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Continuous scaling of integrated circuits has led to the introduction of highly porous low dielectric

constant (low-k) materials, whose inferior mechanical properties raise concerns regarding the

reliability of integrated circuits. Nanoindentation is proven to be a straightforward method to study

mechanical properties of films. However, in the case of low-k, the measurement and analysis are

complex due to the porous nature of the films and reduced film thicknesses which give rise to

substrate effects. A methodology that combines nanoindentation experiments with finite-element

simulations is proposed and validated in this study to extract the substrate-free elastic modulus of

porous ultra-thin low-k films. Furthermore, it is shown that imperfections of the nanoindentation

probe significantly affect the finite-element results. An effective analytical method that captures the

actual nanoindenter behavior upon indentation is proposed by taking both tip radius and conical

imperfections into account. Using this method combined with finite element modeling, the elastic

modulus of sub-100 nm thick low-k films is successfully extracted. Standard indentation tests

clearly overestimated the actual modulus for such thin films, which emphasizes the importance of

the proposed methodology. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939284]

I. INTRODUCTION

The continuous scaling of integrated circuits (ICs)

necessitated the replacement of conventionally used SiO2 by

porous ultra low dielectric constant materials (ultra low-k) to

compensate for problems exacerbated by the scaling, such as

RC delay, cross talk, power consumption, and noise.1

However, the introduction of these materials into ICs has

been a difficult task so far, due to a number of integration

and reliability issues.2 A considerable amount of these issues

are associated with the inferior mechanical properties of the

ultra-low-k materials.3 On top of that, since these materials

exhibit intrinsic tensile stresses and have higher coefficients

of thermal expansion compared with SiO2, thin film cracking

and adhesion are serious thermo-mechanical reliability

issues.4 Therefore, it is important to assess the mechanical

properties of these films in a reliable and reproducible way.

To date, nanoindentation is the most commonly used tech-

nique in the semiconductor industry to assess the mechanical

properties of thin low-k films such as elastic modulus and

hardness.3 Although the measurement of elastic properties

with nanoindentation seems almost a routine job, the analysis

is rather complex due to the porous nature of the films and

the reduced film thicknesses (<100 nm) that are used in

advanced technology nodes. Recently, Vanstreels et al. dem-

onstrated a clear correlation between the internal pore struc-

ture of ultra low-k films and their mechanical response upon

indentation, thereby improving the fundamental understand-

ing on how the measured elastic modulus value is influenced

by porosity, the pore structure, the matrix stiffness, and

material/probe interactions.5 On the other hand, low-k films

with reduced thicknesses cause the stiffness of the substrate

to interfere with the measured elastic modulus, thus leading

to the overestimation or underestimation of the actual elastic

modulus.5 This phenomena is evident in all type of thin films

deposited on a substrate and referred to as the substrate effect

in the literature.6,7 A rule of thumb states that in order to

avoid severe substrate effects, the penetration depth should

be less than 10% of the film thickness. This is certainly not a

universal law, but requires good knowledge of the indenta-

tion behavior of the film/substrate system. A commonly used

procedure to minimize the substrate effect is by reducing the

spatial extent of the elastic-deformation field upon indenta-

tion. This can be achieved by using a cube corner probe

instead of the standard Berkovich three-sided pyramid

probe.8 Another approach is by reducing the indentation

depth at which the elastic modulus is extracted, typically

below 15 nm. However, the analysis is still often affected by

the substrate when the films are ultra-thin. The Oliver-Pharr

model9 is the most widely accepted model to analyze the

nanoindentation data. However, this model is applicable for

bulk materials and no longer sufficient to accurately deter-

mine the elastic modulus when there is substrate effect. A

number of analytical models to remove the substrate effect

by modifying the Oliver-Pharr approach were presented over

the last decades.6,10–14 A recent review by Li and co-authors

compared these models in terms of their weaknesses and

strengths.15 Finite element modelling (FEM) is an alternative

approach for direct extraction of the substrate independent

modulus and has been extensively used in conjunction with

nanoindentation experiments to investigate the substrate

effect.5,16–18 However, this approach can only result in
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meaningful values for the elastic modulus if the indenter tip

shape can be accurately represented in the simulations.

