
ProbLog and Applicative Probabilistic Programming

Alexander Vandenbroucke
KU Leuven

alexander.vandenbroucke@kuleuven.be

Tom Schrijvers
KU Leuven

tom.schrijvers@kuleuven.be

1. Introduction
Functional probabilistic programming languages such as Angli-
can [8] exhibit dynamic structure: a program’s structure can arbi-
trarily depend on the value of a previous probabilistic choice.

On the other hand, an essential feature of the probabilistic logic
programming language ProbLog [6] is the separation of probabilis-
tic facts from the program rules. The structure of these rules is
static, i.e. independent of the values of the probabilistic facts. More-
over, ProbLog derives much of its efficient exact and approximate
inference from this property: the invariance of the rules enables
their compilation to forms such as BDDs, sd-DNNFs and SDDs on
which efficient inference (weighted model counting) can be per-
formed.

The functional programming community has recently concen-
trated on studying (functional) probabilistic programs in terms of
monads [7]. Monads are a natural choice, as they capture—as al-
gebraic structures—precisely those computations that exhibit the
dynamic behaviour of functional probabilistic programming lan-
guages.

This begs the question whether a similar algebraic structure ex-
ists which disallows dynamic program structure, and thus accu-
rately models the behaviour of ProbLog. Fortunately, such a more
restrictive class of algebraic structures indeed exists: Applicative
Functors [4]. They restrict monads by not allowing the structure of
the program to depend on any previously computed value.

Contribution In this work we explain that any ProbLog program,
excluding advanced features such as conditioning and flexible prob-
abilities, can be reformulated in terms of a probabilistic applicative
program, and vice-versa. Then, ProbLog programs are exactly as
powerful as probabilistic applicative programs.

2. Probabilistic Logic Programming
Consider the following ProbLog program, implementing a fair coin
flip:

0.5 :: heads.
tails :- not(heads).

The clauses of the program can be divided in facts F and rules
R. In this particular case, F � t0.5 :: headsu and R �

[Copyright notice will appear here once ’preprint’ option is removed.]

ttails :- not(heads)u. Note that the rules R are entirely non-
probabilistic, since they are regular logical clauses.

Semantics of Probabilistic Logic Programs A total choice C is
any subset of F . A fact f is said to be true (false) in C if and only
if f P C (f R C). A total choice C and a set of clauses R together
form a conventional logic program. We use P |ù a to denote that
program P logically entails an atom a according to perfect model
semantics [5].

Let F � tp1 :: f1, . . . , pn :: fnu, then the probability of a
choice C � F is given by the product of the probabilities of the
true and false facts:

PpCq �
¹

pi::fiPC

pi �
¹

pj ::fjPFzC

p1� pjq

The distribution semantics defines the probability of a query q (an
atom) for a program P � F YR as the sum of the probabilities of
all total choices that entail q:

Ppq|P q �
¸

C � F
C YR |ù q

PpCq (1)

For instance, Ppheads|P q � 0.5 � Pptails|P qwhen P is the logic
program above.

Clearly, C does not influence the structure of the clauses in R.
The computational model does not need the capability to change
the structure of the program based on probabilistic choices. Thus,
monads—which do posses this capability—are too powerful a
model. Instead, applicative functors are more appropriate, since
in that setting, the structure of the computation is static.

3. Probabilistic Applicative Functor
An Applicative Functor F is a functor F that is equipped with two
additional operations pure and ~:

pure : @A.AÑ FA

~ : @A,B.F pAÑ Bq Ñ FAÑ FB

that satisfy a number of laws, described by McBride and Pater-
son [4].

To model probabilities, we take the approach described by Gib-
bons and Hinze [2]. That is, we introduce the following probabilis-
tic binary choice operator:

a� p� b : AÑ r0, 1s Ñ AÑ FA

along with some equational laws. With this operator, the coin toss
can be written as heads � 0.5� tails .

We can translate the logic program more systematically, by
replacing fact 0.5 :: heads with boolean choice true � 0.5 �
false , and replacing the rule tails :- not(heads). with a pure

1 2016/12/15

function performing the logical deduction:

heads � true � 0.5� false

tails 1phq � h

tails � pureptails 1q~ heads

Observe that the solution is computed by lifting the pure function
tails 1 in to probabilistic functor F and applying it to heads .

Now, consider a more complicated example involving recursion
and rules annotated with probabilities.

0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).

smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).

person(1). person(2). person(3). person(4).

friend(1,2). friend(2,1). friend(2,4).
friend(3,2). friend(4,2).

This program models a small social network, represented by the
friends relation. The goal is to derive the likelihoods of people
smoking given their stress levels and social pressures. The anno-
tations on the rules denote the probability that they are present in
the program. This is syntactic sugar, as such rules can always be
elaborated into equivalent non-probabilistic rules and probabilistic
facts, for example:

0.3 :: head :- body.

is equivalent to:

0.3 :: fact.
head :- fact, body.

