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Abstract 

Introduction 

No evidence-based guidelines are available to determine the appropriate stem length, and 

whether or not to cement stems in revision total knee arthroplasty (TKA). Therefore, the 

objective of this study was to compare stresses and relative movement of cemented and 

uncemented stems of different lengths using a finite element analysis. 

Materials and methods 

A finite element model was created for a synthetic tibia. Two stem lengths (95 and 160 mm) 

and two types of fixation (cemented or press fit) of a hinged TKA were examined. The 

average compressive stress distribution in different regions of interest, as well as implant 

micromotions, was determined and compared during lunge and squat motor tasks. 

Results 

Both long and short stems in revision TKA lead to high stresses, primarily in the region 

around the stem tip. The presence of cement reduces the stresses in the bone in every region 

along the stem. Short stem configurations are less affected by the presence of cement than the 

long stem configuration. Press-fit stems showed higher micromotions compared to cemented 

stems. 

Conclusions 

Lowest stresses and micromotion were found for long cemented stems. Cementless stems 

showed more micromotion and increased stress levels especially at the level of the stem tip, 

which may explain the clinical phenomenon of stem-end pain following revision knee 

arthroplasty. These findings will help the surgeon with optimal individual implant choice. 
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Introduction 

Revision TKA is necessary within 10–15 years in approximately 5–10 % of patients who 

underwent primary TKA, in increasing numbers due to an aging and active population [1, 2]. 

The demand for primary TKAs in the USA is projected to grow by 673 % between 2005 and 

2030 to reach 3.48 million procedures in 2030 by some authors. TKA revisions in the USA 

are projected to grow from 38.300 in 2005 by 601 % to 268.000 in 2030, in a rather epidemic 

scenario [3]. The logical consequence predicts a comparable increase of re-revisions with 

continuously more challenging cases. Patients undergoing TKA today are quite demanding: 

having 20 % higher body weight, being physically more active and living longer than patients 

several decades ago [4]. This leads to a higher likelihood of later revision operations. 

However, the clinical outcome of revision TKA has not reached that of primary TKA. This is 

due to often poor bone stock, significant condylar bone defects and frequent ligament 

instability. In addition, surgical factors including fixation technique, level of prosthesis 

constraint, restoration of limb alignment [5] and choice of revision prosthesis must be 

considered [6]. In cases of several revisions, the bone loss is getting higher as well as the 

amount of ligamentous instability due to soft tissue degradation. This leads the surgeon to an 

implantation of a hinged revision arthroplasty. 

Stemmed arthroplasty contributes to correct alignment and stability by better stress 

distribution [7–9]. Care should be taken to avoid excessive stress on a metaphysis with poor 

bone stock by distributing some of the load to the diaphysis of the tibia and femur [10]. To 

reach this goal, the surgeon can choose between different stem lengths and diameters. Stems 

can also be cemented (and augmented with antibiotics) or left uncemented. Relevant factors in 

these decisions include stress shielding, osteolysis, stem-end pain, implant wear, 

periprosthetic fracture and aseptic as well as septic loosening [10–13]. 

However, no evidence-based guidelines are available to standardize stem length and whether 

or not to use cement. With uncemented stems implant removal is supposed to be easier in 

revision scenarios and major cement reactions should be avoided [14]. However, an initial 

rigid bond between the prosthesis and bone has been considered a prerequisite for long-term 

success of a revision TKA [2, 12, 15]. Thus, the main advantage of cemented stems is a fast 

and good fixation of the meta- and diaphysis and good results in long-term studies [16]. 

Cementing is commonly recommended in patients with low bone quality or altered anatomy 

[17]. Due to several downsides of cementing including possible lethal allergic reactions, 

longer surgical time and demanding cement resection if revision is needed, the use of press-fit 

stems is increasing in recent years, despite several long-term studies showing reliable and 

durable results for cemented stems, even in huge bony defects [18]. 

To evaluate and compare the effect of the fixation technique (cemented or press-fit) and stem 

length (short or long) in a tibial bone with a hinged TKA, a three-dimensional numerical 

model was developed, combining rigid body kinematics simulation and finite element 

analysis (FEA). Finite element analysis enables detailed biomechanical investigations with the 

potential to detect effects of the different configurations on the bone that cannot be 

investigated in vivo, in cadaveric bones or by means of clinical studies [19–22]. The stress 

distribution in several regions of the tibial bone and the micromotions between the implant 

and bone during lunging and squatting were determined and compared among the different 

investigated configurations. 
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The intent of this study was to produce data that could assist the clinical decision on stem 

length and whether or not to cement a tibial stem in revision hinged TKA. It was 

hypothesized, that long cemented stems would deliver lowest micromotion and favorable 

stress distribution compared to shorter and uncemented stems. 

 

Materials and methods 

Geometry 

A physiological three-dimensional tibial bone model was created from computer tomography 

images of a left, fourth generation composite tibia, size medium (# 3401, Sawbones, Pacific 

Research Laboratories Inc., Malmo, Sweden). Such bone models are widely used for 

numerical and experimental tests [19, 22–26]. The tibial bone model consists of three parts: 

cortical bone, cancellous bone and the intramedullary canal. An RT-PLUS Modular Rotating 

Hinge TKA (Smith & Nephew, Memphis, TN, USA) was considered for the numerical 

analysis. According to the dimensions of the tibial bone model, a size 6, left tibial tray with an 

8 mm polyethylene insert was selected. Four different configurations were considered for 

analysis. Two stem lengths (95 and 160 mm) and two types of fixation (cemented or press-fit) 

were examined. The polyethylene insert size and the tibial tray size remained the same in all 

configurations. A review of the main geometric characteristics of the four configurations is 

shown in Table 1. The correct choice of the TKA components size was confirmed by an 

experiment in which an actual implant was placed in the real mechanical-equivalent synthetic 

tibia by an experienced orthopedic surgeon. 

Table 1 

Stem characteristics of four configurations analyzed 

Stem configuration Stem type Length (mm) Diameter (mm) 

1 Press-fit 160 12 

2 Cemented 160 12 

3 Press fit 95 16 

4 Cemented 95 12 

Each configuration was virtually inserted into the tibia following the manufacturer’s surgical 

technique in perfect positioning and rotation of the implant. To ream the intramedullary canal, 

numerical models of the surgical rasps were virtually created, to exactly reproduce all the 

steps of the actual procedure. 

To define the stem position in the numerical models, cortex engagement of three stem teeth 

was accepted in the press-fit implants (Fig. 1a). In the cemented case, the stem was placed 

exactly in the center of the intramedullary canal surrounded by a homogeneous cement mantle 

(Fig. 1b). The cement mantle was defined by filling the previously reamed hole and 

subtracting the stem volume from that, simulating perfect cementing technique. The presence 

of cement was considered at the level of the bone cut with a penetration of 3 mm in agreement 

with literature [25]. 
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Fig. 1 

a Section view of the stem tip. Press-fit stem engagement into the cortex. b Section view of 

the stem tip following perfect cementing. The cement layer is pictured as brown 

Material properties 

Implant materials (UHMWPE, Cement, CoCrMo and Titanium) and cancellous bone were 

assumed to be homogeneous, isotropic and linearly elastic according to prior studies [27–30], 

while the cortical bone was considered as transversely isotropic [22, 28], with properties 

varying along the mechanical axis of the tibia. The values of the material properties used for 

the model are shown in Table 2. 

Table 2 

Material properties used (E1 = E2 = E3 = E; ν12 = ν13 = ν23 = ν for the isotropic material) 

Material models 
Elastic modulus (MPa) Poisson’s ratio 

E1 E2 E3 ν12 ν13 ν23 

Cortical bone Transversely isotropic 10,000 10,000 16,000 0.42 0.3 0.3 

Cancellous bone Isotropic 3000 – – 0.3 – – 

Ti6Al4V Isotropic 110,000 – – 0.3 – – 

CoCrMo Isotropic 248,000 – – 0.3 – – 

UHWMPE Isotropic 564 – – 0.23 – – 

PMMA Isotropic 3000 – – 0.3 – – 

The coefficient of friction between the ultrahigh molecular weight polyethylene (UHMWPE) 

insert and the tibial tray was set at 0.05, between the titanium stem (press fit) and bone at 0.6, 

between the CoCrMo (tibial tray and cemented stem) and bone at 0.2 and between the 

CoCrMo and cement 0.25 [31]. 

Analysis of rigid body kinematics 

Lunge and squat movements were reproduced numerically using a validated musculoskeletal 

modeling software (LifeMOD/KneeSIM 2008.1.0, LifeModeler Inc., San Clemente, CA, 

USA) [32–34]. A validated numerical model for contact forces [32, 35] as well as for 

reproduction of the kinematics was used [36, 10]. The development of the model followed 

strictly in all steps, from geometry definition, material, models and properties as well as load 

and boundary conditions with the mesh the previous model and the experimental validated 

model described earlier [37]. 
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The program replicates an existing knee kinematics rig with regard to geometry, constraints, 

input and output (Fig. 2). Both movements were implemented with a range of flexion of 0° to 

120°. A constant vertical hip load of 200 N was applied during the motor task. According to 

the Grood and Suntay convention [38], internal rotation and adduction at the maximum 

flexion angle (120.0°) were, respectively, 1.3° and 3.2°. All other settings and hardware 

parameters necessary to define rigid body kinematics were based upon prior studies [32, 36, 

39, 40]. Medial and lateral tibiofemoral contact forces, patellar tendon forces and knee 

kinematics during both activities were extracted during the entire motion. Maximum force 

values obtained from the rigid body models are presented below (Table 3). 