The purpose of this paper was to present a new method-

ology to obtain substrate independent mechanical properties

of porous ultra-thin low-k films (<100 nm) by combining ex-

perimental studies and FEM. To this end, it is necessary to

accurately simulate the nanoindenter geometry, including

imperfections. This is achieved by a shape area fitting

approach based on experimental calibration data.

II. NANOINDENTER GEOMETRY

The finite element model for nanoindentation simula-

tions can either be built based on a pyramidal geometry in

3D (Figure 1(a)) or on a conical geometry in 2D (Figure

1(b)). 2D axisymmetric FEM provides decreased complexity

and computational cost, and is usually preferred whenever

possible. It was shown that pyramidal indenters such as

Berkovich and cube corner can be successfully modeled in

2D using equivalent cone geometries that will provide the

same contact depth to contact area relationship.18,19 The con-

tact area (Ac) of an ideal pyramidal tip with centerline to

face angle a (Figure 1(a)) and an ideal conical indenter

with angle h (Figure 1(b)) can be calculated as a function of

contact depth (hc) using Eqs. (1) and (2), respectively. From

these equations, equivalent cone angles to represent

Berkovich (a¼ 65.3�) and cube corner (a¼ 35.3�) indenters

in 2D are found to be 70.3� and 42.3�, respectively. This is

done by calculating Ac from Eq. (1) using the known value

of a and extracting h from Eq. (2).

Ac ¼ 3
ffiffiffi
3
p

h2
c tan2a; (1)

Ac ¼ ph2
c tan2h: (2)

However, these equations do not take into account the devia-

tions of the tip from ideality. From the experimental point of

view, a well adopted methodology to calibrate the contact

area in nanoindentation measurements is to use the method

developed by Oliver-Pharr,20 where series of indentations at

different contact depths are performed on a sample with

known elastic modulus. Contact areas at different depths are

then derived using

S ¼ b
2
ffiffiffi
p
p Er

ffiffiffiffiffi
Ac

p
; (3)

where b is a constant which depends on the geometry of the

indenter, Er is the reduced elastic modulus, and the stiffness

(S) is calculated from the initial portion of the unloading

curve. Following the calculation of contact area at different

depths, a function to correlate the contact area to contact

depth is fitted based on the following formula.20

Ac ¼ Coh2
c þ C1hc þ C2h1=2

c þ C3h1=4
c þ C4h1=8

c þ � � � : (4)

In case of an ideal indenter probe (Figs. 1(a) and 1(b)), the

contact area (Eqs. (1) and (2)) can solely be represented by

the first term (Cohc
2) in Eq. (4), where Co can be derived

from either Eqs. (1) or (2) which yield the values 24.5 and

2.6 for ideal Berkovich and cube corner indenters, respec-

tively. In reality, this is almost never the case, since all tips

have some degree of imperfection. The additional empirical

terms in Eq. (4) compensate these deviations from ideality.

The most recognized tip imperfection for pyramidal inden-

ters is the tip radius, R (Figure 1(c)), which can vary accord-

ing to the quality of production and wearing of the tip

throughout the usage. If one considers the fact that indenta-

tions are typically performed at thicknesses below 15 nm for

ultra-thin films, most of the actual indentation process, if not

all, will be performed by those imperfections at the end of

the tip. Therefore, it is apparent that it would lead to wrong

conclusions when the indenter geometries that are used in

FEM fail to incorporate the deviations from ideality. Hence,

it is crucial to determine the representative tip shape for

FEM that would properly represent the behavior of the tip

upon indentation.21 Although direct measurement techniques

such as SEM and AFM can be applied to determine the tip

geometry,22–24 they are usually difficult and take quite some

time. Furthermore, the continuous wearing of the tip

throughout the usage makes analytical methods more practi-

cal since these methods do not necessitate any additional

experiments. In fact, the experimental contact depth-contact

area calibration curve is all that is needed and should already

be available when the Oliver-Pharr method is being used to

analyze the data. Some useful analytical methods based on

physical interpretations of the indenter geometries and asso-

ciated imperfections have been reported to determine the tip

geometry. These methods are based on fitting the experimen-

tally obtained calibration data by spherical, conical, and/or

spherical-conical functions.17,23,25–29

One of the most widely used methods to determine the

tip radius is to fit the experimental contact area to contact

depth points by the spherical area (Aspherical) function, given

in Eq. (5), which allows one to extract the tip radius, R

Aspherical ¼ phcð2R� hcÞ: (5)

