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Abstract

Varying coefficient models are flexible models to describe the dynamic structure

in longitudinal data. Quantile regression, more than mean regression, gives partial

information on the conditional distribution of the response given the covariates. In

the literature the focus has been so far mostly on homoscedastic quantile regression

models, whereas there is an interest in looking into heteroscedastic modelling. This

paper contributes to the area by modelling the heteroscedastic structure and esti-

mating it from the data, together with estimating the quantile functions. The use

of the proposed methods is illustrated on real data applications. The finite-sample

behaviour of the methods is investigated via a simulation study, which includes a

comparison with an existing method.

Keywords and phrases: B-splines, heteroscedastic error, longitudinal data, P-splines,

quantile regression, varying coefficient models.

1 Introduction

In many applications the same characteristics for a subject are observed at multiple points

in time. In this longitudinal data setting the multiple observations on the same subject

typically are not independent, whereas independence between observations from different

subjects still can be considered.

Simple multiple linear regression models are often insufficient to adequately describe

such data, and among the more flexible models are varying coefficient models, introduced

by Hastie and Tibshirani (1993) and further studied for longitudinal data in Hoover et

al. (1998), Huang et al. (2004), Qu and Li (2006), and Şentürk and Müller (2006, 2010),

among others. Most papers in the literature focus on estimation of the dynamic influ-

ence of the covariates on the mean response. A more overall picture of the conditional

distribution function of the response given the covariates can be obtained from investi-

gating quantiles. Quantile regression in a longitudinal data setting has been dealt with in
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Honda (2004), Kim (2006, 2007), Wang et al. (2009) and Andriyana et al. (2014), among

others. Andriyana et al. (2014) considered a homoscedastic quantile regression vary-

ing coefficient model, and approximated the unknown coefficient functions by B-splines.

They established theoretical properties (including consistency and rate of convergence,

and asymptotic distribution) of the estimated coefficient functions.

In regression modelling the assumptions made on the error term are crucial. Among

the important issues is whether the error term has a structure that changes with the

covariates or not. In a simple (non-dynamic) covariate setting this results into looking

at heteroscedastic (versus homoscedastic) regression models. In mean regression various

methods have been developed for testing for a homoscedastic error structure (versus a

heteroscedastic one). When the aim is a more general knowledge of the conditional

distribution of the response, and one resorts to quantile regression the main focus has

been so far on a homoscedastic error structure. Recently Andriyana et al. (2016) allowed

for some dynamic structure of the error term in a location-scale model, and developed

an estimation method for its variability. This structure however does not allow the error

to change with (depend on) the covariates, whereas such flexible modelling is sometimes

needed as will be seen in Section 5 and the example below.

In the UK employment data example of Section 5.2 the aim is to investigate how

covariates (wage, capital, output) influence the conditional quantile function for the re-

sponse variable, the employment, which is the logarithm of the number of employees in a

firm. This influence may change over time, and this is captured by a varying coefficient

model. The top and bottom panels of Figure 1.1 show the estimated conditional quantile

curves as functions of time (for nine different orders of quantiles: 0.1, 0.2, up to 0.9) under

two different fixed covariate settings: for the top panel for mean values of the covariates,

and for the bottom panel for maximal values of the covariates. Figures 1.1 (a)&(d) and

(b)&(e) are obtained by the proposed methods allowing for heteroscedasticity in the er-

ror structure, whereas Figures 1.1 (c)&(f) utilize a state-of-the-art method. This figure

already reveals that some heteroscedasticity is not captured by the latter method (see

Figure 1.1 (f), as opposed to Figures 1.1 (d)&(e)). Indeed, some of the covariates turn

out to have an influence on the error variability. In Section 5.2 we further investigate this

heteroscedasticity in the data, as a function of the covariates and time. Figure 1.2 depicts

the estimated influence from the covariate capital on a main quantile pattern (in Figure

1.2 (a)), as well as on the observed heteroscedasticity (in Figure 1.2 (b)). Important to

note is that the influence increases over time, but with a more or less constant influence

the last three years of the studied period. See further Section 5.2.

In this paper we thus allow for a heteroscedastic error structure, and estimate also the

function that describes how the error structure changes with the covariates. This is in

contrast to Andriyana et al. (2014) who consider homoscedastic errors and Andriyana et

al. (2016) that only allow for a too simplistic heteroscedasticity, as is illustrated in the

example above. The main and innovative contribution of this paper is thus to (i) allow
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(a) Method of Section 3.1.
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(b) Method of Section 3.2.
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(c) Using Andriyana et al.
(2016).
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(d) Method of Section 3.1.
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(e) Method of Section 3.2.
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(f) Using Andriyana et al.
(2016).

Figure 1.1: UK employment data. Estimated log-employment quantile curves for τ =

0.1, 0.2, . . . , 0.9 at the mean values (top panels) and at the maximum values (bottom panels)

of all covariates using: (a)&(d) method of Section 3.1, (b)&(e) method of Section 3.2 ,

and (c)&(f) AHe V (t)-approach.

for a flexible enough heteroscedasticity modelling in the context of quantile regression

for varying coefficient models; (ii) to provide a method to estimate not only the condi-

tional quantile function, but also the impact of the covariates on this heteroscedasticity

structure; and moreover (iii) to estimate the entire error variability structure. The paper

is further organized as follows. In Section 2 the modelling framework is described, and

Section 3 discusses estimation methods. The finite-sample behaviour of the estimators is

examined in Section 4 via a simulation study. The practical use of the proposed method

is then further illustrated via real data applications in Section 5. In Section 6 some

concluding remarks and some further discussions are given.

2 Varying coefficient models and heteroscedasticity

Suppose we have repeated observations on (Y (T ), (X(1)(T ), . . . , X(p)(T )), T ), with T a

‘time’ variable taking values in the domain T , with Y (T ) the response variable at time
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(a) Coefficient of capital (β̂2(t)).
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(b) Coefficient of capital (γ̂2(t)).

Figure 1.2: UK employment data. The estimated influence of the covariate capital on the

main quantile function (a) and on the heteroscedasticity (b)), using the estimation method

of Section 3.2.

T , and with (X(1)(T ), . . . , X(p)(T )) the vector of covariates at time T .

In a longitudinal data setting one has repeated measurements on n subjects/indi-

viduals. For subject i, the repeated measurements occur at time points ti1, . . . , tiNi
,

with Ni denoting the number of repeated measurements for the ith subject. At time

point tij one observes the response variable Y (tij) and the vector of covariate values

(X(1)(tij), . . . , X
(p)(tij)), which are shortly denoted as Yij and (X

(1)
ij , . . . , X

(p)
ij ) respectively.

