemma 6.24, there is a B ∈Nx∩Z(X) such that
B⊆ X \A. However, since F converges to x, then B ∈ F , and hence /0 = A∩B ∈ F .
This is a contradiction. Hence x ∈ A for all A ∈ F , i.e.

F ⊆ {A ∈ Z(X) | x ∈ A}.
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Next, suppose C ∈ Z(X) such that x ∈C. By the above, x ∈ A for all A ∈ F , so for
all A ∈ F , A∩C 6= /0. Hence C ∈ F , by lemma 6.6. Hence, indeed,

F = {A ∈ Z(X) | x ∈ A}. ut

Corollary 6.22 combined with the above explicit description of a convergent ul-
trafilter has the following corollary.

Corollary 6.27. Suppose X is a Tychonoff space and let x ∈ X. Then there is a
unique ultrafilter on Z(X) that converges to x.

We write Fx for the unique ultrafilter that converges to the point x , i.e.

Fx = {A ∈ Z(X) | x ∈ A}.

Furthermore, we write S : X → Ultra(Z(X)),x 7→ Fx. We will now show that this
map has the desired properties.

Proposition 6.28. Suppose X is a Tychonoff space. Then S : X → Ultra(Z(X)) is
continuous.

Proof. Let A ∈ Z(X) and let x ∈ S−1(U(A)). Then Fx ∈U(A), so A /∈ Fx, i.e. x /∈ A,
by proposition 6.26. Since A ∈ Z(X), A is closed, whence X \A is an open neigh-
bourhood of x.

Now, let y ∈ X \A. Then y /∈ A, so A /∈ Fy, by proposition 6.26. Therefore, we
know that S(y) ∈U(A), i.e. y ∈ S−1(U(A)). Hence X \A⊆ S−1(U(A)). Since U(A)
is an arbitrary base element of Ultra(Z(X)), we conclude that S is continuous. ut

In order to prove the universal property of the Stone-Čech compactification, we
extend the above result.

Proposition 6.29. Suppose X is a Tychonoff space. Then S : X →Ultra(Z(X)) is an
embedding.

Proof. By proposition 6.25, we know that S is injective, whence S : X → S(X) is a
bijection. Furthermore, according to proposition 6.28, S is continuous, so we only
need to prove that the function S : X → S(X) is open.

For this, let V ⊆ X be open, and let F ∈ S(V ). Then there is an x ∈ V such that
F = Fx. Since X \V is closed, x /∈ X \V and X is Tychonoff, there is a continuous
function f : X → [0,1] such that f (x) = 1 and f |X\V = 0.

Now, define B := f−1({0}) ∈ Z(X). Then X \V ⊆ B and x /∈ B. Then B /∈ Fx, so
Fx ∈U(B).

Let G∈U(B)∩S(X), i.e. let y∈ X such that Fy ∈U(B). Then B /∈ Fy, so y /∈ B by
proposition 6.26. Then also y /∈ X \V , i.e. y ∈ V . Therefore, U(B)∩ S(X) ⊆ S(V ),
i.e. S : X → S(X) is open.

Hence S is indeed an embedding. ut

Not only is S an embedding, its image is also dense.

Lemma 6.30. Suppose X is a Tychonoff space. Then S(X)⊆ Ultra(Z(X)) is dense.
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Proof. Suppose A ∈ Z(X) such that U(A) 6= /0, i.e. such that A 6= X . Then X \A 6= /0,
so there is a x ∈ X \A. Then x /∈ A. Therefore, A /∈ Fx, i.e. Fx ∈U(A). Hence we have
that U(A)∩S(X) 6= /0. Since U(A) was an arbitrary base element, we conclude that
S(X)⊆ Ultra(Z(X)) is dense. ut

6.6 Pushforward

We have now constructed the pair (Ultra(Z(X)),S) for all Tychonoff spaces X . To
prove that this pair in fact has the universal property of the Stone-Čech compactifi-
cation, we consider pushforwards of filters.

Definition 6.31. Suppose X and Y are topological spaces, F is a filter on Z(X) and
f : X → Y is a continuous function. Then the pushforward of F over f is defined
as

f∗(F) = {A ∈ Z(Y ) | f−1(A) ∈ F}.

Lemma 6.32. Suppose X and Y are topological spaces, F is a filter on Z(X) and
f : X →Y is a continuous function. Then f∗(F) is a filter on Z(Y ). Moreover, if F is
an ultrafilter, then f∗(F) is an ultrafilter too.

Proof. Since taking pre-images behaves nicely with respect to intersections, unions
and subsets, it is clear that f∗(F) is a filter.

Now, also assume that F is an ultrafilter. Then suppose A,B ∈ Z(Y ) such that
A∪B ∈ f∗(F). Then we know that f−1(A)∪ f−1(B) = f−1(A∪B) ∈ F and also
that f−1(A), f−1(B) ∈ Z(X). Since F is an ultrafilter, it is prime (by lemma 6.10),
so either f−1(A) ∈ F or f−1(B) ∈ F . Therefore, A ∈ f∗(F) or B ∈ f∗(F), i.e. F is
prime and hence an ultrafilter. ut

Now for any continuous function f : X →Y between any two topological spaces
X and Y , consider f∗ : Ultra(Z(X))→ Ultra(Z(Y )) as a function.

Lemma 6.33. Suppose X and Y are topological spaces and let f : X → Y be con-
tinuous. Then f∗ is continuous.

Proof. Suppose A ∈ Z(Y ) and let F ∈ f−1
∗ (U(A)). Then A /∈ f∗(F), so f−1(A) /∈ F ,

i.e. we have F ∈U( f−1(A)).
Let G ∈ U( f−1(A)). Then f−1(A) /∈ G, so A /∈ f∗(G), i.e. f∗(G) ∈ U(A), so

G ∈ f−1
∗ (U(A)). Hence U( f−1(A))⊆ f−1

∗ (U(A)), i.e. f∗ is continuous. ut

6.7 Convergence of ultrafilters for compact Hausdorff spaces

We have already discussed the notion of convergence for Tychonoff spaces. For
compact Hausdorff spaces, we can prove even stronger statements. First of all, since
we have the following result for compact spaces.
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Lemma 6.34. Suppose X is a compact space. Then every F ∈ Ultra(Z(X)) con-
verges to at least one point.

Proof. Suppose F ∈ Ultra(Z(X)) is an ultrafilter that converges to no point. Then,
for all x ∈ X , we know that there is an Ax ∈Nx ∩Z(X) such that Ax /∈ F . Then for
all x ∈ X , there is an open Vx ⊆ X such that x ∈Vx ⊆ Ax.

Then
⋃

x∈X Vx = X , so by compactness of X , there is a finite subset {x1, . . . ,xn}
of X such that

⋂n
i=1 Vxi = X . Then also

⋂n
i=1 Axi = X ∈ F . However, F is prime, so

there must be an i∈ {1, . . . ,n} such that Axi ∈ F , which contradicts our assumptions.
Hence F must converge to at least one point. ut

If we now also assume the Hausdorff property, this lemma has the following
corollary.

Corollary 6.35. Let K be a compact Hausdorff space. Then every F ∈Ultra(Z(K))
converges to exactly one point.

Proof. Suppose F ∈ Ultra(Z(K)). Then, since K is compact, F converges to at
least one point. However, since every compact Hausdorff space is T4 and hence Ty-
chonoff, F converges to at most one point, by proposition 6.25. Hence F converges
to exactly one point. ut

For a compact Hausdorff space K, denote ϕK : Ultra(Z(K))→ K for the unique
map such that F converges to ϕK(F) for all F ∈ Ultra(Z(K)).

Proposition 6.36. Suppose K is a compact Hausdorff space. Then ϕK is continuous.

Proof. Suppose V ⊆ K is open and let F ∈ ϕ
−1
K (V ). Then ϕK(F) ∈V . Furthermore,

K \V ⊆ K is closed and ϕK(F) /∈ K \V . Since K is Tychonoff, there is a continuous
F : K→ [0,1] such that f |K\V = 0 and f (ϕK(F)) = 1.

Now define B := f−1({0}) ∈ Z(K) and note that ϕK(F) /∈ B, so B /∈ F , i.e. we
have F ∈U(B). Now let G ∈U(B). Then B /∈ G, so ϕK(G) /∈ B. Since K \V ⊆ B,
then ϕK(G) /∈ K \V , so ϕK(G) ∈V .

Therefore, ϕK(U(B)) ⊆ V , i.e. U(B) ⊆ ϕ
−1
K (V ). Hence ϕ

−1
K (V ) is open, i.e. ϕK

is continuous. ut

6.8 Universal property

For any Tychonoff space X , compact Hausdorff space K and continuous f : X → K,
we now have the following diagram:
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X S //

f

!!

Ultra(Z(X))

f∗
��

Ultra(Z(K))

ϕK

��
K

We first show that this diagram commutes.

Proposition 6.37. Suppose X is a Tychonoff space, K a compact Hausdorff space
and f : X → K a continuous function. Then ϕK ◦ f∗ ◦S = f .

Proof. Let x ∈ X . Then S(x) = Fx = {A ∈ Z(X) | x ∈ A}. Therefore,

( f∗ ◦S)(x) = f∗(Fx) = {A ∈ Z(Y ) | f−1(A) ∈ Fx}
= {A ∈ Z(Y ) | x ∈ f−1(A)}
= {A ∈ Z(Y ) | f (x) ∈ A}
= Ff (x).

Therefore, (ϕK ◦ f∗ ◦S)(x) = ϕK(Ff (x)) = f (x), i.e. ϕK ◦ f∗ ◦S = f . ut

Using this, we come to the main point.

Corollary 6.38. Suppose X is a Tychonoff space. Then Ultra(Z(X)) together with
the function S : X → Ultra(Z(X)), defined by S(x) = {A ∈ Z(X) | x ∈ A}, is the
Stone-Čech compactification of X.

Proof. We showed that Ultra(Z(X)) is a compact Hausdorff space (propositions
6.16 and 6.19) and that S is continuous (proposition 6.28). Therefore, we only need
to show that the pair (Ultra(Z(X)),S) has the universal property. For this, let K
be a compact Hausdorff space and f : X → K a continuous function. Then define
β f = ϕK ◦ f∗. By proposition 6.37, then β f ◦S = f .

Furthermore, since S(X) ⊆ Ultra(Z(X)) is dense by lemma 6.30, β f is the
unique continuous function g : Ultra(Z(X))→ K such that g ◦ S = f . Hence the
pair (Ultra(Z(X)),S) has the universal property. ut



Chapter 7
The continuous subalgebra and the
Kadison-Singer conjecture

The main goal of this chapter is to prove that the continuous subalgebra does not
have the Kadison-Singer property. We do this in section 7.4, by considering the so-
called Anderson operator. The sections before that one provide tools for proving
properties of the Anderson operator.

In sections 7.1 and 7.2, we construct the Haar states, using the results of chapter
6. Section 7.3 contains rather technical results, which culminate in corollary 7.17.
This corollary is in fact the only thing we need from 7.3 to prove in section 7.4 that
the continuous subalgebra does not have the Kadison-Singer property.

In the remainder of the chapter, we prove that this implies that the mixed subalge-
bra does not have the Kadison-Singer property either and hence that only maximal
abelian subalgebras that are unitarily equivalent to the discrete subalgebra can pos-
sibly have the Kadison-Singer property. Once we have proven this result, we are in a
position to formulate the Kadison-Singer conjecture and appreciate its consequence
for the classification of subalgebras with the Kadison-Singer property.

7.1 Total sets of states

We have already seen that the set S(A) of states on a C∗-algebra A is a convex,
compact Hausdorff space. We are now interested in special subsets of this space;
so-called total sets of states. For this, recall that for a self-adjoint element a and a
state f , f (a) is real.

Definition 7.1. Suppose A is a C∗-algebra and let T ⊆ S(A). We say that T is a total
set of states for A if for any self-adjoint a = a∗ ∈ A the condition f (a)≥ 0 for every
f ∈ T implies that a≥ 0.

The following lemma is trivial.

Lemma 7.2. Suppose A is a C∗-algebra and suppose T ⊆ T ′ ⊆ S(A), where T is a
total set of states for A. Then T ′ is a total set of states for A.

65
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Total sets of states have an important property.

Lemma 7.3. Suppose A is a C∗-algebra and T ⊆ S(A) is a total sets of states.
Furthermore, suppose that a = a∗ ∈ A, α ∈ R and that g(a) ≥ α for every g ∈ T .
Then f (a)≥ α for all f ∈ S(A).

Proof. Note that a−α1 is self-adjoint and that g(a−α1) = g(a)−α ≥ 0 for every
g ∈ T . Therefore, a−α1≥ 0, since T is total.

Hence for any f ∈ S(A), f (a−α1)≥ 0, since f is positive. Therefore, we obtain
that f (a)−α ≥ 0, i.e. f (a)≥ α , for all f ∈ S(A). ut

The state space S(A) of a C∗-algebra A is topologized by the weak∗-topology,
which is generated by considering single elements a ∈ A. Since the definition of
total sets of vectors concerns only self-adjoint elements, we are especially interested
in those elements. Recall that the weak∗-topology on the state space S(A) of a C∗-
algebra A is given by the subbase that consists of the elements

B( f ,a,ε) = {g ∈ S(A) : | f (a)−g(a)|< ε},

where f ∈ S(A), a ∈ A and ε > 0. As it now turns out, we only have to consider
those subbase elements given by self-adjoint elements.

Lemma 7.4. Suppose A is a C∗-algebra. Then the set

{B( f ,a,ε) : f ∈ S(A), a = a∗ ∈ A, ε > 0}

is a subbase for the weak∗-topology on S(A).

Proof. Suppose that a ∈ A. Then a = b+ ic, where b,c ∈ A are self-adjoint. Hence,
for f ,g ∈ S(A),

| f (a)−g(a)|= | f (b+ ic)−g(b+ ic)|
≤ | f (b)−g(b)|+ | f (c)−g(c)|.

So, if g ∈ B( f ,b, ε

2 )∩B( f ,c, ε

2 ), then g ∈ B( f ,a,ε). Hence

B( f ,b, ε

2 )∩B( f ,c, ε

2 )⊆ B( f ,a,ε).

Combined with the fact that {B( f ,a,ε) : f ∈ S(A),a ∈ A,ε > 0} is a subbase for the
weak∗-topology on S(A), this shows that {B( f ,a,ε) : f ∈ S(A),a = a∗ ∈ A,ε > 0}
is a subbase too. ut

We use this fact to prove the following important lemma about total sets of states.

Lemma 7.5. Suppose A is a C∗-algebra and T ⊆ S(A) is a total set of states. Then
S(A) = co(T ), i.e. the sets of states is the weak∗-closure of the convex hull of T .

Proof. Since T ⊆ S(A) and S(A) is a weak∗-closed convex set, co(T )⊆ S(A). Hence
we only have to prove that S(A)⊆ co(T ).
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To see this, let f ∈ S(A), and suppose that f ∈
⋂n

i=1 B( fi,ai,εi), for certain states
fi ∈ S(A), ai = a∗i ∈ A and εi > 0. Since f ∈ B( fi,ai,εi) for any i ∈ {1, . . . ,n}, there
are δi > 0 for all i ∈ {1, . . . ,n} such that we have B( f ,ai,δi) ⊆ B( fi,ai,εi) for all
i ∈ {1, . . . ,n}.

Now define the map

ϕ : S(A)→ Rn, f 7→ ( f (a1), . . . , f (an)),

and define Ω = ϕ(T ). We claim that for every f ∈ S(A), we have ϕ( f ) ∈ co(Ω).
To prove this, we argue by contraposition. So suppose that f ∈ S(A) such that

ϕ( f ) 6∈ co(Ω). Then, using a very standard result in convexity theory, we obtain a
n−1-dimensional hyperplane V through ϕ( f ) that does not intersect co(Ω) and an
α > 0 such that for every x ∈V and y∈ co(Ω), |x−y| ≥ α , i.e. co(Ω) is completely
on one side of V and is seperated from V by a distance of at least α . Considering the
normal vector n on V , this means that for any y ∈ co(Ω), 〈y−ϕ( f ),n〉 ≥ α , where
〈,〉 is the standard inner product on Rn.

Now write n = (t1, . . . , tn) ∈ Rn and let g ∈ T . Then ϕ(g) ∈ co(Ω), so

〈(g(a1)− f (a1), . . . ,g(an)− f (an)),(t1, . . . , tn)〉 ≥ α.

Writing this out, one obtains ∑
n
i=1 ti(g(ai)− f (ai))≥ α , i.e.

g(
n

∑
i=1

tiai)≥ f (
n

∑
i=1

tiai)+α.

However, g ∈ T was arbitrary, ∑
n
i=1 tiai is self-adjoint and f ∈ S(A), so by lemma

7.3, f (∑n
i=1 tiai)≥ f (∑n

i=1 tiai)+α . This is a contradiction, so ϕ( f ) ∈ co(Ω).
Now define δ := mini∈{1,...,n} δi. Then δ > 0, so there is an h ∈ co(Ω) such that

we have |h−ϕ( f )|< δ . Since h ∈ co(Ω), there are {gi}m
i=1 ⊆ T and {si}m

i=1 ⊆ [0,1]
such that h = ∑

m
i=1 siϕ(gi) and ∑

m
i=1 si = 1.

Now define k =∑
m
i=1 sigi ∈ co(T ) and let j ∈ {1, . . . ,n}. Note that ϕ(k) = h. Then

|k(a j)− f (a j)|= |ϕ(k) j−ϕ( f ) j|= |h j−ϕ( f ) j| ≤ |h−ϕ( f )|< δ ≤ δ j,

where we used the notation x j for the j’th coordinate of x = (x1, . . . ,xn) ∈ Rn.
This proves that k∈B( f ,a j,δ j)⊆B( f j,a j,ε j). Since j∈{1, . . . ,n}was arbitrary,

k ∈
⋂n

i=1 B( fi,ai,εi). However, k∈ co(T ) too, so
⋂n

i=1 B( fi,ai,εi)∩co(T ) 6= /0. Since⋂n
i=1 B( fi,ai,εi) is an arbitrary base element around f by lemma 7.4, f ∈ co(T ).
Now f ∈ S(A) was arbitrary, so S(A) ⊆ co(T ) and hence S(A) = co(T ), as de-

sired. ut

The above lemma is mainly important because of the following theorem.

Theorem 7.6. Suppose A is a C∗-algebra and T ⊆ S(A) is a total set of states. Then
∂eS(A)⊆ T .
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Proof. By lemma 7.5, S(A) = co(T ). Then by the Krein-Milman theorem, i.e. the-
orem B.4, ∂eS(A)⊆ T . ut

In the next section, we will construct a total set of states for the continuous subal-
gebra. Later on, we will use theorem 7.6 for this total set to prove that the continuous
subalgebra does not have the Kadison-Singer property.

7.2 Haar states

The total set of states on the continuous subalgebra that we will consider is induced
by the so-called Haar functions. In order to describe these, first consider the set

Y := {(i, j) ∈ (N∪{0})2 : i < 2 j}.

It is easily seen that the function

ψ : Y → N,(i, j) 7→ i+2 j

is a bijection. Now, for each pair (i, j) ∈Y , define the set V (i, j) = [ i
2 j ,

i+1
2 j ]⊆ [0,1].

Next, define the function

k : Y → L2(0,1),(i, j) 7→ (
√

2) j[χV (2i, j+1)−χV (2i+1, j+1)],

and using this, define h : N→ L2(0,1) by setting h(1) = [1] and, if n ≥ 2, defining
h(n) = (k ◦ψ−1)(n−1). The set h(N)⊆ L2(0,1) is the set of Haar functions.

This procedure gives

h(1) = [1],
h(2) = [χ[0,1/2]−χ[1/2,1]],

h(3) =
√

2[χ[0,1/4]−χ[1/4,1/2]],

h(4) =
√

2[χ[1/2,3/4]−χ[3/4,1]],

and so on. By mere writing out it follows that the Haar functions form an orthonor-
mal set.

In fact, since the support of h(n) becomes arbitrary small as n increases, but the
supports of the functions h(1+2 j),h(1+2 j), . . . ,h(2 j+1) completely cover [0,1] for
every j ∈ N, one can see that the Haar functions actually form a basis for L2(0,1).
For more details about this, see [28, thm 1.4].

The Haar functions now induce the Haar states, which will form the total set
of states we are looking for. To do this, define H(n) : B(L2(0,1)) → C by set-
ting H(n)(b) = 〈b(h(n)),h(n)〉, for every n ∈ N. Clearly, every H(n) is a state on
L2(0,1), since H(n)(1) = 〈h(n),h(n)〉= 1 and

H(n)(b∗b) = 〈(b∗b)(h(n)),h(n)〉= 〈b(h(n)),b(h(n))〉= ‖b(h(n))‖2 ≥ 0
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for every b ≥ 0. We consider H as a function, i.e. H : N→ S(B(L2(0,1))). The set
H(N) is the set of Haar states.