The main drawback of this method is that it only considers

the radial part and does not provide any information regard-

ing the conical part of the indenter. Another disadvantage is

that the range of contact depth selected for fitting has a high

influence on the extracted tip radius. Moreover, determining

the exact transition point at which indentation becomes coni-

cal rather than spherical brings another ambiguity. This ana-

lytical method was further improved by implementing the

FIG. 1. Different geometrical repre-

sentations for pyramidal nanoindenter

probe: (a) ideal pyramidal indenter, (b)

equivalent ideal conical indenter, (c)

ideal conical indenter with a spherical

extremity, and (d) proposed geometry

for 2D simulations.
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conical area function with a spherical extremity to the fitting

procedure (Figure 1(c)). It was shown that the tip radius, R,

can be calculated by simultaneous least-squares fitting of the

two nonlinear equations given in Eqs. (6) and (7) to extract

the value of R17

Aspherical ¼ phcð2R� hcÞ; for hc � hr; (6)

Aconical ¼ ptan2hðhc þ h0Þ2; for hc > hr; (7)

where hr is the contact depth of penetration performed by the

radial part of the tip which can be considered as the contact

depth of transition from spherical to conical penetration and

h0 is the distance between the apex of the actual indenter and

the apex of the ideal conical indenter as shown in Figure

1(c). Both hr and h0 are dependent on the tip radius and their

values can be calculated by using Eqs. (8) and (9),

respectively,

hr ¼ R� R sin h; (8)

h0 ¼ R= sin h� R: (9)

This fitting procedure takes into account both tip radius and

the conical part of the indenter. However, the conical part of

the indenter is assumed to be ideal (p tan2h is a fixed con-

stant for each tip). This assumption may not always represent

the reality since the conical part is a representation of the py-

ramidal part which can have some deviations from the ideal-

ity in terms of pyramidal angle, wall radius, asymmetry, and/

or alignment. Failing to consider the cone imperfections may

result in extracting a tip radius that is not representative of

the actual indentation process. Therefore, it is necessary to

include another variable that can compensate the effects

other than the tip radius. It is proposed in this study that the

spherical-conical fitting method may further be enhanced by

considering the deviations caused by the conical part as well.

To this end, the value of parameter Co (Eq. (12)), which was

experimentally already found to give different values for dif-

ferent tips,29–31 is in our approach not kept constant but

taken as an additional variable together with the tip radius

(R). The constant h is thus replaced by the variable Co. The

governing equations of the spherical-conical fitting then

become

Aspherical ¼ phcð2R� hcÞ; for hc � hr; (10)

Aconical ¼ C0ðhc þ R= sin ðarctanð
ffiffiffiffiffiffiffiffiffiffiffi
C0=p

p
ÞÞ � RÞ2;

for hc > hr; (11)

C0 ¼ p tan2h: (12)

Simultaneous nonlinear least-squares fitting of Eqs. (10) and

(11) with R and Co as the regression parameters allows to

derive the necessary parameters to simulate any pyramidal

indenter with a certain angle. It should be noted that the

form of spherical-conical fitting provided in Eqs. (10) and

(11) would practically be the same with Eqs. (8) and (9)

when h is considered as a variable rather than a constant.

The former, however, allows one to calculate conical area

function (C0) and radius (R) together and directly observe

the deviations due to the conical and spherical imperfections.

From this, the value of h for 2D and a for 3D simulations

can indirectly be calculated and used. In either case, the

experimental data are fitted with two area functions that cap-

ture possible imperfections of both spherical/conical parts.

The change in C0 can be transferred to 2D FEM simulations

by varying h as shown in Figure 1(d).