 
Fig. 2 

Musculoskeletal model used for this study: Left Knee simulator model: base frame (A), hip 

sled (B), femur block (C), tibial block (D), tibia rotation table (E), and adduction-abduction 

sled (F). Right Knee model with the RT-PLUS Modular Rotating Hinge TKA implanted 

Table 3 

Maximum forces applied in the FE models 

Load considered Direction Magnitude lunge Magnitude squat 

Lateral tibiofemoral force 

Total magnitude 2798 2143 

Mediolateral (±) 161 116 

Anteroposterior (±) −258 −246 

Superior/inferior (±) −2781 −2126 

Medial tibiofemoral force 

Total magnitude 1715 1429 

Mediolateral (±) 89 −16 

Anteroposterior (±) −159 −106 
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Load considered Direction Magnitude lunge Magnitude squat 

Superior/inferior (±) −1705 −1425 

Patellar tendon force 

Total magnitude 3518 3121 

Mediolateral (±) −200 −138 

Anteroposterior (±) −258 −138 

Superior/inferior (±) 3503 3094 

Rotating pin force 

Total magnitude 1066 1099 

Mediolateral (±) 0 0 

Anteroposterior (±) 1066 1099 

Superior/inferior (±) 0 0 

Finite element analysis 

For ensuring that the numerical model of the bone has the same geometry of the bone that will 

be used in the experimental tests, a CT scan of the left fourth generation composite tibia, size 

medium (Pacific Research Laboratories) as template for the further studies was performed. 

For both the numerical rigid body kinematics and the FEA, the same TKA system, an RT-

PLUS Modular Rotating Hinge TKA (Smith & Nephew, Memphis, TN, USA) [32], was used 

(Fig. 2). The full FEA model used for this study and a zoom of the proximal tibial part are 

presented in Fig. 3a, b. 
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Fig. 3 

a Full FEA model used for this study, b Zoom of the proximal tibial FEA model 

Each model was meshed using tetragonal elements with an approximate element size of 

4 mm. A refinement of the mesh, with an approximate element size of 0.5–1 mm, was 

performed in the contact area of the bone with the TKA stem. Abaqus/Standard version 6.10-

1 (Dassault Systèmes, Vélizy-Villacoublay, France) was used to develop the models and 

perform all finite element simulations. 

Element size was chosen based on a convergence test to make sure that the selected mesh did 

not influence the result. No relative movements were considered between the cement mantle 

and the bone. The maximum forces determined by the rigid body kinematic analysis were 

applied on the FE models. Therefore, we defined a coordinate system using the mechanical 

axis of femur. The planes were defined as follows: 

 Frontal plane: plane containing the mechanical axis and parallel to the line joining the 

medial and lateral tibial condylar center. 

 Horizontal axis: the perpendicular line to the mechanical axis in the frontal plane, 

passing through the center of the tibial knee center. 
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 Horizontal plane: perpendicular to the frontal plane and containing the tibial horizontal 

axis. 

 Sagittal axis: the line perpendicular to the mechanical axis and to the horizontal axis, 

passing through the tibial knee center. 

For all four models we used the same references of the LifeMOD model. Load values and 

application points were defined by that coordinate system which is fixed to the polyethylene 

insert. For defining load values, kinematics of the knee during motions and TF contact area, 

we used the loading frame with strain gauge and the musculoskeletal modeling software 

(LifeMOD/KneeSIM 1.0, LifeModeler Inc. The values were extracted using previously 

validated models [32, 36]. 

Patellar tendon force was applied on the tibial tubercle. The tibia was fully constrained at its 

distal part. Twenty regions of interest (ROI) were identified in the tibia. These ROIs were 

obtained by subdividing the cortical region of the tibia into regions of 10 mm thickness each. 

Each region is defined cutting the cortical bone with planes perpendicular to the mechanical 

axis of the tibia. The most interesting regions of the cortical bone were near the stem and 

under the tibial tray. For all models, each regions of interest had a width of 15 mm. Average 

compressive stresses were computed for each ROI and compared among the different 

configurations. The relative motion between the implant and bone was also computed and 

compared. The reliability of this method is proven in current literature [20, 22, 32, 37]. 

Results 

For both the squatting and the lunge movement, the average compressive stress in each ROI 

was extracted and reported (Figs. 4, 5). In general, it increases along the stem with growing 

distance from the baseplate. 

 
Fig. 4 
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Average compressive stresses in the different ROIs during squatting for the four 

configurations as a function of the distance from the tibial cut. Dotted vertical black line tip of 

the short stem. Continuous vertical black line: tip of the long stem 

 
Fig. 5 

Average compressive stresses in the different ROIs during lunging for the four configurations 

as a function of the distance from the tibial cut. Dotted vertical black line tip of the short 

stem. Continuous vertical black line tip of the long stem 

For each movement, the most stressed ROIs were situated around the stem tips, marked with 

two vertical black lines (Figs. 4, 5). The maximal average compressive stress was highest for 

the press fit long stem configuration (squat 18.2 MPa; lunge 17.7 MPa) and lowest for the 

cemented long stem configuration (squat 11.5 MPa; lunge 10.1 MPa). Also, for the short 

stems, the press-fit configuration showed a higher average compressive stress (squat 

13.3 MPa; lunge 14.6 MPa) compared to the cemented configuration (squat 9.5 MPa; lunge 

10.4 MPa) in the region situated around the stem tips. As visible on Figs. 4 and 5 for the short 

stems, the stress continues to rise underneath the tip and reaches a maximum value a little bit 

lower. Biomechanically and from the clinical perspective, the real maximal values of the 

stresses are relevant (short press fit: squat 15.4 MPa, lunge 16.4 MPa; short cemented: squat 

15.6 MPa, lunge 16.6 MPa), because this is what the bone experiences. However, cemented 

and press-fit short stems showed similar maximal stresses below the stem tip. 

For both movements, the presence of cement reduced the average compressive stresses along 

the bone–cement interface, compared to the press-fit configuration. Different activities induce 

the same stress distribution pattern with the load mainly situated at the stem tip. Both long and 

short stem configurations induce stress peaks in the region around the stem tip. The presence 

of cement reduces the stresses induced in every region along the stem, with a bigger 

difference in the region close to the stem tip. Short stem configurations are less affected by 

the presence of cement than the long stem configuration. 
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Von Mises stresses at the interface between the cortical bone and tibial tray are shown 

graphically in Figs. 6 and 7. The values of the stress are indicated by colors, with red for high 

and blue for low values, respectively. Numerical values are shown in Fig. 8. In cemented 

cases, different loads and stem lengths induce the same stress on the interface. Press-fit 

implants induce higher stresses than cemented implants; a higher difference is observed with 

the short stem, where the interaction area between stem and bone is smaller. There was no 

relevant difference found for the different movement activities. 

 
Fig. 6 

Average compressive stresses in the interface region underneath the tibial tray (MPa) 

 
Fig. 7 

Maximal relative motion between the tibial baseplate and cortical bone (µm) 
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Fig. 8 

Subsidence of the stem tip (mm) 

The micromotions between the implant and the bone in the region of the tibial tray are shown 

in Fig. 8. Micromotions were considered as the total displacement of the tibial tray in the 

resection plane with respect to the tibial bone (Figs. 9 and 10). In the press-fit models, 

micromotions at the tray can be more than twice the value in the cemented models (long 

cemented: ~40 µm vs long press fit: ~100 µm). 

 
Fig. 9 
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Von Mises stresses at the interface between the cortical bone and tibial tray for lunge (red for 

high and blue for low values). a Short stem (95 mm) cemented, b Short stem (95 mm) 

cementless, c Long stem (160 mm) cemented, d Long stem (160 mm) cementless 

 
Fig. 10 

Von Mises stresses at the interface between the cortical bone and tibial tray for squat (red for 

high and blue for low values). a Short stem (95 mm) cemented, b Short stem (95 mm) 

cementless, c Long stem (160 mm) cemented, d Long stem (160 mm) cementless 

Subsidence of the stem tip along the mechanical axis was also evaluated (Fig. 10). No notable 

differences were induced by different motions. The subsidence in the press-fit models is twice 

as large as in the cemented models [from ~30 to ~70 µm (long) and from ~40 to ~80 µm 

(short)].  

