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Abstract. For Riemannian submanifolds of a semi-Riemannian manifold, we introduce the

concepts of total shear tensor and shear operators as the trace-free part of the corresponding
second fundamental form and shape operators. The relationship between these quantities and the

umbilical properties of the submanifold is shown. Several novel notions of umbilical submanifolds

are then considered along with the classical concepts of totally umbilical and pseudo-umbilical
submanifolds.

Then we focus on the case of co-dimension 2, and we present necessary and sufficient condi-

tions for the submanifold to be umbilical with respect to a normal direction. Moreover, we prove
that the umbilical direction, if it exists, is unique —unless the submanifold is totally umbilical—

and we give a formula to compute it explicitly. When the ambient manifold is Lorentzian we

also provide a way of determining its causal character. We end the paper by illustrating our
results on the Lorentzian geometry of the Kerr black hole.

1. Introduction

Co-dimension two spacelike submanifolds play a distinctive and central role in gravitational
theories based on Lorentzian geometry, especially in the prominent theory of general relativity.
From a mathematical point of view this is due to the fact that the extrinsic properties of such
submanifolds, described by their shape operators, encode their local, infinitesimal variation along
normal directions, and in particular along causal (timelike or null) directions. In plain words, they
give instantaneous information about their evolution.

The so-called trapped, or marginally trapped, submanifolds [2, 16, 17] are an outstanding exam-
ple of the importance of such submanifolds for the case of co-dimension 2. They are characterized
by the causal orientation of their mean curvature vector field: future timelike for trapped surfaces,
and future null for marginally trapped ones. They represent situations with strong gravity, and
arise in deep mathematical results such as the singularity theorems [2, 10, 16, 22] or in the study
of the several types of horizons enclosing black holes [10, 16, 22]. These horizons are co-dimension
one submanifolds (hypersurfaces) foliated by marginally trapped compact spacelike submanifolds
with co-dimension 2. The property of being trapped is related to the volume change of the sub-
manifolds, and is encoded in the sign of the divergence or “expansion” of given null normal vector
fields. Thus, the volume of closed (marginally) trapped submanifolds decreases (non-increases)
initially along every possible direction of future evolution.

In the physical literature there is another characteristic, called shear, associated to horizons and
evolution. For instance, the standard horizons of isolated black holes in equilibrium are Killing
horizons [25], and they happen to be “shear-free”. The shear measures the local instantaneous
deformation of a given submanifold when starting to evolve, while keeping its volume fixed. Math-
ematically, this is also associated to the extrinsic properties of the submanifold, and one can realize
that the shear-free property corresponds to the submanifold being umbilical —along the evolution
direction. However, in contrast to the attention devoted to the mean curvature vector field and its
properties —e.g. [1, 3, 6, 7, 8] and references therein—, the part of the shape tensor that measures
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the referred shear has not been considered previously, and the related umbilical properties scarcely
considered —except for the case of totally umbilical submanifolds.

Motivated by these facts, it is our purpose in this paper to introduce the extrinsic quantities
associated to the mentioned deformation of submanifolds along normal directions, and to provide
the relationship with their umbilical properties. We will do that in general semi-Riemannian man-
ifolds for generic Riemannian submanifolds, keeping the dimension and co-dimension free. To that
end, we introduce the total shear tensor as the trace-free part of the second fundamental form
tensor and we call shear operators the trace-free parts of the corresponding shape operators. We
also introduce the shear scalars which allow us to make the link with the concepts in the physical
literature. A new useful quadratic operator which is analogous to the Casorati operator [8] but
based on the shear quantities is also defined.

Several notions of umbilical submanifolds are then considered. The classical umbilical property
concerns co-dimension one surfaces, and refers to points that are “spherical” in the sense that
all tangent directions are indistinguishable there from the extrinsic point of view [9]. However,
this is too demanding in higher co-dimension, because there are several normal directions and
the submanifold can behave umbilically along some, but not along some other, directions. This
leads to the notions of totally umbilical and, more importantly to our purposes, of umbilical along
some normal direction(s). The particular cases of pseudo-umbilical as well as the novel concepts
of ortho-umbilical and sub-geodesic submanifolds are singled out.

While these developments are carried out in arbitrary dimension and co-dimension, in this paper
we want to focus on the relevant case of co-dimension 2 submanifolds. Our main goal is to char-
acterize spacelike co-dimension 2 submanifolds that are umbilical along a normal direction. More
precisely, given an isometric immersion of a Riemannian n-manifold S into a semi-Riemannian
(n+ 2)-manifold, we present necessary and sufficient conditions for S to be umbilical with respect
to a normal direction. The necessary and sufficient conditions we find are given in terms of the
total shear tensor, or equivalently in terms of algebraic properties that have to be satisfied by any
two shear operators. We prove that the umbilical direction, if it exists, must be unique —unless
the submanifold is totally umbilical, of course. Moreover, by means of the total shear tensor we
can provide a formula to compute it explicitly. When the ambient manifold is Lorentzian we also
provide a way of determining its causal character.