The longitudinal observations of (Y (T ),X(T ), T ), with X(T ) = (X(0)(T ), X(1)(T ), . . . , X(p)(T )),

where X(0)(T ) = 1, consist thus of (Yij,Xij, tij), i = 1, . . . , n and j = 1, . . . , Ni, with

Xij =
(
X

(0)
ij , . . . , X

(p)
ij

)T
, and X

(0)
ij = 1. Typically one assumes that the measurements

are independent for different subjects, but measurements at different time points for a

same individual can be correlated. For more details see Andriyana et al. (2014) and

Section 4.

The interest in this paper is in the conditional τ -th order quantile of Y (T ) given

{X(T ), T}, with 0 < τ < 1, denoted by qτ (Y (T )|X(T ), T ). Based on these conditional

quantiles, one could consider conditional measures of spread such as the conditional me-

dian absolute deviation, or the conditional interquartile range (i.e. q0.75(Y (T )|X(T ), T )−
q0.25(Y (T )|X(T ), T )). Without any modelling assumption one could attempt to estimate,

based on available longitudinal data, the conditional distribution function of Y (T ) given

{X(T ), T}, followed by estimation of conditional quantile functions, and some conditional

measures of spread. In a fully nonparametric setting this would result in a very cumber-

some task (e.g. due to a possible impact of several covariates, having an effect on the

dimensionality of the conditioning argument). On the other hand, a fully parametric

modelling setting is often too restrictive, and leads to important model misspecification

errors. Therefore in this paper, we opt for adding some minor model structure, while still
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keeping enough flexibility. This is done by considering a location-scale type of model. Of

main importance is also that such modelling allows us to quantify the possible impact of

covariates on the error variability.

More specifically, we consider the following flexible varying coefficient model:

Y (T ) = β0(T )X(0)(T ) + β1(T )X(1)(T ) + . . .+ βp(T )X(p)(T ) + V (X(T ), T ) ε(T ), (2.1)

where ε(T ) is independent of (X(1)(T ), . . . , X(p)(T )), and βk(·), for k = 0, . . . , p, are the

dynamic regression coefficients (unknown univariate functions). We further assume that

V (X(T ), T ) = γ0(T )X(0)(T ) + γ1(T )X(1)(T ) + . . .+ γp(T )X(p)(T ) ≥ 0, (2.2)

for all T ∈ T , where γk(·), for k = 0, . . . , p, are unknown univariate functions. Expression

(2.2) in fact means that we assume for the error structure itself also a kind of varying

coefficient model. We refer to V (X(t), t) as the heteroscedasticy function.

A special case of (2.2) would be when γ1(T ) = · · · = γp(T ) = 0, for all T ∈ T , which

means that the error structure simplifies to γ0(T ) ε(T ), and in fact V (X(t), t) ≡ V (t) =

γ0(t). Such a simple heteroscedastic model was studied in Andriyana et al. (2016), but it

turns out to be too simple to describe the heteroscedasticity in some data, as is illustrated

by the real data examples in Sections 1 and 5.

Model (2.1) is inspired also by previous considerations in the longitudinal data setting.

For example, Davidian in Giltinan (1995) consider that the error variance is proportional

to the square of the mean response, and in Fortin et al. (2007) the variance is expressed

as an unknown power of the mean function. Assuming such parametric relationships

between conditional mean and variance is however again quite restrictive, in contrast to

(2.2) which allows for a very flexible heteroscedastic error structure.

From Model (2.1) the τ -th conditional quantile (with 0 < τ < 1) of Y (T ) given

{X(T ), T = t} equals

qτ (Y (t)|X(t), t) = β0(t)X
(0)(t) +β1(t)X

(1)(t) + . . .+βp(t)X
(p)(t) +V (X(t), t)aτ (t), (2.3)

with aτ (t) the τ -th conditional quantile of ε(T ), given T = t, i.e. aτ (t) = inf{u : P{ε(T ) ≤
u|T = t} ≥ τ}.

Note that Model (2.1) together with the error structure (2.2), can be re-expressed as

Y (t) = XT(t)β(t) +
(
XT(t)γ(t)

)
ε(t) (2.4)

where β(t) = (β0(t), β1(t), . . . , βp(t))
T and γ(t) = (γ0(t), γ1(t), . . . , γp(t))

T, where AT

denotes the transposed of a vector or matrix A. Consequently, the τ -th conditional

quantile in (2.3) can be re-written as

qτ (Y (t)|X(t), t) = XT(t)β(t) +
(
XT(t)γ(t)

)
aτ (t) = XT(t) [β(t) + γ(t)aτ (t)] . (2.5)
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Note that, since X(0)(t) = 1, the intercept term in (2.5) equals [β0(t) + γ0(t)] a
τ (t). Note,

more generally, that the dependence on τ comes in via the second term between brackets

in (2.5).

The quantities that we would like to estimate are

* the univariate regression functions (β0(t), β1(t), . . . , βp(t))
T , impacting the main con-

ditional quantile (the systematic part XT(t)β(t)), and γ(t)= (γ0(t), γ1(t), . . . , γp(t))
T ,

impacting the heteroscedasticity;

* subsequently the heteroscedasticity function V (X(t), t) defined in (2.2);

* the τ -th order conditional quantile of ε(T ), i.e. aτ (t);

* finally, the τ -th order conditional quantile of Y (T ), expressed in (2.5).

Given that V (X(t), t) ≥ 0, and using that aτ1(t) ≤ aτ2(t) for 0 < τ1 < τ2 < 1, we obtain

that the population quantile functions are non-crossing under the general heteroscedastic

model (2.1),

qτ1(Y (t)|X(t), t) ≤ qτ2(Y (t)|X(t), t) for 0 < τ1 < τ2 < 1 , (2.6)

for all (X(t), t) given. Estimated quantile functions should preferably also satisfy this

constraint.

It is clear from (2.5) (and the sentences following this displayed expression) that for the

vector γ(t) to be identifiable in the general heteroscedastic model (2.1), we need to impose

some conditions. We briefly discuss some sufficient conditions that ensure identifiability

of all quantities to be estimated.

