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Abstract

Constructive machine learning can frequently be formulated in the setting of struc-
tured prediction. Structured prediction is typically modeled using a compatibility
function between inputs and outputs and a decoding step, in which an optimization
over the compatibility function with respect to the output is performed. When the
compatibility function is equivalent to an (unnormalized) probability in a graphical
model such as a random field, decoding can be seen as equivalent to MAP inference
in that model. Random field models with loops require constraints, such as submod-
ularity of the pairwise potentials, to ensure feasible test time inference. Recently, a
framework has been proposed in which a discriminative learning phase only prob-
abilistically guarantees submodularity, enlarging the model space and explicitly
trading off between model error and inference error (Zaremba and Blaschko, 2016).
A difficulty with this framework is that the optimization requires the enforcement
of a set of constraints whose size is proportional to the number of edges in all
instances in the training set. In e.g. vision applications such as segmentation, thou-
sands of megapixel images in the training set can lead to billions of constraints
during optimization. In this work, we show that a delayed constraint generation
framework built on a simple application of the Cauchy-Schwartz inequality and
inexact pretraining leads to substantial reduction in computational requirements
for exact application of the framework. An experimental evaluation shows the
computational efficiency of the proposed optimization framework.

1 Introduction

Learning structure in high-dimensional probability spaces lies at the core of machine learning. Effi-
ciently capturing the relevant probabilistic dependencies in data tackles computational issues — fight-
ing the curse of dimensionality, training issues — ensuring generalizability, and semantic issues — find-
ing sensible relationships between objects. In constructive machine learning, the rich structure of the
input-output space is itself the main object of interest of the learning process, with large or infinite
spaces i.e. of graphs, molecules, or artistic compositions.

Probabilistic graphical models [6]] are natural candidates for introducing structure in probability
spaces and address a constructive learning task in a principled way. The usability of graphical models
is however limited by the intractability of inference in general conditional random fields (CRFs) [3]].
Approaches to address this limitation include restricting graph topologies and resorting to approxi-
mate inference algorithms. An alternative strategy is to put restrictions on the parameters 6 of the
model f(x;0) — y to ensure tractable inference of y for all possible inputs x. One such restriction
commonly used in computer vision is that of submodularity of the potentials, as attractive potentials
give rise to fast minimization procedures in arbitrary graph topologies, such as graph cuts [4] for
binary images. However, these tractability constraints heavily restrict the model.
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In this work, we adopt the framework of probably submodular CRFs introduced by Zaremba &
Blaschko [[L1], which results in a safe and principled strategy to relax the tractability constraints,
thereby enlarging the model class, while still probabilistically enforcing tractability. Our contribu-
tion is a delayed constraint generation scheme that reduces the computational cost incurred by the
generation of probably submodular constraints, paving the way to large-scale optimization.

2 Discriminative training of probably submodular models

We use the learning framework of Structured Output Support Vector Machines (SSVM) [10]], a large-
margin classifier suited to the prediction of complex structured outputs such as image segmentation
masks. Given an input x € X, the output of the model is the solution to the MAP inference problem
y" = argmaxw'@(z,y) (1)
yey
where w is the weight vector of the model and ¢(x,y) the joint feature map encoding the joint

structure of the input-output space. The weights of the model are learned from a training set S of n
training samples (z;, y;);=1...n following the regularized large-margin objective

1
min §||w\|2+C’£ 2

n
stV 0n) €Y7 *WTZ (i, yi) — (24, 9:)) > Z (i, i) 3)

in the 1-slack margin-rescaling formulation [3]], where the loss A(y;, y) quantifies the dissimilarity
of outputs. Despite the exponential number of constraints |)’|", the quadratic program (QP) (2) can
be solved, e.g. in a cutting-plane approach [10, 5], with polynomial number of calls to the augmented
inference max-oracle arg max, .y, WT ¢ (x;, y) + A(y;, ).
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In the case of pairwise CRF models, ¢p decomposes over the vertices } and edges £ of the input
graph [9], and the weight vector parametrizes the log-linear energy of the network
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In a segmentation task, =¥, z! are adjacent (super-)pixels, and y/*, /' their corresponding labels. We

write the joint feature maps as Kronecker products [7]
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where 1 : £ — {0, 1}‘5‘ is a one-hot encoding of the labels y € £ and ¢,, and ¢, are the unary
and pairwise feature vectors extracted on input x. Accordingly, w,, decomposes into unary weights
w,, for every label o € £, and w,, into w,, g for every a, B8 € L. The SSVM loss A is chosen to
decompose over the vertices A(y;, y) = >,y 6(yi, y*), such that the augmented inference reduces
to a MAP inference (T)) on the graph with modified unaries.