Succinctly, the plan of the paper is as follows. In section 2 we introduce the notation and we
recall some basic definitions. In section 3 we give the definition of an umbilical submanifold, we
specify several sub-cases and introduce our new shear objects. Section 4 concentrates on general re-
sults for the special relevant case of co-dimension 2 that is to be assumed in the rest of the paper. In
particular, we analyse the possibility of submanifolds which are both pseudo- and ortho-umbilical.
In section 5 we present some first results and characterize pseudo-umbilical submanifolds. Section
6 is devoted to the main theorem. In section 7 we determine the umbilical direction and charac-
terize ortho-umbilical submanifolds. In section 8 we concentrate on the Lorentzian case. Finally,
in section 9 we give an example based on the geometry of the Kerr black hole for n = 2.

Particular instances of the results in this paper and some of the underlying ideas were previously
given, for the case of surfaces in 4-dimensional Lorentzian manifolds, in [21].

2. Preliminaries: Basic concepts of submanifold theory

Let S be an orientable n-dimensional manifold and Φ : S −→M an immersion into an oriented
(n+ k)-dimensional semi-Riemannian manifold (M, ḡ). Assume that g := Φ?ḡ is positive definite
everywhere on S, so that (S, g) is an oriented Riemannian manifold. Then (Φ(S), ḡ) and (S, g) are
isometric and we will always locally identify them. Then, (S, g) is called a spacelike submanifold
of (M, ḡ).

If ∇ and ∇ are the Levi-Civita connections of (M, ḡ) and (S, g) respectively, X,Y ∈ X(S) and
ξ ∈ X(S)⊥, then the formulas of Gauss and Weingarten give a decomposition of the vector fields
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∇XY and ∇Xξ in their tangent and normal components [15, 16, 17]:

∇XY = ∇XY + h(X,Y ),

∇Xξ = −AξX +∇⊥Xξ.

Here, h(X,Y ) = h(Y,X) ∈ X(S)⊥ for all X,Y ∈ X(S) where h acts linearly (as a 2-covariant
tensor) on its explicit arguments, and is called the second fundamental form or shape tensor of
the immersion, Aξ is a self-adjoint operator called the shape operator or Weingarten operator
associated to ξ and ∇⊥ is a connection in the normal bundle. The relation between the former
two is given by

g(AξX,Y ) = ḡ(h(X,Y ), ξ)(1)

for all X,Y ∈ X(S) and all ξ ∈ X(S)⊥.
Given any orthonormal frame {e1, . . . , en} in X(S), the mean curvature vector field H ∈ X(S)⊥

is defined as [15, 16, 17]

H =
1

n

n∑
i=1

h(ei, ei).(2)

The component of H along a certain normal vector field ξ ∈ X(S)⊥ up to a factor n or, equivalently,
the trace of the shape operator associated to ξ is called the expansion of S along ξ:

θξ = n ḡ(H, ξ) = tr(Aξ)(3)

where tr denotes the trace.

Remark 1. The terminology expansion comes from the physics literature, see for example [2, 16,
20, 21]. It should be noted that the factor 1/n in the definition of the mean curvature is often
omitted in this literature.

Given a local frame {ξ1, . . . , ξk} in X(S)⊥ which is orthonormal, i.e., ḡ(ξi, ξj) = εiδij with ε2i = 1
for all i, j ∈ {1, . . . , k}, the Casorati operator, see for example [8], is defined by

B =

k∑
i=1

ḡ(ξi, ξi)A
2
ξi .(4)

One can check that this definition does not depend on the chosen frame. Indeed, in the local
orthonormal tangent frame {e1, . . . , en}, B is completely determined by

g(BX,Y ) =

n∑
i=1

ḡ(h(X, ei), h(Y, ei))(5)

for every X,Y ∈ X(S). Since all shape operators are self-adjoint, the same holds for the Casorati
operator.

Let T (S) denote the set of all self-adjoint (1,1)-tensor fields on S. We define the following
pointwise positive-definite scalar product on T (S):

〈A,B〉 = tr(AB)(6)

for all A,B ∈ T (S).

3. Definitions

3.1. The total shear tensor, the shear operators and the shear scalars. As far as we
know, the following elementary extrinsic objects have never been given a name in the literature.

Definition 1. Let Φ : (S, g) → (M, ḡ) be the isometric immersion introduced above. Using the
previous notations and conventions:

• The total shear tensor h̃ is defined as the trace-free part of the second fundamental form:

h̃(X,Y ) = h(X,Y )− g(X,Y )H.
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• The shear operator associated to ξ ∈ X(S)⊥ is the trace-free part of the corresponding
shape operator:

Ãξ = Aξ −
1

n
θξ1,

where 1 denotes the identity operator.
• The shear scalar σξ associated to ξ ∈ X(S)⊥ is defined up to sign as

σ2
ξ = tr(Ãξ

2).