Discussion 

The hypothesis that long cemented stems would deliver lowest micromotion and favorable 

stress distribution compared to shorter and uncemented stems was proven correct. To date, 

there are hardly any evidence-based criteria to determine the appropriate stem length and 

whether or not to use cement in revision TKA. These data will support the surgeons’ decision 

making for the choice of stem length and fixation technique. The evaluation of micromotions 

and stresses in different regions of the tibia after revision TKA is difficult in in vivo as well as 

cadaveric models. These variables seem to be best determined by finite element analysis 

(FEA) with standardized sawbones having defined material properties for cortical and 

spongious bone. In summary, short cementless stems induce higher stresses in the tibia 
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underneath the tibial tray and along the stem compared to long cemented stems. Cemented 

stems show less interface stress and micromotion compared to cementless stems. 

Several clinical studies report on cementing of stems in TKA with excellent long-term results. 

Good clinical and biomechanical results have also been achieved when cementing a tibial 

stem during revision surgery, particularly where bone quality is poor [1, 13]. The advantages 

of cementing described are an increase of the contact area between the stem and the bone, 

better centralization of the stem in the tibial canal and the possibility of adding topical 

antibiotics in revision situations [41]. Other studies report that the cemented interface may 

break down gradually with time because of cyclic loading, producing component failure [42]. 

Other disadvantages of cemented stems are potentially lethal microembolism and allergic 

reactions, as well as difficulties encountered in cement removal and bone stock loss if 

subsequent surgery is required. 

Most publications dealing with non-cemented stems present good mid-term but no long-term 

results [43]. Some authors report challenges in achieving a real press-fit fixation due to altered 

anatomy. This may lead to compromises in correct implant placement and may contribute to 

early loosening in former studies due to limited availability of modular implants [44, 45]. It is 

crucial to select the thickest possible stem in these modular systems, with the goal of 

achieving the best press-fit situations [46]. Several authors state that due to short- and middle-

term studies in most modern press-fit tibial stems, cementing is not necessary [14, 41, 47, 48]. 

This may be also due to the prosthetic design as constrained implants have other 

biomechanical properties than hinged TKAs. 

Micromotion and loosening of stems 

The biomechanical effects of long intramedullary stems in revision TKA have been studied 

extensively [10, 11, 41, 49]. Rawlinson et al. carried out cadaveric tests and finite element 

(FE) analyses on nine paired tibiae to compare stemmed and unstemmed tibial trays. It was 

seen in the FE analysis that a stem reduced the stresses and strains in the bone beneath the 

tibial tray. However, due to the biological variability between specimens, results remained 

highly variable and the effect of the stem inconclusive [50]. Several studies indicate that 

stems significantly enhance fixation in the presence of large bone loss [51, 52] and that a long 

stem contributes to correct alignment and stability due to better stress distribution [7–9, 53]. 

Albrektsson et al. hypothesized that a long central stem would ‘guide’ migration 

predominantly along the vertical axis, thereby minimizing the risk of recurrent malalignment 

and loosening due to tilting [35]. 

Radiolucent lines correlated with higher micromotion between the prosthesis–bone interface 

and were found in 65 % of tibias in 123 cemented TKAs at 4.5 years [54]. There was no 

significant correlation between thin radiolucent lines and clinical outcome. Lines >2 mm were 

associated with poor results. Whiteside noted global sclerotic lines in 52 of 56 press-fit 

stemmed tibial components in revision TKA at 2 years [47]. While these lines were presumed 

to indicate micromotion, a significant loosening rate was not observed. In an RSA analysis, 

Albrektsson et al. showed an association of micromotion with time from surgery in press-fit 

stems. After 6 months, migration and micromotion were negligible for the stemmed press-fit 

implant. Continuous migration after 2 years seems to correlate with malalignment, which 

leads to bad clinical results [54, 55]. 
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Completo et al. compared the load sharing of the cortical rim, the cancellous bone and the 

stem, as well as the stability of the cement–bone interface below the tibial components in 

cemented and press-fit stems in an FEA [18]. The press-fit stem reduced the relative motion 

by 19 % and the cemented stems by 23 % compared to a standard model without stem. In 

addition, Jazrawi et al. described a significant decrease in motion of the tibial tray with 

increasing press-fit stem length and increasing stem diameter in a cadaveric study [56]. 

Arbitrarily, Stern et al. showed in 30 cadaveric tibias that longer stems were associated with 

increased micromotion, especially under eccentric loading. Cemented implants seemed to 

have more stable fixation, compared with press-fit implants [52, 57]. Jazrawi et al. reported 

that cemented tibial stems showed significantly less tray motion than uncemented stems. The 

short cemented stems produced tray stability equivalent to long press-fit stems. 

This agrees with our results which show the lowest micromotions between implants and bone 

measured on the tibial base plate and at the stem tip for the long cemented configuration in 

comparison to the highest values in the short press-fit stems (up to 50 % more). Comparing 

our measured values of micromotions with literature, press-fit implants (long and short) show 

micromotions up to 120 µm due to softer cancellous bone in the metaphyseal area. This may 

result in considerable fibrous tissue formation in the contact area as mentioned above. 

Stress shielding 

Reilly et al. showed that a long cemented stem results in significant stress shielding of the 

proximal tibia with direct load transfer to the cortex at the tip of the stem [11]. They 

considered this stress shielding due to the ability of cemented tibial stems to carry up to 60 % 

of the axial load, which could be useful to unload a structurally compromised proximal tibia 

with significant bone defects. Furthermore, Brooks et al. pointed out the potential long-term 

risk of stress shielding such as cortical atrophy and tibial fracture at the tip of the stem and 

favored the use of tibial components that have either no stems or only short intramedullary 

stems [58]. In summary, cemented stems seem to reduce proximal stress, which is useful in 

considerable proximal bony defects but may result in proximal bone resorption in intact 

bones, contributing to tibial component loosening. However, a certain degree of proximal 

stress seems to be necessary to prevent bone loss, but should not be too high to result in 

loosening or fracture. 

A better stress distribution in the tibial bone in cemented stems is also shown in our graphical 

evaluation of the stresses, computed directly below the tibial plateau. In both movements, the 

cemented stems showed higher stresses in that region than the press-fit implants, which seem 

to load more or less completely on the distal stem. These results suggest that the stress 

distribution in cemented stems is better divided over the longitudinal axis of the stem and the 

tibial bone. 

Contact pressure and stem-end pain 

Barrak et al. found that diaphyseal pain is present in 14 % of patients with press-fit tibial 

stems and in 19 % of patients with cemented tibial stems [12]. This coincides with the region 

of stem-end pain described in previous clinical and radiographical studies [12, 52, 59]. 

Several authors explain this pain as related to the load transfer or contact pressure between the 

implant and bone surface, [12, 52, 59]. Kim et al. found in an FEA after revision TKA that a 

longer stem length, larger stem diameter and stronger press fit increased peak contact 

pressures [60]. The contact pressure modeled in the present study was highest in the stem-end 
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regions. There was an obvious difference in the peak pressure values at the stem-end in 

different fixation techniques. The cemented short and long stems had lower values suggesting 

a lower risk for stem-end pain. The higher peak in the long stemmed trial could be explained 

by the smaller intramedullary canal distally and the higher pressure acting on the smaller area. 

Kim et al. also suggested that the proximal cancellous bone surrounding short stems has a 

lower stiffness than the distal cortical bone when a longer stem was used [60]. 

The axial displacement of the stem tip was related to the fixation technique showing higher 

displacement for press-fit stems. A possible explanation is the improved stress distribution in 

the cemented tibiae, loading the cortical bone in a larger area than a focal stress of a press-fit 

stem, moving into the metaphyseal area and touching the cortical bone. No relevant 

differences were found in movements such as lunging or squatting. The present findings are 

contrary to those of Barrak [59]. Cemented stems show in the FEA lower stress values in the 

tip area, which would lead to less stem-end pain in these patients. 

Several authors observed that the design of the tip of the stem is the most important factor in 

stem-end pain [12, 52, 59]. In a radiographic analysis, it was shown that a slot shape at the 

stem tip could reduce the velocity of loosening and stem-end pain due to much smaller peak 

contact pressures in designs with slots [59]. The implant investigated in this study is also 

designed with such a slot in the tip of the tibial stem. Comparative evaluations with other 

implants were not made. 

Concerning the loads on the tibial tray, recent in vivo data of implants allowing measurements 

of contact forces by radio frequency showed higher forces on the medial side of the tibial tray 

[61]. This is opposite to our results, possibly due to a different implant design and a central 

pin used in our study of a rotating hinge arthroplasty. 

 

Limitations 

There were several limitations to this study. Heterogeneity of the cortical and cancellous 

bones, which could affect the stress results, were not considered in our model. Moreover, 

large bone defects or poor bone stock due to osteoporosis was not taken into consideration. In 

addition, only squatting and lunging were considered, despite the various loading situations 

(load pattern, load location and bone or implant condylar surface geometry) in the knee joint. 

FEA does not account for bony ingrowth and age of patients; it simulates the situation in the 

early phase following revision TKA. Recently discussed variations in the amount of anatomic 

tibial slope between racial groups may also affect results and is not taken into account in this 

study [62]. 

