Research on the Equivalent Plane Machining with Fix-length Compensation Method in Micro-EDM

Jingyu PEI $^{\text {a,* }}$, Zhaowei ZHOU $^{\text {a }}$, Lenan ZHANG $^{\text {a,b }}$, Xiaoshun ZHUANG a, Shukun WU ${ }^{\text {a }}$, and Yietian ZHU ${ }^{\text {a }}$, Jun QIAN ${ }^{\text {c }}$
${ }^{a}$ School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai, 200240, P.R.China
${ }^{b}$ School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, USA
${ }^{c}$ Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, Leuven, BE-3001, Belgium
* Corresponding author. Tel.: +86-138-168-08040; fax: +86-21-34206660. E-mail address: jypei@ sjtu.edu.cn

Abstract

Micro-EDM milling is an effective machining process for three-dimension (3D) micro-cavity of high hardness materials. Because of the sharp wear of the electrode, fix-length compensation method is proposed, thus results in a cone-shaped electrode. This compensation method can produce a slot with stable depth and conic cross-section. Because of layer by layer strategy in micro structure machining, the challenge for fixlength compensation method is to keep the whole process repeating continuously. This paper gives a double layers' machining strategy in order to maintain the repeated machining for layer units. A concept of equivalent plane is proposed in order to construct a curved surface that can use fix-length compensation method. Then a simplified triangle model is presented in order to get corresponding algorithm for the compensation length of the second slot. Experiment results showed that the error of the compensation length was within $2 \mu \mathrm{~m}$. A simulation about the influence of the curved surface's fluctuation on the profile of the machined slot bottom of next layer was performed with Matlab. Simulation results showed that the influence was limited. An experiment of two layers' machining with proposed strategy and algorithm was conducted. The evenness of the machined surface with depth of $66 \mu \mathrm{~m}$ was within $4 \mu \mathrm{~m}$. Therefore, fix-length compensation method can be used to machining 3D cavity. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII)

Keywords: Micro; EDM; Compensation; Electrode; Cone-shaped; Plane;

1. Introduction

Electrical discharge machining (EDM) is one of the most extensively used non-conventional material removal processes. ${ }^{[1]}$ Its unique feature of using thermal energy to machine electrically conductive parts regardless of hardness has been a distinctive advantage in the manufacture of mold, die, automotive, aerospace and surgical components, which are difficult to manufacture by conventional machining. ${ }^{[1]}$

The thermoelectric - heat process happening in EDM erodes the electrode, thus renders wear. The problem of wear occurring on EDM is well known. ${ }^{[2]}$

The errors caused by electrode wear results in reduced machining accuracy in the geometry of workpiece. ${ }^{[3]}$ In blind holes' EDM drilling, wear constantly reduces the length of the electrode and makes the real depth of the hole significantly
shorter than target. Meanwhile, the shape change of the electrode causes errors in the processed bottom surface. While machining complex 3D micro-cavities, such error becomes more complicating ${ }^{[3]}$. The micro-features, especially in microEDM, will suffer from severe wear resulting in unacceptable products. ${ }^{[4]}$

A literature survey reviewed a large number of research involving electrode wear progress, especially the change of the shape. The electrode wear process has been investigated and modeled. Compensation of electrode wear and electrode design have always been the major motives in these researches.

As the tool wear accounts for one of the main factors affecting the machining precision in micro EDM milling, in the literature a number of studies have been carried out focusing on the compensation of electrode during the machining process for precision improvement. Yu et al. ${ }^{[4]}$ proposed the uniform
wear method (UWM). Based on the layer-by-layer machining process, the thickness of each layer is set small enough for the recovery of the electrode tip, resulting in the maintenance of the electrode shape during the machine. Kuo et al. ${ }^{[5]}$ introduced a technology called linear compensation which continuously compensated for the tool wear along the tool path. The surface precision can be improved. However, the method was not suitable for complicating three dimensional shape milling. Bleys et al. ${ }^{[6]}$ presented a compensation method based on realtime tool wear sensing which could deal with unexpected shape. The downward motion was controlled according to the tool wear ratio calibrated in advance, thus the error caused by longitudinal tool wear was eliminated.