Solving MAP inference in pairwise CRFs is NP-hard in general [1]]; however, particular restrictions
on the pairwise potentials give rise to efficient algorithms. In particular, imposing submodularity of
the pairwise energies of the graph, i.e.
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for every edge (k,l) € £ and every pair of labels «, 3 € L, leads to tractable polynomial-time
inference — exact with binary labels (max-flow algorithm), approximate with strong approximation
bounds with more than two labels (e.g. with the o — [ swap algorithm [2]). This holds regardless of
the unary energies of the graph, hence the conditions for augmented inference are the same.

The submodularlty conditions @) can be enforced as constraints on the weight vector w. Assuming
positive pairwise features ¢p(x ,z') %= 0, Zaremba et al. [I1]] introduce the set of definitively
submodular constraints
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enforcing conditions (6) for all inputs « € X, and the set of probably submodular constraints
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enforcing these conditions for the examples z; € S only. Under probably submodular constraints,
some edges corresponding to a new test instance may have non-submodular potentials. However,
since the set S captures the probability distribution of the feature vectors, this occurs with low proba-
bility. On the other hand, since D C P, moving from definitely submodular to probably submodular
constraints increases the model capacity, yielding better performance on the segmentation task [[11]].

3 Efficient constraint generation

The tractability constraints in sets D, P can be written as hard linear constraints cTw > 0. As such,
we can incorporate them in the QP optimization (2)). However, P comprises (|£]-(|£] — 1)/2)-|&|-
|S| constraints; even for moderately sized binary segmentation tasks with limited connectivity on
small datasets, this large amount cannot be handled by QP solvers. Zaremba et al. [11] address this
problem in a cut approach; the most violated constraints are iteratively added to the w-update (QP
solver) subroutine of the SSVM until all constraints are satisfied, leading experimentally to a small,
manageable, number of constraints added to the QP at any learning iteration.

Noting d the dimension of the pairwise features, let P be the |£| - |S| x d matrix of all pairwise
feature vectors in the training data and B the |£|(|£| — 1)/2 x |£]? matrix of rows
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for all labels o # (. The constraints in P take the form (B ® P)w, > 0. As observed in [L1],
the complexity of computing the constraint margins (B ® P)w,, can be reduced by observing that
(B®P)w, = vecV, with V = P(W,BT) and W, a matrix constructed such that vec W, = wy,.
Computing the margins in V saves a factor of |£|? operations.

Even with this acceleration, the computation of the |£]-|S| x |£|(|£]| — 1)/2 matrix V still scales
as O(|€]-|S|-|£]?-d). On a small-sized problem with 10% edges, 200 images, 2 labels and pairwise
features of dimension 500, this results in 400 million floating point operations for updating the hard
constraints margins after each update of the weight vector w. Computing the most violated hard
constraint therefore dominates the learning time, as illustrated by experiments in the next section.

Margin bounds We introduce a delayed constraint generation approach to tackle this issue. The
key observation is that in later learning iterations, the optimal weight vector w does not change
drastically. Constraints corresponding to a high positive margin in V are therefore likely to stay
enforced after updating w. Formally, for each probably submodular constraint ¢ : ¢cTw > 0, we
introduce a lower bound on the margin [, < cTw. After a weight update w — w’, we have

cw =c'w+ (W —w,c) >l — |[w —w|-|c|; 7

by application of the Cauchy-Schwartz inequality. Therefore the update I, — I/, = I.— [|[w'—w]||-||c]|
yields a correct new lower bound. We can safely save computations by avoiding the updating of
constraint margins that are lower-bounded by a positive value. As before, we write the operations
in matrix form. We store the norm of all constraints, and the margin of lower bounds (initialized to
—00), in two matrices N and L of same size as V. By storing the results of margin computations in
L, raising the bound to the actual value, we avoid referring to V altogether. Algorithm [I] presents the
resulting algorithm integrated in the w-update subroutine, called at each iteration ¢ of the SSVM.