In actual surgery, it may be difficult to place a fully press-fit stem into the tibia due to an 

eccentric canal with respect to the tibial plateau. Some surgeons may compromise the position 

of the tibial tray to obtain a truly press-fit stem if modularity of the system is not forgiving 

enough. Furthermore, optimal cementing of the stem is not always achieved in real surgery. 

However, analysis of the data in this study presumed optimal press-fit placement and optimal 

(4th generation) cementing technique. 
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Conclusion 

In case of cemented stems, both long and short stems offer good stability with little 

micromotion and acceptable stress levels in the bone. Press-fit stems show more micromotion, 

higher stress levels and more stress peaks in the bone. This should be considered in the 

clinical decision process when performing revision TKA. 

Acknowledgments 

The study was performed in the European Centre for Knee Research, Leuven, Belgium, and 

funded by Smith and Nephew. 

Compliance with ethical standards 

Conflict of interest 

There are no competing interests in relation to this study from: Nelson Fanciullacci. Bilal 

Farouk El-Zayat, Thomas J. Heyse and Susanne Fuchs-Winkelmann are paid consultants, 

speakers and instructors to Smith and Nephew and received research support. Luc Labey and 

Bernardo Innocenti are former paid employees to Smith and Nephew. 

References 

1. Murray PB, Rand JA, Hanssen AD (1994) Cemented long-stem revision total knee 

arthroplasty. Clin Orthop Relat Res 309:116–123Google Scholar 

2. Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS (2003) Factors affecting the 

durability of primary total knee prostheses. J Bone Joint Surg Am 85-A(2):259–

265CrossRefPubMedGoogle Scholar 

3. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and 

revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone 

Joint Surg Am 89(4):780–785PubMedGoogle Scholar 

4. Crowninshield RD, Rosenberg AG, Sporer SM (2006) Changing demographics of 

patients with total joint replacement. Clin Orthop Relat Res 443:266–

272CrossRefPubMedGoogle Scholar 

5. Bieger R, Huch K, Kocak S, Jung S, Reichel H, Kappe T (2014) The influence of joint 

line restoration on the results of revision total knee arthroplasty: comparison between 

distance and ratio-methods. Arch Orthop Trauma Surg 134(4):537–

541CrossRefPubMedGoogle Scholar 

6. Insall JN, Dethmers DA (1982) Revision of total knee arthroplasty. Clin Orthop Relat 

Res 170:123–130Google Scholar 

7. Conditt MA, Parsley BS, Alexander JW, Doherty SD, Noble PC (2004) The optimal 

strategy for stable tibial fixation in revision total knee arthroplasty. J Arthroplasty 19(7 

Suppl 2):113–118CrossRefPubMedGoogle Scholar 

8. Fehring TK, Odum S, Olekson C, Griffin WL, Mason JB, McCoy TH (2003) Stem 

fixation in revision total knee arthroplasty: a comparative analysis. Clin Orthop Relat 

Res 416:217–224CrossRefGoogle Scholar 

9. Gofton WT, Tsigaras H, Butler RA, Patterson JJ, Barrack RL, Rorabeck CH (2002) 

Revision total knee arthroplasty: fixation with modular stems. Clin Orthop Relat Res 

404:158–168CrossRefGoogle Scholar 

http://scholar.google.com/scholar_lookup?title=Cemented%20long-stem%20revision%20total%20knee%20arthroplasty&author=PB.%20Murray&author=JA.%20Rand&author=AD.%20Hanssen&journal=Clin%20Orthop%20Relat%20Res&volume=309&pages=116-123&publication_year=1994
http://dx.doi.org/10.2106/00004623-200302000-00012
http://dx.doi.org/10.2106/00004623-200302000-00012
http://scholar.google.com/scholar_lookup?title=Factors%20affecting%20the%20durability%20of%20primary%20total%20knee%20prostheses&author=JA.%20Rand&author=RT.%20Trousdale&author=DM.%20Ilstrup&author=WS.%20Harmsen&journal=J%20Bone%20Joint%20Surg%20Am&volume=85-A&issue=2&pages=259-265&publication_year=2003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17403800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17403800
http://dx.doi.org/10.1097/01.blo.0000188066.01833.4f
http://dx.doi.org/10.1097/01.blo.0000188066.01833.4f
http://scholar.google.com/scholar_lookup?title=Changing%20demographics%20of%20patients%20with%20total%20joint%20replacement&author=RD.%20Crowninshield&author=AG.%20Rosenberg&author=SM.%20Sporer&journal=Clin%20Orthop%20Relat%20Res&volume=443&pages=266-272&publication_year=2006
http://dx.doi.org/10.1007/s00402-014-1953-4
http://dx.doi.org/10.1007/s00402-014-1953-4
http://scholar.google.com/scholar_lookup?title=The%20influence%20of%20joint%20line%20restoration%20on%20the%20results%20of%20revision%20total%20knee%20arthroplasty%3A%20comparison%20between%20distance%20and%20ratio-methods&author=R.%20Bieger&author=K.%20Huch&author=S.%20Kocak&author=S.%20Jung&author=H.%20Reichel&author=T.%20Kappe&journal=Arch%20Orthop%20Trauma%20Surg&volume=134&issue=4&pages=537-541&publication_year=2014
http://scholar.google.com/scholar_lookup?title=Revision%20of%20total%20knee%20arthroplasty&author=JN.%20Insall&author=DA.%20Dethmers&journal=Clin%20Orthop%20Relat%20Res&volume=170&pages=123-130&publication_year=1982
http://dx.doi.org/10.1016/j.arth.2004.06.010
http://dx.doi.org/10.1016/j.arth.2004.06.010
http://scholar.google.com/scholar_lookup?title=The%20optimal%20strategy%20for%20stable%20tibial%20fixation%20in%20revision%20total%20knee%20arthroplasty&author=MA.%20Conditt&author=BS.%20Parsley&author=JW.%20Alexander&author=SD.%20Doherty&author=PC.%20Noble&journal=J%20Arthroplasty&volume=19&issue=7%20Suppl%202&pages=113-118&publication_year=2004
http://dx.doi.org/10.1097/01.blo.0000093032.56370.4b
http://dx.doi.org/10.1097/01.blo.0000093032.56370.4b
http://dx.doi.org/10.1097/00003086-200211000-00028
http://dx.doi.org/10.1097/00003086-200211000-00028


10. Bourne RB, Finlay JB (1986) The influence of tibial component intramedullary stems 

and implant-cortex contact on the strain distribution of the proximal tibia following 

total knee arthroplasty. An in vitro study. Clin Orthop Relat Res 208:95–99Google 

Scholar 

11. Reilly D, Walker PS, Ben-Dov M, Ewald FC (1982) Effects of tibial components on 

load transfer in the upper tibia. Clin Orthop Relat Res 165:273–282Google Scholar 

12. Barrack RL, Rorabeck C, Burt M, Sawhney J (1999) Pain at the end of the stem after 

revision total knee arthroplasty. Clin Orthop Relat Res 367:216–225CrossRefGoogle 

Scholar 

13. Lee RW, Volz RG, Sheridan DC (1991) The role of fixation and bone quality on the 

mechanical stability of tibial knee components. Clin Orthop Relat Res 273:177–

183Google Scholar 

14. Haas SB, Insall JN, Montgomery W 3rd, Windsor RE (1995) Revision total knee 

arthroplasty with use of modular components with stems inserted without cement. J 

Bone Joint Surg Am 77(11):1700–1707CrossRefPubMedGoogle Scholar 

15. Ducheyne P, Kagan A 2nd, Lacey JA (1978) Failure of total knee arthroplasty due to 

loosening and deformation of the tibial component. J Bone Joint Surg Am 60(3):384–

391CrossRefPubMedGoogle Scholar 

16. Completo A, Simoes JA, Fonseca F (2009) Revision total knee arthroplasty: the 

influence of femoral stems in load sharing and stability. Knee 16(4):275–

279CrossRefPubMedGoogle Scholar 

17. Schlegel UJ, Bruckner T, Schneider M, Parsch D, Geiger F, Breusch SJ (2015) 

Surface or full cementation of the tibial component in total knee arthroplasty: a 

matched-pair analysis of mid- to long-term results. Arch Orthop Trauma Surg 

135(5):703–708CrossRefPubMedGoogle Scholar 

18. Completo A, Simoes JA, Fonseca F, Oliveira M (2008) The influence of different 

tibial stem designs in load sharing and stability at the cement-bone interface in 

revision TKA. Knee 15(3):227–232CrossRefPubMedGoogle Scholar 

19. Brihault J, Navacchia A, Pianigiani S, Labey L, De Corte R, Pascale V, Innocenti B 

(2016) All-polyethylene tibial components generate higher stress and micromotions 

than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports 

Traumatol Arthrosc 24:2550–2559CrossRefPubMedGoogle Scholar 

20. Innocenti B, Truyens E, Labey L, Wong P, Victor J, Bellemans J (2009) Can medio-

lateral baseplate position and load sharing induce asymptomatic local bone resorption 

of the proximal tibia? A finite element study. J Orthop Surg Res 

4:26CrossRefPubMedPubMedCentralGoogle Scholar 

21. Soenen M, Baracchi M, De Corte R, Labey L, Innocenti B (2013) Stemmed TKA in a 

femur with a total hip arthroplasty: is there a safe distance between the stem tips? J 