When restricting the Haar states to the continuous subalgebra Ac ⊆ B(L2(0,1)),
we get a function H ′ : N→ S(Ac), given by H ′(n) = H(n)|Ac . We will refer to the
elements of H ′(N) as restricted Haar states. The main point of this construction is
the following theorem.

Theorem 7.7. The set H ′(N) of restricted Haar states is a total set of states for Ac.

Proof. Suppose a = a∗ ∈ Ac, but a is not positive. Then there is a real-valued mea-
surable function g : [0,1]→C, a set D⊆ [0,1] and b,c> 0 such that g∈ a, g(x)<−b
for all x ∈ D and µ(D) = c. Since D ⊆ [0,1] is measurable, there is an open set
U ⊆ [0,1] such that D⊆U and µ(U \D)< bc

2‖a‖ .
Now note that the Haar functions satisfy h(i+ 2 j − 1)2 = 2 j[χV (i, j)] for j ≥ 1.

Hence, since the V (i, j) partition [0,1] in arbitrarily small intervals, we can write
χU = ∑

∞
n=1 λnh(n)2, for some λn ≥ 0. Then compute:

∞

∑
n=1

λn

∫
[0,1]

g(x)h(n)(x)2 =
∫
[0,1]

g(x)
∞

∑
n=1

λnh(n)(x)2

=
∫
[0,1]

g(x)χU (x) =
∫

U
g(x)

=
∫

D
g(x)+

∫
U\D

g(x)

≤−bc+µ(U \D)‖a‖

=−bc+
bc
2

=−bc
2

< 0.

Since every λn ≥ 0, there is then at least one n ∈ N such that

H ′(n)(Ma) = 〈M[g]h(n),h(n)〉=
∫
[0,1]

g(x)h(n)(x)2 < 0.

So, whenever a self-adjoint element b= b∗ ∈Ac satisfies H ′(n)(Mb)≥ 0 for every
n ∈ N, then b≥ 0, i.e. the set H ′(N) is a total set of states for Ac. ut

We can now use the (restricted) Haar states in combination with the concept
of the Stone-Čech compactification of N, which is Ultra(N) according to corollary
6.38. Since N is discrete, the map H : N→ S(B(L2(0,1))) is continuous. Further-
more, S(B(L2(0,1))) is a compact Hausdorff space by proposition 3.6, so there is
a unique continuous map βH : Ultra(N)→ S(B(L2(0,1))) such that the following
diagram commutes:

N S //

H %%

Ultra(N)

βH
��

S(B(L2(0,1)))
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where S is the map such that S(n) = Fn, the principal ultrafilter belonging to n ∈ N.
Likewise, for the restricted Haar states map H ′ : N→ S(Ac), there is a unique

continuous map βH ′ : Ultra(N)→ S(Ac) such that the following diagram commutes:

N S //

H ′ ##

Ultra(N)

βH ′

��
S(Ac)

We can make a connection between these two diagrams by considering the mul-
tiplication operator M : Ac→ B(L2(0,1)), which is an inclusion. We are especially
interested in the pullback of this map, i.e.

M∗ : S(B(L2(0,1)))→ S(Ac),

given by (M∗( f ))(a) = f (M(a)), since M∗ is continuous by lemma 3.18.
We use the map M∗ for the following trivial fact.

Lemma 7.8. The following identity holds: H ′ = M∗ ◦H.

Proof. Suppose n ∈ N and a ∈ Ac. Then

H ′(n)(a) = H(n)|Ac(a) = H(n)(M(a)) = (M∗(H(n)))(a),

which proves that H ′(n) = (M∗ ◦H)(n), i.e. H ′ = M∗ ◦H, as desired. ut

This induces the following important identity.

Corollary 7.9. The following identity holds: βH ′ = M∗ ◦βH.

Proof. First of all, note that M∗ ◦βH : Ultra(N)→ S(Ac) is a continuous function,
since both M∗ and βH are continuous, by lemma 3.18 and the universal property of
the Stone-Čech compactifaction.

Next, note that βH ◦ S = H, again by the universal property of the Stone-Čech
compactification. Therefore, using lemma 7.8,

M∗ ◦βH ◦S = M∗ ◦H = H ′.

Therefore, by uniqueness of the map βH ′, we have M∗ ◦βH = βH ′, as desired. ut

We are mainly considering the Stone-Čech compactification of N and the Haar
states because of the following statement.

Theorem 7.10. The following inclusion holds: ∂eS(Ac)⊆ (βH ′)(Ultra(N)).

Proof. By theorem 7.7 we know that H ′(N) is a total set of states for Ac. Then, since
H ′ = βH ′ ◦ S, H ′(N) ⊆ (βH ′)(Ultra(N)), whence by lemma 7.2, (βH ′)(Ultra(N))
is a total set of states.
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Therefore, by theorem 7.6, ∂eS(Ac) ⊆ (βH ′)(Ultra(N)). However, Ultra(N) is a
compact space, and βH ′ is a continuous map. Therefore, (βH ′)(Ultra(N))⊆ S(Ac)
is compact too. Since S(Ac) is Hausdorff, this implies that (βH ′)(Ultra(N)) is
closed. Therefore, ∂eS(Ac)⊆ (βH ′)(Ultra(N)), as desired. ut

Since we are interested in the pure states on the continuous subalgebra, we are
now interested in a more precise expression of the image of βH and βH ′. We can
describe both of them by generalizing the structure they share.

Proposition 7.11. Suppose X is a discrete space and A a C∗-algebra. Furthermore,
suppose that F : X → S(A) is some function. Then for any a ∈ A and U ∈ Ultra(X),

{(βF)(U)(a)}=
⋂

σ∈U

{F(x)(a) : x ∈ σ}.

Proof. Let a ∈ A and U ∈ Ultra(N). Note that βF = ϕS(A) ◦F∗ by proposition 6.37.
Hence N(βF)(U) ⊆ F∗(U), so for every N ∈N(βF)(U) we have F−1(N) ∈U .

Now let σ ∈U and let ε > 0. Then B((βF)(U),a,ε) ∈N(βF)(U), so

Cε := {x ∈ X : |F(x)(a)− (βF)(U)(a)|< ε}= F−1(B((βF)(U),a,ε)) ∈U.

Then σ ,Cε ∈U , so σ ∩Cε ∈U , i.e. there is an x ∈ σ ∩Cε , i.e. there is an x ∈ σ

such that |F(x)(a)−(βF)(U)(a)|< ε . Therefore, (βF)(U)(a)∈{F(x)(a) : x ∈ σ}.
Since σ ∈U was arbitrary, we then have

(βF)(U)(a) ∈
⋂

σ∈U

{F(x)(a) : x ∈ σ}.

Now suppose y∈
⋂

σ∈U {F(x)(a) : x ∈ σ} too. Then let δ > 0. Since C δ
2
∈U , we

have y ∈ {F(x)(a) : x ∈C δ
2
}. Hence there is a x ∈C δ

2
such that |y−F(x)(a)| < δ

2 .
Therefore,

|y− (βF)(U)(a)| ≤ |y−F(x)(a)|+ |F(x)(a)− (βF)(x)(a)|< δ

2
+

δ

2
= δ .

Since δ > 0 was arbitrary, y = (βF)(U)(a). So, indeed,

{(βF)(U)(a)}=
⋂

σ∈U

{F(x)(a) : x ∈ σ},

as desired. ut

7.3 Projections in the continuous subalgebra

We now begin with our proof of the fact that the continuous subalgebra Ac does not
have the Kadison-Singer property. We first prove some rather technical results.
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First of all, for a pure state f ∈ ∂eS(Ac), a measurable and bounded function
h : [0,1]→C such that [h] ∈ Ac is a positive element, and some ε > 0, we define the
set

X( f ,h,ε) := {x ∈ [0,1] : h(x) ∈ [ f ([h])− ε, f ([h])+ ε]}.

Note that by construction of Ac = L∞(0,1), for any positive [h] ∈ Ac, f ∈ ∂eS(Ac)
and ε > 0, the number

α( f , [h],ε) = µ(X( f ,h,ε))

is well defined, where µ is the standard measure on [0,1]. In order to prove a crucial
result about these numbers α( f ,a,ε), we need to define the essential infimum of a
positive element of Ac.

Definition 7.12. Suppose a ∈ Ac is positive. Then the essential infimum of a is
defined as

ess inf(a) = inf{t : µ({x ∈ [0,1] : h(x)< t}) = 0},

where h : [0,1]→ C is any positive measurable function such that [h] = a.

Note that the essential infimum is well defined, i.e. independent of choice of rep-
resentative, exactly by construction of Ac. The essential infimum has an important
property when considering states.

Lemma 7.13. Suppose a ∈ Ac is a positive element and f ∈ ∂eS(Ac) is a pure state
such that f (a) = 0. Then ess inf(a) = 0.

Proof. Suppose ε > 0 and suppose that ess inf(a) > 0. Then there is a positive,
measurable function h : [0,1]→C such that [h] = a and a t > 0 such that h(x)≥ t for
all x∈ [0,1]. Then h−t1 is still a positive, measurable function, and [h−t1] = a−t1.
Hence a−t1 is a positive element of Ac, whence−t = f (a)−t f (1) = f (a−t1)≥ 0.
This is a contradiction, so indeed, ess inf(a) = 0. ut

Lemma 7.14. Suppose f ∈ ∂eS(Ac). Let a ∈ Ac be a positive element and let ε > 0.
Then α( f ,a,ε) 6= 0.

Proof. Suppose h ∈ a is a measurable, positive function. Now, consider the set

Z := {x ∈ [0,1] : h(x)≤ f (a)},

and denote W := [0,1]\Z. Writing χZ for the characteristic function of Z, we note
that f ([χZ ])

2 = f ([χZ ]), since f is multiplicative. Therefore, f ([χZ ]) ∈ {0,1}. Fur-
themore, f ([χW ]) = 1− f ([χZ ]), where χW is the characteristic function of W .
Hence, there are two cases. First, suppose that f ([χZ ]) = 0. Then f ([χW ]) = 1.
Therefore,

f ([χW h] = f ([χW ]) f ([h]) = f (a).

So, writing b = [χW h]− f (a)1, f (b) = 0. Furthermore, χW h− f (a)1 is a positive
function by construction, since W = {x∈ [0,1] : h(x)> f (a). Hence, by lemma 7.13,
ess inf(b) = 0, so µ({x ∈ [0,1] : (χW h− f (a)1)(x)< ε} 6= 0. However,
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{x ∈ [0,1] : (χW h− f (a)1)(x)< ε}= {x ∈ [0,1] : h(x) ∈ ( f (a), f (a)+ ε)},

so certainly

α( f ,a,ε) = µ(X( f ,h,ε)) = µ({x ∈ [0,1] : h(x) ∈ [ f (a)− ε, f (a)+ ε]})> 0.

Next, consider the case that f ([χZ ]) = 1. Then a similar argument applied to the
element b = f (a)1− [χZh] shows that α( f ,a,ε) 6= 0. ut

Using this property, we can prove the following result about projections in the
continuous subalgebra, where we use the theory in section C.2.

Lemma 7.15. Suppose f ∈ ∂eS(Ac), let a ∈ Ac be a positive element and let ε > 0.
Then there is a projection p ∈ Ac such that f (p) = 1 and ‖p(a− f (a)1)‖< ε .

Proof. Let h be a positive measurable function such that [h] = a. Then write

Z = X( f ,h,
ε

2
).

By lemma 7.14, then µ(Z) 6= 0. Therefore, [χZ ] is a non-zero projection in Ac, where
χZ is the characteristic function of Z.

By construction of Z, |(χz(h− f (a)1))(x)| < ε

2 for every x ∈ [0,1], whence we
have ‖[χZ ](a− f (a)1)‖< ε .

So, now the only thing left to prove is that f ([χZ ]) = 1. If f ([χZ ]) 6= 1, then we
have f ([χZ ]) = 0, since χZ is a projection. Then we obtain that f ([χW ]) = 1, where
W = [0,1] \ Z and χW is the characteristic function of W . Then, by multiplicativ-
ity of f , f ([χW h]) = f (a), whence X( f ,χW h,ε) = /0, i.e. α( f , [χW h],ε) = 0. This
contradicts lemma 7.14. Therefore, f ([χZ ]) = 1, so [χZ ] ∈ G f as required. ut

Using the previous results, we can consider pure states on the continuous subal-
gebra that do have unique pure state extensions. First of all we have the following
result.

Lemma 7.16. Suppose that f ∈ ∂eS(Ac) such that Ext( f ) = {g}. Furthermore, let
b ∈ B(L2(0,1)) such that g(b∗b) = 0. Then, for every ε > 0, there is a projection
p ∈ Ac such that f (p) = 1 and ‖bp‖< ε .

Proof. Let ε > 0. Since g(b∗b) = 0, g(−b∗b) = 0 and b∗b is self-adjoint, so there is
a c ∈ Ac such that −c≤−b∗b and f (−c)+ ε2

2 > g(−b∗b) = 0, by proposition 3.17.

Therefore, 0≤ b∗b≤ c and f (c)< ε2

2 . Since then c≥ 0, 0≤ f (c)< ε2

2 .
Since f ∈ ∂eS(Ac), by lemma 7.15 there is a projection p∈ Ac such that f (p) = 1

and ‖p(c− f (c)1)‖ < ε2

2 . Then we also have 0 ≤ pb∗bp ≤ pcp = pc, since p is a
projection in the abelian subalgebra Ac, and hence

‖pb∗bp‖ ≤ ‖pc‖ ≤ ‖p(c− f (c)1)‖+‖p f (c)‖

= ‖p(c− f (c)1)‖+ f (c)< 2 · ε
2

2
= ε

2.
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However, ‖bp‖2 = ‖(bp)∗bp‖= ‖pb∗bp‖, so ‖bp‖< ε , as desired. ut

Using this, we have the following corollary.

Corollary 7.17. Suppose that f ∈ ∂eS(Ac) such that Ext( f ) = {g}. Furthermore,
let b ∈ B(L2(0,1)) and ε > 0. Then there is a projection p ∈ Ac such that f (p) = 1
and ‖p(b−g(b)1)p‖< ε .

Proof. Let b ∈ B(H) and ε > 0. Since g is a pure state and g(b− g(b)1) = 0, by
lemma C.6 there are c1,c2 ∈ Lg such that b−g(b)1 = c1 + c∗2.

Now, by lemma 7.16, there is a projection d1 ∈ Ac such that f (d1) = 1 and
‖c1d1‖ < ε

2 . Likewise, there is a projection d2 ∈ Ac such that f (d2) = 1 and
‖c2d2‖< ε

2 .
Now define p = d1d2 = d2d1. Then p is also a projection, since Ac is abelian, and

f (p) = 1 by lemma 4. Now we have

‖c1 p‖= ‖c1d1d2‖ ≤ ‖c1d1‖<
ε

2
,

and
‖pc∗2‖= ‖c2 p‖= ‖c2d2d1‖ ≤ ‖c2d2‖<

ε

2
.

Therefore,

‖p(b−g(b)1)p‖= ‖p(c1 + c∗2)p‖ ≤ ‖pc1 p‖+‖pc∗2 p‖

≤ ‖c1 p‖+‖pc∗2‖<
ε

2
+

ε

2
= ε. ut

We will later use the above result to show that a pure state on Ac cannot have a
unique extension, which implies that Ac does not have the Kadison-Singer property.

7.4 The Anderson operator

We are now in the position to put all the pieces of the puzzle together and prove that
the continuous subalgebra does not have the Kadison-Singer property. We do this by
means of the Anderson operator. To do this, first consider the function ϕ : N→ N,
defined by:

ϕ(n) =


1 : n = 2
n+1 : n 6= 2 j ∀ j ∈ N
2 j +1 : ∃ j ∈ N : n = 2 j+1,

i.e. ϕ permutes 1 and 2 and all the mutual disjoint subsets (2 j +1, . . . ,2 j+1) (where
j = 1,2, . . . ) in a cyclic manner. Clearly, ϕ is a bijection.

Now, taking the Haar functions h(N), the operator Û : L2(0,1)→ L2(0,1) defined
by Û(h(n)) = h(ϕ(n)) is a unitary operator, since it permutes the orthonormal basis
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h(N). Furthermore, since ϕ has no fixed points, H(n)(Û) = 〈Û(h(n)),h(n)〉= 0 for
every n ∈ N. We call Û the Anderson operator. This operator has an important
property.

Proposition 7.18. Suppose p ∈ Ac is a non-zero projection. Then ‖pÛ p‖= 1.

Proof. Let 1
2 > ε > 0. We will prove that ‖pÛ p‖> 1−ε , and thereby conclude that

‖pÛ p‖= 1, since ‖pÛ p‖ ≤ ‖p‖2‖Û‖= 1.
Now, p is non-zero, so corollary B.27 gives us an f ∈ Ω(Ac) = ∂eS(Ac) such

that f (p) = 1. Combining theorem 7.7 and theorem 7.6, then ∂eS(AC) ⊆ H ′(N).
Therefore, f ∈ H ′(N).

Since the function g : [0, 1
2 )→R given by g(t) =

√
1−2t−

√
2t is continous and

satisfies g(0) = 1, there is a 0 < δ < 1
2 such that

√
1−2δ −

√
2δ > 1− ε .

Now note that B( f , p,δ )⊆ S(Ac) is open, so B( f , p,δ )∩H ′(N) 6= /0. Hence there
is a n ∈ N such that | f (p)−H ′(n)(p)|< δ , i.e. H ′(n)(p)> 1−δ .

Using lemma 5.6, we see that p = [χW ], for some measurable W ⊆ [0,1] such
that µ(W )> 0. Using this, and choosing a gn ∈ h(n),

1−δ < H ′(n)(p) = 〈ph(n),h(n)〉=
∫
[0,1]

χW g2
n =

∫
W

g2
n.

Now, writing n = i + 2 j − 1, with (i, j) ∈ Y , we note that h(n)2 = 2 j[χV (i, j)].
Therefore,

1−δ <
∫

W
2 j

χV (i, j) = 2 j
µ(W ∩V (i, j)),

i.e. µ(W ∩V (i, j))> 1
2 j (1−δ ). Now note that we can split V (i, j) into two disjoint,

equal parts, i.e. V (i, j) =V (2i, j+1)∪V (2i+1, j+1). Then:

µ(V (i, j)∩W ) = µ(V (2i, j+1)∩W )+µ(V (2i+1, j+1)∩W )

≤ µ(V (2i, j+1)∩W )+µ(V (2i+1, j+1)),

whence

µ(V (2i, j+1)∩W )≥ µ(V (i, j)∩W )−µ(V (2i+1, j+1))

>
1
2 j (1−δ )− 1

2 j+1 = (
1
2
) j+1(1−2δ ).

Likewise, it follows that µ(V (2i+ 1, j+ 1)∩W ) > ( 1
2 )

j+1(1− 2δ ). Now, upon
defining m := 2i + 2 j+1 − 1 we obtain that h(m)2 = 2 j+1χV (2i, j+1) and also that
h(m+1)2 = 2 j+1χV (2i+1, j+1). Furthermore, Û(h(m)) = h(m+1). Now choose rep-
resentatives gm ∈ h(m) and gm+1 ∈ h(m+1). Then:
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‖ph(m+1)‖2 = 〈ph(m+1), ph(m+1)〉=
∫
[0,1]

χ
2
W g2

m+1

=
∫

W
2 j+1

χV (2i+1, j+1) = 2 j+1
µ(W ∩V (2i+1, j+1))

> 1−2δ .

Furthermore, writing Z := [0,1]\W ,

‖h(m)− ph(m)‖2 =
∫
[0,1]

χZg2
m

=
∫

Z
g2

m =
∫
[0,1]

g2
m−

∫
W

g2
m

= 1−
∫

W
χV (2i, j+1) = 1−µ(W ∩V (2i, j+1))

< 1− (1−2δ ) = 2δ .

Combining this, we get:

‖pÛ ph(m)‖ ≥ ‖pÛh(m)‖−‖pÛ(h(m)− ph(m))‖
≥ ‖ph(m+1)‖−‖h(m)− ph(m)‖

>
√

1−2δ −
√

2δ

> 1− ε.

Since ‖h(m)‖ = 1, we then have ‖pÛ p‖ > 1− ε . Therefore, indeed, we obtain
that ‖pÛ p‖= 1. ut

We can use this rather technical result to prove the following very important
theorem.

Theorem 7.19. Suppose f ∈ ∂eS(Ac). Then Ext( f ) has more than one element.

Proof. We argue by contraposition, so we suppose Ext( f ) does not have more than
one element. Then by theorem 3.16, we know that Ext( f ) has exactly one element.

Now, by theorem 7.10, there is an ultrafilter U ∈ Ultra(N) such that we have
(βH ′)(U) = f . Then by corollary 7.9, (M∗ ◦βH)(U) = f . Then (βH)(U)∈ Ext( f ).
Since Ext( f ) consists of exactly one element, we know that Ext( f ) = {(βH)(U)}.

