

Insect resistance to dietary protease inhibitors

Jornt Spit*, Michiel Holtof, Liesbeth Badisco, Elise Vogel, Jozef Vanden Broeck

Research group of Molecular Developmental Physiology and Signal Transduction

Introduction

Protease inhibitors (PIs) are plant defensive compounds that are considered as candidates for future genetic modification of crop plants. They target the digestive proteolytic enzymes in the gut of insects. However, insect resistance to these antinutritional PIs is frequently observed. The general aim of this research was to identify PI induced compensatory responses in the gut of the African migratory locust, Locusta migratoria, an infamous pest insect, capable of forming huge swarms. Using microarray analysis we studied transcriptional changes after oral uptake of plant protease inhibitors by the locust.

Results

Table 1. Functional annotation of the upregulated (top) and downregulated (below) transcripts. Annotations were performed using InterPro scan and sorted based on putative function.

Putative function	InterPro	# Seq	Gene description	Fold Change
JH-binding	IPR013788	17	Hemocyanin/hexamerin	1.4 - 2.8

	IPR010562	1	Haemolymph juvenile hormone binding	1.5
Protein digestion	IPR001254	9	Serine protease family S1	1.4 - 1.8
	IPR003146	5	Carboxypeptidase	1.3 - 1.6
Carbohydrate metabolism	IPR001360	1	β-glucosidase	1.6
	IPR000933	1	α-L-fucosidases	1.7
	IPR001139	1	Glucosylceramidase	1.5
Lipid metabolism	IPR025483	1	Lipase	1.6
Detox/Stress response	IPR001128	3	Cytochrome P450	1.3 - 2.0
	IPR002018	1	Carboxylesterase, type B	1.6
Peritrophic membrane	IPR002557	2	Chitin binding peritrophin A	2.0 - 2.1
Other		7		1.3-1.6
Putative function	InterPro	# Seq	Gene description	
Structural activity	IPR004000	10	Actin	
	IPR001781	3	Zinc finger, LIM-type	
	IPR013098	2	Immunoglobulin I-set domain	
	IPR002928	1	Myosin	
	IPR001715	1	Calponin homology domain	
Defense	IPR001304	2	C-type lectin	
	IPR008597	1	Destabilase	
Carbohydrate metabolism	IPR001360	3	β-glucosidase	
	IPR001312	2	Hexokinase	
	IPR001701	1	Cellulase	
Lipid metabolism	IPR000566	1	Lipocalin/cytosolic fatty-acid binding protein	n domain
	IPR0021/2	1	Low-density lipoprotein (LDL) receptor class	A
Other metabolism Protein digestion Detox/Stress response		1	Snort-chain denydrogenase	
	IPR02005	1	Inosine/uridine-nucleoside hydrolase	
		-		
	IPR001148	1	Alpha carbonic anhydrase	
	IPR000994	1	Peptidase M24, aminopeptidase	
		1	Peptidase IVI19, dipeptidase	
		۲ 1	Hoom porovidaço	
		1	Cytochrome P/50 F-class group IV	
	IPR002403	1	Alnha crystallin/Heat shock HSP20-like chan	erone
Other	11 11000370	15	A apria crystanny riedt shoek hist zo nike chap	

log2(Fold Change)

Fig. 1. Volcano plot of retrieved microarray data. Plotting the negative log10 of the adjusted p-value against the log2 of the fold change.

Fig. 2. Frequency distribution of the weight of locust populations after knocking down hexamerin-like transcripts in combination

By using a two-color microarray hybridization setup we identified 114 and 150 transcripts out of a total of 35869 that were respectively up- or downregulated (Fig. 1, Table 1). A large group of upregulated transcripts encoded hexamerin-like proteins. Knockdown of these transcripts in combination with PI-ingestion resulted in a stunted growth (Fig. 2), possibly due to an inability to regulate the normal response (Fig. 3).

- Microarray data suggest that during adaptation to ingested PI fewer resources can be invested in defense, stress responses and the maintenance of structural integrity
- Knocking down key proteins in this adaptive process could result in impaired response mechanisms leading to improved antimetabolic effects of PI

* jornt.spit@bio.kuleuven.be