Arthroplasty 28(8):1437–1445CrossRefPubMedGoogle Scholar 

22. Innocenti B, Bellemans J, Catani F (2015) Deviations from optimal alignment in 

TKA: is there a biomechanical difference between femoral or tibial component 

alignment? J Arthroplasty 31(1):295–301CrossRefPubMedGoogle Scholar 

23. Au AG, Raso VJ, Liggins AB, Otto DD, Amirfazli A (2005) A three-dimensional 

finite element stress analysis for tunnel placement and buttons in anterior cruciate 

ligament reconstructions. J Biomech 38(4):827–832CrossRefPubMedGoogle Scholar 

24. Bougherara H, Zdero R, Mahboob Z, Dubov A, Shah S, Schemitsch EH (2010) The 

biomechanics of a validated finite element model of stress shielding in a novel hybrid 

total knee replacement. Proc Inst Mech Eng H 224(10):1209–

1219CrossRefPubMedGoogle Scholar 

http://scholar.google.com/scholar_lookup?title=The%20influence%20of%20tibial%20component%20intramedullary%20stems%20and%20implant-cortex%20contact%20on%20the%20strain%20distribution%20of%20the%20proximal%20tibia%20following%20total%20knee%20arthroplasty.%20An%20in%20vitro%20study&author=RB.%20Bourne&author=JB.%20Finlay&journal=Clin%20Orthop%20Relat%20Res&volume=208&pages=95-99&publication_year=1986
http://scholar.google.com/scholar_lookup?title=The%20influence%20of%20tibial%20component%20intramedullary%20stems%20and%20implant-cortex%20contact%20on%20the%20strain%20distribution%20of%20the%20proximal%20tibia%20following%20total%20knee%20arthroplasty.%20An%20in%20vitro%20study&author=RB.%20Bourne&author=JB.%20Finlay&journal=Clin%20Orthop%20Relat%20Res&volume=208&pages=95-99&publication_year=1986
http://scholar.google.com/scholar_lookup?title=Effects%20of%20tibial%20components%20on%20load%20transfer%20in%20the%20upper%20tibia&author=D.%20Reilly&author=PS.%20Walker&author=M.%20Ben-Dov&author=FC.%20Ewald&journal=Clin%20Orthop%20Relat%20Res&volume=165&pages=273-282&publication_year=1982
http://dx.doi.org/10.1097/00003086-199910000-00027
http://dx.doi.org/10.1097/00003086-199910000-00027
http://scholar.google.com/scholar_lookup?title=Pain%20at%20the%20end%20of%20the%20stem%20after%20revision%20total%20knee%20arthroplasty&author=RL.%20Barrack&author=C.%20Rorabeck&author=M.%20Burt&author=J.%20Sawhney&journal=Clin%20Orthop%20Relat%20Res&volume=367&pages=216-225&publication_year=1999
http://scholar.google.com/scholar_lookup?title=The%20role%20of%20fixation%20and%20bone%20quality%20on%20the%20mechanical%20stability%20of%20tibial%20knee%20components&author=RW.%20Lee&author=RG.%20Volz&author=DC.%20Sheridan&journal=Clin%20Orthop%20Relat%20Res&volume=273&pages=177-183&publication_year=1991
http://dx.doi.org/10.2106/00004623-199511000-00009
http://dx.doi.org/10.2106/00004623-199511000-00009
http://scholar.google.com/scholar_lookup?title=Revision%20total%20knee%20arthroplasty%20with%20use%20of%20modular%20components%20with%20stems%20inserted%20without%20cement&author=SB.%20Haas&author=JN.%20Insall&author=W.%20Montgomery&author=RE.%20Windsor&journal=J%20Bone%20Joint%20Surg%20Am&volume=77&issue=11&pages=1700-1707&publication_year=1995
http://dx.doi.org/10.2106/00004623-197860030-00021
http://dx.doi.org/10.2106/00004623-197860030-00021
http://scholar.google.com/scholar_lookup?title=Failure%20of%20total%20knee%20arthroplasty%20due%20to%20loosening%20and%20deformation%20of%20the%20tibial%20component&author=P.%20Ducheyne&author=A.%20Kagan&author=JA.%20Lacey&journal=J%20Bone%20Joint%20Surg%20Am&volume=60&issue=3&pages=384-391&publication_year=1978
http://dx.doi.org/10.1016/j.knee.2008.12.008
http://dx.doi.org/10.1016/j.knee.2008.12.008
http://scholar.google.com/scholar_lookup?title=Revision%20total%20knee%20arthroplasty%3A%20the%20influence%20of%20femoral%20stems%20in%20load%20sharing%20and%20stability&author=A.%20Completo&author=JA.%20Simoes&author=F.%20Fonseca&journal=Knee&volume=16&issue=4&pages=275-279&publication_year=2009
http://dx.doi.org/10.1007/s00402-015-2190-1
http://dx.doi.org/10.1007/s00402-015-2190-1
http://scholar.google.com/scholar_lookup?title=Surface%20or%20full%20cementation%20of%20the%20tibial%20component%20in%20total%20knee%20arthroplasty%3A%20a%20matched-pair%20analysis%20of%20mid-%20to%20long-term%20results&author=UJ.%20Schlegel&author=T.%20Bruckner&author=M.%20Schneider&author=D.%20Parsch&author=F.%20Geiger&author=SJ.%20Breusch&journal=Arch%20Orthop%20Trauma%20Surg&volume=135&issue=5&pages=703-708&publication_year=2015
http://dx.doi.org/10.1016/j.knee.2008.01.008
http://dx.doi.org/10.1016/j.knee.2008.01.008
http://scholar.google.com/scholar_lookup?title=The%20influence%20of%20different%20tibial%20stem%20designs%20in%20load%20sharing%20and%20stability%20at%20the%20cement-bone%20interface%20in%20revision%20TKA&author=A.%20Completo&author=JA.%20Simoes&author=F.%20Fonseca&author=M.%20Oliveira&journal=Knee&volume=15&issue=3&pages=227-232&publication_year=2008
http://dx.doi.org/10.1007/s00167-015-3630-8
http://dx.doi.org/10.1007/s00167-015-3630-8
http://scholar.google.com/scholar_lookup?title=All-polyethylene%20tibial%20components%20generate%20higher%20stress%20and%20micromotions%20than%20metal-backed%20tibial%20components%20in%20total%20knee%20arthroplasty&author=J.%20Brihault&author=A.%20Navacchia&author=S.%20Pianigiani&author=L.%20Labey&author=R.%20Corte&author=V.%20Pascale&author=B.%20Innocenti&journal=Knee%20Surg%20Sports%20Traumatol%20Arthrosc&volume=24&pages=2550-2559&publication_year=2016
http://dx.doi.org/10.1186/1749-799X-4-26
http://dx.doi.org/10.1186/1749-799X-4-26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718929
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718929
http://dx.doi.org/10.1016/j.arth.2013.01.010
http://dx.doi.org/10.1016/j.arth.2013.01.010
http://scholar.google.com/scholar_lookup?title=Stemmed%20TKA%20in%20a%20femur%20with%20a%20total%20hip%20arthroplasty%3A%20is%20there%20a%20safe%20distance%20between%20the%20stem%20tips%3F&author=M.%20Soenen&author=M.%20Baracchi&author=R.%20Corte&author=L.%20Labey&author=B.%20Innocenti&journal=J%20Arthroplasty&volume=28&issue=8&pages=1437-1445&publication_year=2013
http://dx.doi.org/10.1016/j.arth.2015.07.038
http://dx.doi.org/10.1016/j.arth.2015.07.038
http://scholar.google.com/scholar_lookup?title=Deviations%20from%20optimal%20alignment%20in%20TKA%3A%20is%20there%20a%20biomechanical%20difference%20between%20femoral%20or%20tibial%20component%20alignment%3F&author=B.%20Innocenti&author=J.%20Bellemans&author=F.%20Catani&journal=J%20Arthroplasty&volume=31&issue=1&pages=295-301&publication_year=2015
http://dx.doi.org/10.1016/j.jbiomech.2004.05.007
http://dx.doi.org/10.1016/j.jbiomech.2004.05.007
http://scholar.google.com/scholar_lookup?title=A%20three-dimensional%20finite%20element%20stress%20analysis%20for%20tunnel%20placement%20and%20buttons%20in%20anterior%20cruciate%20ligament%20reconstructions&author=AG.%20Au&author=VJ.%20Raso&author=AB.%20Liggins&author=DD.%20Otto&author=A.%20Amirfazli&journal=J%20Biomech&volume=38&issue=4&pages=827-832&publication_year=2005
http://dx.doi.org/10.1243/09544119JEIM691
http://dx.doi.org/10.1243/09544119JEIM691
http://scholar.google.com/scholar_lookup?title=The%20biomechanics%20of%20a%20validated%20finite%20element%20model%20of%20stress%20shielding%20in%20a%20novel%20hybrid%20total%20knee%20replacement&author=H.%20Bougherara&author=R.%20Zdero&author=Z.%20Mahboob&author=A.%20Dubov&author=S.%20Shah&author=EH.%20Schemitsch&journal=Proc%20Inst%20Mech%20Eng%20H&volume=224&issue=10&pages=1209-1219&publication_year=2010