A first sufficient condition for identifiability is having knowledge about two quantiles

of ε(t), say aτ1(t) and aτ2(t). It is clear from (2.5) that,

qτ1(Y (t)|X(t), t)− qτ2(Y (t)|X(t), t) = XT(t)γ(t) [aτ1(t)− aτ2(t)] ,

and hence an estimator of V (X(t), t) is given by

V̂ (X(t), t) =
q̂τ1(Y (t)|X(t), t)− q̂τ2(Y (t)|X(t), t)

aτ1(t)− aτ2(t)
, (2.7)

with q̂τ (Y (t)|X(t), t) an estimator for qτ (Y (t)|X(t), t). See also Section 3.1. A sufficient

condition to ensure identifiability of V (X(t), t) in the general heteroscedastic model is:

Assumption (A):

The τ1-th and τ2-th order (with 0 < τ1, τ2 < 1 and τ1 6= τ2) conditional quantile of

the error term ε(T ), given T = t, are fully known, i.e. aτ1(t) and aτ2(t) are known

for all t ∈ T .
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An alternative set of conditions that ensures identifiability of all quantities involved is

inspired by assumptions imposed in classical quantile regression (see e.g. He (1997)):

Assumption (B):

(B1) the conditional median of the error term ε(t) equals zero: i.e. a0.5(t) = 0 for all t.

(B2) the conditional median of the absolute value of the error term ε(t) equals one:

q0.5(|ε(t)|) = 1.

Indeed, under Assumption (B1), it follows from (2.1) and (2.5) that

q0.5(Y (t)|X(t), t) = XT(t)β(t) (2.8)

which allows to estimate (β0(t), β1(t), . . . , βp(t))
T . Subsequently, under Assumption (B2)

and since V (X(t), t) ≥ 0, it follows that

q0.5
(∣∣Y (t)−XT(t)β(t)

∣∣) = V (X(t), t) , (2.9)

which then guides to estimation of the heteroscedasticity function. Finally, expression

(2.5) is the key to estimate aτ (t) followed by estimation of qτ (Y (t)|X(t), t). See further

Section 3.2.

3 Estimation procedure

The final aim in this paper is to estimate the conditional quantile functions qτ (Y (t)|X(t), t))

in (2.5) for various values of τ ∈ (0, 1), keeping in mind the desirable property of non-

crossing quantile curves in (2.6). There have been a number of papers dealing with

developing quantile estimation methods that prevent the estimated quantile curves to

cross and violate (2.6). See, among others, the book by Koenker (2005), as well as He

(1997), Wu and Liu (2009), Bondell et al. (2010), Liu and Wu (2011), Schnabel and Eilers

(2013), Andriyana et al. (2016), and references therein. Andriyana (2015) investigated

and compared in detail the performances of various methods. Therefore in this paper and

in this setting of heteroscedastic varying coefficient models, we restrict immediately to

adaptation of the methods that appeared ‘best’ from this extensive study.

We discuss two estimation methods, which are also in line with making different as-

sumptions to ensure identifiability. A basic ingredient throughout all estimation steps

is P-splines approximations for univariate functions. Some brief discussion on practical

implementation issues for the discussed methods is provided in Section 3.3.

3.1 Stepwise individual quantile regression estimation

Among the simplest procedures to ensure non-crossingness of estimated quantile regression

curves is the stepwise procedure introduced by Wu and Liu (2009). This method starts by
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estimating a particular quantile curve (for example, the median quantile curve) and then in

an upward (respectively downward) step moves to estimating a higher order (respectively

lower-order) quantile curve, including in each of the substeps constraints in the estimation

method to prevent the two estimated quantile curves to cross.

Adapting the method of Wu and Liu (2009) to our model setting (2.1) involves con-

structing the τ -th order conditional quantile of the response Y (T ) given {X(T ), T = t}:

qτ (Y (t)|X(t), t) = XT(t) [β(t) + γ(t)aτ (t)] = XT(t)β̃τ (t) (3.1)

where β̃τ (t) =
(
β̃τ,0(t), β̃τ,1(t), . . . , β̃τ,p(t)

)T
with β̃τ,k(t) = βk(t) + γk(t)a

τ (t) for k =

0, . . . , p.

The stepwise procedure is designed for estimation of β̃τ (t)=
(
β̃τ,0(t), β̃τ,1(t), . . . , β̃τ,p(t)

)T
,

and from this then subsequently qτ (Y (t)|X(t), t) from (3.1), and this for various values

of τ , say for 0 < τ1 < · · · < τH < 1, a set of H ∈ IN,H ≥ 1 values of τ .

For a given order of the quantile, say τ , the estimation method utilized is that of ap-

proximating the unknown univariate functions in β̃τ (·) by a set of basis B-spline functions.

More precisely, each of the coefficient function β̃τ,k(t), for k = 0, . . . , p, is approximated

by mk normalized B-splines of degree νk, denoted by Bk1(t; νk), . . . , Bkmk
(t; νk):

β̃τ,k(tij) ≈ αk1Bk1(tij; νk) + . . .+ αkmk
Bkmk

(tij; νk) =

mk∑
`=1

αk`Bk`(tij; νk) , (3.2)

where the dependence on τ has been suppressed in the right-hand side for notational

simplicity.

The P-splines objective function for the individual τ -th order quantile estimation,

using an L1-type of penalty function is then given by:

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij; νk)X
(k)
ij

)
+

p∑
k=0

mk∑
`=dk+1

λτ,k
∣∣∆dkαk`

∣∣ , (3.3)

where λτ,k > 0, for k = 0, . . . , p, are the regularization or smoothing parameters, and

where ∆dkαk` are the differences of order dk ∈ IN , associated with the vector of B-splines

coefficients αk = (αk1, . . . , αkmk
)T , i.e. ∆dkαk` =

∑dk
t=0(−1)t

(
dk
t

)
αk(`−t). See Eilers and

Marx (1996). For simplicity of presentation we consider the order of differencing not

depending on τ , although this is no formal restriction. The global vector containing

all B-splines coefficients of all (p + 1) unknown univariate functions is given by ατ =(
αT

0 , . . . ,α
T
p

)T
. In the above the function ρτ (z) = zI{z > 0} + (1 − τ)I{z ≤ 0}, is

the so-called check function, that is used for quantile regression. Here I{A} denotes the

indicator of A, i.e. I{A} = 1 if A holds, and 0 if not. See Koenker (2005) for further

background on the check function ρτ .

The main steps of the Upward and Downward stepwise procedure read as follows.
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STEP 1: Estimating the median regression curve

The P-splines median quantile estimator is given by

α̂0.5 = argminα

n∑
i=1

1

Ni

Ni∑
j=1

ρ0.5

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij; νk)X
(k)
ij

)
+

p∑
k=0

mk∑
`=dk+1

λ0.5,k
∣∣∆dkαk`

∣∣ .
STEP 2: Complete Up (CU)

Starting from τh = 0.5, the next larger order in the set {τ1, . . . , τH} (i.e. τh+1 > τh) is

obtained from the following constrained minimization problem:

miminize

n∑
i=1

1

Ni

Ni∑
j=1

ρτh+1

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij; νk)X
(k)
ij

)
+

p∑
k=0

mk∑
`=dk+1

λτh+1,k

∣∣∆dkαk`
∣∣

(3.4)

with respect to α, subject to

α ≥ α̂τh . (3.5)

The Complete Upward (CU) stepwise procedure consists of minimizing (3.4) subject

to (3.5) for subsequently larger values τh+1 (for h taking values in a given grid).