Bei et al. indicated that although it is a reasonable first

approach, the tip of Berkovich indenters are not really spher-

ical. Instead, they should rather be represented by a more

complicated geometry.32 It was suggested to fit the contact

area by Eq. (13). This equation has a simple physical inter-

pretation. While the first term represents a conical indenter,

the second term describes a spherical indenter. It provides a

smooth transition between two limiting cases of spherical

contact at low depths and conical contact above the transi-

tion point

A ¼ a1hc
2 þ a2hc: (13)

So far, different contact area fitting procedures are described

including ideal shape assumption (Fig. 1(b)), spherical fitting

(Fig. 1(c)), spherical-perfect conical fitting (Fig. 1(c)), the

proposed fitting procedure (Fig. 1(d)), and the model of Bei

et al.32 These five different fitting procedures are compared

using Berkovich and cube corner indenters. Results of the

fitting processes are shown in Figures 2 and 3. Experimental

data points were obtained by making several indents on a

reference fused silica sample at different indentation depths

using a Hysitron TI950 triboindenter. Table I provides

a summary of the extracted R, C0, and consequently h
values extracted from the different fitting processes for the

Berkovich tip.

As can be seen from Figures 1 and 2, fitting performed

using the proposed method agrees very well with the experi-

mental data and is superior to the other methods except for

the method proposed by Bei et al., for both indenter tips.

This indicates that the new indenter model created based on

the extracted C0 and R values can properly represent the con-

tact area as a function of contact depth which is the informa-

tion required to do correct finite element simulations. If this

is the case, load-displacement data extracted from an FE

FIG. 2. Fitting of the experimental contact area calibration curve for a

Berkovich tip with different geometrical considerations.
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model should be comparable with the actual indentation pro-

cess observed during the nanoindentation experiments.

III. RESULTS AND DISCUSSION

A. Reference sample (fused silica)

To test this assumption and methodology, 2D axisym-

metric finite-element simulations of Berkovich indentation

were performed using the commercial finite-element code

MSC.MARC. Indenter geometries were modeled using the

derived R and h values. Five different FE models were cre-

ated to test the correctness of the five different indenter geo-

metries extracted using different fitting methodologies as

outlined in Table I. The summary of the experimental and

modeling process along with the mesh/indenter configura-

tions are shown in Figure 4.

The indenter probes were modeled as axisymmetric

cones with a certain radius at the tip. They were considered

as rigid bodies and constrained to move only in the direction

of the indentation with a displacement control. The mesh

density at the contact region between the indenter and the

sample was increased to ensure the simulation accuracy.

Fused silica was used as a first sample to test the methodol-

ogy and modeled as an elastic-plastic solid. The elastic mod-

ulus of fused silica was derived from Eq. (14), where � is the

Poisson’s ratio, and subscripts i and s refer to the indenter

and sample (fused silica), respectively.

1

Er
¼ 1� v2

i

Ei
þ 1� v2

s

Es
: (14)

Using the experimentally measured reduced modulus (Er) of

69.6 GPa and considering a rigid indenter model (first term

becomes zero), Es is found to be 67.6 GPa. The yielding

behavior was modeled by the Drucker-Prager yield criterion

with a yield strength of 5.5 GPa.33

Results of the experiments performed on fused silica to-

gether with the FE simulations with the different indenter-

shape models from Table I are given in Figure 5. As was

expected, the ability of a particular fitting method to follow

the contact depth-contact area relationship of the sample

(Figure 2) is reflected in its ability to simulate the actual in-

dentation process during FE simulations. The FE model built

based on the ideal shape is found to be far away from the ex-

perimental load-displacement characteristics. This is an

expected result since this method does not consider any

imperfection of the tip. In the case of spherical fitting, the

loading curve is reproduced in a quite reasonable manner up

to a certain depth above which the conical part of the in-

denter dominates and the model starts deviating from the

data. Surprisingly, the spherical-perfect conical fitting

method could not reproduce the loading curve as well as the

spherical fitting method, although they use the same func-

tion, given in Eq. (5), to represent the behaviour of indenta-

tion in the spherical regime. However, assuming the conical

shape as perfect when it was not, affected the value of the

extracted radius, thus resulted in inaccurate modeling. It

should be noted that all these fitting methods are based on

certain assumptions such as ideal shape, certain radius but

perfect conical geometry, etc. It is also a fact that the degree

and type of imperfection is unique for each and every tip.