25. Vanlommel J, Luyckx JP, Labey L, Innocenti B, De Corte R, Bellemans J (2011) 

Cementing the tibial component in total knee arthroplasty: which technique is the 

best? J Arthroplasty 26(3):492–496CrossRefPubMedGoogle Scholar 

26. van de Groes S, de Waal-Malefijt M, Verdonschot N (2013) Probability of mechanical 

loosening of the femoral component in high flexion total knee arthroplasty can be 

reduced by rather simple surgical techniques. Knee 21(1):209–

215CrossRefPubMedGoogle Scholar 

27. Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a 

knee joint replacement during a gait cycle using explicit finite element analysis. J 

Biomech 35(2):267–275CrossRefPubMedGoogle Scholar 

28. Heiner AD (2008) Structural properties of fourth-generation composite femurs and 

tibias. J Biomech 41(15):3282–3284CrossRefPubMedGoogle Scholar 

29. Oguz Kayabasi FE (2006) Finite element modelling and analysis of a new cemented 

hip prosthesis. Adv Eng Softw 37:477–483CrossRefGoogle Scholar 

30. Wannasri SVP, Ivanova LR, Kornienko LA, Piriyayon S (2009) Increasing wear 

resistance of UHMWPE by mechanical activation and chemical modification 

combined with addition of nanofibers. Procedia Eng 1:67–70CrossRefGoogle Scholar 

31. Simpson DJ, Little JP, Gray H, Murray DW, Gill HS (2009) Effect of modular neck 

variation on bone and cement mantle mechanics around a total hip arthroplasty stem. 

Clin Biomech (Bristol, Avon) 24(3):274–285CrossRefGoogle Scholar 

32. Innocenti B, Pianigiani S, Labey L, Victor J, Bellemans J (2011) Contact forces in 

several TKA designs during squatting: a numerical sensitivity analysis. J Biomech 

44(8):1573–1581CrossRefPubMedGoogle Scholar 

33. Al Nazer R, Rantalainen T, Heinonen A, Sievanen H, Mikkola A (2008) Flexible 

multibody simulation approach in the analysis of tibial strain during walking. J 

Biomech 41(5):1036–1043CrossRefPubMedGoogle Scholar 

34. Innocenti B, Follador M, Salerno M, Bignardi C, Wong P, Labey L (2009) 

Experimental and numerical analysis of patello-femoral contact mechanics in TKA, 

vol 22. In: IFMBE proceedings—4th European Conference of the International 

Federation for Medical and Biological Engineering ECIFMBE 2008, 12 edn, 23–27 

November 2008, Antwerp, Springer, Berlin 

35. Albrektsson BE, Ryd L, Carlsson LV, Freeman MA, Herberts P, Regner L, Selvik G 

(1990) The effect of a stem on the tibial component of knee arthroplasty. A roentgen 

stereophotogrammetric study of uncemented tibial components in the Freeman-

Samuelson knee arthroplasty. J Bone Joint Surg Br 72(2):252–

258CrossRefPubMedGoogle Scholar 

36. Pianigiani S, Chevalier Y, Labey L, Pascale V, Innocenti B (2012) Tibio-femoral 

kinematics in different total knee arthroplasty designs during a loaded squat: a 

numerical sensitivity study. J Biomech 45(13):2315–2323CrossRefPubMedGoogle 

Scholar 

37. Innocenti B, Bilgen OF, Labey L, van Lenthe GH, Sloten JV, Catani F (2014) Load 

sharing and ligament strains in balanced, overstuffed and understuffed UKA. A 

validated finite element analysis. J Arthroplasty 29(7):1491–

1498CrossRefPubMedGoogle Scholar 

38. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of 

three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–

144CrossRefPubMedGoogle Scholar 

39. Victor J, Van Doninck D, Labey L, Van Glabbeek F, Parizel P, Bellemans J (2009) A 

common reference frame for describing rotation of the distal femur: a ct-based 

http://dx.doi.org/10.1016/j.arth.2010.01.107
http://dx.doi.org/10.1016/j.arth.2010.01.107
http://scholar.google.com/scholar_lookup?title=Cementing%20the%20tibial%20component%20in%20total%20knee%20arthroplasty%3A%20which%20technique%20is%20the%20best%3F&author=J.%20Vanlommel&author=JP.%20Luyckx&author=L.%20Labey&author=B.%20Innocenti&author=R.%20Corte&author=J.%20Bellemans&journal=J%20Arthroplasty&volume=26&issue=3&pages=492-496&publication_year=2011
http://dx.doi.org/10.1016/j.knee.2013.05.003
http://dx.doi.org/10.1016/j.knee.2013.05.003
http://scholar.google.com/scholar_lookup?title=Probability%20of%20mechanical%20loosening%20of%20the%20femoral%20component%20in%20high%20flexion%20total%20knee%20arthroplasty%20can%20be%20reduced%20by%20rather%20simple%20surgical%20techniques&author=S.%20Groes&author=M.%20Waal-Malefijt&author=N.%20Verdonschot&journal=Knee&volume=21&issue=1&pages=209-215&publication_year=2013
http://dx.doi.org/10.1016/S0021-9290%2801%2900179-8
http://dx.doi.org/10.1016/S0021-9290%2801%2900179-8
http://scholar.google.com/scholar_lookup?title=Simulation%20of%20a%20knee%20joint%20replacement%20during%20a%20gait%20cycle%20using%20explicit%20finite%20element%20analysis&author=AC.%20Godest&author=M.%20Beaugonin&author=E.%20Haug&author=M.%20Taylor&author=PJ.%20Gregson&journal=J%20Biomech&volume=35&issue=2&pages=267-275&publication_year=2002
http://dx.doi.org/10.1016/j.jbiomech.2008.08.013
http://dx.doi.org/10.1016/j.jbiomech.2008.08.013
http://scholar.google.com/scholar_lookup?title=Structural%20properties%20of%20fourth-generation%20composite%20femurs%20and%20tibias&author=AD.%20Heiner&journal=J%20Biomech&volume=41&issue=15&pages=3282-3284&publication_year=2008
http://dx.doi.org/10.1016/j.advengsoft.2005.09.003
http://dx.doi.org/10.1016/j.advengsoft.2005.09.003
http://dx.doi.org/10.1016/j.proeng.2009.06.018
http://dx.doi.org/10.1016/j.proeng.2009.06.018
http://dx.doi.org/10.1016/j.clinbiomech.2008.12.010
http://dx.doi.org/10.1016/j.clinbiomech.2008.12.010
http://dx.doi.org/10.1016/j.jbiomech.2011.02.081
http://dx.doi.org/10.1016/j.jbiomech.2011.02.081
http://scholar.google.com/scholar_lookup?title=Contact%20forces%20in%20several%20TKA%20designs%20during%20squatting%3A%20a%20numerical%20sensitivity%20analysis&author=B.%20Innocenti&author=S.%20Pianigiani&author=L.%20Labey&author=J.%20Victor&author=J.%20Bellemans&journal=J%20Biomech&volume=44&issue=8&pages=1573-1581&publication_year=2011
http://dx.doi.org/10.1016/j.jbiomech.2007.12.002
http://dx.doi.org/10.1016/j.jbiomech.2007.12.002
http://scholar.google.com/scholar_lookup?title=Flexible%20multibody%20simulation%20approach%20in%20the%20analysis%20of%20tibial%20strain%20during%20walking&author=R.%20Al%20Nazer&author=T.%20Rantalainen&author=A.%20Heinonen&author=H.%20Sievanen&author=A.%20Mikkola&journal=J%20Biomech&volume=41&issue=5&pages=1036-1043&publication_year=2008
http://dx.doi.org/10.2106/00004623-199072020-00014
http://dx.doi.org/10.2106/00004623-199072020-00014
http://scholar.google.com/scholar_lookup?title=The%20effect%20of%20a%20stem%20on%20the%20tibial%20component%20of%20knee%20arthroplasty.%20A%20roentgen%20stereophotogrammetric%20study%20of%20uncemented%20tibial%20components%20in%20the%20Freeman-Samuelson%20knee%20arthroplasty&author=BE.%20Albrektsson&author=L.%20Ryd&author=LV.%20Carlsson&author=MA.%20Freeman&author=P.%20Herberts&author=L.%20Regner&author=G.%20Selvik&journal=J%20Bone%20Joint%20Surg%20Br&volume=72&issue=2&pages=252-258&publication_year=1990
http://dx.doi.org/10.1016/j.jbiomech.2012.06.014
http://dx.doi.org/10.1016/j.jbiomech.2012.06.014
http://scholar.google.com/scholar_lookup?title=Tibio-femoral%20kinematics%20in%20different%20total%20knee%20arthroplasty%20designs%20during%20a%20loaded%20squat%3A%20a%20numerical%20sensitivity%20study&author=S.%20Pianigiani&author=Y.%20Chevalier&author=L.%20Labey&author=V.%20Pascale&author=B.%20Innocenti&journal=J%20Biomech&volume=45&issue=13&pages=2315-2323&publication_year=2012
http://scholar.google.com/scholar_lookup?title=Tibio-femoral%20kinematics%20in%20different%20total%20knee%20arthroplasty%20designs%20during%20a%20loaded%20squat%3A%20a%20numerical%20sensitivity%20study&author=S.%20Pianigiani&author=Y.%20Chevalier&author=L.%20Labey&author=V.%20Pascale&author=B.%20Innocenti&journal=J%20Biomech&volume=45&issue=13&pages=2315-2323&publication_year=2012
http://dx.doi.org/10.1016/j.arth.2014.01.020
http://dx.doi.org/10.1016/j.arth.2014.01.020
http://scholar.google.com/scholar_lookup?title=Load%20sharing%20and%20ligament%20strains%20in%20balanced%2C%20overstuffed%20and%20understuffed%20UKA.%20A%20validated%20finite%20element%20analysis&author=B.%20Innocenti&author=OF.%20Bilgen&author=L.%20Labey&author=GH.%20Lenthe&author=JV.%20Sloten&author=F.%20Catani&journal=J%20Arthroplasty&volume=29&issue=7&pages=1491-1498&publication_year=2014
http://dx.doi.org/10.1115/1.3138397
http://dx.doi.org/10.1115/1.3138397
http://scholar.google.com/scholar_lookup?title=A%20joint%20coordinate%20system%20for%20the%20clinical%20description%20of%20three-dimensional%20motions%3A%20application%20to%20the%20knee&author=ES.%20Grood&author=WJ.%20Suntay&journal=J%20Biomech%20Eng&volume=105&issue=2&pages=136-144&publication_year=1983