It is clear that the total shear tensor and the shear operators are related by

g(ÃξX,Y ) = ḡ(h̃(X,Y ), ξ)

for all X,Y ∈ X(S) and all ξ ∈ X(S)⊥. The shear scalar was introduced in [21], yet in another way
adapted to the case n = 2. The alternative definition above is better suited for general dimension

n and works since Ãξ is self-adjoint and hence the trace of Ã2
ξ is non-negative. We will come back

to the ambiguity of the sign later in the paper. For now, notice that

σ2
ξ = 〈Ãξ, Ãξ〉,(7)

where 〈 , 〉 is the scalar product defined in (6), and that σξ = 0 if and only if Ãξ = 0.

Remark 2. The name total shear tensor comes from the relation existing with the well known
“shear” of the physics literature. In general relativity shear refers to one of the three kinematic
quantities characterizing the flow of (usually timelike or null) vector fields, also called congruences,
of a given Lorentzian manifold. The link arises because, if one such vector field is orthogonal to
S, then its shear on S would be given by |σξ|. Notice that another of these quantities is the
expansion that we introduced in (3). More about congruences and kinematic quantities can be
found in [2, 10, 25].

Given a local orthonormal frame {ξ1, . . . , ξk} in X(S)⊥, we can define the self-adjoint operator

J =

k∑
i=1

ḡ(ξi, ξi)Ã
2
ξi .(8)

Notice the analogy of definition (8) with the one given in (4) for the Casorati operator B. Again,
the above definition is frame independent and we have, in analogy with (5),

g(JX,Y ) =

n∑
i=1

ḡ(h̃(X, ei), h̃(Y, ei))(9)

for any local orthonormal tangent frame {e1, . . . , en} and any X,Y ∈ X(S).

3.2. Several types of umbilicity. The concept of umbilical point is classical in Riemannian and
semi-Riemannian geometry. Umbilical submanifolds have been extensively studied in the literature,
but often only in certain ambient spaces, such as real space forms. For the very first works on
the subject the reader can consult the references cited in [21]. For a general overview, we refer to
[6, 7] for the Riemannian setting and to [8] for the semi-Riemannian one. In particular, results
concerning pseudo-umbilical submanifolds (cfr. Definition 2 below) in semi-Riemannian geometry
can be found in [1, 3, 5, 11, 14, 23, 24].

When a submanifold has co-dimension one, that is when it is a hypersurface, a point can only be
umbilical with respect to one normal direction. However, when the co-dimension of a submanifold
is higher than one, there are several possible directions along which a point can be umbilical. We
will define the different notions of umbilicity in this section with respect to a normal vector field,
rather than with respect to a normal vector at a point, but all the definitions make sense when
stated pointwise.

Definition 2. Using the notations and conventions introduced above for the immersion Φ :
(S, g)→ (M, ḡ), the submanifold (S, g) is said to be

• umbilical with respect to ξ ∈ X(S)⊥ if Aξ is proportional to the identity;
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• pseudo-umbilical if it is umbilical with respect to the mean curvature H;
• totally umbilical if it is umbilical with respect to all ξ ∈ X(S)⊥;
• ξ-subgeodesic if there exists ξ ∈ X(S)⊥ such that h(X,Y ) = L(X,Y )ξ for all X,Y ∈ X(S),

where L is a symmetric (0, 2)-tensor field on S.

Observe that S is umbilical with respect to ξ ∈ X(S)⊥ if and only if Aξ = (θξ/n)1 or, equiv-

alently, Ãξ = 0. If S is umbilical with respect to ξ ∈ X(S)⊥, then it is umbilical with respect to
all vector fields proportional to ξ. Therefore, we will often say that S is umbilical with respect to
the normal direction spanned by ξ because this is a property that provides information about the
umbilical direction span(ξ) regardless of the length and the orientation of ξ. Finally, note that S
is totally umbilical if and only if h(X,Y ) = g(X,Y )H for all X,Y ∈ X(S) or, equivalently, if and

only if h̃ = 0.
The notion of ξ-subgeodesic submanifold was first introduced in [20]. If S is ξ-subgeodesic for

some ξ ∈ X(S)⊥, the first normal space, i.e., the image of the second fundamental form, is at
most one-dimensional at every point. It follows that all shape operators are proportional at points
where ξ does not vanish. Indeed, at such points one has

ḡ(ξ, η2)Aη1 = ḡ(ξ, η1)Aη2(10)

for any η1, η2 ∈ X(S)⊥. Furthermore, at points where H 6= 0, ξ-subgeodesic submanifolds have
ξ proportional to H, as can be seen by taking the trace of the equation h(X,Y ) = L(X,Y )ξ.
Therefore if S is ξ-subgeodesic, it is also H-subgeodesic.

Notice that, if S is ξ-subgeodesic, then any geodesic γ : I ⊆ R → S of (S, g) satisfies ∇γ′γ′ =
h(γ′, γ′) = fξ for some function f : I → R, hence γ is a subgeodesic with respect to ξ in (M, ḡ),
see [19]. This explains the terminology ξ-subgeodesic.

4. The case of co-dimension k = 2

From now on we will assume that the immersion Φ : (S, g)→ (M, ḡ) has co-dimension two.