Recall that the Anderson operator Û satisfies H(n)(Û) = 0 for every n ∈ N.
Therefore, using proposition 7.11,

{(βH)(U)(Û) =
⋂

σ∈U

{H(n)(Û) : n ∈ σ}= {0},

i.e. (βH)(U)(Û) = 0.
We can now apply corollary 7.17 to find a projection p ∈ AC such that | f (p)|= 1

and ‖pÛ p‖< 1
2 . However, then p is a non-zero projection. Therefore, by proposi-
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tion 7.18, ‖pÛ p‖= 1. This is a contradiction. Therefore, Ext( f ) has more than one
element, as desired. ut

Since Ac does have pure states by the Gelfand representation (theorem B.25), the
above theorem has the following immediate corollary, which is the result we were
primarily interested in.

Corollary 7.20. Ac does not have the Kadison-Singer property.

7.5 The Kadison-Singer conjecture

In the light of corollary 5.26, the statement in corollary 7.20 is very important.
We have now eliminated the continuous subalgebra from the list of algebras that
could possibly have the Kadison-Singer property. However, we can also eliminate
the mixed subalgebra, by using theorem 4.13.

Corollary 7.21. Suppose 1≤ j ≤ℵ0. Then Ad( j)⊕Ac ⊆ B(H j) does not have the
Kadison-Singer property.

Proof. Suppose Ad( j)⊕Ac ⊆ B(H j) does have the Kadison-Singer property. Then
by theorem 4.13, Ac ⊆ B(L2(0,1)) has the Kadison-Singer property. This is in con-
tradiction with corollary 7.20, so Ad( j)⊕Ac ⊆ B(H j) does not have the Kadison-
Singer property. ut

Now that we have eliminated the continuous and mixed subalgebra of our list,
we can make a new step towards our classification of abelian C∗-subalgebras with
the Kadison-Singer property: only the discrete subalgebra can possibly have this
property. The proof of the following corollary mainly serves as a summary of our
results so far.

Corollary 7.22. Suppose H is a separable Hilbert space and A⊆ B(H) is a unital
abelian C∗-subalgebra that has the Kadison-Singer property. Then A is unitarily
equivalent to Ad( j)⊆ B(`2( j)) for some 1≤ j ≤ℵ0.

Proof. By corollary 5.26, we know that A is unitarily equivalent to either Ad( j), Ac
or Ad( j)⊕Ac for some 1 ≤ j ≤ ℵ0. If it would be unitarily equivalent to Ac, then
Ac would have the Kadison-Singer property too, by theorem 5.3. However, this is in
contradiction with corollary 7.20. So A is not unitarily equivalent to Ac. Likewise,
A is not unitarily equivalent to Ad( j)⊕Ac for some 1 ≤ j ≤ℵ0, by corollary 7.21.
Hence we obtain that there is only one case left: A is unitarily equivalent to Ad( j)
for some 1≤ j ≤ℵ0. ut

The natural question that now arises is whether we can reduce our list of abelian
C∗-algebras that possibly have the Kadison-Singer property even further. Note that
we have already proven in theorem 2.14 that Ad( j) has the Kadison-Singer property
for j ∈N. Hence the only open question is whether Ad(ℵ0) = `∞(N)⊆B(`2(N)) has
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the Kadison-Singer property. Richard Kadison and Isadore Singer ([12]) formulated
this question in 1959 and believed that the answer was negative.

This open question became known as the Kadison-Singer conjecture and was
answered in 2013, by Adam Marcus, Daniel Spielman and Nikhil Srivastava. De-
spite the belief of Kadison and Singer, it was proven that `∞(N) ⊆ B(L2(0,1)) in
fact does have the Kadison-Singer property. In the rest of this text, we will prove
this and thereby conclude our classification of abelian unital C∗-algebras with the
Kadison-Singer property.



Chapter 8
The Kadison-Singer problem

In the previous chapter, we have reduced the classification of unital abelian C∗-
algebras with the Kadison-Singer property to the Kadison-Singer conjecture. In this
chapter, we show that the Kadison-Singer conjecture has a positive answer, i.e. that
the algebra `∞(N)⊆ B(`2(N)) has the Kadison-Singer property.

Unexpectedly, we do this by a series of statements in the field of linear algebra.
This can be done by using the reduction of the Kadison-Singer conjecture via the
paving ([1]) and Weaver ([26]) conjectures. These reductions were established over
the last decade and enabled the mathematicians Adam Marcus, Daniel Spielman and
Nikhil Srivastava to finally prove the Kadison-Singer conjecture in 2013 ([16]).

We will first prove their two most important results, viz. theorem 8.17 and the-
orem 8.26. Using these results, we prove the Weaver conjecture and the paving
conjecture. After that, the Kadison-Singer conjecture is easily solved.

8.1 Real stable polynomials

The results of Marcus, Spielman and Srivastava involve the notion of real stable
polynomials. This theory has been developed by many mathematicians, for example
by Borcea and Brändén in [3]. We define the open upper half-plane H⊆ C by

H := {z ∈ C | Im(z)> 0},

and consider Hn as as subset of Cn. We use this to define real stable polynomials.

Definition 8.1. A polynomial p in n variables is called real stable if all coefficients
of p are real and p has no zeroes in Hn.

We first focus on real stable polynomials in one variable. We can describe these
in a quite easy manner. First of all, we have the following result.

Lemma 8.2. Suppose r is a real stable polynomial in one variable and {zi}n
i=1 ⊆C

is the set of roots of r. Then {zi}n
i=1 ⊆ R.

79
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Proof. Let i ∈ {1, . . . ,n}. Then r(zi) = 0 and since r has real coefficients by real
stability, we know that r(zi) = r(zi) = 0. Therefore, zi,zi 6∈ H, i.e. Im(zi) ≤ 0 and
−Im(zi) = Im(zi)≤ 0. Hence Im(zi) = 0.

Since i ∈ {1, . . . ,n} was arbitrary, we therefore have {zi}n
i=1 ⊆ R. ut

Using this, we get the following equivalent definition of real stable polynomials
in one variable.

Lemma 8.3. Suppose p is a polynomial in one variable. Then p is real stable if and
only if all coefficients and all roots of p are real.

Proof. First, suppose that p is real stable. Then by definition all coefficients of p are
real. Now write p(z) = c∏

n
i=1(z−zi). Then p(z) = czn+ . . . , so c is real. Now define

q := p
c and observe that q is a polynomial in one variable with real coefficients and

the same roots as p, so q is real stable. Hence, by lemma 8.2, the roots of q (i.e. the
roots of p) are real. So, all coefficients and roots of p are real.

For the converse, suppose that all coefficients and roots of p are real. Then cer-
tainly p has no roots in H. Therefore, p is real stable. ut

Since all the roots of a real stable polynomial in one variable are real, we can
order them. Therefore, for such a polynomial p, we can define ρ(p) to be the greatest
root. We then have the following result.

Proposition 8.4. Suppose that p and q are two monic polynomials in one variable,
with the same degree. Furthermore, suppose that for any t ∈ [0,1], the polynomial
(1− t)p+ tq is real stable. Then, for any t ∈ [0,1], there is a s ∈ [0,1] such that
ρ((1− t)p+ tq) = (1− s)ρ(p)+ sρ(q).

Proof. First of all, for t = 0 we can take s = 0 and likewise for t = 1 we take s = 1.
Hence we can assume that 0< t < 1. Furthermore, since p and q are interchangeable,
we can assume that ρ(p)≤ ρ(q).

We first prove that ρ((1− t)p+ tq) ≤ ρ(q). To see this, let x > ρ(q). Then also
x > ρ(p), and hence for any x′ ≥ x, q(x′)> 0 and p(x′)> 0, since both p and q are
monic. Therefore, ((1− t)p+ tq)(x′)> 0 for all x′ ≥ x. Hence x > ρ((1− t)p+ tq),
since (1− t)p + tq is monic too. Since x > ρ(q) was arbitrary, this implies that
ρ((1− t)p+ tq)≤ ρ(q), as we desired to prove.

Next, suppose that ρ((1− t)p+ tq) < ρ(p). We prove that this leads to a con-
tradiction. First, note that (1− t)p+ tq is monic and ρ((1− t)p+ tq)< ρ(p), so it
follows that ((1− t)p+ tq)(ρ(p))> 0, i.e. q(ρ(p))> 0.

Now, for every s ∈ [0,1], we can write

(1− s)p+ sq =
n

∏
i=1

(z− zi(s)),

with z1(s) ≤ z2(s) ≤ ·· · ≤ zn(s), where n is the degree of both q and p. Note that
each zi : [0,1]→R is a continuous function and that each zi is real-valued too by the
assumption of real stability. Furthermore, zn(s) = ρ((1− s)p+ sq) for all s ∈ [0,1]
and hence zn(1) = ρ(q)≥ ρ(p). We also know that zn(t) = ρ((1−t)p+tq)< ρ(p).
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Hence, by the intermediate value theorem, there is a t ′ ∈ [t,1] such that zn(t ′)= ρ(p).
But then ((1− t ′)p+ t ′q)(ρ(p)) = 0, i.e. q(ρ(p)) = 0. This is a contradiction.

Therefore, ρ(p)≤ ρ((1− t)p+ tq)≤ ρ(q), i.e. there is a s ∈ [0,1] such that

ρ((1− t)p+ tq) = (1− s)ρ(p)+ sρ(q),

as we intended to prove. ut

This has the following immediate corollary.

Corollary 8.5. Suppose {pi}n
i=1 is set of polynomials in one variable of the same de-

gree, all with leading coefficient 1. Furthermore, suppose that every p∈ co({pi}n
i=1)

is real stable. Then, for any p ∈ co({pi}n
i=1), ρ(p) ∈ co({ρ(pi)}n

i=1).

Now that we have covered some of the theory of real stable polynomials in one
variable, it is time to give some examples of real stable polynomials in more vari-
ables. To do this, we first need the following definition.

Definition 8.6. Suppose {Ai}k
i=1 ⊆ Mn(C). Then the polynomial q(A1, . . . ,Ak) in

(k+1) variables defined by

q(A1, . . . ,Ak)(z0,z1, . . . ,zk) = det(z01+
k

∑
i=1

ziAi),

is called the associated polynomial of {Ai}k
i=1.

Associated polynomials become particularly interesting for self-adjoint matrices.
For this special case, we first have the following result.

Lemma 8.7. Suppose {Ai}k
i=1 ⊆Mn(C) is a set of self-adjoint matrices. Then

q(A1, . . . ,Ak)(z0, . . . ,zk) = q(A1, . . . ,Ak)(z0, . . . ,zk).

Proof. This can be computed directly:

q(A1, . . . ,Ak)(z0, . . . ,zk) = det(z01+
k

∑
i=1

ziAi)

= det((z01+
k

∑
i=1

ziAi)
∗)

= det(z01+
k

∑
i=1

ziAi)

= q(A1, . . . ,Ak)(z0, . . . ,zk). ut

Upon further refining the special case of self-adjoint matrices to positive matri-
ces, associated polynomials become real stable, as the following proposition states.

Proposition 8.8. Suppose {Ai}k
i=1 ⊆ Mn(C) is a set of postive matrices. Then the

associated polynomial q(A1, . . . ,Ak) is real stable.
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Proof. Write p = q(A1, . . . ,Ak). Applying lemma 8.7, we see that the complex con-
jugates of the coefficients of p are the coefficients themselves, i.e. all coefficients of
p are real.

Next, suppose that z = (z0, . . . ,zk) is a zero of p. Then, upon defining the matrix
B := z01+∑

k
i=1 ziAi, we see that det(B) = 0, i.e. B is not invertible, whence not

injective. Therefore, there is a non-zero vector y ∈ Cn such that By = 0. Then we
have

0 = 〈By,y〉= z0‖y‖2 +
k

∑
i=1

zi〈Aiy,y〉,

and by taking imaginary parts,

Im(z0)‖y‖2 +
k

∑
i=1

Im(zi)〈Aiy,y〉= 0.

Now, suppose z ∈ Hk+1. Then ∑
k
i=1 Im(zi)〈Aiy,y〉 ≥ 0, since all Ai are positive.

Therefore, we must have Im(z0)‖y‖2 ≤ 0. Since Im(z0)> 0, we then have ‖y‖= 0,
i.e. y = 0, which is a contradiction. Hence we must have z 6∈Hk+1.

Since z was an arbitrary zero of p, we have that p is real stable, as desired. ut

Now that we have an example of a non-trivial family of a real stable polynomials,
we can discuss transformations that preserve real stability. First of all, interchang-
ing variables obviously preserves real stability. The following transformation is less
trivial.

Lemma 8.9. Suppose n > 1 and let p be a real stable polynomial in n variables.
Furthermore, let t ∈R and i ∈ {1, . . . ,n}. Let q be the polynomial in n−1 variables
defined by

q(z1, . . . ,zn−1) = p(z1, . . . ,zi−1, t,zi, . . . ,zn−1).

Then q is either real stable or identically zero.

Proof. Note that by our previous observation that real stability is preserved under
interchanging variables we can assume that i = n.

It is clear that q has real coefficients, since p has real coefficients and t ∈ R.
Define the sequence {qm}∞

m=1 of polynomials in n−1 variables by

qm(z1, . . . ,zn−1) = p(z1, . . . ,zn−1, t + i
m ).

Now note that Hn−1 is open and connected. Furthermore, for every compact sub-
set C ⊆Hn−1, the sequence {qm}∞

m=1 clearly converges uniformly to q. Since t ∈ R
and p is real stable, each qm has no zeroes in Hn−1. Therefore, by Hurwitz’s theo-
rem (see A.17), q is either identically zero on Hn−1 or has no zeroes in Hn−1. In the
first case, q is obviously identically zero everywhere and in the second case q is real
stable. ut

For the next transformation that preserves real stability, we adopt the notational
convention ∂i =

∂

∂ zi
, i.e. ∂i is the directional derivative in the i’th coordinate.
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Proposition 8.10. Suppose p is a real stable polynomial in n variables, let t ∈ R,
and i ∈ {1, . . . ,n}. Then the polynomial (1+ t∂i)p is real stable.

Proof. Since the property of real stability is preserved under interchanging vari-
ables, it is enough to prove the claim for i = n.

If t = 0, then the result is trivial, so we can suppose t 6= 0. Clearly, (1+ t∂n)p has
real coefficients, so we only have to prove that (1+ t∂n)p has no zeroes in Hn.

We argue by contraposition, so suppose that there is a vector (y1, . . . ,yn) ∈ Hn

such that ((1+ t∂n)p)(y1, . . . ,yn) = 0. Then define q as the polynomial in one vari-
able given by

q(z) = p(y1, . . . ,yn−1,z).

Since p has no zeroes in Hn and (y1, . . . ,yn−1) ∈ Hn−1, q has no zeroes in H. So,
especially, q(yn) 6= 0. Now write q(z) = α ∏

m
i=1(z−wi), i.e. {wi}m

i=1 is the set of
zeroes of q, counted with multiplicity. Since q has no zeroes in H, Im(wi) ≤ 0 for
all 1≤ i≤ m. Now if we write q′ for the derivative of q, we obtain

0 = ((1+ t∂n)p)(y1, . . . ,yn) = q(yn)+ tq′(yn).

Since q(yn) 6= 0, we then also have

0 = 1+ t
q′(yn)

q(yn)
.

Now, considering the explicit form of q given above, we see that

q′(z) = α

m

∑
i=1

∏
j 6=i

(z−w j),

whence
q′(yn)

q(yn)
=

m

∑
i=1

1
yn−wi

=
m

∑
i=1

yn−wi

|yn−wi|2
.

Now,

0 = Im
(

1+ t
q′(yn)

q(yn)

)
= t

m

∑
i=1

Im(yn−wi)

|yn−wi|2
= t

m

∑
i=1

Im(wi)− Im(zn)

|yn−wi|2
.

Since t 6= 0, we obtain ∑
m
i=1

Im(wi)−Im(zn)
|yn−wi|2

= 0. However, for all i ∈ {1, . . . ,m},

we have Im(wi)≤ 0 < Im(zn), so ∑
m
i=1

Im(wi)−Im(zn)
|yn−wi|2

< 0. This is a contradiction, so
(1+ t∂n)p has no zeroes in Hn and is therefore real stable, as desired. ut
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8.2 Realizations of random matrices

Using the basic theory of real stable polynomials that we have established in the
previous section, we can come to the first major result of Marcus, Spielman and
Srivastava. They considered so-called mixed characteristic polynomials.

Definition 8.11. Suppose {Ai}k
i=1 ⊆Mn(C). Then the mixed characteristic poly-

nomial µ[A1, . . . ,Ak] of the set {Ai}k
i=1 is defined as

µ[A1, . . . ,Ak](z) =
( k

∏
i=1

(1−∂i)
)

det
(
z1+

k

∑
j=1

z jAk
)
|z1=···=zk=0.

Mixed characteristic polynomials become interesting for positive matrices.

Proposition 8.12. Suppose {Ai}k
i=1 ⊆Mn(C) is a set of positive matrices. Then the

mixed characteristic polynomial µ[A1, . . . ,Ak] is real stable.

Proof. By proposition 8.8, the associated polynomial q(A1, . . . ,Ak) is real stable.
Then note that

µ[A1, . . . ,Ak](z) =
( k

∏
i=1

(1−∂i)q(A1, . . . ,Ak)(z,z1, . . . ,zk)
)
|z1=···=zk=0,

i.e. µ[A1, . . . ,Ad ] is obtained by applying both the transformation described in
proposition 8.10 and the transformation of lemma 8.9 k times to q(A1, . . . ,Ad). Since
both transformations preserve real stability, µ[A1, . . . ,Ad ] is real stable. ut

Now, the first major result proven by Marcus, Spielman and Srivastava (theorem
8.17) concerns positive matrices of rank 1. We use the notation PR1(m) for the set
of positive matrices of rank 1 in Mm(C), where m ∈ N.

Lemma 8.13. Suppose {Ai}k
i=1 ⊆ PR1(n) and let B ∈Mn(C) be arbitrary. Then the

polynomial p defined by

p(z1, . . . ,zk) = det(B+
k

∑
i=1

ziAi)

is affine in each coordinate.

Proof. Let j ∈ {1, . . . ,k}. Then, since we have A j ∈ PR1(n), we can choose a basis
{e1, . . . ,en} such that A jei = 0 for all i≥ 2, i.e. with respect to this basis we have

A =


a 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ,
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and for fixed {zi}i 6= j, also with respect to the basis {e1, . . . ,en},

B+∑
i6= j

ziAi =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn

 ,

for some constants {cml}. Therefore, we have

p(z1, . . . ,zk) = det


c11 + z ja c12 · · · c1n

c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn

 ,

which has a constant and a linear term in z j. Therefore, p is affine in z j. ut

Using the above lemma, we can now see the relevance of mixed characteristic
polynomials. Here, we denote the characteristic polynomial of a matrix A by pA, i.e.

pA(z) = det(z1−A)

for all z ∈ C.

Lemma 8.14. Suppose that {Ai}k
i=1⊆PR1(n) and define A=∑

k
i=1 Ai. Then we have

the identity pA = µ[A1, . . . ,Ak].

Proof. Define the polynomial p by p(z1, . . . ,zk) = det(z1+∑
k
i=1 Ai). Then, accord-

ing to lemma 8.13, p is affine in each coordinate. Therefore, p is equal to its Taylor
expansion up to order (1, . . . ,1), i.e. for any (w1, . . . ,wk) ∈ Ck, we have

p(w1, . . . ,wk) =
(

∑
ji∈{0,1}

k

∏
i=1

ti∂
ji

i

)
(p(z1, . . . ,zk))|z1=···=zk=0.

However, ∑ ji∈{0,1}∏
k
i=1 ti∂

ji
i = ∏

k
i=1(1+ ti∂i), so

p(w1, . . . ,wk) =
( k

∏
i=1

(1+ ti∂i)
)
(p(z1, . . . ,zk))|z1=···=zk=0.

Now choose w1 = · · ·= wk =−1. Then:

pA(z) = p(w1, . . . ,wk)

=
( k

∏
i=1

(1+ ti∂i)
)

det(z1+
k

∑
i=1

Ai)|z1=···=zk=0

= µ[A1, . . . ,Ak](z),
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i.e. pA = µ[A1, . . . ,Ak], as desired. ut

The first major result of Marcus, Spielman and Srivastava concerns random vari-
ables taking value in sets of matrices, often called random matrices. We call the out-
comes of such random variables realizations. Furthermore, these random variables
induce other random variables in a canonical way, for example by means of con-
sidering characteristic polynomials and expectation values of the originial random
variable. As it turns out, the statement of lemma 8.14 behaves nicely with respect to
expectation values.

Proposition 8.15. Suppose {Yi}k
i=1 is a set of random variables taking values in

PR1(m) and define Y = ∑
k
i=1 Yi. Then EpY = µ[EY1, . . . ,EYk].