kinematic study using cadavers. J Bone Joint Surg Br 91(5):683–

690CrossRefPubMedGoogle Scholar 

40. Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The influence of muscle 

load on tibiofemoral knee kinematics. J Orthop Res 28(4):419–428PubMedGoogle 

Scholar 

41. Gustke KA (2004) Cemented tibial stems are not requisite in revision. Orthopedics 

27(9):991–992PubMedGoogle Scholar 

42. Santare MH, Keer LM, Lewis JL (1987) Cracks emanating from a fluid filled void 

loaded in compression: application to the bone-implant interface. J Biomech Eng 

109(1):55–59CrossRefPubMedGoogle Scholar 

43. Shannon BD, Klassen JF, Rand JA, Berry DJ, Trousdale RT (2003) Revision total 

knee arthroplasty with cemented components and uncemented intramedullary stems. J 

Arthroplasty 18(7 Suppl 1):27–32CrossRefPubMedGoogle Scholar 

44. Westrich GH, Haas SB, Insall JN, Frachie A (1995) Resection specimen analysis of 

proximal tibial anatomy based on 100 total knee arthroplasty specimens. J 

Arthroplasty 10(1):47–51CrossRefPubMedGoogle Scholar 

45. Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee 

replacement. J Bone Joint Surg Am 59(1):77–79CrossRefPubMedGoogle Scholar 

46. Vince KG, Long W (1995) Revision knee arthroplasty. The limits of press fit 

medullary fixation. Clin Orthop Relat Res 317:172–177Google Scholar 

47. Whiteside LA (1993) Cementless revision total knee arthroplasty. Clin Orthop Relat 

Res 286:160–167Google Scholar 

48. Mow CS, Wiedel JD (1994) Noncemented revision total knee arthroplasty. Clin 

Orthop Relat Res 309:110–115Google Scholar 

49. Sanguineti F, Mangano T, Formica M, Franchin F (2014) Total knee arthroplasty with 

rotating-hinge Endo-Model prosthesis: clinical results in complex primary and 

revision surgery. Arch Orthop Trauma Surg 134(11):1601–

1607CrossRefPubMedGoogle Scholar 

50. Rawlinson JJ, Peters LE, Campbell DA, Windsor R, Wright TM, Bartel DL (2005) 

Cancellous bone strains indicate efficacy of stem augmentation in constrained 

condylar knees. Clin Orthop Relat Res 440:107–116CrossRefPubMedGoogle Scholar 

51. Nazarian DG, Mehta S, Booth RE Jr (2002) A comparison of stemmed and 

unstemmed components in revision knee arthroplasty. Clin Orthop Relat Res 

404:256–262CrossRefGoogle Scholar 

52. Stern SH, Wills RD, Gilbert JL (1997) The effect of tibial stem design on component 

micromotion in knee arthroplasty. Clin Orthop Relat Res 345:44–52CrossRefGoogle 

Scholar 

53. Taylor M, Tanner KE, Freeman MA (1998) Finite element analysis of the implanted 

proximal tibia: a relationship between the initial cancellous bone stresses and implant 

migration. J Biomech 31(4):303–310CrossRefPubMedGoogle Scholar 

54. Ecker ML, Lotke PA, Windsor RE, Cella JP (1987) Long-term results after total 

condylar knee arthroplasty. Significance of radiolucent lines. Clin Orthop Relat Res 

216:151–158Google Scholar 

55. Ryd L, Albrektsson BE, Herberts P, Lindstrand A, Selvik G (1988) Micromotion of 

noncemented Freeman-Samuelson knee prostheses in gonarthrosis. A roentgen-

stereophotogrammetric analysis of eight successful cases. Clin Orthop Relat Res 

229:205–212Google Scholar 

56. Jazrawi LM, Bai B, Kummer FJ, Hiebert R, Stuchin SA (2001) The effect of stem 

modularity and mode of fixation on tibial component stability in revision total knee 