4.1. The structure of a normal bundle with two-dimensional fibers. The normal bundle
can have signature (+,+), (−,+) and (−,−). We will write (ε1, ε2), where ε21 = ε22 = 1, in order
not to specify one of them. We denote by {ξ1, ξ2} a local orthonormal frame in X(S)⊥ with
g(ξi, ξi) = εi, i ∈ {1, 2}. With respect to this frame, the second fundamental form h decomposes
as

h(X,Y ) = ε1 g(Aξ1X,Y ) ξ1 + ε2 g(Aξ2X,Y ) ξ2(11)

for any X,Y ∈ X(S). In terms of the frame {ξ1, ξ2}, the mean curvature vector can be expressed
as

H =
1

n
(ε1θξ1ξ1 + ε2θξ2ξ2) ,(12)

where we have used formula (11).
With the volume forms of the ambient manifold M and the submanifold S, it is possible to

define a volume form ω⊥ on the normal bundle. Using ω⊥, we can then define for any normal
vector field ξ ∈ X(S)⊥ its Hodge dual vector field ?⊥ξ ∈ X(S)⊥ by (see [4] for the Lorentzian case)

ḡ(?⊥ξ, η) = ω⊥(ξ, η)(13)

for all η ∈ X(S)⊥. The Hodge dual operator is a linear operator satisfying

?⊥(?⊥ξ) = −ε1ε2 ξ, ḡ(?⊥ξ, η) = −ḡ(ξ, ?⊥η)(14)

for all ξ, η ∈ X(S)⊥. In particular,

ḡ(?⊥ξ, ξ) = 0, ḡ(?⊥ξ, ?⊥ξ) = ε1ε2 ḡ(ξ, ξ)

and if we assume that the orthonormal frame {ξ1, ξ2} is oriented such that ω⊥(ξ1, ξ2) = 1, then

?⊥ξ1 = ε2 ξ2, ?⊥ξ2 = −ε1 ξ1.(15)
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Combining formulas (12) and (15) the Hodge dual of the mean curvature vector field is

?⊥H =
ε1ε2
n

(θξ1ξ2 − θξ2ξ1) .(16)

The vector field ?⊥H defines a (generically unique) direction with vanishing expansion:

θ?⊥H = trA?⊥H = n ḡ(H, ?⊥H) = 0.(17)

The following notion, which we only define in co-dimension 2, was first introduced in [21].

Definition 3. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of a Riemannian manifold into a
semi-Riemannian manifold with co-dimension 2 and use the notations and conventions introduced
above. The submanifold is said to be ortho-umbilical if A?⊥H = 0.

The terminology ortho-umbilical is explained by the fact that the condition A?⊥H = 0 is actually
equivalent to Ã?⊥H = 0, that is, to requiring that the submanifold is umbilical with respect to the
vector field ?⊥H orthogonal to H, since we know that θ?⊥H = 0, cfr. (17).

The question arises of whether a submanifold can be pseudo- and ortho-umbilical at the same
time. This is answered in the following Lemma.

Lemma 1. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of a Riemannian manifold into a
semi-Riemannian manifold with co-dimension 2. If S is both pseudo-umbilical and ortho-umbilical
then at any point either

(1) (S, g) is totally umbilical, or
(2) the mean curvature vector field satisfies ḡ(H,H) = 0.

Proof. If (S, g) is totally umbilical the result is trivial. Similarly, if H = 0 at a point the result

is empty. Otherwise, consider H 6= 0 and h̃ 6= 0. From A?⊥H = 0 we deduce that h(X,Y ), and a

fortiori h̃(X,Y ), points along H for all X,Y ∈ X(S), and ÃH = 0 gives then

0 = g(ÃHX,Y ) = ḡ(h̃(X,Y ), H) = L̃(X,Y )ḡ(H,H)

with L̃(X,Y ) 6= 0, hence ḡ(H,H) = 0. �

4.2. Equivalence between ortho-umbilical and ξ-subgeodesic submanifolds. In the fol-
lowing Proposition we prove that the property of being ξ-subgeodesic, introduced in Definition 2,
is equivalent to the property of being ortho-umbilical when the co-dimension is two.

Proposition 1. Let Φ : (S, g) → (M, ḡ) be an isometric immersion of a Riemannian manifold
into a semi-Riemannian manifold with co-dimension 2. Then the following two conditions are
equivalent on any open set where H 6= 0:

(1) S is ortho-umbilical;
(2) S is ξ-subgeodesic for some non-zero ξ ∈ X(S)⊥.

Proof. To prove the implication (1)=⇒(2), it suffices to take ξ = H. Conversely, assume that S is
ξ-subgeodesic. Then h(X,Y ) is everywhere proportional to ξ for any choice of X,Y ∈ X(S) —so
that in particular A?⊥ξ = 0. As previously explained H and ξ are proportional, and thus A?⊥ξ = 0
implies A?⊥H = 0. �

Remark 3. If H vanishes, at most, on a subset with empty interior, then Proposition 1 is true
globally on S. Indeed, in Proposition 1 we have proven the equivalence on any subset on which
H vanishes nowhere. Since the union of all such subsets is dense in S, the result follows by a
continuity argument.