Therefore, depending on how well these assumptions repre-

sent the reality, success of different fitting methods may be

different for different tips. The proposed fitting method pro-

vides an almost complete match with the experimental

results in terms of retracing the load-displacement character-

istics as was expected because it provides more flexibility to

account for possible imperfections for the radial and conical

parts as well as alignment issues. Load-displacement data

obtained from the FE model performed with the indenter ge-

ometry derived from the fitting model of Bei et al. are found

to poorly follow the experimental characteristics. At a first

glance, this is surprising since the contact area to contact

depth can successfully be fitted with Eq. (13) as shown in

Figures 2 and 3. However, this fitting process does not use

separate equations to describe the indenter at spherical and

conical regimes, rather it suggests to use a single equation

where the terms are summed up. Therefore, the data trans-

ferred to 2D FEM by spherical-conical indenter geometry

cannot truly represent the behavior of the nanoindenter.

Nevertheless, it was not the intention of the authors to use

the fitting process for 2D FEM simulations. What we aim to

find was a fitting method that can derive an equivalent

(effective) nanoindenter geometry that directly can be used

for 2D FEM, even though the extracted parameters do not

FIG. 3. Fitting of the experimental contact area calibration curve for a cube

corner tip with different geometrical considerations.

TABLE I. Berkovich indenter geometries to be used at FEM, derived by different fitting methods.

Extracted parameters Ideal shape Spherical fitting Spherical-perfect conical fitting Proposed method Bei et al.32

R (nm) 0 214 250 150 109

C0 24.5 24.5 24.5 38 26.6

h (o) 70.3 70.3 70.3 74 71

025302-4 Okudur et al. J. Appl. Phys. 119, 025302 (2016)



necessarily represent the accurate and true geometry of the

indenter. The proposed fitting method yields the most prom-

ising results for this purpose.

B. Low-k films

1. Berkovich indentation

Upon successful confirmation of the simulated indenter

shape derived by the proposed fitting method, further experi-

ments with the Berkovich tip were conducted using porous

thin low-k films deposited on a silicon substrate. It should be

noted that both FEM and experiments are performed at ultra-

shallow depths in this technique; therefore, the accuracy of

the technique may not be as good if the surface is too rough

due to the variations of the actual contact area and the sub-

strate effect. Therefore, all the low-k films used throughout

this study had smooth surface finishes (sub nm roughness).

The elastic modulus of two low-k films, deposited by plasma

enhanced chemical vapor deposition (PECVD) to the thick-

nesses of 235 nm and 191 nm with porosity levels around

24% and 38%, were measured experimentally. FE simula-

tions were performed using the derived indenter shape from

the proposed fitting process and the experimentally measured

elastic modulus value as input. These results, together with

the data from the reference fused silica sample, are presented

in Figure 6. As shown, simulations performed at sub-15 nm

thicknesses were found to very accurately follow the experi-

mental load-displacement characteristics for different mate-

rials, thicknesses, and depths.

2. Cube corner indentation

To even further validate the methodology, another in-

denter probe with a different geometrical configuration was

tested. For this purpose, a cube corner indenter was used and

modeled with a 128 nm tip radius and the C0 value of 4.23 as

extracted from the fitting process shown in Figure 2. The

elastic modulus of two low-k films, deposited by PECVD

and spin-on method to the thicknesses of 235 nm and 201 nm

with porosity levels around 24% and 34%, respectively,

were measured experimentally at sub-10 nm thicknesses and

FIG. 4. Summary of the experimental

flowchart and FEM of indentation

process.

FIG. 5. Force-indentation depth data of fused silica obtained from experi-

ments and finite-element simulations performed with different indenter geo-

metries derived from different fitting methods.

FIG. 6. Comparison of force-indentation depth data obtained from FEM (red

lines) and experiments for Berkovich indentation.
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results were compared with FEM (Figure 7). Similar to the

results observed for the Berkovich tip, the FE model per-

formed using the derived cube corner indenter shape by the

fitting process, was very successful to simulate the experi-

mental data. This shows that the methodology can be applied

to different types of pyramidal indenters, regardless of the

pyramidal angle.