Pei et al. ${ }^{[7]}$ proposed the fix-length compensation method while a revolving electrode fed a fix-length between two compensation operations. The key problem is to calculate the compensation length L which depends on the compensation accuracy and the layer thickness. The process simulation and experiments show that due to the compensation in axial direction and the rotation of the electrode, the bottom of the electrode is worn into the conical shape, and once the cone angle of the electrode is formed, it will be kept in a stable range. [8]

Though the conical electrode tip can machine a stable slot, the machined surface becomes a curved surface rather than a plane, and it is a challenge for the next layer's machining. For the purpose of machining layer by layer, the machined surface for each layer should be a plane. Therefore, using conical electrode to machine 3D cavity layer by layer becomes the key problem for the fix-length compensation method.

This paper presents a double layers' machining strategy for 3D cavity by using fix-length compensation. Based on this strategy, a definition of equivalent plane is proposed. Furthermore, the way to get the equivalent plane are introduced and the algorithm to calculate the compensation length L which is an important parameter in fix-length compensation method is given. Moreover, the impact of the shape of equivalent plane on the machined surface is simulated by Matlab. The simulation results show that the fluctuation of the equivalent plane has a limited influence on the next layer machining. Finally, a cavity with $86 \mu \mathrm{~m}$ depth was machined by two layers with this strategy, and the fluctuation range of the bottom profile is within $4 \mu \mathrm{~m}$.

2. Double layers' machining strategy based on equivalent plane

When fabricating complex 3D micro cavities in EDM milling, the process normally is the repetition of layer machining. For each layer, the machining could be considered as the repetition of slot machining. This way simplifies the tool paths' generation. Nevertheless, electrode wear must be considered during the machining because of the unavoidable and serious electrode wear. Therefore, fix-length compensation, as one of the compensation methods, should have the ability to repeatedly get the compensation length L, a key value for this method, with a same way for different layers and different slots. However this requirement is a challenge for fix-length compensation method.

Simulation and Experiments show that using fix-length compensation method can produce a slot with stable depth, but the electrode tip becomes a conic shape instead of a flat shape. That means the machined surface of the workpiece after one layer machining is not a plane but a curved surface. Because the algorithm of fix-length compensation is based on the assumption that the surface to be machined is a plane, the way to get the compensation length repeatedly for the other layers except for the top layer becomes the key problem for the application of this compensation method.

This paper presents a machining strategy based on repetition on machining of layer units. As Fig. 1 shown, a 3D cavity to be machined is the composition of m layers with different thickness $H_{\mathrm{w} i}(i=1,2, \ldots, m)$, and its machining is a removal process layer unit by layer unit from U_{1} to U_{n}. Any layer unit $U_{j}(j=1,2, \ldots, n)$ includes two layers, an odd layer and an even layer. For each layer unit, the machining includes the following steps.

Fig. 1 Illustration of the layer by layer machining for micro-cavity

1. First slot machining for the odd layer. Fig. 2(a) is an illustration of this step. The upper part of Fig. 2(a) is the electrode paths, and the distance between adjacent paths equals to the slot width W. The lower part of Fig. 2(a) shows that the surface to be machined is a plane, and the cross-section of the machined workpiece is zigzag.
2. Second slot machining for the odd layer. As Fig. 2(b) shown, the electrode path in this step is as same as last step, but the offset is 50% of slot width W. Here, the surface to be machined is a zigzag plane, and the machined surface is a more complicated curved plane.
3. First slot machining for the even layer. The electrode path is also like step 1 , but there is 90° intersection angle between them.
4. Second slot machining for the even layer. The electrode step in this step is similar to that in step 2 but with 90° intersection angle. For both step 3 and step 4, the surface to be machined is a complicated curved surface instead of a plane.
Be different from the assumption in fix-length compensation method, the workpiece surface to be machined in this strategy is mostly a curved surface except for the top layer. While in the fix-length compensation method, it should be a plane. Fig. 3 gives an illustration of the typical curved surface after machining. This complicated curved surface is composed by basic surface patches with the same shape and the same size. The size of the projection of patch $S_{i j}$ in xoy plane is W by W. Since $S_{i j}$ is the basic surface patch, this paper proposes a concept of equivalent plane in order to make the fix-length compensation method applicable for this curved surface.