By Proposition 1 and formula (10) it follows that the submanifold S is ortho-umbilical if and only
if all shape operators are proportional to each other.

The following is a direct consequence of Proposition 1 and its proof.

Corollary 1. On any open set where H 6= 0 there exists a non-zero normal vector field ξ ∈ X(S)⊥

such that A?⊥ξ = 0 if and only if S is ortho-umbilical.
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5. First results

5.1. Characterization of being pseudo-umbilical. The Casorati operator B, defined in (4),
and the operator J , defined in (8), are related to each other via the relation described in the
following Lemma.

Lemma 2. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of an n-dimensional Riemannian
manifold into a semi-Riemannian manifold with co-dimension 2. Let B be the Casorati operator
and let J be the operator defined in (8). Then

B − J = 2 ÃH + ḡ(H,H)1,(18)

where H is the mean curvature vector field. Moreover, tr (B − J ) = n ḡ(H,H).

Proof. The expression for the trace of B−J follows immediately from (18), since ÃH is a trace-free
operator. To prove (18), first observe that for any ξ ∈ X(S)⊥

A2
ξ − Ã2

ξ = A2
ξ − (Aξ −

1

n
θξ1)2 =

2

n
θξAξ −

1

n2
θ2ξ1.(19)

Moreover, from (12), we obtain

AH =
1

n
(ε1θξ1Aξ1 + ε2θξ2Aξ2)(20)

and

ḡ(H,H) =
1

n2
(ε1θ

2
ξ1 + ε2θ

2
ξ2).(21)

By using the definitions of B and J and formulas (19)–(21), we then obtain

B − J = ε1(A2
ξ1 − Ã

2
ξ1) + ε2(A2

ξ2 − Ã
2
ξ2)

=
2

n
(ε1θξ1Aξ1 + ε2θξ2Aξ2)− 1

n2
(ε1θ

2
ξ1 + ε2θ

2
ξ2)1

= 2AH − ḡ(H,H)1.

It now suffices to use the definition of the shear operator and the fact that θH = n ḡ(H,H) to
conclude the proof. �

Corollary 2. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of an n-dimensional Riemannian
manifold into a semi-Riemannian manifold with co-dimension 2. Then S is pseudo-umbilical if and
only if

B − J = AH .

Or equivalently, if and only if B − J is proportional to the identity.

Proof. In the proof of Lemma 2, we obtained B − J = 2AH − ḡ(H,H)1. Hence the formula
B − J = AH is equivalent to AH = ḡ(H,H)1, which expresses exactly that the submanifold is
pseudo-umbilical. �

When n = 2, that is when the ambient manifoldM has dimension 4 and the submanifold S is a
surface, the necessary and sufficient condition for S to be pseudo-umbilical is the Casorati operator
B being proportional to the identity. This was proven in [21]. (More precisely, it was proven in the
Lorentzian case, but as the author explains in the final comments, the same proofs hold in other
signature settings too.) In higher dimension, the situation is different: although the property of
both B and J being proportional to the identity is sufficient to prove that S is pseudo-umbilical
(this follows from Corollary 2), it is not necessary.
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6. Main theorem

Theorem 1. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of an n-dimensional Riemannian
manifold into a semi-Riemannian manifold with co-dimension 2. Then the following conditions are
all equivalent.

(i) S is umbilical with respect to a non-zero normal vector field ξ ∈ X(S)⊥.
(ii) Any two shear operators are proportional to each other.

(iii) There exist Ã ∈ T (S) and G ∈ X(S)⊥ such that 〈Ã, Ã〉 = n2 and

h̃(X,Y ) = g(ÃX, Y )G(22)

for all X,Y ∈ X(S).

(iv) The components of any two shear operators Ãη1 and Ãη2 with respect to any tangent frame
satisfy

(Ãη1)ij (Ãη2)rs = (Ãη2)ij (Ãη1)rs(23)

for all i, j, r, s = 1, . . . , n.

(v) Any two shear operators Ãη1 and Ãη2 satisfy

〈Ãη1 , Ãη2〉2 = σ2
η1 σ

2
η2 .(24)

Proof. (i) =⇒ (ii). Let η ∈ X(S)⊥ be linearly independent from ξ. For any η1, η2 ∈ X(S)⊥,
there exist functions a1, b1, a2 and b2 such that η1 = a1ξ + b1η and η2 = a2ξ + b2η. Since the

correspondence • 7→ Ã• is linear and Ãξ = 0, we find Ãη1 = b1Ãη and Ãη2 = b2Ãη. In particular,

Ãη1 and Ãη2 are proportional.