STEP 2: Complete Down (CD)

This is similar to the Complete Upward steps, but now moving downwards from Step

1 (median estimation) on, replacing (3.4) and its constraint (3.5) by:

miminize

n∑
i=1

1

Ni

Ni∑
j=1

ρτh−1

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij; νk)X
(k)
ij

)
+

p∑
k=0

mk∑
`=dk+1

λτh−1,k

∣∣∆dkαk`
∣∣

with respect to α, subject to

α ≤ α̂τh ,

and carrying this out sequentially.

Note that the above stepwise procedure is mainly designed for estimating directly the

quantile functions in (2.5) (see also (3.1)). It is not relying on the explicit location-scale

model (2.1). It therefore does not provide automatically an estimator for the heteroscedas-

ticity function V (X(t), t), and hence does not allow to unravel the impact of covariates

on this function. A way to still estimate a heteroscedasticity via this estimation approach

is to consider Assumption (A), and estimate the heteroscedasticity function via (2.7)

(it is to be noted though that in that case we are relying on the location-scale model
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again). Unfortunately, Assumption (A) is rather unrealistic and difficult to be justified

in practice. In the simulation study in Section 4 however we show the performance of

the stepwise method using for the two τ -values, the biggest and smallest quantiles orders

considered (i.e τ1 and τH). The advantage of the stepwise estimation procedure is that it

does not require any specification of the error term structure (i.e. no location-scale type

of modelling is needed).

3.2 The AHe approach: an adaptation of He’s (1997) approach

We now discuss an estimation approach that is inspired by He (1997) in classical quantile

regression. In the current setting and the associated estimation tasks there are three

main elements: the coefficient functions for the signal part, βk(t) (for k = 0, . . . , p), the

coefficient functions γk(t) in the heteroscedasticity function (for k = 0, . . . , p), and the

τ -th order quantile of the error term, aτ (t) for τ ∈ (0, 1). In this approach each of these

unknown quantities are estimated separately in three different subsequent steps. One

then finally puts all estimators together to estimate the conditional quantile in (2.5).

The three steps of this procedure read as follows.

Step 1. Under assumption (B1), we rely on (2.8) to estimate the βk(t) for k = 0, . . . , p

using P-splines approximation and the ‘median’ objective function (see (3.2) and

(3.3) with τ = 0.5). Denote by β̂k(·) the obtained estimator of βk(·), and by β̂(·)
the resulting estimator for β(·).

Step 2. From (2.9) we know that V (X(t), t) is the conditional median of
∣∣Y (t)−XT(t)β(t)

∣∣.
Considering (2.2), we have

q0.5
(∣∣Y (t)−XT(t)β(t)

∣∣) = γ0(t)X
(0)(t) + γ1(t)X

(1)(t) + . . .+ γp(t)X
(p)(t).

Using
∣∣∣Y (t)−XT(t)β̂(t)

∣∣∣ as the pseudo response, the coefficient functions γk(·), for

k = 0, . . . , p, can be estimated by means of a P-splines objective function. Firstly,

we approximate the coefficients γk(t) for k = 0, . . . , p by a B-spline basis of degree

νvk and dimension mv
k,

γk(t) ≈ αv
k1B

v
k1(t; ν

v
k) + . . .+ αv

kmv
k
Bv
kmv

k
(t; νvk) =

mv
k∑

`=1

αv
k`B

v
k`(t; ν

v
k).

The P-splines objective function is then given by

n∑
i=1

1

Ni

Ni∑
j=1

ρ0.5

∣∣∣Y (tij)−XT(tij)β̂(tij)
∣∣∣− p∑

k=0

mv
k∑

`=1

αv
k`B

v
k`(tij; ν

v
k)X(k)(tij)
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+

p∑
k=0

mv
k∑

`=dvk

λvk
∣∣∆dvkαv

k`

∣∣ ,
where λvk > 0 are the regularization parameters. Subsequently the estimator of

V (X(t), t) is obtained by minimizing the objective function with respect to αv =(
(αv

0)
T , . . . , (αv

p)
T
)T

, where αv
k =

(
αv
k1, . . . , α

v
kmv

k

)T
. This leads to α̂v

k, subsequently

γ̂k(t) =
∑mv

k
`=1 α̂

v
k`B

v
k`(t; ν

v
k), and results into

V̂ (X(t), t) = γ̂0(t)X
(0)(t) + γ̂1(t)X

(1)(t) + . . .+ γ̂p(t)X
(p)(t).

Step 3. In this last step, we exploit the estimation results obtained in the two previous

steps. From Model (2.1), we have Y (t)−XT(t)β(t) = V (X(t), t)ε(t).

Replacing the coefficient functions β(t) and V (X(t), t) by the estimators obtained in

Step 1 and Step 2, respectively, we then approximate the unknown (conditional)

quantile aτh(t) of the error term ε(t) by mq
h B-spline basis functions of degree νqh,

aτh(tij) ≈
mq

h∑
`=1

αqh,`B
q
` (tij; ν

q
h).

Hence, the coefficients αqh,1, . . . , α
q
h,mh

can be estimated by means of a P-splines

objective function with pseudo response Y (t) − XT(t)β̂(t) and pseudo covariate

V̂ (X(t), t), as follows,

n∑
i=1

1

Ni

Ni∑
j=1

ρτh

(Y (tij)−XT(tij)β̂(tij)
)
− V̂ (X(tij), tij)

mq
h∑

`=1

αqh,`B
q
` (tij; ν

q
h)


+

mh∑
`=dqh+1

λqh

∣∣∣∆dqhαqh,`

∣∣∣ ,
where λqh > 0 is the penalization parameter and dqh is the order of the differencing

operator. Having obtained the estimators for αqh,1, . . . , α
q
h,mh

, the estimate of aτh(t)

is

âτh(tij) =

mh∑
`=1

α̂qh,`B
q
` (tij; νh) .