Proof. By lemma 8.14, EpY = Eµ[Y1, . . . ,Yk]. Now let B ∈Mn(C) and suppose that
{Ai}k

i=1 ∈Mn(C) too. Then define

I = {(i1, . . . , i j) | j ∈ N,1≤ i1 < i2 < · · ·< i j ≤ k},

and use the shorthand notation i = (i1, . . . , i j) ∈ I. Then note that by lemma 8.13
there are certain constants {ci}i∈I such that det(B + ∑

k
i=1 ziAi) = ∑i∈I cizi1 · · ·zi j .

Furthermore, note that any constant ci is given by a sum ci = ∑l blal,1 · · ·al, j, where
i = (i1, . . . , i j) and each al,m is a coefficient of Aim .

Now, note that if we replace the set {Ai}k
i=1 with the independent set of ran-

dom variables {Yi}k
i=1, we obtain Eci = ∑l blEal,1 · · ·Eal, j, since the set of random

variables {Yi}k
i=1 is independent, and therefore separate coordinates are too. Hence

Edet(B+
k

∑
i=1

ziYi) = det(B+
k

∑
i=1

ziEYi).

Now replace B with z1 and observe that

EpY = Eµ[Y1, . . . ,Yk]

= E
( k

∏
i=1

(1−∂i)
)

det
(
z1+

k

∑
j=1

z jYj
)
|z1=···=zk=0

=
( k

∏
i=1

(1−∂i)
)
Edet

(
z1+

k

∑
j=1

z jYj
)
|z1=···=zk=0

=
( k

∏
i=1

(1−∂i)
)

det
(
z1+

k

∑
j=1

z jEYj
)
|z1=···=zk=0

= µ[EY1, . . . ,EYk].

ut
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Recall that for a real stable polynomial p in one variable, we have introduced the
notation ρ(p) for the greatest root of p. The following technical statement is a key
result in our discussion.

Proposition 8.16. Suppose {Yi}k
i=1 is a set of random variables taking a finite num-

ber of values in PR1(m). Then for any 1≤ j≤ k and realization {Ai} j−1
i=1 of {Yi} j−1

i=1 ,
there is a realization A j of Yj such that

ρ(µ[A1, . . . ,A j,EYj+1, . . . ,EYk])≤ ρ(µ[A1, . . . ,A j−1,EYj, . . . ,EYk]).

Proof. Let 1 ≤ j ≤ k and suppose that {Ai} j−1
i=1 is a realization of {Yi} j−1

i=1 . Further-
more, suppose that {Bi}r

i=1 is the set of finite values of Yj. For each 1≤ i≤ r, write
pi for the probability of Bi. Now adopt the notation of the proof of proposition 8.15
and define

I′ = {(i1, . . . , il) ∈ I | ∃1≤ q≤ l : j = iq}.

Write c′i for the ci that belongs to the set (A1, . . . ,A j−1,EYj, . . . ,EYk), and for every
s ∈ {1, . . . ,r} ci(s) for the ci belonging to (A1, . . . ,A j−1,Bs,EYj+1, . . . ,EYk).

Then note that by linearity, for every i ∈ I′, c′i = ∑
r
s=1 psci(s), and by indepen-

dence of Bs, c′i = ∑
r
s=1 psci(s) for every i ∈ I \ I′ too. Hence

µ[A1, . . . ,A j−1,EYj, . . . ,EYk] =
r

∑
s=1

psµ[A1, . . . ,A j−1,Bs,EYj+1, . . . ,EYk],

which is a convex sum. Hence by corollary 8.5, ρ(µ[A1, . . . ,A j−1,EYj, . . . ,EYk]) is
in the convex hull of the set {ρ(µ[A1, . . . ,A j−1,Bs,EYj+1, . . . ,EYk])}r

s=1. Therefore,
there is a s ∈ {1, . . . ,r} such that

ρ(µ[A1, . . . ,A j−1,Bs,EYj+1, . . . ,EYk])≤ ρ(µ[A1, . . . ,A j−1,EYj, . . . ,EYk]).

Then set A j := Bs and the desired result is proven. ut

The first major result of Marcus, Spielman and Srivastava is now easy to prove.

Theorem 8.17. Suppose {Yi}n
i=1 is a set of independent random variables taking a

finite number of values in PR1(m). Then, writing Y = ∑
n
i=1 Yi there is at least one

realization {Ai}n
i=1 of the set {Yi}n

i=1 such that ‖A‖ ≤ ρ(EpY ), where A = ∑
n
i=1 Ai.

Proof. By applying proposition 8.16 n times, there is a realization {Ai}n
i=1 of

{Yi}n
i=1 such that ρ(µ[A1, . . . ,An]) ≤ ρ(µ[EY1, . . . ,EYn]). Now, define A = ∑

n
i=1 Ai.

Then, by proposition 8.15 we have EpY = µ[EY1, . . . ,EYn] and by lemma 8.14 we
know that pA = µ[A1, . . . ,An].

Combining all this, we obtain ‖A‖= ρ(pA)≤ ρ(EpY ), since A is a positive ma-
trix. ut

In section 8.4, we combine this theorem with the second main result of Marcus,
Spielman and Srivastava, which we prove in the next section.
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8.3 Orthants and absence of zeroes

In the first few results, we will use the notion of logarithmic derivatives.

Definition 8.18. For a differentiable function f : Rn→ R, a point x ∈ Rn such that
f (x) 6= 0 and i ∈ {1, . . . ,n}, we define the i’th logarithmic derivative of p at the
point x as Φ i

p(x) = ∂i(log◦p)(x) = ∂i p(x)
p(x) .

Recall that for p a real stable polynomial in one variable, we introduced the
notation of ρ(p) for the largest root of p. This is characterized by the fact that p has
no zeroes above ρ(p). This notion of above can be extended to so-called orthants.

Definition 8.19. Suppose x∈Rn for some n∈N. Then the orthant Ort(x) is defined
as

Ort(x) = {y ∈ Rn | yi ≥ xi∀i}.

We use these two new concepts in the following result.

Lemma 8.20. Suppose p is a real stable polynomial in two variables and let x ∈R2

such that p has no zeroes in the orthant Ort(x). For any n ∈ N∪{0}, we then have
the inequality

(−1)n
(

∂ n

∂ zn
2

Φ
1
p

)
(x)≥ 0.

Proof. First, for all w ∈ C, define qw(z) = p(w,z), a polynomial in one variable.
Now, p = ∑

n
i=1 αiz

mi
1 zki

2 for some {αi}n
i=1 ⊆ R, {mi}n

i=1 ⊆ N and {ki}n
i=1 ⊆ N.

Define k = max1≤i≤n ki and I = {i ∈ {1, . . . ,n} : ki = k}. Then we obtain that
deg(qw) = k if and only if ∑i∈I αiwmi 6= 0. Since ∑i∈I αiwmi is just a polynomial, we
see that the set T ′ := {w ∈ C : deg(qw) = k} is cofinite.

Now, for every w ∈ T ′, qw(z) = c(w) ·∏k
i=1(z− yi(w)). Furthermore, since p is

a polynomial, we can assume that there is a cofinite T ⊆ T ′ such that the functions
{yi}k

i=1 are holomorphic on T , by the implicit function theorem for holomorphic
functions (see theorem 7.6 in [7]). Then obviously, T ⊆ C is cofinite too.

Write vi = yi|T∩[x1,∞). For w ∈ T ∩ [x1,∞), qw(x2) 6= 0, since p has no zeroes in
the orthant Ort(x). Therefore, for w ∈ T ∩ [x1,∞), qw is not identically zero, whence
it is real stable by lemma 8.9. Therefore, the functions {vi}k

i=1 are real-valued.
Furthermore, for t ∈ T ∩ [x1,∞) and 1≤ j≤ k we can apply the Cauchy-Riemann

equations for the function y j at the point (t,0). In that way, we obtain

v′j(t) = lim
h→0

Im(y j(ih)
h

,

so if v′j(t)> 0 for some j ∈ {1, . . . ,k}, there is a h > 0 such that Im(y j(ih))> 0. For
this h, we then have (ih,y j(ih)) ∈H2, while

p(ih,y j(ih)) = qih(y j(ih)) = c(ih) ·
k

∏
l=1

(y j(ih)− yl(ih)) = 0.
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This is a contradiction, whence we know that the functions {vi}k
i=1 are decreasing

at every point t ∈ T ∩ [x1,∞).
Now observe that for any t ∈ T ∩ [x1,∞) we have

( ∂ n

∂ zn
2
(log p)

)
(t,x2) =

{ ∂ n

∂ zn
2
((logqt)(z2))

}
z2=x2

=
{ ∂ n

∂ zn
2
(log(c(t)

k

∏
i=1

(z2− vi(t))))
}

z2=x2

=
{ ∂ n

∂ zn
2
(log(c(t))+

k

∑
i=1

log(z2− vi(t)))
}

z2=x2

= (−1)n−1
k

∑
i=1

(n−1)!
(x2− vi(t))n .

Since p has no zeroes in the orthant Ort(x), we conclude that vi(t) < x2 for all
i ∈ {1, . . . ,k} and t ∈ T ∩ [x1,∞). In combination with the fact that the functions
{vi}k

i=1 are decreasing on T ∩ [x1,∞), for every t ∈ T ∩ [x1∞) we obtain

(−1)n ∂ n

∂ zn
2

Φ
1
p(t,x2) = (−1)n ∂ n

∂ zn
2

∂

∂ z1
(log p)(t,x2)

= (−1)n ∂

∂ z1

∂ n

∂ zn
2
(log p)(t,x2)

=− ∂

∂ t

k

∑
i=1

(n−1)!
(x2− vi(t))n

≥ 0.

Since T ∩ [x1,∞)⊆ [x1,∞) is cofinite, for any t ∈ [x1,∞) the inequality

(−1)n ∂ n

∂ zn
2

Φ
1
p(t,x2)≥ 0

holds, so it certainly holds for t = x1, as desired. ut

The above result about real stable polynomials in two variables can be extended
to a result about arbitrary real stable polynomials.

Lemma 8.21. Suppose p is a real stable polynomial in n variables and let x ∈ Rn

be such that p has no zeroes in the orthant Ort(x). Then for any i, j ∈ {1, . . . ,n} and
k ∈ N∪{0}, we have

(−1)k
(

∂ k

∂ zk
j
Φ

i
p

)
(x)≥ 0.

Proof. If i 6= j, note that by renumbering we can assume that i = 1 and j = 2. Then
let q be the polynomial in two variables defined by
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q(z1,z2) = p(z1,z2,x3, . . . ,xn).

By lemma 8.9, q is either zero or real stable. Since p(x) 6= 0, we know that q is not
identically zero, i.e. q is real stable. Furthermore, we have

(−1)k
(

∂ k

∂ zk
2

Φ
1
p

)
(x) = (−1)k

(
∂ k

∂ zk
2

Φ
1
q

)
(x1,x2)≥ 0,

where we used lemma 8.20. If i = j, then by renumbering, we can assume that i = 1.
Then let r be the polynomial in one variable defined by

r(z) = p(z,x2, . . . ,xn),

which is non-zero since p(x) 6= 0. Therefore, using lemma 8.9, we know that r is
real stable, so we can write

r(z) = c
m

∏
l=1

(z− yl),

where c and all yi are real. Then we have for all z≥ x1:

Φ
i
p(z,x2, . . . ,xn) = Φr(z) =

(∂ r)(z)
r(z)

=
c∑

m
l=1 ∏k 6=l(z− yk)

c∏
m
l=1(z− yl)

=
m

∑
l=1

1
z− yl

.

Therefore, we have

∂ k

∂ zk Φ
i
p(x) = (−1)k

m

∑
l=1

k!
(x1− yl)k+1 .

Since p has no zeroes in the orthant Ort(x), r has no zeroes in the orthant Ort(x1)

either, i.e. yl < x1 for all l ∈ {1, . . . ,m}, whence indeed (−1)k ∂ k

∂ zk Φ i
p(x) ≥ 0, as

desired. ut

The next result is an easy consequence.

Corollary 8.22. Suppose p is a real stable polynomial in n variables and let x ∈Rn

such that p has no zeroes in Ort(x). Furthermore, let i, j ∈ {1, . . . ,n}. Then the
function fi j : [0,∞)→ R, given by fi j(t) = Φ i

p(x+ te j), is positive, decreasing and
convex.

Proof. Let t ∈ [0,∞). Then, since Ort(x + te j) ⊆ Ort(x), we know that p has no
zeroes in Ort(x+ te j). Hence by lemma 8.21 we know that fi j(t)> 0, (∂ fi j)(t)< 0
and (∂ 2 fi j)(t) > 0. Since t ∈ [0,∞) was arbitrary, fi j is indeed positive, decreasing
and convex. ut

The following lemma plays a key role in the proof of the second main result
established by Marcus, Spielman and Srivastava.
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Lemma 8.23. Suppose p is a real stable polynomial in n variables and let x ∈ Rn

be such that p has no zeroes in the orthant Ort(x). Furthermore, suppose that for
some i ∈ {1, . . . ,n}, there is a C > 0 such that Φ i

p(x)+
1
C ≤ 1. Then (1− ∂i)p has

no zeroes in Ort(x+Cei) and, for all j ∈ {1, . . . ,n}, we have the inequality

Φ
j
(1−∂i)p(x+Cei)≤Φ

j
p(x).

Proof. Suppose y ∈ Ort(x). Then y = x+ t for some t ∈ Ort(0). Now define w0 = x
and for every j ∈ {1, . . . ,n}, define w j = w j−1 + t je j, i.e. such that wn = y. Then by
corollary 8.22,

Φ
i
p(y) = Φ

i
p(wn)≤Φ

i
p(wn−1)≤ ·· · ≤Φ

i
p(w1)≤Φ

i
p(w0) = Φ

i
p(x)< 1.

Hence Φ i
p(y) 6= 1, i.e. (∂i p)(y) 6= p(y), whence ((1−∂i)p)(y) 6= 0.

Therefore, (1−∂i)p has no zeroes in Ort(x) and therefore certainly has no zeroes
in the orthant Ort(x+Cei)⊆ Ort(x).

Now let j ∈ {1, . . . ,n}. Then note that by corollary 8.22, we know that the func-
tion f ji : [0,∞)→R, given by fi j(t) =Φ

j
p(x+tei) is convex, so we have the inequal-

ity
f ji(C)≤ f ji(0)+C(∂ f ji)(C),

i.e.
Φ

j
p(x+Cei)≤Φ

j
p(x)+C(∂iΦ

j
p)(x+Cei).

Rewriting this, we obtain

−C(∂iΦ
j
p)(x+Cei)≤Φ

j
p(x)−Φ

j
p(x+Cei).

Note that for any y ∈ Ort(x), we have

(∂ jΦ
i
p)(y) = (∂ j∂i(log◦p))(y) = (∂i∂ j(log◦p))(y) = (∂iΦ

j
p)(y),

which enables us to rewrite the above inequality as

−C(∂ jΦ
i
p)(x+Cei)≤Φ

j
p(x)−Φ

j
p(x+Cei).

Since the function f ji is decreasing, by corollary 8.22 we know that

Φ
i
p(x+Cei)≤Φ

i
p(x)≤ 1− 1

C
,

i.e.
1

1−Φ i
p(x+Cei)

≤C.

Furthermore, lemma 8.21 gives −(∂ jΦ
i
p)(x+Cei)≥ 0, so we have
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−(∂ jΦ
i
p)(x+Cei)

1−Φ i
p(x+Cei)

≤−C(∂ jΦ
i
p)(x+Cei).

Therefore, we obtain

−(∂ jΦ
i
p)(x+Cei)

1−Φ i
p(x+Cei)

≤Φ
j
p(x)−Φ

j
p(x+Cei).

Next, observe that for any y ∈ Ort(x), we have Φ i
p(y) =

(∂i p)(y)
p(y) , whence

p(y) · (1−Φ
i
p(y)) = p(y)− (∂i p)(y) = ((1−∂i)p)(y),

so we also have

log(p(y))+ log(1−Φ
i
p(y)) = log(p(y) · (1−Φ

i
p(y))) = log(((1−∂i)p)(y)).

Therefore,

Φ
j
(1−∂i)p(y) = Φ

j
p(y)+

(∂ j(1−Φ i
p))(y)

(1−Φ i
p)(y)

= Φ
j
p(y)−

(∂ jΦ
i
p)(y)

(1−Φ i
p)(y)

.

Using this for y = x+Cei, the above inequality gives us

Φ
j
(1−∂i)p(x+Cei)≤Φ

j
p(x). ut

This lemma can be extended to the following statement.

Corollary 8.24. Suppose p is a real stable polynomial in n variables and let x ∈Rn

be such that p has no zeroes in the orthant Ort(x). Furthermore, suppose that there
is a C > 0 such that Φ i

p(x)+
1
C ≤ 1 for all i ∈ {1, . . . ,n}. Then (∏n

i=1(1−∂i))p has
no zeroes in the orthant Ort(x+w), where w = (C, . . . ,C).

Proof. First we define y0 = x and then, inductively, we define yk = yk−1 +Cek for
every k ∈ {1, . . . ,n}. Likewise, we define q0 = p and qk = (1− ∂k)qk−1 for every
k ∈ {1, . . . ,n}.

We will prove by induction that for every k ∈ {0,1, . . . ,n}, qk has no zeroes in
the orthant Ort(yk), and that Φ i

qk
(yk) ≤ Φ i

p(x) for all i ∈ {1, . . . ,n}. For this, first
of all notice that the case k = 0 is already covered by our assumptions. Therefore,
suppose we have proven the claim for some k < n. Then qk has no zeroes in Ort(yk)
and Φ i

qk
(yk)≤Φ i

p(x), for every i ∈ {1, . . . ,n}. Then

Φ
k+1
qk

(yk)+
1
C
≤Φ

k+1
p (x)+

1
C
≤ 1,

so, by lemma 8.23, the polynomial qk+1 = (1− ∂k+1)qk has no zeroes in the
orthant Ort(yk +Cek+1) = Ort(yk+1). Furthermore, by the same lemma, for any
i ∈ {1, . . . ,n}, we have
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Φ
i
qk+1

(yk+1)≤Φ
i
qk
(yk)≤Φ

i
p(x),

as desired. Hence we have proven our claim by induction.
In particular, qn = (∏n

i=1(1−∂i))p has no zeroes in Ort(yn) = Ort(x+w). ut

We use this result to prove the following proposition, which is a major step to-
wards the second main result proven by Marcus, Spielman and Srivastava.

Proposition 8.25. Suppose {Ai}k
i=1 ⊆ Mn(C) is a set of positive matrices and let

C > 0. Furthermore, suppose ∑
k
i=1 Ai = 1 and Tr(Ai) ≤ C for all i ∈ {1, . . . ,k}.

Define p(z1, . . . ,zk) = det(∑k
i=1 ziAi). Then the polynomial (∏k

i=1(1−∂i))p does not
have a zero in the orthant Ort(x), where x = ((1+

√
C)2, . . . ,(1+

√
C)2).

Proof. Note that p(z1, . . . ,zk) = q(A1, . . . ,Ak)(z0, . . . ,zk)|z0=0. Since the associated
polynomial q(A1, . . . ,Ak) is real stable according to proposition 8.8, lemma 8.9 now
gives us that p is real stable.

Now let t > 0 be arbitrary and define wt = (t, . . . , t) ∈ Rk. Then, for any point
x ∈Ort(wt), xiAi ≥ tAi for all i∈ {1, . . . ,k}, so ∑

k
i=1 xiAi ≥∑

k
i=1 tAi = t1. Therefore,

for any y ∈ Rn, we have

〈
( k

∑
i=1

xiAi
)
(y),y〉−〈y,y〉 ≥ 0,

i.e. 〈(∑xiAi)(y),y〉 ≥ ‖y‖2. Therefore, ∑
k
i=1 xiAi is injective, whence surjective by

a dimensional argument, and hence invertible. So p(x) = det(∑k
i=1 xiAi) 6= 0, i.e. p

has no zeroes in Ort(wt).
Now let i ∈ {1, . . . ,k}. Then, using Jacobi’s formula for invertible matrices (the-

orem A.8),

Φ
i
p(wt) =

∂

∂ zi
p(z1, . . . ,zk)|z0=···=zk=t

p(wt)

=

∂

∂ zi
det(∑k

j=1 z jA j)|z0=···=zk=t

det(∑k
j=1 tA j)

= Tr((
k

∑
j=1

tA j)
−1 ·Ai)

= Tr(
1
t

Ai)≤
C
t
.

Now, since t > 0 was arbitrary, we can choose t =C+
√

C. Then we have estab-
lished that p does not have any zeroes in Ort(wt), and

Φ
i
p(wt)+

1
1+
√

C
≤ C

C+
√

C
+

1
1+
√

C
=

C
C+
√

C
+

√
C

C+
√

C
= 1,
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so by corollary 8.24, the polynomial (∏k
i=1(1− ∂i))p has no zeroes in the orthant

Ort(x), where

x = (C+
√

C, . . . ,C+
√

C)+(1+
√

C, . . . ,1+
√

C)

= ((1+
√

C)2, . . . ,(1+
√

C)2),

as desired. ut

Now we have all the ingredients to prove the second main result of Marcus,
Spielman and Srivastava.