(ii) =⇒ (iii). Let {ξ1, ξ2} ⊂ X(S)⊥ be a orthonormal frame such that ḡ(ξi, ξj) = εiδij . Since Ãξ1
and Ãξ2 are proportional, there exist an Ã ∈ T (S) and functions λ1 and λ2 such that Ãξ1 = λ1Ã

and Ãξ2 = λ2Ã. Then, by orthonormal expansion, we have

h̃(X,Y ) = ε1ḡ(h̃(X,Y ), ξ1)ξ1 + ε2ḡ(h̃(X,Y ), ξ2)ξ2

= ε1g(Ãξ1X,Y )ξ1 + ε2g(Ãξ2X,Y )ξ2

= g(ÃX, Y )(ε1λ1ξ1 + ε2λ2ξ2)

for any X,Y ∈ X(S). It now suffices to choose G in the direction of ε1λ1ξ1 + ε2λ2ξ2. By rescaling

G if necessary, we can ensure that 〈Ã, Ã〉 = tr(Ã2) = n2.

(iii) =⇒ (i). If G = 0, then h̃ = 0 and the submanifold is totally umbilical. If G 6= 0, then also

?⊥G 6= 0 and 〈h̃(X,Y ), ?⊥G〉 = 0 for any X,Y ∈ X(S) implies that Ã?⊥G = 0 or, equivalently,
that S is umbilical with respect to ?⊥G.

(ii) ⇐⇒ (iv). First, assume that (ii) is satisfied and choose any η1, η2 ∈ X(S)⊥. If Ãη2 = 0,

condition (iv) is satisfied. If Ãη2 6= 0, there exists a function λ such that Ãη1 = λÃη2 and both sides

of (23) equal λ(Ãη2)ij(Ãη2)rs. Conversely, assume that (iv) is satisfied and choose η1, η2 ∈ X(S)⊥.

If Ãη2 = 0, condition (ii) is satisfied. If Ãη2 6= 0, there is at least one component, say (Ãη2)ij , which

is non-zero. Since (23) holds for any r and s, it implies Ãη1 = ((Ãη1)ij/(Ãη2)ij)Ãη2 .

(ii) ⇐⇒ (v). Since σ2
ξ = 〈Ãξ, Ãξ〉 for any ξ ∈ X(S)⊥, this equivalence is a direct consequence of

the inequality of Cauchy-Schwarz. �

By Theorem 1, whenever there is an umbilical direction there is a normal vector fieldG satisfying
condition (iii). Notice however that G is only determined up to sign. But this is natural because,
as we already mentioned, being umbilical is a property related to a direction, not to a particular

vector field. Using condition (iii), we have g(ÃξX,Y ) = ḡ(h̃(X,Y ), ξ) = g(ÃX, Y )ḡ(G, ξ) for all
X,Y ∈ X(S) and all ξ ∈ X(S)⊥. Hence

Ãξ = ḡ(G, ξ)Ã(25)
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and the corresponding shear scalar is given by σ2
ξ = tr(Ã2

ξ) = ḡ(G, ξ)2 tr(Ã2) = n2 ḡ(G, ξ)2. Since
both σξ and G are defined up to sign, we can set

σξ = n ḡ(G, ξ)(26)

for all ξ ∈ X(S)⊥. Combining (25) and (26) yields

Ãξ =
σξ
n
Ã

for all ξ ∈ X(S)⊥, from which we can deduce

〈Ãη1 , Ãη2〉 = ση1 ση2

for all η1, η2 ∈ X(S)⊥.

Remark 4. Item (iii) of Theorem 1 can be restated as follows:

h̃(X,Y )[ ∧ h̃(Z,W )[ = 0

for every X,Y, Z,W ∈ X(S), where ∧ is the wedge product of one-forms and [ denotes the musical
isomorphism: if X is a vector field on (M, ḡ), then its associated one-form X[ is given by X[(Y ) =
ḡ(X,Y ) for every vector field Y on M.

Corollary 3. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of an n-dimensional Riemannian
manifold into a semi-Riemannian manifold with co-dimension 2. If S is umbilical with respect to
a non-zero normal vector field then any two shape operators commute.

Proof. By condition (ii) of Theorem 1 it follows that any two shear operators commute. It is easily

seen that [Ãη1 , Ãη2 ] = 0 if and only if [Aη1 , Aη2 ] = 0 for any η1, η2 ∈ X(S)⊥. �

A consequence of Corollary 3 is that at any point of the submanifold there exists a (gener-
ically unique) orthonormal basis of the tangent space for which all shape operators diagonalize
simultaneously.

The converse of Corollary 3 is in general not true. However, it is true when the dimension of
the ambient manifold M is 4 and S is a surface (n = 2), as described in the next corollary.

Corollary 4. A necessary and sufficient condition for a spacelike surface in a 4-dimensional
semi-Riemannian manifold to be umbilical with respect to a non-zero normal direction is that any
two shape operators commute.

Proof. The necessity of the condition follows from Corollary 3. To prove that the condition is also
sufficient, choose any two normal vector fields ξ and η. Then Aξ and Aη commute, such that both
operators can be diagonalized simultaneously. Denote by λ1, λ2 and µ1, µ2 the eigenvalues of Aξ
and Aη respectively. In an orthonormal frame the corresponding shear operators are then given
by

Ãξ =
1

2

(
λ1 − λ2 0

0 λ2 − λ1

)
, Ãη =

1

2

(
µ1 − µ2 0

0 µ2 − µ1

)
.