The corresponding applicative program is as follows:

stressi � true � 0.3� false

influencesij � true � 0.2� false

friendspiq �

$'''&
'''%

t2u if i � 1

t1, 4u if i � 2

t2u if i � 3

t2u if i � 4

smokes 1ipstress, inflq � µf.stressi
ª

jPfriendspiq

pinfl ji ^ fjq

smokesi � purepsmokes 1iq

~ stress

~ influences

The probabilistic facts are stressi and influencesij where and i
and j range over 1,2,3,4. When these names occur without sub-
scripts, they should be understood as the vector of all such proba-
bilistic facts. Such a vector can be constructed by appending sepa-
rate facts with ~. The pure functions are smokes 1i for i � 1, . . . , 4,
which are constructed by taking the least fixed point.1

Note that the final computation (smokesi) is again of the shape
“pure function” (smokes 1i) applied to primitive probabilistic facts
(stress and influences). As a consequence the values of the prob-
abilistic facts do not influence the definition of smokes 1i, and so
the shape of the program is static with respect to the probabilistic
choices.

1 We use µf.expr to denote the least fixed point of repeatedly substituting
µf.expr for f in expr .

4. Transformation
For every ProbLog program there exists a corresponding applica-
tive functional program: Let P � F Y R be a ground ProbLog
program with facts F and rules R. For every fact p :: f we intro-
duce a choice f � true � p� false . The applicative program then
computes the the perfect model semantics of R over these choices.

Conversely, to transform an applicative program into a ProbLog
program, the key idea is that, due to its static structure, any proba-
bilistic applicative program can be transformed into a shape

pureprq~ true � p1 � false ~ � � �~ true � pn � false

In this shape, the rules (function r) and probabilistic facts (choices
p1, . . . , pn) can be easily separated. The details of this transforma-
tion are beyond the scope of this text.

5. Discussion
Since monads admit strictly more programs than applicative func-
tors [3], there must also exist an expression gap between applicative
probabilistic functional programs (and equivalently ProbLog) and
monadic probabilistic functional programs.

Our analysis breaks down when the number of choices in an
applicative program is infinite. For such programs, there is no
obvious translation into ProbLog, since ProbLog programs support
only a finite number of probabilistic facts.

Moreover, this paper only considers the core features of ProbLog,
as implemented in the first version of the language. The newer ver-
sion, ProbLog2 [1], includes many additional features that are be-
yond the scope of this text. We believe that these features expand
the expressive power of ProbLog beyond those of applicative pro-
grams. In particular, ProbLog2 allows more flexible expressions
in the probabilities. This feature likely does not make ProbLog2
monadic, but rather something in between Applicative Functors
and Monads, such as Arrows [3].

Finally, the equivalence between ProbLog and Applicative
Functors has a practical benefit: ProbLog’s inference algorithms
could be leveraged for more efficient inference on the applicative
subset of a functional probabilistic programming language.

References
[1] D. Fierens, G. V. den Broeck, J. Renkens, D. S. Shterionov, B. Gutmann,

I. Thon, G. Janssens, and L. D. Raedt. Inference and learning in
probabilistic logic programs using weighted boolean formulas. TPLP,
15(3):358–401, 2015.

[2] J. Gibbons and R. Hinze. Just do it: simple monadic equational rea-
soning. In Proceeding of ICFP 2011, Tokyo, Japan, September 19-21,
2011, pages 2–14. ACM, 2011.

[3] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. ENTCS, 229(5):97–117, 2011.

[4] C. McBride and R. Paterson. Applicative programming with effects.
JFP, 18(1):1–13, 2008.

[5] T. C. Przymusinski. Every logic program has a natural stratification
and an iterated least fixed point model. In Proceedings of PDS 1989,
March 29-31, 1989, Philadelphia, Pennsylvania, USA, pages 11–21.
ACM Press, 1989.

[6] L. D. Raedt and A. Kimmig. Probabilistic (logic) programming con-
cepts. Machine Learning, 100(1):5–47, 2015.

[7] A. Scibior, Z. Ghahramani, and A. D. Gordon. Practical probabilistic
programming with monads. In B. Lippmeier, editor, Proceedings of
Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, pages
165–176. ACM, 2015.

[8] D. Tolpin, J. van de Meent, and F. Wood. Probabilistic programming
in anglican. In Proceedings of ECML PKDD 2015 Part III, Porto, Por-
tugal, September 7-11, 2015, volume 9286 of LNCS, pages 308–311.
Springer, 2015.

2 2016/12/15

	Introduction
	Probabilistic Logic Programming
	Probabilistic Applicative Functor
	Transformation
	Discussion