Theorem 8.26. Suppose {Yi}n
i=1 is a set of independent random variables taking

values in PR1(m) and let C > 0. Furthermore, let Y = ∑
n
i=1 Yi and suppose that

EY = 1 and E‖Yi‖ ≤C for all i ∈ {1, . . . ,n}. Then ρ(EpY )≤ (1+
√

C)2.

Proof. According to proposition 8.15, we have EpY = µ[EY1, . . . ,EYn], i.e.

EpY (z) =
( n

∏
i=1

(1−∂i)
)

det
(
z1+

n

∑
j=1

z jEYj
)
|z1=···=zn=0

=
( n

∏
i=1

(1−∂i)
)

det
(
z

n

∑
l=1

EYj +
n

∑
j=1

z jEYj
)
|z1=···=zn=0

=
( n

∏
i=1

(1−∂i)
)

det
( n

∑
j=1

(z+ z j)EYj
)
|z1=···=zn=0

=
( n

∏
i=1

(1−∂i)
)

det
( n

∑
j=1

z jEYj
)
|z1=···=zn=z.

Now, note that for any i ∈ {1, . . . ,n} and any realization Ai of Yi, Tr(Ai) = ‖Ai‖,
since Ai is a positive matrix of rank 1. Therefore, for any i ∈ {1, . . . ,n}, we have

Tr(EYi) = E(Tr(Yi)) = E‖Yi‖ ≤C.

Therefore, applying proposition 8.25 to {EYi}n
i=1, we obtain that the polynomial

q(z1, . . .zn) =
( n

∏
i=1

(1−∂i)
)

det
( n

∑
j=1

z jEYj
)

has no zero in the orthant Ort(x), where x = ((1+
√

C)2, . . . ,(1+
√

C)2).
Now suppose that ρ(EpY ) > (1+

√
C)2. Then y := (ρ(EpY ), . . . ,ρ(EpY )) is a

zero of q, and y ∈ Ort(x). This is a contradiction. Therefore, ρ(EpY )≤ (1+
√

C)2,
as desired. ut

The above result can be combined with the first main result of Marcus, Spielman
and Srivastava (i.e. theorem 8.17) to prove the so-called Weaver theorem. This will
be the main goal for the next section.
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8.4 Weaver’s theorem

In 2004, Nik Weaver showed that the Kadison-Singer conjecture was equivalent to a
conjecture in the field of linear algebra ([26]), which became known as the Weaver
conjecture. The two main results of Marcus, Spielman and Srivastava, which we
gave in theorem 8.17 and theorem 8.26, enable us to prove this conjecture, which is
why we speak of Weaver’s theorem. We formulate it in a slightly different way from
Weaver, following Terrence Tao’s blog ([25]).

Theorem 8.27. Suppose k,m,n∈N and let C≥ 0. Suppose {Ai}k
i=1 ⊆ PR1(n), such

that ‖Ai‖ ≤C for 1≤ i≤ k and ∑
k
i=1 Ai = 1. Then there exists a partition {Zi}m

i=1 of
{1, . . . ,k} such that for all j ∈ {1, . . . ,m},

‖∑
i∈Z j

Ai‖ ≤
( 1√

m
+
√

C
)2

.

Proof. Let Yi be the random variable taking values in {m
(
|e j〉〈e j|⊗Ai

)
}1≤ j≤m, with

all elements having a probability of 1
m . Note that for every j ∈ {1, . . . ,m}, we have

m
(
|e j〉〈e j|⊗Ai

)
∈ PR1(nm), since if we write m

(
|e j〉〈e j|⊗Ai

)
: (Cn)m→ (Cn)m,

we have
m
(
|e j〉〈e j|⊗Ai

)
= (0, . . . ,0,mAi,0, . . . ,0),

with mAi on the j’th position. Hence the rank of m
(
|e j〉〈e j| ⊗Ai

)
is equal to the

rank of mAi, which is 1 by assumption.
Now note that {Yi}k

i=1 is a set of independent random variables and define the
new random variable Y = ∑

k
i=1 Yi. Then we can compute:

EY =
k

∑
i=1

EYi =
k

∑
i=1

m

∑
j=1

1
m

m
(
|e j〉〈e j|⊗Ai

)
=
( m

∑
j=1
|e j〉〈e j|

)
⊗
( k

∑
i=1

Ai
)
= 1⊗1 = 1.

Next, note that by our previous description,

‖m
(
|e j〉〈e j|⊗Ai

)
‖= m‖Ai‖ ≤ mC,

for all j ∈ {1, . . . ,m}. Therefore, E‖Yi‖ ≤ mC for all i ∈ {1, . . . ,k}. Hence we have
ρ(EpY )≤ (1+

√
mC)2, by theorem 8.26. However, by theorem 8.17, we know that

for every i ∈ {1, . . . ,k}, there is a ji ∈ {1, . . . ,m} such that

‖
k

∑
i=1

m
(
|e ji〉〈e ji |⊗Ai

)
‖ ≤ ρ(EpY ),

i.e. we have
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‖
k

∑
i=1

m
(
|e ji〉〈e ji |⊗Ai

)
‖ ≤ (1+

√
mC)2.

Now, for all j ∈ {1, . . . ,m} define Z j := {1 ≤ i ≤ k | ji = j}. Then {Z j}m
j=1 is a

partition of {1, . . . ,k}. Furthermore,

k

∑
i=1

m
(
|e ji〉〈e ji |⊗Ai

)
= ( ∑

i∈Z1

mAi, . . . , ∑
i∈Zm

mAi),

whence
‖∑

i∈Z j

mAi‖ ≤ (1+
√

mC)2,

for all j ∈ {1, . . . ,m}. Therefore,

‖∑
i∈Z j

Ai‖ ≤
( 1√

m
+
√

C
)2

,

for all j ∈ {1, . . . ,m}. ut

We can use Weaver’s theorem to prove the following result.

Proposition 8.28. Suppose that n ∈ N and let p ∈Mn(C) be a projection. Further-
more, write α = max1≤i≤n pii. Then, for any m ∈ N, there is a set of projections
{qi}m

i=1 ⊆ Dn(C) such that ∑
m
i=1 qi = 1 and

‖qi pqi‖ ≤
(√ 1

m
+
√

α

)2

for all i ∈ {1, . . . ,m}.

Proof. Let m ∈ N. If m = 1, we can take the set of projections q1 = 1, which
clearly satisfies the requirements. So, suppose m ≥ 2. Define V := p(Cn) and let
l := dim(V ). Now, for every i ∈ {1, . . . ,n} define Ai ∈Mn(C) by

Ai(x) = 〈x, p(ei)〉p(ei),

for all x ∈ Cn, where ei is the i’th standard basis vector of Cn. Then, for all x ∈ Cn,
〈Ai(x),x〉 = |〈x, p(ei)〉|2 ≥ 0, and Ai(x) ∈ Cp(ei), so {Ai}n

i=1 is a set of positive
matrices of rank 1. Furthermore, for every i ∈ {1, . . . ,n} and x ∈ Cn, we have
‖Ai(x)‖ ≤ ‖x‖‖p(ei)‖2, while ‖Ai(p(ei))‖ = ‖p(ei)‖3, so ‖Ai‖ = ‖p(ei)‖2. How-
ever,

‖p(ei)‖2 = 〈p(ei), p(ei)〉= 〈p(ei),ei〉= pii ≤ α,

so ‖Ai‖ ≤ α . Now note that Cn =V ⊕V⊥, and that for (v,w) ∈V ⊕V⊥, we have

Ai(v,w) = 〈(v,w), p(ei)〉p(ei) = 〈v, p(ei)〉p(ei),
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i.e. Ai = (Bi,0) : V ⊕V⊥ → V ⊕V⊥. Then Bi : V → V is linear and hence, after
choosing a basis {ε1, . . . ,εl} for V , we can regard Bi as an element of Ml(C). Then
{Bi}n

i=1 ⊆Ml(C) is a set of postive matrices of rank 1, such that ‖Bi‖ = ‖Ai‖ ≤ α

and for v ∈V ,

〈
(

n

∑
i=1

Bi)v,v
〉
=

n

∑
i=1
〈Aiv,v〉=

n

∑
i=1
|〈v, p(ei)〉|2

=
n

∑
i=1
|〈p(v),ei〉‖2 =

n

∑
i=1
|〈v,ei〉|2 = 〈v,v〉,

i.e. ∑
n
i=1 Bi = 1 ∈Ml(C). Therefore, by theorem 8.27 there is a partition {Zi}m

i=1 of
{1, . . . ,n} such that

‖∑
i∈Z j

Bi‖ ≤
(√ 1

m
+
√

α

)2

for all j ∈ {1, . . . ,m}. Now define {qi}m
i=1 ⊆ Dn(C) by (qi) j j = 1 if j ∈ Zi and

(qi) j j = 0 if j 6∈ Zi. Then, for i ∈ {1, . . . ,m}, note that

‖qi pqi‖= ‖(qi p)(qi p)∗‖= ‖qi p‖2,

by the C∗-identity. Now, for (v,w) ∈V ⊕V⊥, we have

‖(qi p)(v,w)‖2 = ‖q(v)‖2 = ∑
i∈Z j

|〈v,ei〉|2 = ∑
i∈Z j

|〈p(v),ei〉|2 = ∑
i∈Z j

|〈v, p(ei)〉|2

= ∑
i∈Z j

〈Ai(v),v〉=
〈(

∑
i∈Z j

Ai
)
(v),v

〉
≤ ‖∑

i∈Z j

Ai‖‖v‖2 ≤
(√ 1

m
+
√

α

)2
‖(v,w)‖2,

i.e. ‖qi pqi‖ ≤
(√ 1

m +
√

α
)2, as desired. ut

Now that we have the result of proposition 8.28, we are well on track to prov-
ing the Kadison-Singer conjecture, although the results we have now obtained are
(merely) results in linear algebra. By means of the so-called paving theorems we
can step up from linear algebra to functional analysis. This will be done in the next
section.

8.5 Paving theorems

In the original article on the Kadison-Singer conjecture, written by Kadison and
Singer themselves, it is already pointed out that the Kadison-Singer conjecture is
equivalent to a conjecture which became known as the paving conjecture. We prove
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this conjecture in three steps, which we call the paving theorems. These theorems
are rather technical, but enable us to prove the Kadison-Singer conjecture in the next
section in a simple manner.

The first theorem deals with self-adjoint matrices. Furthermore, we use the func-
tion(s) diag : Mn(C)→ Dn(C) for every n ∈ N, which take the diagonal parts of
matrices, i.e. diag(a)i j = 0 if i 6= j and diag(a)ii = aii.

Theorem 8.29. Suppose ε > 0. Then there is an m ∈N with the following property:
for every n ∈ N and self-adjoint a ∈ Mn(C) such that ‖a‖ ≤ 1 and diag(a) = 0,
there are projections {pi}m

i=1 ⊆ Dn(C) such that ∑
m
i=1 pi = 1 and ‖piapi‖ ≤ ε for

all 1≤ i≤ m.

Proof. Note that the function g : [0,∞)→ [0,∞) given by g(x)= 2(
√

x+
√

1/2)2−1
is a continuous and strictly increasing function and that g(0) = 0. Therefore, there
is an x0 > 0 such that g(x0)≤ ε . Since 1

x0
∈ (0,∞), there is an l ∈N such that 1

x0
≤ l,

i.e. 1
l ≤ x0, whence g( 1

l )≤ ε .
Now set m = l2 and let n ∈N and a = a∗ ∈Mn(C) be a matrix such that ‖a‖ ≤ 1

and diag(a) = 0.
Then note that a2 ≥ 0, since a2 = a∗a. Furthermore, ‖a2‖ = ‖a∗a‖ = ‖a‖2 ≤ 1.

Therefore, by lemma B.22, 1− a2 ≥ 0. Therefore, there is a positive b ∈ Mn(C)
such that b2 = 1−a2, by proposition B.20. Then by proposition B.20, we know that
ab = ba. Now define p ∈M2n(C) by

p =
1
2

(
1+a b

b 1−a

)
,

and observe that p is self-adjoint, since both a and b are. It is easy to show that p is
a projection. Therefore, we can apply proposition 8.28 to p. Since we have assumed
that diag(a) = 0, pii =

1
2 for every i ∈ {1, . . . ,2n}, this means that there is a set of

projections {qi}l
i=1 ⊆ D2n(C) such that ∑

l
i=1 qi = 1 and

‖qi pqi‖ ≤
(√1

l
+

√
1
2
)2

=
g(1/l)+1

2
≤ ε +1

2
,

for every i ∈ {1, . . . , l}.
Now define the set of projections {ri}l

i=1 ⊆Dn(C) by defining (ri) j j = (qi) j j for
every j ∈ {1, . . . ,n} and likewise define the projections {si}l

i=1 ⊆ Dn(C) by setting
(si) j j = (qi)( j+d)( j+d) for every j ∈ {1, . . . ,n}.

Since ∑
l
i=1 qi = 1 by construction, we then also have ∑

l
i=1 ri = ∑

l
i=1 si = 1. Then,

for all i, j ∈ {1, . . . , l}, define pi j = ris j. Then {pi j} ⊆ Dn(C) is a set of m projec-
tions. We prove that this set satisfies the desired properties. First of all,

∑
i, j

pi j =
l

∑
i=1

ri

l

∑
j=1

s j =
l

∑
i=1

ri = 1.

Next, let i ∈ {1, . . . , l} and x ∈ Cn. Then observe that (ri(x),0) = qi(x,0) and hence
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pqi(x,0) = p(ri(x),0) = ((
1+a

2
)(ri(x)),(

1
2

b)(ri(x))),

so
(qi pqi)(x,0) = ((ri(

1+a
2

)ri)(x),si(
1
2

b)(ri(x))),

whence

‖(ri(
1+a

2
)ri)(x)‖ ≤ ‖(qi pqi)(x,0)‖ ≤ ‖qi pqi‖‖(x,0)‖ ≤

ε +1
2
‖x‖.

Therefore, ‖ri(1+ a)ri‖ ≤ ε + 1. Likewise, we have ‖s j(1− a)s j‖ ≤ ε + 1 for
any j ∈ {1, . . . , l}.

Since Dn(C) is abelian, we therefore also have

‖pi j(1+a)pi j‖= ‖ris j(1+a)ris j‖ ≤ ‖s j‖2‖ri(1+a)ri‖ ≤ ε +1,

and likewise ‖pi j(1−a)pi j‖ ≤ ε +1.
Again, let x ∈ Cn and define b = (ε +1)pi j− pi j(1+a)pi j. Then

〈bx,x〉= (ε +1)〈pi jx,x〉−〈pi j(1+a)pi jx,x〉
= (ε +1)‖pi jx‖2〈pi j(1+a)pi j pi jx, pi jx〉
≥ (ε +1)‖pi jx‖2−‖pi j(1+a)pi j‖‖pi jx‖2

≥ 0,

i.e. b≥ 0, which implies pi j(1+a)pi j ≤ (ε +1)pi j, i.e. pi japi j ≤ ε pi j.
Likewise, it follows that pi j(1− a)pi j ≤ (ε + 1)pi j, so −ε pi j ≤ pi japi j. There-

fore, we have
−ε pi j ≤ pi japi j ≤ ε pi j,

so by lemma B.21, ‖pi japi j‖ ≤ ‖ε pi j‖ ≤ ε , as desired. ut

The above paving theorem gives a result about self-adjoint matrices. The second
paving theorem drops this condition.

Theorem 8.30. Suppose ε > 0. Then there is an l ∈ N with the following property:
for each n ∈ N and a ∈ Mn(C) such that diag(a) = 0, there is a set of projections
{ri}l

i=1 ⊆ Dn(C) such that ∑
m
i=1 ri = 1 and ‖riari‖ ≤ ε‖a‖.

Proof. Since ε > 0, by theorem 8.29, there is an m∈N with the following property:
for every n ∈ N and self-adjoint a ∈ Mn(C) such that ‖a‖ ≤ 1 and diag(a) = 0,
there are projections {pi}m

i=1 ⊆Dn(C) such that ∑
m
i=1 pi = 1 and ‖piapi‖ ≤ ε for all

1≤ i≤ m.
Now, define l = m2 and let n ∈ N and ε > 0. If a = 0, then taking r1 = 1 and

ri = 0 for all i ∈ {2, . . . , l} yields the required set of projections {ri}l
i=1.

Hence, assume that a 6= 0. Observe that b = a+a∗
2 and c = a−a∗

2i are self-adjoint
elements of Mn(C) and that a = b+ ic. Furthermore, ‖b‖ ≤ ‖a‖ and ‖c‖ ≤ ‖a‖ by
the triangle inequality, and diag(b) = diag(c) = 0.
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Therefore, there are projections {pi}m
i=1⊆Dn(C) and {q j}m

j=1⊆Dn(C) such that

m

∑
i=1

pi = 1,

m

∑
j=1

q j = 1,

‖pi
b
‖a‖

pi‖ ≤
ε

2

for all {i ∈ 1, . . . ,m} and

‖q j
c
‖a‖

q j‖ ≤
ε

2

for all j ∈ {1, . . . ,m}. Therefore, ‖pibpi‖ ≤ ε

2‖a‖ for all i ∈ {1, . . . ,m} and also
‖q jcq j‖ ≤ ε

2‖a‖ for all j ∈ {1, . . . ,m}.
Now, for i, j ∈ {1, . . . ,m}, define ri j = piq j ∈Dn(C). Since Dn(C) is abelian, we

know that ri j = piq j = q j pi is again a projection for each pair (i, j). Now note that

∑
i, j

ri j = ∑
i j

piq j =
m

∑
i=1

pi(
m

∑
j=1

q j) =
m

∑
i=1

= 1,

and that for any pair (i, j),

‖ri jbri j‖= ‖piq jbpiq j‖= ‖q j pibpiq j‖ ≤ ‖pibpi‖ ≤
ε

2
‖a‖,

and likewise ‖ri jcri j‖ ≤ ε

2‖a‖. Therefore,

‖ri jari j‖= ‖ri j(b+ ic)ri j‖ ≤ ‖ri jbri j‖+‖ri jcri j‖ ≤
ε

2
‖a‖+ ε

2
‖a‖= ε‖a‖,

which means that the set {ri j} satisfies all the requirements. ut

So far, we have only proven results in finite dimension in this chapter. However,
the independence of n ∈ N in the second paving theorem enables us to actually
prove a similar result where we replace Mn(C) with B(`2(N)). This is the third
paving theorem. For this result, we use the map diag : B(`2(N))→ `∞(N) defined
by diag(a)(n) = 〈δn,aδn〉.

Theorem 8.31. Suppose ε > 0. Then there is a l ∈N with the following property: for
all a∈ B(`2(N)) such that diag(a) = 0, there is a set of projections {pi}l

i=1 ⊆ `∞(N)
such that ∑

l
i=1 pi = 1 and ‖piapi‖ ≤ ε‖a‖ for every i ∈ {1, . . . , l}.

Proof. By theorem 8.30, there is an l ∈ N with the following property: if n ∈ N and
c ∈Mn(C) such that diag(c) = 0, then there is a set of projections {ri}l

i=1 ⊆ Dn(C)
such that ∑

m
i=1 ri = 1 and ‖ricri‖ ≤ ε‖c‖.
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Now let a ∈ B(`2(N)) such that diag(a) = 0. Then, for n ∈ N, consider the func-
tion ϕn : B(`2(N))→Mn(C), given by (ϕn(b))i j = 〈bδ j,δi〉 for any b ∈ B(`2(N)).
Then clearly ‖ϕn‖ = 1. Furthermore, we also have diag(ϕn(a)) = 0, since we have
assumed that diag(a) = 0. Therefore, there is a set of projections {rn,i}l

i=1 ⊆Dn(C)
such that ∑

l
i=1 rn,i = 1 and

‖rn,iϕn(a)rn,i‖ ≤ ε‖ϕn(a)‖ ≤ ε‖a‖,

for all 1≤ i≤ l.
For any fixed i ∈ {1, . . . , l}, we have 〈rn,iδm,δm〉 ∈ {0,1} for all m≤ n, since rn,i

is a projection. We now prove that there is a strictly increasing function ψ : N→ N
as well as a set {yi}l

i=1 ⊆ {0,1}N such that for every 1≤ i≤ l, yi is the limit of the
sequence {xi,n}n∈N ⊆ {0,1}N, where

xi,n(m) =

{
〈rψ(n),iδm,δm〉 : m≤ ψ(n)
0 : m > ψ(n).