It is now easily seen that (Ãξ)
i
j(Ãη)rs = (Ãη)ij(Ãξ)

r
s for any i, j, r, s ∈ {1, 2} such that, by Theorem

1, the surface is umbilical with respect to some non-zero normal vector field. �

Corollary 4 was already proven in [21] in the case of a Lorentzian ambient space.

7. Consequences of the main theorem

7.1. The umbilical direction. If {ξ1, ξ2} is an orthonormal frame in the normal bundle with
ḡ(ξi, ξj) = εiδij , one can deduce from (26) the following explicit expression for G:

G =
1

n
(ε1σξ1ξ1 + ε2σξ2ξ2).(27)
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Corollary 5. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of an n-dimensional Riemannian
manifold into a semi-Riemannian manifold with co-dimension 2. If S is umbilical with respect to
a normal direction, then such a direction is unique and it is spanned by ?⊥G, unless G = 0, in
which case S is totally umbilical.

Proof. Suppose that S is umbilical with respect to a non-zero vector field ξ ∈ X(S)⊥. This means

that its shear operator vanishes, Ãξ = 0, or, equivalently, ḡ(h̃(X,Y ), ξ) = 0 for every X,Y ∈ X(S).
From Theorem 1 (iii) it then follows that G and ξ are orthogonal and thus ξ has to be proportional

to ?⊥G. If G = 0, then h̃ = 0 and S is totally umbilical. �

From Corollary 5, (15) and (27) one obtains an explicit expression for the umbilical direction:

?⊥G =
ε1ε2
n

(σξ1 ξ2 − σξ2 ξ1).(28)

It is possible to find other expressions for the umbilical direction in terms of the eigenvalues of the
shape operators Aξ1 and Aξ2 . We know that if an umbilical direction exists, these two operators
can be diagonalized simultaneously. Let λi and µi (i = 1, . . . , n) denote the eigenvalues of Aξ1 and
Aξ2 respectively. Then λi − θξ1/n and µi − θξ2/n (i = 1, . . . , n) are the eigenvalues of the shear

operators Ãξ1 and Ãξ2 . We know that there exist functions a1 and a2 such that Ãa1ξ1+a2ξ2 =

a1Ãξ1 + a2Ãξ2 = 0. Obviously, (a1, a2) has to be proportional to (µi − θξ2/n,−(λi − θξ1/n)) for
any i = 1, . . . , n. Hence

ηi =

(
µi −

θξ2
n

)
ξ1 −

(
λi −

θξ1
n

)
ξ2(29)

is a normal vector field with respect to which S is umbilical for any i = 1, . . . , n. All these vector
fields are proportional to each other and to ?⊥G. Moreover, using (28) and (29), one sees

n∑
i=1

ḡ(ηi, ηi) = ε1

n∑
i=1

(
µi −

θξ2
n

)2

+ ε2

n∑
i=1

(
λi −

θξ1
n

)2

= ε1tr(Ã
2
ξ2) + ε2tr(Ã

2
ξ1)

= ε1σ
2
ξ2 + ε2σ

2
ξ1

= n2 ḡ(?⊥G, ?⊥G).

7.2. Characterization of S being ortho-umbilical. For the notation used in the following
corollary we refer to Remark 4.

Corollary 6. Let Φ : (S, g)→ (M, ḡ) be an isometric immersion of an n-dimensional Riemannian
manifold into a semi-Riemannian manifold with co-dimension 2. On any open set where H does
not vanish, S is ortho-umbilical if and only if

h(X,Y )[ ∧H[ = 0

for every X,Y ∈ X(S).

Proof. Suppose that S is ortho-umbilical, i.e., that A?⊥H = 0. Then, from Propostion 1 we know
that S is H-subgeodesic so that h(X,Y ) is indeed proportional to the mean curvature vector field
H for every X,Y ∈ X(S).

Conversely, suppose that h(X,Y )[ ∧H[ = 0 for every X,Y ∈ X(S) and that H 6= 0 at a point
in S, then h(X,Y ) = L(X,Y )H for all X and Y tangent to S at that point, and this implies
A?⊥H = 0 there. �

A comment similar to Remark 3 applies here too, as it is obvious.
It is worth noticing that the property of S being ortho-umbilical is somehow special. In fact, it

implies that S is H-subgeodesic and also that the total shear tensor h̃ and the second fundamental
form tensor h are always proportional to each other and to H.
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8. The Lorentzian case

In this section we will always assume the normal bundle has signature (−,+) or, equivalently,
that (M, ḡ) is a Lorentzian manifold with signature (−,+, . . . ,+).