Putting all estimators together we end up with the following conditional quantile

estimators,

q̂τh (Y (t)|X(t), t) = XT(t)β̂(t) + V̂ (X(t), t)âτh(t). (3.6)

To ensure the non-negative of the estimated heteroscedasticity function in Step 2, we

proceed as follows. Before we start we transform the observed covariate values as to make

them non-negative. We do this by subtracting from each X(k)(t) the smallest observed

11



X(k)(tij), i.e. by considering the transformed
{
X(k)(t) − min

1≤i≤n1≤j≤Ni

{
X(k)(tij)

}}
. Since

the function values of normalized B-splines are also non-negative it then suffices to impose

that the coefficients are non-negative, i.e.

αv
k` ≥ 0 ∀ k = 0, . . . , p, ` = 1, . . . ,mv

k ,

to ensure that
p∑

k=0

mv
k∑

`=1

αv
k`B

v
k`(tij; ν

v
k)X(k)(tij) ≥ 0.

We thus add this constraint in the optimization problem.

3.3 Practical implementation

As mentioned already in Section 3.2 the covariates are transformed such that they are non-

negative. This is a way to ensure the non-negativity of the estimated heteroscedasticity

function V (X(t), t), but the transformation also decreases considerably the number of

constraints in (3.5) (and alike) in the stepwise procedure of Section 3.1.

Approximation by B-splines, with a large number of basis functions, and then intro-

ducing a penalty term to prevent for overfitting is employed in all estimation procedures.

In practical applications we fix the degree of the B-splines as well as the degree of the

differencing operator (dk in (3.3)), and use the following data-driven method to choose

the regularization parameters λτ,k.

Step 1. First take λτ,k = λ for all k = 0, . . . , p. From a given grid of λ-values, choose the

λ that minimizes the Schwarz Information Criterion

log

(
1

n

n∑
i=1

1

Ni

Ni∑
j=1

ρτ (Yij − q̂τ (Yij|Xij, tij))

)
+

log(N)

2N
pλ ,

where pλ is the size of the elbow set Eλ

Eλ = {(i, j) : Yij − q̂τ (Yij|Xij, tij) = 0} ,

i.e. the set of all fits which led to a perfect fitted value q̂τ (Yij|Xij, tij) for the observed

response value Yij. Denote the resulting choice of λ by λ̂.

Step 2. Using λ̂, we obtain λτ,k for all k = 0, . . . , p, from

λ̂τ,k = λ̂
(
R(β̂Bτ,k(·))

)−κ
where β̂Bτ,k(t) is the quantile regression estimator of βτ,k(t) using B-splines (so with

the objective function putting λτ,k = 0),R(β̂Bτ,k(·)) is the range of all values β̂Bτ,k((tij)),

and κ > 0 is a given number (in Sections 4 and 5 we took κ = 0.5).
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Each optimization problem discussed in this paper can be translated into a linear

programming problem, that is then translated into a dual problem, which is solved using

a Frish-Newton interior-point algorithm. For details we refer to Andriyana (2015). The

necessary computer codes have been developed and are collected in a freely available R

Package QRegVCM that has been developed by the first author (Y. Andriyana).

4 Simulation study

In this section, we investigate the performances of the stepwise procedure (Section 3.1)

and the AHe approach (Section 3.2) on four simulation models, involving three covariates.

Measurements can happen only at the time points {0, 1, 2, . . . , 49}. From this fixed

set of possible time points, each time point (except for the starting time point 0) has a

probability of 40% to be skipped. This creates different numbers of repeated measure-

ments Ni for each subject i = 1, . . . , n. The actual measurement times are generated by

adding a U [0, 0.5] random variable to the non-skipped scheduled times. The error term

ε(t) is generated from a transformed multivariate normal distribution. The transforma-

tion is needed to fulfill certain model assumptions. Firstly, we consider η(tij), where η(·)
follows a multivariate normal distribution with covariance structure Cov(η(tij), η(tij′)) =

30 exp(− |j − j′|). Secondly, the generated η(tij) are transformed such that the error

term has a desired median (in this case q0.5(ε(t)) = 0 and q0.5(|ε(t)|) = 1) by the following

transformation,

ε(t) =
η(t)− q0.5(η(t))

q0.5 (|η(t)− q0.5(η(t))|)
·

The varying coefficients, βk(·) and γk(·) for k = 0, 1, 2, 3, in respectively the main

conditional quantile function and the heteroscedasticity function, for the four models are

presented in Table 1.

All elements of a model are such that the signal-to-noise ratio

Sample variance of all
{
β0(tij) +

∑3
k=1 βk(tij)X

(k)(tij)
}

Sample variance of all {V (X(tij), tij)ε(tij)}

is approximately 7.

Throughout Sections 4 and 5 we utilize B-splines of degree 3 with 10 equidistant

knot points on the time interval (leading to 13 − 1 = 12 basis functions) and a penalty

in which we take differencing order 1. All covariates are transformed to be in [0, 1],

which puts them on a comparable scale. More precisely, we work with
{
X(k)(t) −

min
1≤i≤n1≤j≤Ni

{
X(k)(tij)

}}
/
{

max
1≤i≤n1≤j≤Ni

{
X(k)(tij)

}
− min

1≤i≤n1≤j≤Ni

{
X(k)(tij)

}}
.

For each model, we draw 200 samples of size n = 100. For a given simulated sample

s (s = 1, . . . , 200), with the dependence on the sample indicated through the superscript
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Table 1: Coefficient functions in Models 1—4.

Coefficient Model 1 Model 2 Model 3 Model 4

functions

β0(t) 2
√
t 2

√
t

3 0 0

β1(t)
(πt+10)

15
cos(t−5)π

20 cos
(
(t−25)π
1000

)
cos
(
(t−25)π

100

)
β2(t) sin

(
πt
30

)
+ 3 sin(πt)

20 + 5 sin
(
πt
30

)
+ 3 sin

(
πt
30

)
+ 13

β3(t)
(20−t)2
1000 − 4 |25−t|5/2

200 −4 + (20−t)2
1000 −4 + (20−t)2

100

γ0(t)
β0(t)
8

√
β0(t) 0.2

√
t (25−t)2+3t

100

γ1(t)

√
|β1(t)|
2

β2
1(t)
200 0 0

γ2(t)
|β2(t)|
50

√
β2(t)

100 0 0

γ3(t)
|β3(t)|
50

β3(t)
200 0 0

“(s)”, the performance of a quantile estimation method is evaluated via the empirical root

approximate integrated squared error, defined as

RAISE(q̂(s)τ (·)) =

(
n∑
i=1

1

Ni

Ni∑
j=1

(
q̂(s)τ (Yij|Xij, tij)− qτ (Yij|Xij, tij)

)2)1/2

. (4.1)

We do not write the dependence on the sample s in the second term within brackets for

not making the notation too heavy, but it is good to realize that due to the conditioning

on the covariates and time, this term also changes with the sample.