We prove this by induction in l. For l = 0, we can simply take ψ = Id. Now
suppose we have proven the claim for l−1, i.e. there is a strictly increasing function
ψ ′ : N→ N and a set {yi}l−1

i=1 such that for every i ∈ {1, . . . , l−1}, yi is the limit of
the sequence {zi,n}n∈N ⊆ {0,1}N, where

zi,n(m) =

{
〈rψ ′(n),iδm,δm〉 : m≤ ψ ′(n)
0 : m > ψ ′(n).

Now define wn ∈ {0,1}N by

wn(m) =

{
〈rψ ′(n),lδm,δm〉 : m≤ ψ ′(n)
0 : m > ψ ′(n).

Now, note that {wn}n∈N is a sequence in {0,1}N. Furthermore, by Tychonoff’s
theorem (see theorem A.12), {0,1}N is compact and by theorem A.16 {0,1}N is also
metrizable. Hence {wn}n∈N is a sequence in the compact metrizable space {0,1}N
and it therefore has a subsequence {wnk}k∈N that converges to some yl ∈ {0,1}N.
The function ϕ : N→N defined by ϕ(k) = nk is strictly increasing and therefore the
function ψ := ϕ ◦ψ ′ is strictly increasing, too.

Now, for i∈{1, . . . , l}, define xi,n := zi,ϕ(n). Since {xi,n}n∈N is then a subsequence
of {zi,ϕ(n)}n∈N, {xi,n}n∈N converges to yi and satisfies

xi,n(m) =

{
〈rψ(n),iδm,δm〉 : m≤ ψ(n)
0 : m > ψ(n)

Furthermore, define xl,n := wϕ(n). Then by construction, {xl,n}n∈N converges to
yl and is given by

xl,n(m) =

{
〈rψ(n),lδm,δm〉 : m≤ ψ(n)
0 : m > ψ(n)
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This concludes the induction step.
Now for all i ∈ {1, . . . , l} define pi ∈ `∞(N) by pi(m) = yi(m) and note that every

pi is a projection. We first prove that ∑
l
i=1 pi = 1. To see this, let m ∈N and observe

that for every i ∈ {1, . . . , l} there is an Ni such that xi,n(m) = yi(m) for every n≥ Ni,
since {0,1} is discrete. Then define N := max1≤i≤l Ni. Then we have

l

∑
i=1

pi(m) =
l

∑
i=1

yi(m) =
l

∑
i=1

xi,N(m) =
l

∑
i=1
〈rψ(N),iδm,δm〉

= 〈
( l

∑
i=1

rψ(N),i

)
δm,δm〉= 〈δm,δm〉= 1.

Since m ∈ N was arbitrary, ∑
l
i=1 pi = 1, as desired.

Now, suppose that ψ1,ψ2 ∈ `2(N) have finite support, i.e. there are M1,M2 ∈ N
such that ψ1(n) = 0 for every n≥M1 and ψ2(n) = 0 for every n≥M2.

Define M = max(M1,M2). Then for every m ∈ {1, . . . ,M}, there is an Nm ∈ N
such that xi,n(m) = yi(m) = pi(m) for all n≥ Nm. Now define N′ := max1≤m≤M Nm
and N := max(N′,M). Then consider the canonical map αN : `2(N)→ CN given by
(αN(h))(n) = h(n). Then by construction, for any i ∈ {1, . . . , l},

〈piapiψ1,ψ2〉= 〈apiψ1, piψ2〉= 〈ϕN(a)αN(piψ1),αN(piψ2)〉,

since the support of piψ1 is a subset of the support of ψ1 and likewise for ψ2.
However, by construction of N, we have αN(piψ1) = rN,iψ1 and αN(piψ2) = rN,iψ2.
Therefore,

〈piapiψ1,ψ2〉= 〈ϕN(a)αN(piψ1),αN(piψ2)〉
= 〈ϕN(a)rN,iαN(ψ1),rN,iαN(ψ2)〉
= 〈rN,iϕN(a)rN,iαN(ψ1),αN(ψ2)〉
≤ ‖rN,iϕN(a)rN,iαN(ψ1)‖‖αN(ψ2)‖
≤ ‖rN,iϕN(a)rN,i‖‖αN(ψ1)‖‖αN(ψ2)‖
= ‖rN,iϕN(a)rN,i‖‖ψ1‖‖ψ2‖
= ε‖a‖‖ψ1‖‖ψ2‖.

Now note that ψ1,ψ2 ∈ `2(N) were arbitrary elements of finite support. There-
fore, by proposition B.10, ‖piapi‖ ≤ ε‖a‖. Hence {pi}l

i=1 ⊆ `∞(N) satisfies all
properties we desired. ut

As we mentioned before, this final paving theorem is the last technical result
before we can prove the Kadison-Singer conjecture. This will be done in the next
section.
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8.6 Proof of the Kadison-Singer conjecture

Using the paving theorem (i.e. theorem 8.31), we can give an explicit description of
extensions of states on `∞(N). We first need the following result.

Lemma 8.32. Suppose f ∈ ∂eS(`∞(N)), let g ∈ Ext( f ) and suppose a ∈ B(`2(N))
such that diag(a) = 0. Then g(a) = 0.

Proof. Suppose ε > 0. By theorem 8.31, we obtain a finite set of projections
{pi}n

i=1 ⊆ `∞(N) such that ∑
n
i=1 pi = 1 and ‖piapi‖ ≤ ε‖a‖ for every i ∈ {1, . . . ,n}.

Since f ∈ ∂eS(`∞(N)) = Ω(`∞(N)), f (pi) ∈ {0,1} for all i ∈ {1, . . . ,n}. Since
also ∑

n
i=1 pi = 1, there is a i0 ∈ {1, . . . ,n} such that f (pi0) = 1 and f (p j) = 0 if

j 6= i0. Since g ∈ Ext( f ), we also have g(pi0) = 1 and g(p j) = 0 for every j 6= i0.
Now, using the Cauchy-Schwarz inequality (see lemma 3.3), we have:

|g(piap j)|2 ≤ g(pi p∗i )g((ap j)
∗ap j) = g(pi)g((ap j)

∗ap j),

for any i, j ∈ {1, . . . ,n}. Hence, for i 6= i0, g(piap j) = 0. Likewise, if j 6= i0,
g(piap j) = 0. Therefore, we can compute:

|g(a)|= |g(
(
∑

i
pi

)
a
(
∑

j
p j

)
)|= |∑

i, j
g(piap j)|= |g(pi0api0)| ≤ ‖pi0api0‖ ≤ ε.

Since ε > 0 was arbitrary, we hence have g(a) = 0, as desired. ut

Now, we can easily describe the extensions of states on `∞(N).

Corollary 8.33. Suppose f ∈ ∂eS(`∞(N)) and g ∈ Ext( f ). Then g = f ◦diag.

Proof. Suppose a ∈ B(`2(N)). Then diag(a−diag(a)) = diag(a)−diag(a) = 0, so
by lemma 8.32, we have g(a− diag(a)) = 0, i.e. g(a) = g(diag(a)) = f (diag(a)),
since diag(a) ∈ `∞(N). Therefore, g = f ◦diag, as desired. ut

The Kadison-Singer conjecture is now an easy corollary.

Corollary 8.34. The subalgebra `∞(N) ⊆ B(`2(N)) has the Kadison-Singer prop-
erty.

Proof. Suppose that f ∈ ∂eS(`∞(N)). By theorem 3.16, we know that Ext( f ) 6= /0.
Now suppose g,h ∈ Ext( f ). Then by corollary 8.33, g = f ◦diag = h. Hence Ext( f )
contains exactly one element. Therefore, `∞(N)⊆ B(`2(N)) has the Kadison-Singer
property. ut

Now that we have established the answer to the Kadison-Singer conjecture we are
able to finish our classification of abelian unital C∗-subalgebras with the Kadison-
Singer property, in the case of a seperable Hilbert space. The proof of the following
is statement merely serves as a summary of the most important results of the text.
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Corollary 8.35. Suppose H is a separable Hilbert space and A ⊆ B(H) is an
abelian, unital C∗-subalgebra. Then A has the Kadison-Singer property if and only
if it is unitarily equivalent to Ad( j) for some 1≤ j ≤ℵ0.

Proof. In corollary 7.22 we already established that if A has the Kadison-Singer
property, then A is unitarily equivalent to Ad( j) for some 1≤ j ≤ℵ0.

Furthermore, for j ∈ N, we showed in theorem 2.14 that Ad( j) has the Kadison-
Singer property. Likewise, for j = ℵ0, corollary 8.34 shows that Ad( j) has the
Kadison-Singer property. Combined with theorem 5.3, we conclude that if A is uni-
tarily equivalent to Ad( j) for some 1 ≤ j ≤ ℵ0, A has the Kadison-Singer prop-
erty. ut



Appendix A
Preliminaries

Throughout the main text, we need results from a wide range of mathematics. In this
appendix we discuss the required results from linear algebra, order theory, topology
and complex analysis. In the next appendix we give results from functional analysis
and operator algebras. Lastly, in appendix C, we treat some results that rely on the
definitions and results in the main text, but are not included in the main text itself.
Together, these three appendices form the background of the main text. Most results
are non-trivial, but are so general that a complete discussion (including all proofs)
is beyond the scope of this text. In the case of missing proofs, we refer to some
standard textbooks.

A.1 Linear algebra

We need results from linear algebra for two main reasons. First of all, some results
in functional analysis can be reduced to linear algebra. Secondly, in chapter 8, we
reduced the proof of the Kadison-Singer conjecture to results in linear algebra.

Hermitian forms

We first concern ourselves with hermitian forms.

Lemma A.1. Suppose V is a complex vector space and let σ : V 2 → C be a map
that is anti-linear in the first argument and linear in the second argument such
that σ(v,v) ∈ R for each v ∈ V . Then σ is hermitian, i.e. σ(v,w) = σ(w,v) for all
v,w ∈V .

This lemma has the following immediate corollary.

Corollary A.2. Suppose V is a complex vector space and σ : V 2 → C is a map
that is anti-linear in the first argument and linear in the second argument such that
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σ(v,v) ≥ 0 for all v ∈ V . Then σ is a pre-inner product, i.e. a positive hermitian
form.

Corollary A.2 is especially important because of the Cauchy-Schwarz inequality.

Proposition A.3. Suppose V is a complex vector space and σ : V 2 → C is a pre-
inner product. Then the Cauchy-Schwarz inequality holds: for all a,b∈V , we have

|σ(a,b)|2 ≤ σ(a,a)σ(b,b).

Adjugate matrices and Jacobi’s formula

In the main text, we need Jacobi’s formula, which deals with adjugate matrices. To
introduct these properly, we first need two other definitions.

Definition A.4. For a matrix A ∈Mn(C) and i, j ∈ {1, . . . ,n}, we define the matrix
r(A)(i, j) ∈ Mn−1(C) by removing the i’th row and j’th column from A. We call
r(A)(i, j) the reduced matrix of A at position (i, j).

Definition A.5. For a matrix A ∈Mn(C) and i, j ∈ {1, . . . ,n}, the cofactor of A at
position (i, j) is given by cof(A)(i, j) = det(r(A)(i, j)).

Using cofactors, we can define adjugate matrices.

Definition A.6. For a matrix A ∈Mn(C), the adjugate matrix adj(A) ∈Mn(C) is
given by adj(A)i j = (−1)i+ j cof(A)( j, i).

Lemma A.7. Suppose A ∈Mn(C). Then the following properties hold:

1. adj(A) ·A = det(A)I
2. If A is invertible, then A−1 = 1

det(A) adj(A).

Now we can introduce the main thing we need: Jacobi’s formula.

Theorem A.8. (Jacobi’s formula) Suppose A : R→Mn(C) is a differentiable func-
tion. Then Jacobi’s formula holds:

d
dt

detA(t) = Tr
(

adj(A(t)) · d
dt

A(t)
)
.

Furthermore, if A(t) is invertible, then

d
dt detA(t)
det(A(t))

= Tr
(
A(t)−1 · d

dt
A(t)

)
.

For a more detailed account of linear algebra, see [2], [10], [14] or [22].
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A.2 Order theory

For a general introduction to the theory of partially ordered sets and lattices we
refer to [5]. In the main text, we need the following result, which is not among the
standard results.

Proposition A.9. Suppose F is a maximal totally ordered subset of a lattice and
F0 ⊆ F. Then ∨F0 ∈ F and ∧F0 ∈ F.

Proof. Let e ∈ F . Either f ≤ e for all f ∈ F0 or there is a f ∈ F0 such that e ≤ f .
In the first case, ∨F0 ≤ e, and in the second case e≤ f ≤ ∨F0. So either e≤ ∨F0 or
e≥ ∨F0. Therefore, F ∪{∨F0} is totally ordered, so by maximality of F , ∨F0 ∈ F .

Likewise, for every e ∈ F , either e ≤ f for all f ∈ F0 or e ≥ f for some f ∈ F0.
In the first case, e ≤ ∧F0 and in the second e ≥ f ≥ ∧F0. So F ∪{∧F0} is totally
ordered, i.e. ∧F0 ∈ F . ut

A.3 Topology

Throughout the text, we assume that the reader has a solid knowledge of basic topol-
ogy, for example as given in [8]. For more advanced topics, we refer to [17] or [27].
In this appendix we give some technical results that are standard, yet not so trivial
that they can be used without reference.

Compactness

In a topological space, compactness is defined using open coverings. However, it
can also be defined using closed sets. To show this, we first need the following.

Definition A.10. Let X be a topological space and F ⊆P(X) a family of subsets.
Then F has the finite intersection property if for every {Ai}n

i=1 ⊆ F we have that⋂n
i=1 Ai 6= /0.

Using this, we can give the equivalent definition of compactness.

Proposition A.11. Suppose X is a topological space. Then the following are equiv-
alent:

1. X is compact.
2. Every family F ⊆P(X) consisting of closed subsets with the finite intersection

property satisfies
⋂

F 6= /0.

We use this in the main text to show that the space of ultrafilters is compact with
respect to the ultra topology in chapter 6.

One of the most important theorems involving compactness is Tychonoff’s theo-
rem:
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Theorem A.12. (Tychonoff) Suppose Xi is a non-empty topological space for every
i ∈ I. Then ∏i∈I Xi is compact if and only if every Xi is compact.

The combination of compactness and the Hausdorff property often give strong
results, for example in the following lemma.

Lemma A.13. Suppose X is a compact space and Y is a Hausdorff. Furthermore,
let f : X → Y be a continuous bijection. Then f is a homeomorphism.

Miscellaneous

Throughout the main text, we also need a few results from topology. The first con-
cerns the separation axiom T3.

Lemma A.14. If X is T3, U ⊆ X is open and x ∈U, then there is a V ⊆ X open such
that x ∈V ⊆V ⊆U.

Next, we have a well-known result about extensions of continuous functions.

Proposition A.15. Suppose X and Y are topological spaces, where Y is Hausdorff.
Furthermore, suppose A ⊆ X is dense and f ,g : X → Y are continuous functions
that coincide on A. Then f = g.

Most topological properties are preserved under finite products of topological
spaces. However, with infinite products, this is not always the case. However, we do
have the following two results, of which the second is the most famous one.

Theorem A.16. Countable products of metrizable topological spaces are metriz-
able.

A.4 Complex analysis

For an introduction to complex analysis, we refer to [24]. Here, we state a more
advanced result: Hurwitz’s theorem.

Theorem A.17. (Hurwitz) Let G ⊆ Cm be a connected open set and { fn}n∈N a
sequence of holomorphic functions on G that converges uniformly on every compact
subset of G to some f ∈ H(G). Furthermore, suppose that no fn has zeroes in G.
Then either f has no zeroes in G or f is identically zero on G.

A proof can be found in [19] (theorem 1.3.8).



Appendix B
Functional Analysis and Operator Algebras

In this appendix we treat a collection of topics from functional analysis and operator
algebras that are needed throughout the main text. A more extended survey of these
subjects can be found in many texts, for example in [18] and [23].

B.1 Basic functional analysis

For a normed vector space V , we can consider bounded linear functionals on V .
These are linear maps f : V → C such that

sup
‖v‖=1

| f (v)|< ∞.

We collect all such bounded linear functionals on V in the vector space V ∗, which
we call the dual space of V . This dual space then has a natural norm itself, given by

‖ f‖= sup
‖v‖=1

| f (v)|,

for all f ∈V ∗. This gives the dual space a natural topology, but the dual space also
has another topology. To describe this topology, we define for all f ∈V ∗, v ∈V and
ε > 0 the set

B( f ,v,ε) = {g ∈V ∗ | | f (v)−g(v)|< ε}.

It is clear that these sets form a subbase for a topology on V ∗, since the union of
these sets is clearly all of V ∗. We call this topology the weak∗-topology. One of the
most important results about this topology is the following theorem.

Theorem B.1. (Banach-Alaoglu) Suppose V is a normed vector space. Then the
closed unit ball of the dual space V ∗, i.e.

{ f ∈V ∗ | ‖ f‖ ≤ 1},
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is compact with respect to the weak∗-topology.

We also have the Hahn-Banach theorem for bounded linear functionals, which
concerns extensions.

Theorem B.2. (Hahn-Banach) Suppose V is a normed, complex vector space and
W is a linear subspace of V . If f : W → C is a bounded functional, then there is an
extension g : V → C (i.e. g|W = f ) such that ‖g‖= ‖ f‖.

The above Hahn-Banach theorem is the one we need in the main text. In fact,
there are many theorems that go by the same name. These theorems differ a little
in their assumptions, but they all give an extension which preserves some crucial
property.

The last fundamental theorem from basic functional analysis that we discuss here
concerns convexity. For this, we first need the following definition.

Definition B.3. Suppose V is a vector space and S ⊆V . We define the convex hull
of S to be:

co(S) =
{ n

∑
i=1

tisi
∣∣ n ∈ N, ti ≥ 0,

n

∑
i=1

ti = 1,si ∈ S
}
,

i.e. the set of all finite convex combinations of elements in K.

Using this definition, we have the following important result.

Theorem B.4. (Krein-Milman) Suppose V is a normed vector space and K ⊆ V is
a convex compact subset. Then:

K = co(∂eK).

Furthermore, if M ⊆V is such that K = co(M), then ∂eK ⊆M.

B.2 Hilbert spaces

One of the main concepts in the main text is that of a Hilbert space.

Definition B.5. A Hilbert space H is a complex vector space endowed with a
complex inner product 〈·, ·〉, which we take linear in the second coordinate, such
that H is complete with respect to the norm ‖·‖ induced by the inner product via
‖x‖2 = 〈x,x〉.

Hilbert spaces can be seen as generalizations of Euclidean vector spaces. There-
fore, we also want to consider bases for Hilbert spaces.

Definition B.6. Suppose H is a Hilbert space. Then a subset E ⊆H is called a basis
for H if E is an orthonormal set whose linear span is dense in H.

Note that if the cardinality of a basis of H is finite, then the Hilbert space is
isomorphic to a complex Euclidean vector space. We have a special name for Hilbert
spaces that have a countable basis.
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Definition B.7. H is called separable if it has a countable basis.

We also need the notion of orthogonal families.

Definition B.8. Let H be a Hilbert space. Two subsets C,D ⊆ H are said to be
orthogonal if for every c ∈C and d ∈ D, 〈c,d〉= 0. A family of subspaces {Ci}i∈I
of H is said to be an orthogonal family if all pairs of members are orthogonal.

Direct sums of Hilbert spaces

Given two Hilbert spaces and H1 and H2, we can form a Hilbert space H = H1⊕H2,
which has an inner product 〈 , 〉 defined by

〈(x1,x2),(y1,y2)〉= 〈x1,y1〉1 + 〈x2,y2〉2,

where 〈 , 〉1 and 〈 , 〉2 are the inner products on H1 and H2, respectively. H is called
the direct sum of H1 and H2. Conversely, given a Hilbert space H and a closed
linear subspace K ⊆ H, one can realize H as a direct sum H = K⊕K⊥, where

K⊥ := {x ∈ H : 〈x,y〉= 0 ∀y ∈ K}

is called the orthogonal complement of K.

Operators on Hilbert spaces

We now want to consider linear operators T : H → H ′ between two Hilbert spaces.
In fact we are only interested in bounded operators.

Definition B.9. Let H be a Hilbert space and T : H→ H ′ a linear operator. We say
that T is bounded if there is a k > 0 such that ‖T (x)‖ ≤ k‖x‖ for all x ∈ H. The set
of all bounded operators from H to H ′ is denoted by B(H,H ′).

Note that B(H,H ′) is not just a set, but a normed vector space. Here scalar mul-
tiplication and addition are defined pointwise. The norm is naturally given by

‖T‖= sup
‖x‖=1

‖T (x)‖.

Furthermore, for every T ∈ B(H,H ′) there is a unique operator T ∗ ∈ B(H ′,H) such
that 〈x,T (y)〉= 〈T ∗(x),y〉 for every x ∈H ′ and y ∈H. The operator T ∗ is called the
adjoint of T .

When H = H ′, we write B(H) := B(H,H) and we observe that defining multipli-
cation by composition, i.e. (T S)(x) = T (S(x)) for all T,S ∈ B(H) and x ∈ H, gives
B(H) the structure of an algebra.