Fig. 2 Four steps' machining strategy for each layer unit

Fig. 3 Illustration of a typical curved surface and equivalent plane
The equivalent plane Z in this paper, as Fig. 3 shown, is a virtual plane, not a real plane. It has the following properties,

1. The depth of the equivalent plane after machining to the surface to be machined equals to the layer thickness H_{w}, which is also the slot depth after the first slot machining. The slot depth is a function of the compensation length L_{1} which can be obtained by experiments.
2. The sum of the volumes above the equivalent plane Z, V_{1} and V_{2}, equals to V_{3} which is below the equivalent plane, as Fig. 3 shown.
If there is an equivalent plane, then the curved surface can be regarded as a plane when fix-length compensation method is applied. Because the basis of fix-length compensation method is the constant relative volume wear ratio during the process, the same workpiece volume corresponds to the same electrode wear within a distance which is small enough. Therefore, the calculation of the compensate length L for curved surface $S_{i j}$ can be transfer to that for a plane Z.

The limitation for the conversion from curved surface $S_{i j}$ to plane Z is that $S_{i j}$ should be small enough. Small surface means high accuracy, otherwise, tolerance will be large and the
compensation will become meaningless.
Fig. 3 shows that $S_{i j}$ is a ruled surface. When the electrode moves along x direction, the solution of the volume can be changed to the solution of the area.

Fig. 4 is a typical confocal microscopy image of the crosssection of workpiece after first and second slot machining in same layer. Z is the equivalent plane with depth H_{w}. Here, the surface area above Z , which is the sum of S_{1} and S_{2} equals to the surface area S_{3} below Z .

Fig. 4 Confocal microscopy image of the cross-section of workpiece after the 2nd slot machining

In order to evaluate the effect of equivalent plane Z, R_{s} is defined as the ration of the surface area above Z over the surface area below Z.
$R_{\mathrm{s}}=\frac{S_{\text {above }}}{S_{\text {below }}}=\frac{S_{1}+S_{2}}{S_{3}}$
When R_{s} is 1 , the virtual plane is exactly the equivalent plane. The larger the deviation of R_{s} from 1 is, the worse the effect of the equivalent plane is.

According to this machining strategy and by using the compensation length algorithm for plane, there are two problems to be resolved, one is the machining of the curved surface with the properties of the equivalent plane, and another is the impact of the fluctuation of the curved surface on the bottom profile after machining.

3. Machining of equivalent plane

The curved surface with the properties of equivalent plane
is got by two step. Firstly, a slot with depth of H_{w} is machined with compensation length L_{1}. Then, the second slot machining will produce a curved surface as Fig. 4 shown. A compensation length L_{2} must be used in the second step in order to get the equivalent plane. Because different L_{2} will result in slots with different depths, thus the R_{s} will be influenced. In order to make the R_{s} as close to 1 as possible, L_{2} should be calculated precisely.

The basis for the calculation is the cross-section area to be machined, as the shadow portion shown in Fig. 5. In this figure, a is the intersection angle between the first slot side wall and the plane to be machined, which can be got from experiments. The depth of the first slot is H_{w}, and the required equivalent plane Z locates on the plane which depth is also H_{w}.

Considering the application of this compensation method, the calculation should be easy and simple. So this paper uses a triangle area, as the red dashed lines shown in Fig. 5, to replace the real area S_{w} to be machined in order to simplify the calculation.

Fig. 5 Residue section represented by triangle area
The rule of constant relative volume wear ratio can be expressed by Equation 2,

$$
\begin{equation*}
\theta=\frac{V_{\mathrm{E}}}{V_{\mathrm{W}}}=\frac{S_{\mathrm{E}} \cdot l_{\mathrm{e}}}{S_{\mathrm{w}} \cdot L} \tag{2}
\end{equation*}
$$

where,
θ is the relative volume wear ratio which can be got by experiment.
V_{E} is the worn electrode volume of electrode.
V_{W} is the machined workpiece volume.
S_{E} is the cross-section area of the electrode.
l_{e} is the compensation accuracy. This value depends on the pulse equivalent of EDM machine tools. In this research, l_{e} is $1 \mu \mathrm{~m}$.
L_{2} is the compensation length for the second slot machining. It is the distance that electrode passes when electrode wear reaches to l_{e}.