arthroplasty. J Arthroplasty 16(6):759–767CrossRefPubMedGoogle Scholar 

http://dx.doi.org/10.1302/0301-620X.91B5.21827
http://dx.doi.org/10.1302/0301-620X.91B5.21827
http://scholar.google.com/scholar_lookup?title=A%20common%20reference%20frame%20for%20describing%20rotation%20of%20the%20distal%20femur%3A%20a%20ct-based%20kinematic%20study%20using%20cadavers&author=J.%20Victor&author=D.%20Doninck&author=L.%20Labey&author=F.%20Glabbeek&author=P.%20Parizel&author=J.%20Bellemans&journal=J%20Bone%20Joint%20Surg%20Br&volume=91&issue=5&pages=683-690&publication_year=2009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19890990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19890990
http://scholar.google.com/scholar_lookup?title=The%20influence%20of%20muscle%20load%20on%20tibiofemoral%20knee%20kinematics&author=J.%20Victor&author=L.%20Labey&author=P.%20Wong&author=B.%20Innocenti&author=J.%20Bellemans&journal=J%20Orthop%20Res&volume=28&issue=4&pages=419-428&publication_year=2010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15487430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15487430
http://dx.doi.org/10.1115/1.3138642
http://dx.doi.org/10.1115/1.3138642
http://scholar.google.com/scholar_lookup?title=Cracks%20emanating%20from%20a%20fluid%20filled%20void%20loaded%20in%20compression%3A%20application%20to%20the%20bone-implant%20interface&author=MH.%20Santare&author=LM.%20Keer&author=JL.%20Lewis&journal=J%20Biomech%20Eng&volume=109&issue=1&pages=55-59&publication_year=1987
http://dx.doi.org/10.1016/S0883-5403%2803%2900301-2
http://dx.doi.org/10.1016/S0883-5403%2803%2900301-2
http://scholar.google.com/scholar_lookup?title=Revision%20total%20knee%20arthroplasty%20with%20cemented%20components%20and%20uncemented%20intramedullary%20stems&author=BD.%20Shannon&author=JF.%20Klassen&author=JA.%20Rand&author=DJ.%20Berry&author=RT.%20Trousdale&journal=J%20Arthroplasty&volume=18&issue=7%20Suppl%201&pages=27-32&publication_year=2003
http://dx.doi.org/10.1016/S0883-5403%2806%2980064-1
http://dx.doi.org/10.1016/S0883-5403%2806%2980064-1
http://scholar.google.com/scholar_lookup?title=Resection%20specimen%20analysis%20of%20proximal%20tibial%20anatomy%20based%20on%20100%20total%20knee%20arthroplasty%20specimens&author=GH.%20Westrich&author=SB.%20Haas&author=JN.%20Insall&author=A.%20Frachie&journal=J%20Arthroplasty&volume=10&issue=1&pages=47-51&publication_year=1995
http://dx.doi.org/10.2106/00004623-197759010-00013
http://dx.doi.org/10.2106/00004623-197759010-00013
http://scholar.google.com/scholar_lookup?title=Influence%20of%20positioning%20of%20prosthesis%20in%20total%20knee%20replacement&author=PA.%20Lotke&author=ML.%20Ecker&journal=J%20Bone%20Joint%20Surg%20Am&volume=59&issue=1&pages=77-79&publication_year=1977
http://scholar.google.com/scholar_lookup?title=Revision%20knee%20arthroplasty.%20The%20limits%20of%20press%20fit%20medullary%20fixation&author=KG.%20Vince&author=W.%20Long&journal=Clin%20Orthop%20Relat%20Res&volume=317&pages=172-177&publication_year=1995
http://scholar.google.com/scholar_lookup?title=Cementless%20revision%20total%20knee%20arthroplasty&author=LA.%20Whiteside&journal=Clin%20Orthop%20Relat%20Res&volume=286&pages=160-167&publication_year=1993
http://scholar.google.com/scholar_lookup?title=Noncemented%20revision%20total%20knee%20arthroplasty&author=CS.%20Mow&author=JD.%20Wiedel&journal=Clin%20Orthop%20Relat%20Res&volume=309&pages=110-115&publication_year=1994
http://dx.doi.org/10.1007/s00402-014-2061-1
http://dx.doi.org/10.1007/s00402-014-2061-1
http://scholar.google.com/scholar_lookup?title=Total%20knee%20arthroplasty%20with%20rotating-hinge%20Endo-Model%20prosthesis%3A%20clinical%20results%20in%20complex%20primary%20and%20revision%20surgery&author=F.%20Sanguineti&author=T.%20Mangano&author=M.%20Formica&author=F.%20Franchin&journal=Arch%20Orthop%20Trauma%20Surg&volume=134&issue=11&pages=1601-1607&publication_year=2014
http://dx.doi.org/10.1097/01.blo.0000187340.10003.68
http://dx.doi.org/10.1097/01.blo.0000187340.10003.68
http://scholar.google.com/scholar_lookup?title=Cancellous%20bone%20strains%20indicate%20efficacy%20of%20stem%20augmentation%20in%20constrained%20condylar%20knees&author=JJ.%20Rawlinson&author=LE.%20Peters&author=DA.%20Campbell&author=R.%20Windsor&author=TM.%20Wright&author=DL.%20Bartel&journal=Clin%20Orthop%20Relat%20Res&volume=440&pages=107-116&publication_year=2005
http://dx.doi.org/10.1097/00003086-200211000-00039
http://dx.doi.org/10.1097/00003086-200211000-00039
http://dx.doi.org/10.1097/00003086-199712000-00008
http://dx.doi.org/10.1097/00003086-199712000-00008
http://scholar.google.com/scholar_lookup?title=The%20effect%20of%20tibial%20stem%20design%20on%20component%20micromotion%20in%20knee%20arthroplasty&author=SH.%20Stern&author=RD.%20Wills&author=JL.%20Gilbert&journal=Clin%20Orthop%20Relat%20Res&volume=345&pages=44-52&publication_year=1997
http://dx.doi.org/10.1016/S0021-9290%2898%2900022-0
http://dx.doi.org/10.1016/S0021-9290%2898%2900022-0
http://scholar.google.com/scholar_lookup?title=Finite%20element%20analysis%20of%20the%20implanted%20proximal%20tibia%3A%20a%20relationship%20between%20the%20initial%20cancellous%20bone%20stresses%20and%20implant%20migration&author=M.%20Taylor&author=KE.%20Tanner&author=MA.%20Freeman&journal=J%20Biomech&volume=31&issue=4&pages=303-310&publication_year=1998
http://scholar.google.com/scholar_lookup?title=Long-term%20results%20after%20total%20condylar%20knee%20arthroplasty.%20Significance%20of%20radiolucent%20lines&author=ML.%20Ecker&author=PA.%20Lotke&author=RE.%20Windsor&author=JP.%20Cella&journal=Clin%20Orthop%20Relat%20Res&volume=216&pages=151-158&publication_year=1987
http://scholar.google.com/scholar_lookup?title=Micromotion%20of%20noncemented%20Freeman-Samuelson%20knee%20prostheses%20in%20gonarthrosis.%20A%20roentgen-stereophotogrammetric%20analysis%20of%20eight%20successful%20cases&author=L.%20Ryd&author=BE.%20Albrektsson&author=P.%20Herberts&author=A.%20Lindstrand&author=G.%20Selvik&journal=Clin%20Orthop%20Relat%20Res&volume=229&pages=205-212&publication_year=1988
http://dx.doi.org/10.1054/arth.2001.25507
http://dx.doi.org/10.1054/arth.2001.25507
http://scholar.google.com/scholar_lookup?title=The%20effect%20of%20stem%20modularity%20and%20mode%20of%20fixation%20on%20tibial%20component%20stability%20in%20revision%20total%20knee%20arthroplasty&author=LM.%20Jazrawi&author=B.%20Bai&author=FJ.%20Kummer&author=R.%20Hiebert&author=SA.%20Stuchin&journal=J%20Arthroplasty&volume=16&issue=6&pages=759-767&publication_year=2001


57. Luring C, Perlick L, Trepte C, Linhardt O, Perlick C, Plitz W, Grifka J (2006) 

Micromotion in cemented rotating platform total knee arthroplasty: cemented tibial 

stem versus hybrid fixation. Arch Orthop Trauma Surg 126(1):45–

48CrossRefPubMedGoogle Scholar 

58. Brooks PJ, Walker PS, Scott RD (1984) Tibial component fixation in deficient tibial 

bone stock. Clin Orthop Relat Res 184:302–308Google Scholar 

59. Barrack RL, Stanley T, Burt M, Hopkins S (2004) The effect of stem design on end-

of-stem pain in revision total knee arthroplasty. J Arthroplasty 19(7 Suppl 2):119–

124CrossRefPubMedGoogle Scholar 

60. Kim YH, Kwon OS, Kim K (2008) Analysis of biomechanical effect of stem-end 

design in revision TKA using Digital Korean model. Clin Biomech (Bristol, Avon) 

23(7):853–858CrossRefGoogle Scholar 

61. Bergmann G, Bender A, Dymke J, Duda G, Damm P (2014) Standardized loads acting 

in hip implants. PLoS One 11(5):e0155612CrossRefGoogle Scholar 

62. Shen Y, Li X, Fu X, Wang W (2015) A 3D finite element model to investigate 

prosthetic interface stresses of different posterior tibial slope. Knee Surg Sports 

Traumatol Arthrosc 23(11):3330–3336CrossRefPubMedGoogle Scholar 

 

http://dx.doi.org/10.1007/s00402-005-0082-5
http://dx.doi.org/10.1007/s00402-005-0082-5
http://scholar.google.com/scholar_lookup?title=Micromotion%20in%20cemented%20rotating%20platform%20total%20knee%20arthroplasty%3A%20cemented%20tibial%20stem%20versus%20hybrid%20fixation&author=C.%20Luring&author=L.%20Perlick&author=C.%20Trepte&author=O.%20Linhardt&author=C.%20Perlick&author=W.%20Plitz&author=J.%20Grifka&journal=Arch%20Orthop%20Trauma%20Surg&volume=126&issue=1&pages=45-48&publication_year=2006
http://scholar.google.com/scholar_lookup?title=Tibial%20component%20fixation%20in%20deficient%20tibial%20bone%20stock&author=PJ.%20Brooks&author=PS.%20Walker&author=RD.%20Scott&journal=Clin%20Orthop%20Relat%20Res&volume=184&pages=302-308&publication_year=1984
http://dx.doi.org/10.1016/j.arth.2004.06.009
http://dx.doi.org/10.1016/j.arth.2004.06.009
http://scholar.google.com/scholar_lookup?title=The%20effect%20of%20stem%20design%20on%20end-of-stem%20pain%20in%20revision%20total%20knee%20arthroplasty&author=RL.%20Barrack&author=T.%20Stanley&author=M.%20Burt&author=S.%20Hopkins&journal=J%20Arthroplasty&volume=19&issue=7%20Suppl%202&pages=119-124&publication_year=2004
http://dx.doi.org/10.1016/j.clinbiomech.2008.01.010
http://dx.doi.org/10.1016/j.clinbiomech.2008.01.010
http://dx.doi.org/10.1371/journal.pone.0155612
http://dx.doi.org/10.1371/journal.pone.0155612
http://dx.doi.org/10.1007/s00167-014-3144-9
http://dx.doi.org/10.1007/s00167-014-3144-9
http://scholar.google.com/scholar_lookup?title=A%203D%20finite%20element%20model%20to%20investigate%20prosthetic%20interface%20stresses%20of%20different%20posterior%20tibial%20slope&author=Y.%20Shen&author=X.%20Li&author=X.%20Fu&author=W.%20Wang&journal=Knee%20Surg%20Sports%20Traumatol%20Arthrosc&volume=23&issue=11&pages=3330-3336&publication_year=2015