Note that Models 3 and 4 are models for which V (X(t), t) = γ0(t) and hence the

error term does not vary with the covariates. For these models the methods developed in

Andriyana et al. (2016) would suffice. These two models are included in the simulation

study to see the possible loss by using, in this simpler setting, the too sophisticated

estimation method of, for example, Section 3.2. In Section 4.1 the simulation results for

Models 1 and 2 are summarized. These for Models 3 and 4 can be found in Section 4.2.

4.1 Simulation results for Models 1 and 2

Figure 4.1 shows boxplots of RAISE
(
q̂
(s)
τh (.)

)
over 200 simulations for the two investi-

gated methods. Overall both methods have a comparable performance, with the stepwise

procedure performing slightly better than the AHe approach for Model 1.
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(a) Model 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

2

3

4

5

6

τ

R
A

IS
E

Methods

Stepwise

AHe approach

(b) Model 2.

Figure 4.1: Boxplots of RAISE(q̂τh(Y (t)|X(t), t)) using the stepwise procedure and the

AHe approach.
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(c) AHe approach.
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(e) True quantiles.
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(f) Stepwise procedure.

Figure 4.2: Model 1. (a)&(d) Scatter plots of the sample giving median performance of

q̂τ (.); (b)&(e) true conditional quantiles at the maximum values of the covariates; (c)&(f)

q̂τ (Y (t)|X(t), t). Results for the AHe approach (top panels) and the stepwise procedure

(bottom panels).
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(c) AHe approach.

Figure 4.3: Model 2. (a) Scatter plot of the sample giving median performance of q̂τ (.); (b)

true conditional quantiles at the maximum values of the covariates; (c) q̂τ (Y (t)|X(t), t).

Results for the AHe approach.

A representative plot of the estimated conditional quantile curves is provided next.

For each method, we focus on a sample for which median performance of the estimators

across the 200 simulations was obtained, i.e. a sample for which the evaluation criterion

in (4.1) delivered the 50th-percentile of RAISEH

(
q̂(s)(.)

)
, where

RAISEH

(
q̂(s)(.)

)
=

1

H

H∑
h=1

RAISE
(
q̂(s)τh (.)

)
.

Consequently we present estimated curves with median performance in each method.

The resulting representative estimated quantile curves for Model 1 are depicted in

Figure 4.2. For graphical presentation purpose we focus on the maximum values of the

covariates at each time point. To give a visual impression of the quality of the conditional

quantile estimation, we provide the associated scatterplot, the true quantiles curves, and

the estimated quantile curves, for the chosen representative sample (which might be dif-

ferent for each method). In Figure 4.3 we present the results for Model 2, but only for

the method following the AHe Approach. Results for the stepwise procedure are similar,

but slightly more variable (as already indicated by the boxplots in Figure 4.1).

Next, we investigate the finite-sample performances of the estimators of V̂ (X(t), t) via

the criterion (suppressing from now on, for notational simplicity, the dependence “(s)” on

the sample)

RAISE
(
V̂ (·, ·)

)
=

(
n∑
i=1

1

Ni

Ni∑
j=1

(
V̂ (Xij, tij)− V (Xij, tij)

)2)1/2

. (4.2)

The boxplots of RAISE
(
V̂ (.)

)
over the 200 simulations are given in Figure 4.4. Note

that the stepwise procedure is less variable than the AHe approach, but the latter has a

better performance in case of Model 2.
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Figure 4.4: Boxplots of RAISE(V̂ (·, ·)) using the stepwise procedure and the AHe approach

(respectively the first and the second boxplots in (a) & (b)).

4.2 Simulation results for Models 3 and 4

Since for Models 3 and 4 (see Table 1) V (X(t), t) = γ0(t), an error structure as in (2.1)

is not needed, and the methods developed by Andriyana et al. (2016) would be sufficient

to estimate V (t) = γ0(t). Among these methods is an adaptation of the approach of He

(1997) for that simpler setting, and we refer to it as the AHe V (t) approach in the text

below.

Figures 4.5 (b) and (c) depict boxplots of the RAISE(q̂τh(Y (t)|X(t), t) values for Mod-

els 3 and 4 using the method of Section 3.2 and the AHe V (t) approach. For comparison

purpose we also include the boxplot of the results for both methods for Model 1 (see

Figure 4.5 (a)). As can be seen from the boxplots in Figures 4.5 (b) and (c) both meth-

ods perform comparable, with only a small price to pay in terms of a slightly increased

variability for the method of Section 3.2. This more general method is thus also able to

adapt to the simpler situations. When using the simpler AHe V (t) approach to Model

1, it is clear that it performs badly (except for the median quantile curve, when both

methods coincide by Assumption (B1)). This just illustrates the need for the methods

developed in this paper.

The boxplots in Figures 4.6 (b) and (c) summarize the quality of the estimators for

the function V (X(t), t) for Models 3 and 4. A similar conclusion can be drawn as for the

estimation of the quantile curves. Both methods, this of Section 3.2 and the simpler AHe

V (t) approach perform comparable, with a slightly higher variability for the former one.

In contrast, when applying the simpler method to Model 1 it fails completely, as seen

from the boxplots in Figure 4.6 (a).

Picking up a sample corresponding to median performance of V̂ (t), we plot the es-

timators V̂ (X(t), t) and V̂ (t) together with the corresponding standardized residuals in
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Figure 4.5: Boxplots of RAISE(q̂τh(Y (t)|X(t), t)) for the AHe V (X(t), t) and the AHe

V (t) approaches (respectively first and second boxplots), for Models 1, 3 and 4.
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Figure 4.6: Boxplots of RAISE(V̂ (X(t), t)) for the AHe V (X(t), t) and the V (t) ap-

proaches (respectively first and second boxplots), for Models 1, 3 and 4.

Figure 4.7 for Model 3. In particular the standardized residuals based on V̂ (X(t), t), i.e.

(Yij − q̂0.5(Xij, tij)) /V̂ (X(tij), tij), show that the method performs well also in this sim-

pler setting (note the similarity between pictures (e) and (f)). Figure 4.8 shows the true

V (t) and the estimators V̂ (X(t), t) and V̂ (t), for a median performing sample, for Model

4. The plots for the standardized residuals are not provided, since they look similar to

these for Model 3.

The conditional quantile curves for Model 3, based on a sample exhibiting median

quantile performance for the simple AHe V (t) approach, are presented in Figure 4.9.