In Equation 2, S_{W} approximates to the triangle area, which is the function of α and H_{W}. Thus, L_{2} can be expressed in Equation 3,
$L_{2}=\frac{S_{\mathrm{E}} \cdot I_{\mathrm{e}}}{S_{\mathrm{W}} \cdot \theta}=\frac{S_{\mathrm{E}} \cdot I_{\mathrm{e}}}{H_{\mathrm{W}}{ }^{2} \cdot \operatorname{ctan}(\alpha) \cdot \theta}$
In order to verify the validity of the proposed method, the machining experiments with fix-length compensation method were conducted on Charmilles Technologies ROBOFORM 35 * 2400 with positioning accuracy of $1 \mu \mathrm{~m}$. The electrode was rotated by a rotating component $3 \mathrm{R}-1.321-\mathrm{HS}$, and the rotation device was fixed with the chuck, as Fig. 6 shown.

Fig. 6 Experiment system
Table 1 lists machining parameters and pre-set values, and some were measured values. According to Equation 3 and Table $1, L_{2}$ was calculated, and the value was $96.894 \mu \mathrm{~m}$. Because L_{2} is a key value for the surface ration, around this, 5 values were selected to investigate their results, and they were $92 \mu \mathrm{~m}, 94 \mu \mathrm{~m}, 96 \mu \mathrm{~m}, 98 \mu \mathrm{~m}$ and $100 \mu \mathrm{~m}$. After machining, Zeiss confocal microscopy CSM 700 was used to observe the shape of the cross-section of the cavity. Thereafter, five surface ratios, R_{s}, were got by image recognition techniques with Matlab.

Table 1 Experiment parameters

| Parameter | Value |
| ---: | :--- | :--- |
| Tool electrode polarity: | Cathode |
| Open-circuit voltage (V): | 200 |
| Peak current $(\mathrm{A}):$ | 0.5 |
| Pulse width $(\mu \mathrm{s}):$ | 1.6 |
| Pulse interval $(\mu \mathrm{s}):$ | 6.4 |
| Rotation speed (rpm): | 200 |
| Diameter of electrode $(\mu \mathrm{m}):$ | 200 |
| Relative Volume Ratio: | 0.119 |
| Layer thickness $(\mu \mathrm{m}):$ | 43 |
| Compensation Length for 1 ${ }^{\text {st }}$ machining $L_{1}(\mu \mathrm{~m}):$ | 55 |
| $\alpha\left(^{\circ}\right)$ | 22.2 |
| Compensation Length for 2 ${ }^{\text {st }}$ machining $L_{2}(\mu \mathrm{~m}):$ | $92,94,96,98,100$ |

The experiment results are as shown in Fig. 7. When L_{2} was $96 \mu \mathrm{~m}$ which was calculated with the triangle model, the surface ratio R_{s} was 0.752960 , which was not equal to 1 . Among the other L_{2} values, $98 \mu \mathrm{~m}$ had the best surface ratio which was 0.892399 .

Fig. 7 Profiles of the cross-sections at the bottom of the cavity after $2^{\text {nd }}$ machining with different L_{2} and their surface ratios

Fig. 8 is the chart about the relationship between the surface ratio and the compensation length for the second slot L_{2}. With simple interpolation, the optimized L_{2} was got, and it was $99 \mu \mathrm{~m}$, which was $2 \mu \mathrm{~m}$ larger than calculated value. The reason is that the cross-section area of machined workpiece during one compensation length L_{2} becomes smaller and smaller because of the wear of electrode, here, the wear is $1 \mu \mathrm{~m}$.

However Equation 2 and 3 don't consider the change of the area, so the S_{w} in those equations is larger than real value. Therefore, this large S_{w} results in a smaller L_{2}. Small L_{2} means frequent compensation, and a deeper cavity. That enlarges the cavity volume below the equivalent plane, and results in smaller R_{s}.

Fig. 8 The relationship between surface ratio and the compensation length for the second slot machining

The experiments' result showed that the error of the triangle model was about $2 \mu \mathrm{~m}$ when the layer thickness was $43 \mu \mathrm{~m}$. This model can be adopted in fix-length compensation machining because of its acceptable error and simple calculation. With the decrease of the pulse equivalent of EDM machine tools, the error can be reduced.