In the main text we need the following rather technical result.
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Proposition B.10. Suppose that H is a Hilbert space with a basis {ei}i∈I . Suppose
a∈B(H) and α > 0 such that |〈x,ay〉| ≤α‖x‖‖y‖ for all x,y∈H with finite support,
i.e. for all x,y ∈ H such that {i ∈ I : 〈x,ei〉 6= 0} and {i ∈ I : 〈y,ei〉 6= 0} are both
finite. Then ‖a‖ ≤ α .

Operators on direct sums

Note that for a given direct sum H1⊕H2, there are canonical inclusion and projec-
tion maps:

ι1 : H1→ H1⊕H2, ι1(x) = (x,0)
ι2 : H2→ H1⊕H2, ι2(y) = (0,y)
π1 : H1⊕H2→ H1, π1(x,y) = x

π1 : H1⊕H2→ H2, π2(x,y) = y

Using this, for given a1 ∈ B(H1) and a2 ∈ B(H2), one can define

(a1,a2) : H1⊕H2→ H1⊕H2,

by (a1,a2) = ι1a1π1 + ι2a2π2, i.e. (a1,a2)(x,y) = (a1(x),a2(y)). Clearly, we then
have (a1,a2) ∈ B(H1⊕H2). We can extend this idea for subsets A1 ⊆ B(H1) and
A2 ⊆ B(H2); A1⊕A2 ⊆ B(H1⊕H2).

Conversely, one can ask the question whether for some a ∈ B(H1⊕H2) there
are a1 ∈ B(H1) and a2 ∈ B(H2) such that a = (a1,a2). The following proposition
answers this question.

Proposition B.11. Suppose that H1 and H2 are Hilbert spaces and a ∈ B(H1⊕H2).
Then there are a1 ∈ B(H1) and a2 ∈ B(H2) such that a = (a1,a2) if and only if
a(ι1(H1))⊆ ι(H1) and a(ι2(H2))⊆ ι2(H2).

In the case that an operator a ∈ B(H1⊕H2) can be written as a = (a1,a2) for
some a1 ∈ B(H1) and a2 ∈ B(H2), we say that a decomposes over the direct sum
H1⊕H2. Likewise, if an algebra A ⊆ B(H1⊕H2) satisfies A = A1⊕A2 for some
A1⊆B(H1) and A2⊆B(H2), we say that A decomposes over the direct sum H1⊕H2.

Projection lattice

Definition B.12. Suppose H is a Hilbert space and p∈B(H). Then p is a projection
if p2 = p∗ = p.

Note that a projection p ∈ B(H) is always positive, since for any x ∈ H we have
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〈x, px〉= 〈x, p2x〉= 〈x, p∗px〉= 〈px, px〉= ‖px‖2 ≥ 0.

Now, if we write P(H) for the set of all projections in B(H) for a Hilbert space
H, it is clear that for any p ∈P(H), we have 1− p ∈P(H). We can now introduce
a partial order ≤ on P(H) by saying that p ≤ q if and only if q− p ≥ 0. By the
above it follows that (with respect to ≤) 0 is the minimal element of P(H) and 1 is
the maximal element. Furthermore, p≤ q is equivalent to p(H)⊆ q(H).

We need the following technical lemma in the main text. The proof of this is
merely a computation.

Lemma B.13. Suppose p and q are projections on a Hilbert space H such that
p≤ q. Furthermore, let x,x′ ∈ H. Then ‖q(x)− p(x)‖ ≤ ‖q(x)− p(x′)‖.

In the main text, we are primarily interested in non-zero projections and more
specifically in minimal elements of the set of non-zero projections.

Definition B.14. Let H be a Hilbert space and p ∈ B(H) such that p 6= 0. Then p is
called a minimal projection if q ∈P(H) and 0≤ q≤ p implies q = 0 or q = p.

B.3 C∗-algebras

We already saw that for a given Hilbert space H the operator algebra B(H) not only
has the structure of an algebra, but also has an adjoint operation and a norm. To-
gether, these properties give B(H) a much more special algebraic structure, namely
that of a C∗-algebra.

Definition B.15. A C∗-algebra is a normed, associative algebra A endowed with
an operation ∗ : A→ A,a 7→ a∗ (we call a∗ the adjoint of a), with the following
compatibility structure:

1. A is complete in the norm ‖·‖.
2. The norm is submultiplicative, i.e. ‖ab‖ ≤ ‖a‖‖b‖ for all a,b ∈ A.
3. The adjoint operation is an involution, i.e. a∗∗ = a for all a ∈ A.
4. The adjoint operation is conjugate-linear, i.e. (λa+b)∗= λa∗+b∗ for all λ ∈C

and a,b ∈ A.
5. The adjoint operation is anti-multiplicative, i.e. (ab)∗ = b∗a∗ for all a,b ∈ A.
6. The C∗-identity holds: ‖a∗a‖= ‖a‖2 for all a ∈ A.

A C∗-algebra A is called unital if it contains an algebraic unit 1 (i.e. a1 = 1a = a for
all a ∈ A). Since the adjoint is an involution and is anti-multiplicative, automatically
1∗ = 1. By the C∗-identity it then also follows that ‖1‖= 1.

The C∗-identity together with submultiplicativity also guarantees a more imme-
diate compatibility between the adjoint operation and the norm.

Lemma B.16. Suppose A is a C∗-algebra. Then the adjoint preserves the norm, i.e.
‖a∗‖= ‖a‖ for all a ∈ A.
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We can also consider C∗-subalgebras.

Definition B.17. Let A be a C∗-algebra. A C∗-subalgebra S of A is a subalgebra
S ⊆ A that is topologically closed (with the topology coming from the norm ‖·‖ of
A) and closed under the adjoint operation, i.e. a∗ ∈ S for all a ∈ S.

Note that by the conditions on a C∗-subalgebra, every C∗-subalgebra is a C∗-
algebra in its own right, by restriction of the norm and adjoint operations to the
subalgebra.

Positivity

In the main text we study states. For the definition of states, we need the notion of
positive elements of a C∗-algebra.

Definition B.18. Suppose A is a C∗-algebra, and let a ∈ A. Then we say that a is
positive if and only if there is a b∈ A such that a = b∗b. In this case, we write a≥ 0.

There are also different ways of defining positivity when A has more structure,
as the following lemma shows.

Lemma B.19. Suppose A is a C∗-algebra and let a ∈ A. Then

• If A is unital, then a is positive if and only if a = a∗ and σ(a)⊆ [0,∞).
• If A⊆ B(H), then a is positive if and only if 〈x,ax〉 ≥ 0 for all x ∈ H.

Here, σ(a) consists of those numbers λ ∈ C such that a− λ1 is not invertible
and is called the spectrum of a.

The set of positive elements in a C∗-algebra A is often denoted by A+. This set
has some special properties.

Proposition B.20. Suppose A is a C∗-algebra. Then:

• For any a ∈ A, there are ak ≥ 0 such that a = ∑
3
k=0 ikak and ‖ak‖ ≤ ‖a‖.

• Let a ∈ A be positive. Then there is a b ∈ A+ such that a = b2.
• Let a ∈ A+ such that ‖a‖ ≤ 1. Then 1− a2 is positive and a commutes with b

where b2 = 1−a2.

The notion of positivity also induces a natural partial order ≤ on the self-adjoint
elements of a C∗-algebra A, by defining b ≤ c if and only if 0 ≤ c−b. This partial
order has the following properties.

Lemma B.21. If c,d are self-adjoint and −d ≤ c≤ d, then ‖c‖ ≤ ‖d‖.

Lemma B.22. Suppose H is a Hilbert space and d ∈ B(H) such that d ≥ 0 and
‖d‖= 1, then d ≤ 1.
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Characters

When considering abelian C∗-algebras, characters play a major role.

Definition B.23. Let A be a C∗-algebra. A character is a non-zero algebra homo-
morphism c : A→ C, i.e. c is multiplicative and linear. The set of all characters on
A is denoted by Ω(A).

First, we give three properties of characters.

Lemma B.24. Suppose that A is a unital C∗-algebra and c ∈Ω(A). Then:

• c(1) = 1.
• If a = a∗ ∈ A, then c(a) ∈ R.
• c(a∗) = c(a) for all a ∈ A.

Because of the following result, characters are important for abelian C∗-algebras.

Theorem B.25. (Gelfand isomorphism) Suppose that A is a non-zero abelian C∗-
algebra. Then the map

G : A→C0(Ω(A)),G(a)( f ) = f (a),

is an isomorphism of C∗-algebras.

The following lemma is an easy consequence of the Gelfand isomorphism.

Lemma B.26. Suppose A is an abelian C∗-algebra. Then Ω(A) separates points.

One can use this lemma to prove the following result about projections and char-
acters.

Corollary B.27. Suppose A is a C∗-algebra. Then, for every g ∈Ω(A) and projec-
tion p∈ A, g(p)∈ {0,1}. If p∈ A is a non-zero projection, there is a f ∈Ω(A) such
that f (p) = 1.

B.4 Von Neumann algebras

In order to define von Neumann algebras, we first intoduce the strong topology. We
do this by means of a subbasis. For every a ∈ B(H), x ∈ H and ε > 0, define:

S(a,x,ε) := {b ∈ B(H) : ‖(a−b)x‖< ε}.

Collecting these sets together in S := {S(a,x,ε) : a ∈ B(H),x ∈ H,ε > 0}, we
obtain a subbasis for a topology on B(H), since

⋃
S = B(H). We call this topology

the strong topology on B(H). An important property of this topology is given in
terms of convergent nets. See [23] for details.

Proposition B.28. Let H be a Hilbert space and {ai}i∈I a net in B(H). Furthermore,
let a ∈ B(H). Then the following are equivalent:
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1. {ai}i∈I converges to a with respect to the strong topology on B(H).
2. For each x ∈ H, {ai(x)} converges to a(x).

Using the strong topology, we can directly define von Neumann algebras.

Definition B.29. Let H be a separable Hilbert space. Then a ∗-subalgebra A⊆ B(H)
is called a von Neumann algebra if it is closed with respect to the strong topology.

By now, we have two topologies on B(H); the norm topology and the strong
topology. C∗-subalgebras deal with the norm topology, whereas von Neumann al-
gebras are defined using the strong topology. The following proposition gives a link
between these two different viewpoints.

Proposition B.30. Let H be a Hilbert space and suppose that A ⊆ B(H) is a von
Neumann algebra. Then A is a C∗-subalgebra of B(H).

There is an important result about von Neumann algebras that involves the com-
mutant of an algebra.

Proposition B.31. Let H be a Hilbert space and A⊆ B(H) a ∗-subalgebra. Then A′

is a von Neumann algebra.

In the main text we make use of generated von Neumann algebras. For any set
S⊆ B(H) the von Neumann algebra generated by S is

〈S〉vN :=
⋂
{A⊆ B(H) : A is a von Neumann algebra and S⊆ A},

which is in fact a von Neumann algebra since an arbitrary intersection of von Neu-
mann algebras is clearly again a von Neumann algebra.

Projections in von Neumann algebras

When considering von Neumann algebras, projections play a major role, because of
the following proposition.

Proposition B.32. Suppose H is a separable Hilbert space and A⊆ B(H) is a von
Neumann algebra. Then A is generated by its projections.

In the main text we need some elementary results about projections and von
Neumann algebras, which we state here.

Lemma B.33. Suppose H is a Hilbert space, A⊆ B(H) is a von Neumann algebra
and p ∈ B(H) is a projection. Then:

• Cp is a von Neumann algebra.
• If p ∈ A, then pAp is a von Neumann algebra.



Appendix C
Additional material

In this appendix, we use definitions and results from the main text to provide some
additional background. These are not included in the main text itself, since they
would merely disturb the natural storyline.

C.1 Transitivity theorem

The following theorem was proven by Kadison ([11]).

Theorem C.1. (Transitivity theorem) Suppose A is a non-zero C∗-algebra, acting
irreducibly on a Hilbert space H. Furthermore, let n ∈ N, let {xi}n

i=1 ⊆ H be a
linearly independent set and let {yi}n

i=1 ⊆ H be any subset. Then there exists an
a ∈ A such that a(xi) = yi for all i ∈ {1, . . . ,n}.

Furthermore, if there is a v = v∗ ∈ B(H) such that v(xi) = yi for all i∈ {1, . . . ,n},
then there is also a b = b∗ ∈ A such that b(xi) = yi for all i ∈ {1, . . . ,n}.

C.2 G-sets, M-sets and L-sets

As the start of a series of technical results, we begin by defining some important sets
associated with states.

Definition C.2. Suppose A is a unital C∗-algebra and f ∈ S(A). Then define the
following subsets of A:

N f = {a ∈ A : f (a) = 0},

L f = {a ∈ A : f (a∗a) = 0},

G f = {a ∈ A : | f (a)|= ‖a‖= 1},

M f = {a ∈ A : f (ab) = f (ba) = f (a) f (b) ∀b ∈ A}.

117
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These sets are called the null-space, L-set, G-set and M-set of f , respectively.
We write G+

f for the set of positive elements in G f .

For a state f , we are especially interested in the structure of the set G f . To deter-
mine this, we use the sets N f , L f and M f . Namely, we have the following sequence
of results. For the (straightforward) proofs, see [1].

Lemma C.3. Suppose A is a unital C∗-algebra, f ∈ S(A) and a ∈ A. Then:

1. M f ⊆ A is a subalgebra.
2. a ∈M f if and only if a− f (a)1 ∈ L f ∩L∗f .
3. G f ⊆M f .
4. G f is a semigroup.

For a pure state, there is a nice description of the null-space in terms of the L-set.
To give this description, we first give two more properties of states. For more details,
see [18].

Lemma C.4. Suppose A is a C∗-algebra and let f ∈ S(A). Suppose a,b ∈ A. Then
we have the following two properties:

• f (a∗a) = 0 if and only if f (ba) = 0 for all b ∈ A.
• f (b∗a∗ab)≤ ‖a∗a‖ f (b∗b).

We can apply these above properties to describe the algebraic structure of L-sets.

Lemma C.5. Suppose A is a C∗-algebra and f ∈ S(A). Then L f is a left-ideal.

Proof. It is clear that L f is closed under scalar multiplication. To see that it is closed
under addition, suppose a,b ∈ L f . Then by the Cauchy-Schwarz inequality (lemma
3.3), we have f (a∗b) = 0 and f (b∗a) = 0. Therefore,

f ((a+b)∗(a+b)) = f (a∗a)+ f (a∗b)+ f (b∗a)+ f (b∗b) = 0,

i.e. a+ b ∈ L f . Now, again suppose that a ∈ L f and let c ∈ A be arbitrary. Then,
applying lemma C.4,

f ((ca)∗ca) = f (a∗c∗ca)≤ ‖c∗c‖ f (a∗a) = 0,

so ca ∈ L f . Hence L f is a left-ideal. ut

Now, we can make the connection between the notions of null-spaces and L-sets
in the case of pure states.

Lemma C.6. Suppose A is a C∗-algebra and f ∈ ∂eS(A). Then N f = L f +L∗f .

Proof. First, suppose a ∈ L f . Then, by the Cauchy-Schwarz inequality,

| f (a)|2 = | f (1∗a)|2 ≤ f (1∗1) f (a∗a) = 0,

so a ∈ N f , i.e. L f ⊆ N f . Likewise, L∗f ⊆ N f , so by linearity of f , L f ⊆ L∗f ⊆ N f .
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To show that N f ⊆ L f +L∗f , we use the GNS-representation for f , as discussed
in C.3. First of all, since f is pure, the space A/L f is a Hilbert space with respect to
the inner product (a+L f ,b+L f ) = f (a∗b). Furthermore, since f is pure, the map

ϕ f : A→ B(A/L f ),ϕ f (a)(b+L f ) = ab+L f

has the property that ϕ f (A) acts irreducibly on A/L f , by proposition C.8.
Now suppose a ∈ N f is self-adjoint. Then we have

(1+L f ,a+L f ) = f (1∗a) = f (a) = 0,

i.e. 1+L f and a+L f are linearly independent. Therefore, by the transitivity theorem
(C.1), there is a self-adjoint element v ∈ ϕ f (A) such that v(a+ L f ) = a+ L f and
v(1+L f ) = 0. Then v = ϕ f (b) for some b ∈ A. Define c = b∗+b

2 . Then c = c∗ and

ϕ f (c) = ϕ f (
b∗+b

2
) =

ϕ f (b)∗+ϕ f (b)
2

=
v∗+ v

2
= v,

so we have
ca+L f = ϕ f (c)(a+L f ) = v(a+L f ) = a+L f ,

and
c+L f = ϕ f (c)(1+L f ) = v(1+L f ) = 0,

i.e. ca−a ∈ L f and c ∈ L f . Define d := ca−a ∈ L f . Then since a = a∗,

a = ca−d = (ca−d)∗ = ac−d∗.

Since c ∈ L f and L f is a left-ideal by lemma C.5, ac ∈ L f . Furthermore, −d∗ ∈ L∗f ,
so a = ac−d∗ ∈ L f +L∗f .

So, if we now take an arbitrary x ∈N f , we have x = x1+ ix2, with x1 =
x+x∗

2 ∈N f

and x2 ∈ x−x∗
2i ∈ N f . Hence, by the above, x1 = y1 +w∗1 and x2 = y2 +w∗2 for some

y1,w1,y2,w2 ∈ L f . Then, y1 + y2 ∈ L f and −i(w1 +w2) ∈ L f , so

x = y1 + y2 +(−i(w1 +w2))
∗ ∈ L f +L∗f .

Therefore, N f ⊆ L f +L∗f , i.e. N f = L f +L∗f , as desired. ut

Of course, we are going to apply the above discussion to extensions of pure
states, in order to say something about the classification of subalgebras that satisfy
the Kadison-Singer property. Therefore, the following result is useful, which states
that L- and M-sets behave nicely with respect to extensions.

Lemma C.7. Suppose H is a Hilbert space and A ⊆ B(H) is a C∗-subalgebra.
Furthermore, suppose g ∈ Ext( f ). Then L f ⊆ Lg and M f ⊆Mg.

Proof. Suppose a ∈ L f . Then a ∈ A⊆ B(H) and f (a∗a) = 0. Since g ∈ Ext( f ), and
a∗a ∈ A, g(a∗a) = f (a∗a) = 0, i.e. a ∈ Lg and L f ⊆ Lg.
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Now suppose a ∈M f . Then a− f (a)1 ∈ L f ∩L∗f , by lemma 2. Since g ∈ Ext( f ),
g(a) = f (a), and by the above, L f ∩L∗f ⊆ Lg ∩L∗g. Therefore, a− g(a)1 ∈ Lg ∩L∗g
and hence a ∈Mg, again by lemma 2. Hence M f ⊆Mg, as desired. ut

C.3 GNS-representation

Next, we treat the so-called Gelfand-Naimark-Segal representation. For this, we fix
a certain C∗-algebra A and we let f : A→C be a state. In definition C.2, we defined
the L-set of f to be

L f = {a ∈ A : f (a∗a) = 0},

and in lemma C.5 we showed that L f is a left ideal of A.
Now, we note that we have a well-defined inner product on A/L f , given by

〈a+L f ,b+L f 〉= f (a∗b).

We can then complete A/L f to a Hilbert space H f . Then, we define a map

ψ f : A×A/L f → A/L f ,

by setting ψ f (a,b + L f ) = ab + L f . Since A/L f is dense in H f and ψ f (a, ·) is
bounded for every a ∈ A, ψ f uniquely extends to a map ψ ′f : A×H f → H f . Then,
we have the map

ϕ f : A→ B(H f ),

defined by ϕ f (a)(x) = ψ ′f (a,x). In fact, ϕ f is a ∗-homomorphism, and as such,
it is a representation, which we call the Gelfand-Naimark-Segal representation
belonging to f .

The main result we use about the GNS-representation is the following:

Proposition C.8. Suppose A is a C∗-algebra and f ∈ S(A). Then f ∈ ∂eS(A) if and
only if ϕ f (A) acts irreducibly on H f .

C.4 Miscellaneous

In sections C.1 and C.3, we discussed some fundamental results, which are treated
in many texts on operator algebras. In this section, we give results which are less
well-known.
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State-like functionals

As we already mentioned in section B.1, there are many theorems similar to the
Hahn-Banach theorem. There is also a theorem for C∗-algebras in which ’positivity’
is preserved. For this, we need the notion of state-like functionals.

Definition C.9. Suppose A is a unital C∗-algebra and C ⊆ A is a self-adjoint linear
subspace of A that contains the unit. Then a linear map f : C → C that satisfies
f (c∗) = f (c) for every c ∈ C, f (c) ≥ 0 for every positive c ∈ C and f (1) = 1, is
called a state-like functional on C. The set of all state-like functionals on C is
written as SLF(C).

For these state-like functionals, we have the following extension theorem, which
resembles the Hahn-Banach theorem. For its proof, we refer to [6, 2.10.1].