This figure confirms the previous conclusions.
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(d) True std. residuals.
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(e) Std. residuals via V̂ (X(t), t).
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Figure 4.7: Model 3: Median performance of V̂ (t) ; (a) True variability, (b) V̂ (X(t), t),

(c) V̂ (t), (d) The true standardized residuals, (e) Standardized residuals via the V̂ (X(t), t)

approach and (f) Standardized residuals via the V̂ (t) approach.
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Figure 4.8: Model 4: Median performance of V̂ (t) ; (a) True variability, (b) V̂ (X(t), t),

(c) V̂ (t), (d) The true standardized residuals, (e) Standardized residuals via the V̂ (X(t), t)

approach and (f) Standardized residuals via the V̂ (t) approach.

5 Real data applications

In this section we illustrate the practical use of the methods of Section 3 on a few real

data examples.
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Figure 4.9: Model 3: (a) Scatter plot of the sample giving median quantile performance

using AHe V (t)-approach; (b) True conditional quantiles applied to the maximum val-

ues of the covariates; (c) q̂τ (Y (t)|X(t), t) using AHe V (X(t), t) - approach; and (d)

q̂τ (Y (t)|X(t), t) using AHe V (t) - approach.

We present the estimators of the conditional quantile curves using the stepwise proce-

dure of Section 3.1, the AHe V (X(t), t) approach of Section 3.2 and the simple AHe V (t)

approach of Andriyana et al. (2016). Differences in results for the first two methods on

the one hand and the last method on the other hand will be a possible indication for which

model might be more appropriate. The development of formal statistical goodness-of-fit

tests is part of future research. See also Section 6.

To analyze all real data examples, we use B-splines of degree 3 with 10 equidistant

knot points on the time interval (leading to 13− 1 = 12 basis functions) with differencing

order 1. All covariates are transformed to be in [0, 1], which puts them on a comparable

scale.
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5.1 Air Pollution data example (PM10)

This data set originates back to a study regarding air pollution at a road, where traffic vol-

ume and meteorological variables are measured. The data considered here are a subsample

of 500 observations. The data were collected by the Norwegian Public Roads Administra-

tion, measured at Alnabru in Oslo, Norway, between October 2001 and August 2003. Dur-

ing each of the 273 days, measurements were performed at different time points (hours).

There are between 1 and 6 measurements per day with a median of 2 measurements per

day. Information about the data can be found at StatLib (http://lib.stat.cmu/edu)

and also in the truncSP R-package. Guo et al. (2012) analyzed these data using a varying

coefficient model including two covariates, but in an i.i.d. setting. These data were also

analyzed in Andriyana et al. (2016), stepping away from the i.i.d. setting but assum-

ing that the error is not depending on the covariates. In the analysis here we drop this

assumption, and also include an additional covariate in the analysis.

The response variable Y (t), consists of hourly values of the logarithm of the concen-

tration of PM10. This substance is a mixture of solid and liquid droplets with diameter

less than 10 micrometers, and is one of the air pollutants suspected to have a negative

effect on human health. See for example Aldrin and Hobaek Haff (2005) and Oftedal et

al. (2009) for studies on air pollution, involving particle pollutants such as PM10. The

covariates considered in the analysis here are: X(1)(t) the logarithm of the number of cars

per hour; X(2)(t) the wind speed (in meters/second), and X(3)(t), the temperature (in

degree Celcius, measured two meters above the ground).

Figure 5.1 (a) depicts V̂ (X(t), t) as a function of t (the points) as well as V̂ (t) (the solid

line). The standardized residuals (Yij − q̂0.5(Xij, tij)) /V̂ (X(tij), tij) and (Yij − q̂0.5(Xij, tij)) /V̂ (tij)

are plotted in Figures 5.1 (b) and (c), and little conclusions can be drawn from these.
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(a) V̂ (X(t), t) and V̂ (t).
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(b) V (X(t), t)-approach.
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(c) V (t)-approach.

Figure 5.1: Air Pollution Data. (a) The estimated variability curves V̂ (X(t), t) and V̂ (t);

(b) Standardized residuals using the AHe V (X(t), t)-approach and (c) Standardized resid-

uals for the AHe V (t)-approach.
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(a) Baseline (β̂0(t)).
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(b) Coefficient of cars (β̂1(t)).
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(c) Coefficient of wind (β̂2(t)).
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(d) Coefficient of temperature

(β̂3(t)).

Figure 5.2: Air Pollution Data. The estimated coefficient functions β̂k(t), k = 0, 1, 2, 3,

using the method of Section 3.2.

The influences of each on the covariates on respectively the main conditional quantile

function and the heteroscedasticity function are obtained via respectively the estimated

coefficients β̂k(·) and γ̂k(·), using the method of Section 3.2. These estimated coefficients

are depicted in Figures 5.2 and 5.3. Note that for example the covariate temperature

has the smallest effect on the main conditional quantile, whereas this covariate seems to

play a role (although possibly small) in the heteroscedasticity present in the data. The

covariates number of cars and wind have most impact on the main conditional quantile

function, with their effect being maximal and nearly constant for a large portion of the

day (between approximately 8 am and 7 pm for the first covariate).

The estimated conditional quantile curves applied to the mean and the maximum

values of the covariates are presented in Figure 5.4, in the top and bottom panels respec-

tively. The estimated conditional quantile curves show less curvature for mean values of

the covariates than for maximum values.
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(a) Baseline (γ̂0(t)).
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(b) Coefficient of cars (γ̂1(t)).
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(c) Coefficient of wind (γ̂2(t)).
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(d) Coefficient of temperature

(γ̂3(t)).

Figure 5.3: Air Pollution Data. The estimated coefficient functions γ̂k(t), k = 0, 1, 2, 3,

using the method of Section 3.2.

5.2 UK employment data example

The next data frame contains company accounts from Datastream International, which

provide accounts records of employment and remuneration (i.e. wage bill) for all United

Kingdom quoted companies. The data are available in the plm R-package under EmplUK.

Table 2 briefly describes the variables involved. More detailed information regarding

these data can be found in the data Appendix of Arellano and Bond (1991). This study

deals with determinants of employment in 140 United Kingdom firms observed each year

from 1976-1984. The data are unbalanced both in the sense that some firms have more

observations than others, and also in the sense that these observations correspond to

different points in historical time. The range of observations per firm is seven to nine (i.e.

min(Ni) = 7 and max(Ni) = 9). The response variable (Y (tij)) is the logarithm of the

UK employment in company i at time tij, where i = 1, . . . , 140 and j = 1, . . . , Ni.