Algorithm 1: Accelerated w-update solver subroutine of probably submodular SSVM

input :SSVM constraints C () at iteration ¢; constraint matrices P, B, N; current w, current bounds L
output :optimal w™ satisfying C () and submodular constraints; new bounds L

1 Loop
2 (W*, &%) « arg min ., ¢ {Ilwl]|?/2 + C&} s.t. (w,€) € c® /7 QP solver
3 L+ L-—|w"—w| N /update bounds

i | W w,BT

5 for (i,j) such that L; ; < 0 do

6 | Lij < >, PixWhi; // compute margins

7 (¢,7) + argmin L
if L; ; > 0 then return w*, L // all bounds positive
9 else C' = C' U {constraint (b; ® p;)w, > 0}  / most violated constraint




Pretraining In initial iterations of the learning procedure, w changes significantly and most of the
constraints have to be recomputed. To mitigate this, we use a two-stage learning. First, the weights
and dual variables of the SSVM are trained until convergence with no submodular constraints —
resulting in an inexact truncated graph-cut inference. Second, we enfore submodularity with the
above approach, with exact inference. The SSVM converges to the same global optimum, but the
pretraining warm-starts the exact learning closer to convergence.

4 Evaluation

We evaluate the computational gains of our method on a 10-fold cross validation of the TU Darmstadt
cows dataset, reproducing the experimental setup of [L1]. The learning algorithms were implemented
on top of the Python structured prediction module pystruct [8].

Table 1: Training efficiency gains with/without delayed constraint generation and 2-stage weights pretraining

method # margins computed SSVM iterations  total constraint gen. time  total training time
def. submodular 296 607 s
1-pass, full [T 102.5 - 10° 581 400 593 s
1-pass, delayed 67.9 - 10° 581 329s 6525
2-pass delayed 6.5 - 10° 658 41s 5558

Table [T shows the improvements in computational efficiency of our delayed constraint generation
scheme and the 2-stage training, for one fold of the data. Figure[I]shows the number of computed con-
straint margins. Combining inexact pretraining and delayed constraint generation limits the number
of computed margins. In the first SSVM iteration, many hard constraints have to be added to make
w satisfy the constraints P; in subsequent iterations, the number of added constraints per iteration
becomes small (1 or 2). This explains the inflection point in the convergence plots.
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Figure 1: Number of constraint margins computed with (solid) or without (dashed) delayed constraint generation,
(a): per call to the QP solver, (b): running total. (a) shows only one fold of the dataset, (b) also shows other folds,
which have similar behavior. Shaded area: first SSVM iteration. (c), (d): margins computation without inexact
pretraining: in this case, the delayed constraints approach saves much less computations.

Our approach significantly reduces the probably submodular constraints generation time, which
scales poorly with the training set size. Although the total training time is only marginally reduced
in this small setting, we expect the gain to be significant for larger-scale problems. For completeness,
we present in Table 2] the performance of the probably submodular framework in our setting.

Table 2: Evaluation of the probably submodular framework, verifying that the computational speedup proposed
in this work results in exact optimization of the objective.

constraint  non-submodular edges (%) absolute precision (%) average precision (%)
wePpP 0.004 £+ 0.008 92.77 £ 0.60 89.17 £0.89

Conclusion We have showed that the computation cost incurred by probably tractable constraints
generation during probably submodular training can be reduced by delaying constraint generation.
Future developments include extensive evaluation of the probably submodular framework on compet-
itive computer vision datasets, in particular in multi-label segmentation settings, and generalizations
of the approach to richer classes of potential functions, such as neural networks.

Code available onhttps://github.com/bermanmaxim/probsub/\
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