3. Ultra-thin low-k films

So far, the discussions were limited to samples whose

mechanical property measurements are not severely affected

by the substrate. The results indicate that, when the nanoin-

dentation probe is modeled using the proposed fitting

methodology, it becomes possible to accurately simulate ex-

perimental load-displacement curves even at very shallow

depths. To demonstrate this for thinner films, the same meth-

odology was applied to organo-silicate-glass (OSG) type po-

rous ultra-thin low-k films which were prepared to have

similar properties but different thicknesses (43 nm, 86 nm,

and 310 nm on silicon substrate). Elastic modulus (E) values

of these three types of films were expected to be close to

each other, possibly slightly differing due to small process-

ing variations. Experiments were performed with a cube cor-

ner tip below 15 nm indentation depth. The experimentally

obtained E-values are shown in Table II. Values given in the

table represent the average and standard deviation (s) of

experiments for each film. Standard deviations are found to

be higher than usual due to the very low displacements used

in the tests. While the true elastic modulus of the film with

310 nm thickness could be obtained without the substrate

effect owing to indentation depth being smaller than 5% of

the total film thickness, the measured elastic modulus for

films with thicknesses 43 nm and 86 nm were found to be

drastically increasing as the thickness of the film decreases

which clearly demonstrates the overestimation of the elastic

modulus due to the substrate effect. To derive the correct E

value, FE simulations using the derived effective indenter

geometry were performed by iterating the elastic modulus of

the low-k film until the force-displacement curves obtained

by the experiments could be retraced by the FEM. The range

of iterations can be determined by performing a few screen-

ing runs starting with the experimentally measured value and

lowering it down to more reasonable values. The process can

also be automated using specific algorithms and feedback

loops with an optimization software such as Optimus, to find

the modulus value that minimizes the residual sum of

squares of the experimental and finite-element analysis

force-displacement curves. For this case, the experimentally

measured E-modulus of the 310 nm thick film (5.06 GPa)

was used as the starting point for iterations. Figure 8 presents

an example for the experimental data points and correspond-

ing results for FE simulations for films with different thick-

nesses. The elastic modulus values obtained from FEM are

also reported in Table II. For each film, five different experi-

mental load-displacement curves were used, separately

iterated to find the best fitted elastic modulus in FEM

and standard deviations were calculated accordingly. The

extracted values can be considered to be quite reasonable

since the experimentally measured elastic modulus of the

310 nm thick film, where substrate effects have negligible

influence, was found to be 5.06 GPa with a standard devia-

tion of 0.67.

It should be noted that experiments on 43 nm and 86 nm

thick OSG 2.4 low-k films were performed at different times,

t0 and t1, respectively. It is a well-known fact that the

indenter tip may have been subjected to wear throughout its

lifetime. Therefore, the fitting methodology was applied sep-

arately and different effective nanoindenter geometries were

extracted for the same tip at different times as is shown

in Figure 9. The fact that the extracted load-displacement

FIG. 7. Comparison of force-indentation depth data obtained from FEM (red

lines) and experiments for cube corner indentation.

TABLE II. Extracted elastic modulus values by experimental studies and

FEM for OSG 2.4 low-k films with different thicknesses.

Thin film OSG 2.4 OSG 2.4 OSG 2.4

Thickness (nm) 310 86 43

E-experimental (GPa) 5.06 (s¼ 0.67) 9.69 (s¼ 0.45) 15.60 (s¼ 1.95)

E-FEM (GPa) 5.16 (s¼ 0.38) 5.76 (s¼ 0.51) 5.90 (s¼ 0.40)

FIG. 8. Experimental data points and corresponding results for FE simula-

tions (red lines) with best fitted elastic modulus values for films with differ-

ent thicknesses.
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characteristics and the elastic modulus are quite successful

for both cases shows that the FEM built based on the pro-

posed fitting methodology is also able to capture the tip wear

and/or alignment effects.

IV. CONCLUSIONS

To conclude, a new methodology that combines nanoin-

dentation experiments with FEM was developed to extract

the elastic modulus of porous ultra-thin low-k films. This

was done by proper calibration and subsequent simulation of

the effective nanoindenter geometry. The validity of the

method was proven for two different tips and seven different

materials. Moreover, the methodology was also able to cap-

ture the effects caused by the wearing of the tip throughout

its lifetime.
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