The three covariates are (see Table 2): the average annual wage per employee in the

company (X(1)(tij)); the capital defined as the book value of gross fixed assets (X(2)(tij));
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(b) AHe V (X(t), t)-approach.
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(c) AHe V (t)-approach.

5 10 15 20

−
2

−
1

0
1

2
3

4
5

hour

P
M

10

τ = 0.9
τ = 0.8
τ = 0.7

τ = 0.6
τ = 0.5
τ = 0.4

τ = 0.3
τ = 0.2
τ = 0.1

(d) Stepwise procedure.
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(e) AHe V (X(t), t)-approach.
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(f) AHe V (t)-approach.

Figure 5.4: Air Pollution Data. Estimated log(concentration of PM10) quantile curves for

τ = 0.1, 0.2, . . . , 0.9 at the mean values (top panels) and at the maximal values (bottom

panels) of all covariates, using the methods: (a) stepwise procedure, (b) AHe V (X(t), t)-

approach, and (c) AHe V (t)-approach.

and an index of value-added output at constant cost (X(3)(tij)). Arellano and Bond (1991)

and also Kleiber and Zeileis (2008) combine a static model equation including all three

covariates using a dynamic model with 2 lagged endogenous terms.

Table 2: The UK employment data.

Variable Description

Employment The number of employees in 140 companies with operations

mainly in U.K., whose main activity is manufacturing.

Real Wage A measure of real average annual remuneration per employee in

a company.

Gross Capital Stock The historic cost book value of gross fixed assets.

Industry Output An index of value-added output at constant factor cost.

See more detailed information about the data in the Appendix of Arellano and Bond (1991).
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Here, we present a more flexible modeling using varying coefficient models. Firstly the

conditional quantile estimators are plotted in Figure 1.1, in the top panels when applied to

the mean of the covariate values, and in the bottom panels when applied to the maximum

of the covariate values. As can been see, the estimated conditional quantiles, for given

mean values of the covariates are almost linear, with a change in direction from the year

1982 onwards. Note that, considering linearity in quantile regression for all quantiles

is quite restrictive since for some quantiles a linearity assumption might be appropriate

while some other order quantile curves this might not be the case. This is for example well

visible for the estimated conditional quantile curves in Figure 1.1, using the approach of

Section 3.1. Most remarkable is the difference in estimated conditional quantiles in Figures

1.1 (d), (e) and (f), revealing that possible heteroscedasticity is present in the data.
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(a) V̂ (X(t), t) and V̂ (t).
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(b) V (X(t), t)-approach.
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(c) V (t)-approach.

Figure 5.5: UK employment data. (a) Variability estimators and (b) & (c) Standardized

residuals.

We next wonder about this heteroscedasticity present in the data. The estimated hete-

roscedasticity function V̂ (X(t), t), using the method of Section 3.2 is plotted in Figure 5.5

(a), together with the estimator V̂ (t). The associated standardized residuals are plotted

in Figures 5.5 (b) and (c). To be remarked is the skewness in the plot in Figure 5.5 (a)

for a fixed year, with a high concentration towards lower values of V̂ (X(t), t), but also a

considerable amount of high values for the same time moment.

Finally, Figures 5.6 and 5.7 depict the estimated main quantile coefficient functions

and the estimated coefficients in the heteroscedasticity function. See also Figure 1.2 in

Section 1. The covariate capital seems to contribute most, both in the main conditional

quantile function and in the heteroscedasticity function.

25



1976 1978 1980 1982 1984

−
1.

20
−

1.
15

−
1.

10
−

1.
05

−
1.

00
−

0.
95

year

ba
se

lin
e 

lo
g−

em
pl

oy
m

en
t

(a) Baseline log-employment
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(c) Coefficient of output (β̂3(t)).

Figure 5.6: UK employment data. The estimated coefficient functions β̂k(t), k = 0, 1, 3

using the method of Section 3.2.
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Figure 5.7: UK employment data. The estimated coefficient functions γ̂k(t), k = 0, 1, 3

using the method of Section 3.2.

6 Further discussion and conclusion

In Andriyana et al. (2016) the heteroscedasticity function was only allowed to change

with the time (i.e. V (t)) and as was illustrated with the example in the introduction

and Section 5 this may be too simple in some applications. In this paper we therefore

consider a varying coefficient model allowing for a flexible heteroscedastic error structure,

that may also vary with the covariates, i.e. V (X(t), t). The interest was in estimating

conditional quantile curves, together with the more complex heteroscedasticity function.

All univariate coefficient functions appearing in both target quantities are approximated

using P-splines. Thanks to this flexible modelling, combined with an appropriate approach

(such as the AHe and the stepwise method), these complex estimation tasks become

feasible. In the simulation study it was demonstrated that if one unnecessarily assumes the
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more complex heteroscedastic error structure, the loss in efficiency, compared to working

with the sufficient simpler heteroscedastic error structure, is small.

An interesting question however is how to test for an appropriate heteroscedastic

structure. Note that the choice between a simple heteroscedastic structure V (t) or a

more flexible heteroscedastic structure V (X(t), t) can, in the setting of this paper, be

translated in the univariate coefficient functions γk(·), for k = 1, . . . , p, to be all equal to

zero versus at least one coefficient function is not zero. In Gijbels et al. (2016) testing

procedures for testing for various (nested) heteroscedastic structures are developed.

Note that in this paper we assume that V (X(T ), T ) ≥ 0. In order to ensure positive-

ness of the estimated heteroscedasticity function, one can proceed as indicated at the end

of Section 3.2. An alternative would be to model the logarithm (or any other appropriate

link function) of the heteroscedasticity function as in (2.2). Both approaches are feasible

with rather similar performances, and we do not elaborate further on this.

Varying coefficient models are among flexible regression models, together with for

example generalized additive models. As was remarked by a referee, one could think of

some alternative estimation approaches in varying coefficient models. In case there is

only one covariate one could indeed view a varying coefficient model (the most simplistic

variant of it) as an additive model. See for example Stasinopoulos and Rigby (2007), and

the GAMLSS package in R. An additional limitation however is that one needs to specify a

specific error distribution.

Yet another viewpoint and alternative estimation approach could be envisaged as follows.

Approximating all the univariate covariate functions by a combination of B-spline basis

functions, there is a way to write the systematic term in the location-scale model as

a linear term involving a design matrix that consists of rows of all B-spline functions

evaluated in all observational points. See for example Andriyana et al. (2014). This

then opens the way to use Bayesian regression quantile methods (for example using the

R package bayesQR). Although this is an alternative approach, the disadvantage is that

it does not allow to estimate the heteroscedasticity function.

Given the above limitations we did not further elaborate on these alternative approaches.
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