4. Research on the influence of the fluctuation of curved surface on the slot bottom's profile for the next layer with Matlab

Though an equivalent plane is proposed for the calculation of L_{2}, the curved surface has fluctuation, and it may have influence on the profile of next layer. Therefor a simulation about the influence of the curved surface's fluctuation on the profile of the machined slot bottom of next layer was performed with Matlab.

A cosine curve was selected as the curved surface after the first slot machining. Because the upper and lower area are equal, it can be replaced by an equivalent plane. Different amplitudes were set in order to investigate the influence of amplitude on the bottom profile of the slot after machining. After simulation, the range of the slot depth ε was obtained. Parameters for the simulation are listed as Table 2.

Table 2 Simulation parameters

Parameters	Value
Electrode diameter $(\mu \mathrm{m}):$	200
Gap $(\mu \mathrm{m}):$	$8 \mu \mathrm{~m}$
Compensation accuracy $(\mu \mathrm{m}):$	$1 \mu \mathrm{~m}$
Relative volume wear ratio:	11.9%
Layer thickness:	$80 \mu \mathrm{~m}$
Amplitude $(\mu \mathrm{m}):$	$0,10,20$

The simulation results are shown as Fig. 9. When the surface to be machined was a plane, as Fig. 9(a) shown, the fluctuation of the slot bottom's profile ε was $1 \mu \mathrm{~m}$, which equals to the compensation accuracy. As the amplitude increased to $10 \mu \mathrm{~m}$, ε became $1.8 \mu \mathrm{~m}$. And when the amplitude reached to $20 \mu \mathrm{~m}$, which was normally much larger than the fluctuation of machined surface, ε was only $2.2 \mu \mathrm{~m}$.

Fig. 9 Simulation results of the machined slot's profile with different original surface amplitudes

From these simulation results, a conclusion can be made that the fluctuation of the curved surface to be machined has very limited influence on the slot bottom's profile of next layer.

5. Experiment and Results

After the two key problems were researched, an experiment of two layers' machining with proposed strategy and algorithm was designed to assess the evenness of the machined surface.

The experiment process and parameters were as same as those in section 3. According to the experiment results in section 3, compensation length for the second slot machining L_{2} was set as $98 \mu \mathrm{~m}$. A cavity of $5900 * 460 * 86 \mu \mathrm{~m}$ was formed after two layers' machining with 17 hours and 40 minutes. After machining, Zeiss confocal microscopy was used to scan the machined surface.

Fig. 10 gives the scanning result of the machined cavity. Fig. 10(a) is the full view of the cavity including unstable and stable parts. Our previous researches have shown that the unstable length is about $4000 \mu \mathrm{~m}$ with a round electrode at the beginning. With pre-machining of the conic electrode and precisely calculated initial depth for each slot, the unstable length can be shortened dramatically or be avoided. In this experiment, our goal is to verify the evenness of the machined surface with this machining strategy, thus the stable part will be focused. Fig. 10(b) is the close view of zone A in stable part, and Fig. 10(c) is the close view of the cavity bottom zone B in zone A.

(a) Scanning results of a cavity with $5900 * 400 * 86 \mu \mathrm{~m}$ by confocal microscopy

(b) Close view of the zone A at the stable part

(c) Close view of the cavity bottom of zone B at the stable part

Fig. 10 Scanning results of the machined surface after two layers' machining
In order to quantify the evenness of the machined bottom, 15 curves of the bottom profile were gotten from the scanning result. The locations of the 15 curves are shown as the Fig. $10(\mathrm{c})$. Three measuring parts was selected including two slot centres formed at the $1^{\text {st }}$ slot machining of the $2^{\text {nd }}$ layer, and the edge of the slots. Each measuring part was measured repeatedly with $15 \mu \mathrm{~m}$ space. The maximum and minimum depth for each curve are listed as Table 3.