Theorem C.10. Suppose A is a unital C∗-algebra and C⊆ A is a self-adjoint linear
subspace that contains the unit. Suppose f : C→ C is a state-like functional. Then
there is a state-like functional g : A→ C that extends f .

The projection lattice in the strong topology

In B.2, we discussed some properties of the projection lattice for a Hilbert space. In
B.4 we saw that projections play a major role for von Neumann algebras. Since von
Neumann algebras are defined using the strong topology, we need some result about
the projection lattice with respect to the strong topology. Here, for a Hilbert space
H and a subset Y ⊆ B(H), Clstr(Y ) denotes the strong closure of Y .

We first have the following result.

Proposition C.11. Suppose F is a totally ordered family of projections on a Hilbert
space H. Then ∨F ∈ Clstr(F).

Proof. Write λ = ∨F and consider A =
⋃

p∈F p(H).
For a,b ∈ A there are p,q ∈ F such that a ∈ p(H) and b ∈ q(H). Since F is

totally ordered, we can assume without loss of generality that p≤ q. Then we have
that a ∈ p(H)⊆ q(H), so a,b ∈ q(H), whence a+b ∈ q(H)⊆ A. Furthermore, for
µ ∈ C and a ∈ A, there is a p ∈ F such that a ∈ p(H), whence µa ∈ p(H) ⊆ A.
Therefore, A is a linear subspace of H.

Hence A is a closed linear subspace of H. We now claim that λ (H) = A.
First, let q be the projection onto A. Then for all p ∈ F , p(H) ⊆ A ⊆ A = q(H),

i.e. p ≤ q for all p ∈ F . Therefore, λ ≤ q, so λ (H) ⊆ q(H) = A. For the converse,
observe that for any p ∈ F , we have p ≤ λ , i.e. p(H) ⊆ λ (H), so we obtain that
A =

⋃
p∈F p(H)⊆ λ (H). Therefore, A⊆ λ (H) = λ (H). So, indeed, λ (H) = A.

Now, let x ∈ H. Then λ (x) ∈ A, so there is a sequence {yx,n}∞
n=1 ⊆ A such that

limn→∞ yx,n = λ (x). For all n∈N there is a px,n ∈ F such that yx,n = p(zx,n) for some
zx,n ∈ H. So, for every ε > 0, there is a nε ∈ N such that ‖λ (x)− px,nε

(zx,nε
)‖< ε .
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By lemma B.13 we conclude that

‖λ (x)− px,nε
(x)‖ ≤ ‖λ (x)− px,nε

(zx,nε
)‖< ε.

Now, for any q≥ px,nε
, we have that λ −q≤ λ − px,nε

, so

‖λ (x)−q(x)‖ ≤ ‖λ (x)− px,nε
(x)‖< ε.

Since ε > 0 was arbitrary, λ (x) = limp∈F p(x). Since x ∈ H was arbitrary, we
therefore conclude that λ is the strong limit of the net {p}p∈F ⊆ F , i.e. we have
λ ∈ Clstr(F). ut

For the next result on the projection lattice and the strong topology, we first need
the following lemma.

Lemma C.12. Suppose H is a Hilbert space and let F ⊆P(H) be some family of
projections. Then we have ∨

p∈F

{1− p}= 1−
∧
p∈F

{p}.

Proof. For all q, q≥ ∧{p}, so 1−q≤ 1−∧{p}, whence ∨{1− p} ≤ 1−∧{p}.
For all q, ∨{1− p} ≥ 1−q, so 1−∨{1− p} ≤ q, whence 1−∨{1− p} ≤ ∧{p},

i.e. ∨{1− p} ≥ 1−∧{p}.
Therefore, ∨{1− p}= 1−∧{p}. ut

Using this lemma, we can prove the following.

Corollary C.13. Suppose F is a totally ordered family of projections on a Hilbert
space H. Then ∧F ∈ Clstr(F).

Proof. Consider the family G := {1− p : p ∈ F}, which is again a totally ordered
family of projections on H. By proposition C.11, then ∨∈Clstr(G). By lemma C.12,
∨G = 1−∧F , i.e. 1−∧F ∈ Clstr(G). Therefore, there is a net {gi}i∈I ⊆G such that
1−∧F is the strong limit of {gi}i∈I . However, for every i ∈ I, gi = 1− pi for a
certain pi ∈ F .

Now suppose x ∈ H and ε > 0. Then there is a i0 ∈ I such that for every i≥ i0,

‖((1−∧F)−gi)(x)‖< ε.

Then we also obtain for every i≥ i0 that

‖(pi−∧F)(x)‖= ‖((1−∧F)− (1− pi))(x)‖= ‖((1−∧F)−gi)(x)‖< ε.

Therefore, limi∈I pi(x) = ∧F(x), i.e. ∧F is the strong limit of the net {pi}i∈I in
F , so ∧F ∈ Clstr(F). ut



Appendix D
Notes and remarks

In this appendix, we comment on the things we discussed in the main text. First, we
give some very specific notes about technicalities in the main text. Subsequently we
will make some remarks which have a broader context.

Notes per chapter

Chapter 2

In chapter 2 we defined states for both the algebra M and the subalgebra D. Of
course, these definitions are alike and can be generalized. This is done in chapter 3.

The unique extension given in the proof of theorem 2.14, is in fact given by a
conditional expectation. We discuss these conditional expectations in more detail in
subsection D, but the idea is the following: consider the map diag : M→ D, given
by diag(a)ii = 〈ei,aei〉. This map is linear, unital and satisfies diag ◦ i = Id, where
i : D ↪→ M is the inclusion map. Then the unique extension of pure states is given
by the pullback of the map diag, i.e. for a pure state f ∈ ∂eS(D), g := f ◦diag is the
unique pure extension.

Chapter 4

The result of proposition 4.4 is to be expected when carefully using lemma 4.3.
Namely, for some Hilbert space H and A1,A2 ∈C(B(H)), such that A1 ⊆ A2, lemma
4.3 gives

A1 ⊆ A2 ⊆ A′2 ⊆ A′1,

so in fact we have
A′2 \A2 ⊆ A′2 \A1 ⊆ A′1 \A1,
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i.e. if we define the map ϕ : C(B(H))→P(B(H)) by ϕ(A) =A′\A, we see that ϕ is
an anti-homomorphism between the partially ordered sets C(B(H)) and P(B(H)).
Therefore, maximality in the poset C(B(H)) corresponds to minimality in the poset
ϕ(C(B(H)))⊆P(B(H)). In fact, proposition 4.4 shows exactly that maximality in
C(B(H)) corresponds to the element /0 ∈ ϕ(C(B(H))), so the minimal element of
ϕ(C(B(H))) is the minimal element of P(B(H)).

In the proof of theorem 4.5, we show that if A,C ∈ C(B(H)), A ⊆ C and A has
the Kadison-Singer property, then necessarily A = C. We do this by first showing
that A ∼= C, followed by showing that the inclusion i : A ↪→ C is in fact giving this
isomorphism. One might think that A ⊆ C and A ∼= C already implies that A = C.
However, this is not the case. As an example, consider the subalgebra

`∞(2N) := { f ∈ `∞(N) | f (2n−1) = 0 ∀n ∈ N}.

Clearly, `∞(2N)∼= `∞(N), but these two algebras are not the same.

Chapter 5

We restrict ourselves to the case of separable Hilbert spaces. This may seem to
be a major restriction, but some remarks can be made justifying this restriction.
First of all, in applications of operator algebras within the context of physics (most
notably that of quantum theory), non-separable Hilbert spaces almost never play a
role. Furthermore, the ungraspability of the non-separable case is a big mathematical
issue. After all, we are restricting ourselves to the separable case, since we can make
a classification of maximal abelian subalgebras of B(H) where H is a separable
Hilbert space (corollary 5.25). For the non-separable case(s), such a classification is
not available so far.

The ideas behind the classification in the separable case (corollary 5.25) are ex-
actly those of Kadison and Ringrose ([21, 9.4.1]). We expanded and clarified some
of their technical arguments.

Chapter 6

The Stone-Čech compactification of a Tychonoff-space can in fact also be con-
structed using the theory of operator algebras. In fact, for such a space X , its
Stone-Čech compactification can be realised as the Ω(Cb(X)), i.e. the character
space of the algebra of bounded continuous functions on X . Namely, assuming that
the Stone-Čech compactification βX exists for some topological space X , we can
show that Cb(X) ∼= C(βX) = C0(βX) = Cb(βX) in the following way. Suppose
that f ∈ Cb(X) and let D := {z ∈ C | |z| ≤ ‖ f‖}. Then D is a compact Hausdorff
space, and f : X → D is a continuous function. Therefore, by the universal prop-
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erty of the Stone-Čech compactification, there is a unique continuous β f : βX →D
that extends f . Hence, we get a well-defined map Φ : Cb(X)→ C(βX), f 7→ β f .
Since any continuous function on the compact Hausdorff space βX is automatically
bounded, we also get a map Ψ : C(βX)→Cb(X),h 7→ h|X . By the universal property
of the Stone-Čech compactification it is clear that Φ and Ψ are each other’s inverse,
whence C0(βX) =C(βX)∼=Cb(X). However, by the Gelfand-isomorphism, we also
have Cb(X)∼=C0(Ω(Cb(X))), so βX ∼= Ω(Cb(X)).

Chapter 7

The whole point of introducing and using the Stone-Čech compactification is in the
proof of theorem 7.10. The switch from N to Ultra(N), i.e. from a non-compact
space to a compact space, exactly gives us that ∂eS(Ac) is already contained in
(βH ′)(Ultra(N)), instead of (βH ′)(Ultra(N)). The latter space is bigger and we
cannot describe it properly. However, for (βH ′)(Ultra(N)) itself, we have results
like proposition 7.11.

The use of existing literature

This thesis has one goal: proving corollary 8.35. Every part of the text is necessary
for reaching this goal and we have tried to keep the text as self-contained as possible.
The text can be divided in a few parts, each with their own character, their own
(intermediate) goal and their own roots in existing literature.

First of all, the introductory chapters 2 and 3 together form the foundation for
the thesis and have the goal of introducing the necessary concepts for the final clas-
sification. The idea of the question can mainly be found in the original article by
Kadison and Singer ([12]), although they spoke of unique pure state extensions in-
stead of the Kadison-Singer property, like we do. In fact, this way of defining the
Kadison-Singer property as a property of an algebra is something we added to the
theory.

The second part (chapter 4) contains the first reduction step: maximality is nec-
essary for the Kadison-Singer property. This is also already in [12]. However, we
give our own proof of this fact.

Subsequently, chapter 5 reduces the classification even further, using the classifi-
cation of maximal abelian von Neumann algebras. This classification is based on an
idea of John von Neumann, but there are not many sources for well-written proofs.
We have based ourselves on the proof of Kadison and Ringrose in [20] and [21].
Although their ideas are exactly those that are behind our proof, we have expanded
the proof, by making clear distinctions between the several cases.

Chapter 6 and 7 together reduce the classification to the Kadison-Singer con-
jecture. The theory of ultrafilters and the Stone-Čech compactification of discrete
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spaces can be found in many textbooks on topology, but our extensive study of the
Stone-Čech compactification for arbitrary Tychonoff spaces has its roots in [27].
The results in chapter 7 also have one clear source: the article by Joel Anderson
([1]). Although this article already gives a much clearer proof of the fact that the
continuous subalgebra does not have the Kadison-Singer property than Kadison and
Singer do in their article (viz. [12]), we have clarified this even further. Our main
improvement concerns the distinction between using the universal property of the
Stone-Čech compactification for the Haar states and using the same property, but
then for the restricted Haar states. Furthermore, we have not proven all results that
in fact hold for arbitrary algebras, but have restricted ourselves to the continuous
subalgebra, which gives easier proofs in section 7.3.

In chapter 8 we complete the classification. For this, we use an article of Terence
Tao ([25]). He has already simplified the works of Marcus, Spielman and Srivastava
([16]), whence we have not concretely used their articles. However, the article con-
tained a minor mistake in the proof of lemma 8.20. After a short correspondence,
Terence Tao improved his argument. Subsequently, we have made an even further
simplification for this proof.

Broader remarks

The Anderson operator

Throughout the main text we used several technical arguments. Most of them were
to be expected within their context. However, in chapter 7, we used the Stone-Čech
compactification of N, which is a discrete space, to say things about the continuous
subalgebra. At first sight, this seems paradoxical, but it is not really. After all, we
use N in order to enumerate the Haar functions. Therefore, it is not the discreteness
of N that is important, but its cardinality, since the continuous subalgebra acts on
the separable Hilbert space L2(0,1).

Therefore, one might think the same arguments are applicable to the discrete
subalgebra. In fact, a lot of structure described in chapter 7 can be transfered to the
case of the discrete subalgebra. This can best be described by means of the following
diagram:

Ultra(N)

βTuu
βT ′

��

N

S ..

T //

T ′ 00

S(B(`2(N)))
M∗

))
S(`∞(N))
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Here, T ′ and T are defined by T ′(n)( f ) = f (n) and T (n)(a) = 〈δn,aδn〉. Further-
more, βT ′ and βT are the continuous extensions of T ′ and T respectively, obtained
by the universal property of the Stone-Čech compactification. Like in chapter 7, S
is the map that assigns the principal filter to every natural number, i.e. S(n) = Fn.
Lastly, M∗ is the pullback of the multiplication operator M : `∞(N) ↪→ B(`2(N)).

This diagram is similar to the situation we had in chapter 7, where the role of T
was taken by H and the role of T ′ by H ′. Now, again, M∗ ◦ T = T ′ and therefore
M∗ ◦βT = βT ′. Therefore, the above diagram is commutative.

It is easy to see that T ′(N) is a total set of states, whence (βT ′)(Ultra(N)) is a
total set of states. Therefore, ∂eS(`∞(N))⊆ (βT ′)(Ultra(N)). However, to conclude
things about the uniqueness of pure state extensions, we need some kind of injec-
tivity of M∗. However, the above diagram gives no further information, since the set
T (N) is not a total set of states: there are operators a ∈ B(`2(N)) which have a pos-
itive diagonal part but are not positive themselves. Therefore, we cannot conclude
that all pure states on B(`2(N)) lie in the image of βT .

The high point of chapter 7 was reached when we defined the Anderson operator.
This operator was defined using a bijection ϕ : N→ N that had no fixed points. In
fact, the bijection that was used respected the structure of the basis formed by the
Haar functions, since it permutes groups of Haar functions whose supports are of
equal length.

In the case of the discrete subalgebra, we can again consider some bijection
ϕ : N→ N without fixed points and use this to construct an operator Vϕ like the
Anderson-operator: we set Vϕ(δn) = δϕ(n) and extend this linearly to all of `2(N).
Then Vϕ is unitary, since it permutes a basis and for all n∈N we have T (n)(Vϕ) = 0.

However, for any m ∈N, we have ‖MδmVϕ Mδm‖= 0, since ϕ has no fixed points.
This is in contrast to proposition 7.18. We note here that we have taken δm as a
projection, which is in fact a minimal projection. This observation becomes partic-
ularly interesting when also noting that the main difference between the continuous
and the discrete subalgebras is the existence of minimal projections: the continuous
subalgebra has none, whereas the discrete subalgebra is even generated by its mini-
mal projections, as we showed in chapter 5. In fact, for any choice of ϕ above, there
is a non-minimal projection p ∈ `∞(N) such that ‖MpVϕ Mp‖= 1.

Therefore, we are led to believe that the technique of using the Anderson oper-
ator in chapter 7 works precisely since the continuous subalgebra has no minimal
projections.

Normal states

In chapter 2, we described all states on the matrix algebra Mn(C) using density
operators. In fact, using the spectral decomposition of density operators, we saw
that every state on Mn(N) was given by
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ω(a) =
n

∑
i=1

pi〈vi,avi〉,

where {vi}n
i=1 is some orthonormal basis of Cn and {pi}n

i=1 ⊆ [0,1] is such that
∑

n
i=1 pi = 1. We can generalize these states to the infinite dimensional case. For any

orthonormal base {vi}∞
i=1 of `2(N) and any sequence {pi}∞

i=1 ⊆ [0,1] such that we
have ∑

∞
i=1 pi = 1, the functional f : B(`2(N))→ C defined by

f (a) =
∞

∑
i=1

pi〈vi,avi〉,

is a state on B(`2(N)). Such states are called normal states (see [13]). In contrary
to the finite dimensional case, the set of normal states do not exhaust the set of all
states on B(`2(N)).

It is clear that for any orthogonal set of projections {ei}i∈I we have

f (
∨
i∈I

ei) = ∑
i∈I

f (ei)

for a normal state f . In contrast to this, singular states are states that annihilate all
one-dimensional projections, and thereby all compact operators.

An arbitrary state on B(`2(N)) can be written as a convex combination of a nor-
mal and a singular state (as a consequence of theorem 10.1.15(iii) in [21]). This
has an interesting consequence for the concept of pure state extensions. Namely,
suppose n ∈ N and let fn : `∞(N)→ C be given by fn(a) = a(n). Then certainly,
fn ∈ Ω(`∞(N)) = ∂eS(`∞(N)). Then, suppose g ∈ Ext( fn) is a pure state. g can be
written as a convex combination of a normal and a singular state, but it is pure,
so it is either normal or singular. Since g is an extension of fn, g is non-zero on
the projection onto the span of δn, so g is not singular. Hence it is normal. So
g(a) = ∑

∞
i=1 pi〈vi,avi〉 for some orthonormal basis {vi}∞

i=1 and sequence {pi}∞
i=1

such that ∑
∞
i=1 pi. Similar to the finite dimensional case, the fact that g is pure then

implies that there must be some i∈N such that pi = 1 and p j = 0 for all j 6= i. There-
fore, g(a) = 〈vi,avi〉. However, since g∈ Ext( fn), we then get |〈vi,δn〉|= 1, whence
g = gn, where gn(a) := 〈δn,aδn〉 for all a ∈ B(`2(N)). Therefore, fn has a unique
pure state extension and since ∂e Ext( fn) = Ext( fn)∩∂eS(B(`2(N))) by lemma 3.13,
we know that ∂e Ext( fn) = {gn}. Since Ext( fn) is a closed subset of S(B(`2(N))) it
is a compact and convex set, so by the Krein-Milman theorem, Ext( fn) = {gn}.

Conditional expectations

In the finite dimensional case (theorem 2.14) we saw that the unique extension of
a pure state is given by its pullback under the map which takes its diagonal part.
In fact, for the infinite dimensional case, the same result holds (see corollary 8.33).
Here, we generalize this concept to so-called conditional expectations.
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For a Hilbert space H and an abelian subalgebra A ⊆ B(H) we say that a map
d : B(H)→ A is a conditional expectation for A if it is linear, positive and satisfies
d ◦ i = Id, where i : A ↪→ B(H) is the inclusion.

For a conditional expectation d for A and a state f ∈ S(A), it is then clear that
f ◦ d ∈ Ext( f ). Formulated differently, the pullback d∗ : S(A)→ S(B(H)), defined
by d∗( f ) = f ◦d, can be considered an extension map.

Therefore, it is natural to ask whether two different conditional expectations give
different extension maps. More precisely, suppose d1 and d2 are both conditional
expectations for A and suppose A has the Kadison-Singer property. Then we have
that f ◦d1 = f ◦d2 for all f ∈ ∂eS(A), so f (d1(b)) = f (d2(b)) for all b ∈ B(H) and
for all f ∈ ∂eS(A). However, ∂eS(A) = Ω(A) separates points, so d1(b) = d2(b) for
all b ∈ B(H). Therefore, d1 = d2. So, if A has the Kadison-Singer property, then it
has at most one conditional expectation.

In fact, Anderson showed ([1, theorem 3.4]) that if A has the Kadison-Singer
property, then A has a conditional expectation. Therefore, if A has the Kadison-
Singer property, then it has precisely one conditional expectation.

In the original article by Kadison and Singer ([12, theorem 2]), it is shown that
the continuous subalgebra has more than one conditional expectation. This is proven
using very technical arguments, which we find not insightful. The article of Ander-
son ([1]) is more helpful and serves as the base for chapter 7 of this text.

Although we proved that the discrete subalgebra has the Kadison-Singer property
in chapter 8 and that this implies that `∞(N) has a unique conditional expectation, we
can also prove the latter directly. It is implied by the fact that every point-evaluation

fn ∈ ∂eS(`∞(N)), fn(a) = a(n)

with n ∈ N has a unique extension, given by

gn ∈ ∂eS(B(`2(N))),gn(a) = 〈δn,aδn〉.

Namely, if d is a conditional expectation for `∞(N), then for any a ∈ B(`2(N)) and
n ∈ N we have

d(a)(n) = fn(d(a)) = ( fn ◦d)(a) = gn(a) = 〈δn,aδn〉,

and defining the map d by d(a)(n) = 〈δn,aδn〉 in fact defines a conditional expecta-
tion. Therefore, `∞(N) has a unique conditional expectation.
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