Table 3 Scanning results of 15 profile curves on the machined bottom			
Profile	Max. Depth $(\mu \mathrm{m})$	Min. Depth $(\mu \mathrm{m})$	Error $(\mu \mathrm{m})$
1	87.401	84.026	3.375
2	86.419	84.269	2.150
3	85.061	83.911	1.150
4	86.338	83.472	2.866
5	85.980	83.472	2.508
6	83.472	80.248	3.224
7	83.830	81.322	2.508
8	82.755	80.248	2.507
9	82.039	79.889	2.150
10	83.114	80.606	2.508
11	81.322	78.098	3.224
12	80.964	78.815	2.149
13	82.397	79.173	3.224
14	82.397	78.098	4.299
15	81.681	78.815	2.866
Max. Depth of Plane $(\mu \mathrm{m})$			
Min. Depth of Plane $(\mu \mathrm{m})$			
Max. Error of Plane $(\mu \mathrm{m})$			

As Table 3 shown, the depth of the machined surface ranged within $10 \mu \mathrm{~m}$. Compared with simulation, the variation range of machining was larger than that in simulation. The reason is that there are another error sources such as the error of L_{2} coming from the triangle model, the machining error, the error of the discharging gap, etc.

6. Conclusion

The fix-length compensation method makes the electrode tip become a conical shape when the layer thickness is large. The conical electrode tip challenges the machining of 3D cavity with this method. In order to solve these problems and apply
this compensation method to 3D cavity machining, relative researches and experiments were conducted, and some conclusions are obtained as following,

1. A double layers' machining strategy was given. Machining process is the repetition of layer units, and each layer unit has two layers. For each layer, it is removed after two slots machining. There is an offset about 50% of slot width W between these two electrode paths. There is a 90° intersection angle between the electrode paths in the odd layer and the even layer.
2. The concept of equivalent plane was proposed.
3. The cross-section of the first was analysed. Then a simplified triangle model was presented in order to get corresponding algorithm for the compensation length of the second slot. Experiments were conducted to verify the model, and results show that the error of the compensation length is within $2 \mu \mathrm{~m}$.
4. A simulation about the influence of the curved surface's fluctuation on the profile of the machined slot bottom of next layer was performed with Matlab. Simulation results show that when the fluctuation reached to $40 \mu \mathrm{~m}$, the evenness was only $2.2 \mu \mathrm{~m}$. That means the influence is very limited.
5. An experiment of two layer's machining with proposed strategy and algorithm was conducted. Experiment results show that the evenness of the machined surface with depth of $86 \mu \mathrm{~m}$ was within $10 \mu \mathrm{~m}$. With the proposed machining strategy and the algorithm, fix-length compensation method can be used to 3D cavity machining.

Acknowledgements

Project is supported by the National Science Foundation China (Grant No. 51205252).

References

[1] Naotake Mohri, Masayuki Suzuki, Masanori Furuya, Nagao Saito, Akira Kobayashi, Electrode Wear Process in Electrical Discharge Machinings, CIRP Annals - Manufacturing Technology, 44, (1); 1995. 165-168
[2] D.T Pham, S.S Dimov, S Bigot, A Ivanov, K Popov, Micro-EDM—recent developments and research issues, Journal of Materials Processing Technology, 149, Issues 1-3, (6); 2004. 50-57.
[3] D. T. Pham, A. Ivanov, S. Bigot, K. Popov, S. Dimov. An investigation of tube and rod electrode wear in micro EDM drilling. The International Journal of Advanced Manufacturing Technology 33, Issue 1-2 (5); 2007. 103-109
[4] T. Masuzawa Yu, Z. Y. and M. Fujino. Micro-edm for three-dimensional cavities-development of uniform wear method. CIRP AnnalsManufacturing Technology, 47.1; 1998. 169-172
[5] Chen S.T. Wu Y.Z. Yan T. Kuo, C.L. and T Masuzawa. Study on 3d micro edm. Proc. of Annual Assembly of Japan Society of Electrical Machining Engineers; 1997 111-114
[6] J-P. Kruth Bleys, Philip and Bert Lauwers. Sensing and compensation of tool wear in milling edm. Journal of Materials Processing Technology, 149.1; 2004. 139-146
[7] Pei, Jingyu, et al. Arithmetic and experimental study of fix-length compensation based on conical bottom shape of electrode in micro-edm. In ASME 2013 International Mechanical Engineering Congress and Exposition; 2013.
[8] Lenan Zhang, Jianyi Du, Xiaoshun Zhuang, Zhiliang Wang, Jingyu Pei, Geometric prediction of conic tool in micro-EDM milling with fixlength compensation using simulation, International Journal of Machine Tools and Manufacture. 89(2); 2015. 86-94