8.1. Null frame in X(S)⊥. In this setting one can choose a frame {k, `} consisting of null vector
fields in the normal bundle X(S)⊥, so that

ḡ(k, k) = ḡ(`, `) = 0, ḡ(k, `) = −1,(30)

the last equality being a convenient normalization condition. For any X,Y ∈ X(S), the second
fundamental form h and the mean curvature vector field H decompose in the null frame as

h(X,Y ) = − g(AkX,Y )`− g(A`X,Y )k,(31)

H =
1

n
(− θk `− θ` k) .(32)

The quantities θk = tr(Ak) and θ` = tr(A`), are called null expansions.
Using formula (5) one can prove that the Casorati operator B is minus the anti-commutator of

the two null shape operators:

B = −{Ak, A`} = −AkA` −A`Ak.(33)

After changing the order if necessary, we may assume that the frame {k, `} is positively oriented,
i.e., that ω⊥(k, `) = 1. It then follows from (13) that

?⊥k = −k, ?⊥` = `(34)

and from (32) that

?⊥H =
1

n
(− θk `+ θ` k) .(35)

We also have ḡ(?⊥ξ, ?⊥ξ) = −ḡ(ξ, ξ) for every ξ ∈ X(S)⊥, and in particular

ḡ(?⊥H, ?⊥H) = −ḡ(H,H) =
2

n2
θkθ`.(36)

The total shear tensor decomposes as

h̃(X,Y ) = −ḡ(ÃkX,Y )`− ḡ(Ã`X,Y )k(37)

for every X,Y ∈ X(S), where the operators Ãk and Ã` are called null shear operators. Moreover,
the functions σk and σ` are the null shear scalars. Using formula (37), one can prove that the
operator J equals minus the anti-commutator of the two null shear operators:

J = −{Ãk, Ã`}.(38)

Notice the analogy between this formula and (33).

8.2. The causal character of the umbilical direction. Assuming there exists an umbilical
direction, it follows from (26), (30) and (34) that the vector fields G and ?⊥G can be expressed as

G = − 1

n
(σ`k + σk`), ?⊥G =

1

n
(σ`k − σk`).(39)

A way to determine the sign of ḡ(?⊥G, ?⊥G) is by considering the operators J and B. By using

that h̃(X,Y ) = g(ÃX, Y )G and hence h(X,Y ) = g(ÃX, Y )G + g(X,Y )H for every X,Y ∈ X(S)
in combination with formulas (9) we obtain

J = ḡ(G,G)Ã2.

Taking the trace gives tr(J ) = n2ḡ(G,G) and hence

ḡ(?⊥G, ?⊥G) = −ḡ(G,G) = − 1

n2
tr(J ).
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By formula (38) we obtain

ḡ(?⊥G, ?⊥G) =
2

n2
tr(ÃkÃ`) =

2

n2
〈Ãk, Ã`〉

and thus we have

〈Ãk, Ã`〉 < 0 ⇒ ?⊥G is timelike,

〈Ãk, Ã`〉 > 0 ⇒ ?⊥G is spacelike,

〈Ãk, Ã`〉 = 0 ⇒ ?⊥G is null.

Using (18) we also get tr(B) = n2ḡ(G,G) + nḡ(H,H) so that

ḡ(?⊥G, ?⊥G) = − 1

n2
(tr(B)− nḡ(H,H))

which reproves the same result found in [21]. All this implies

tr(J ) < 0 ⇒ ?⊥G is spacelike, tr(B) < nḡ(H,H) ⇒ ?⊥G is spacelike,

tr(J ) > 0 ⇒ ?⊥G is timelike, tr(B) > nḡ(H,H) ⇒ ?⊥G is timelike,

tr(J ) = 0 ⇒ ?⊥G is null, tr(B) = nḡ(H,H) ⇒ ?⊥G is null.

8.3. Submanifolds which are both pseudo- and ortho-umbilical. From Lemma 1 we know
that the only interesting case when S can be pseudo- and ortho-umbilical at the same time arises
in the Lorentzian signature we are considering now. Thus, we analyze this case in a little more
detail.

When S is not totally umbilical, we have

Proposition 2. Let Φ : (S, g) → (M, ḡ) be an isometric immersion of a Riemannian manifold
into a Lorentzian manifold with co-dimension 2. The three following conditions are equivalent at
any point p ∈ S where H 6= 0 and S is not totally umbilical:

(1) B − J = 0,
(2) (S, g) is both pseudo-umbilical and ortho-umbilical,
(3) B = 0 and J = 0.

Furtheremore, in all cases we have ḡ(H,H) = 0 at p.

Proof. (1)⇒ (2): Assume B = J . Then, by Lemma 2, we obtain 2ÃH + ḡ(H,H)1 = 0. Taking the

trace of this formula gives ḡ(H,H) = 0 and hence also ÃH = 0. Therefore, S is pseudo-umbilical
at p and H is a non-zero null vector there, so that from (36) follows that ?⊥H is also null and,

being orthogonal to H, proportional to H. Thus Ã?⊥H = 0 too.
(2) ⇒ (3): Since S is ortho-umbilical at p and as H 6= 0 there, Corollary 6 implies the existence
of a 2-covariant symmetric tensor L such that

(40) h(X,Y ) = L(X,Y )H

for every X,Y ∈ TpS. On the other hand, since S is pseudo-umbilical, we have ḡ(h̃(X,Y ), H) = 0.

Using the definition of h̃ and (40), this condition reduces to

(L(X,Y )− g(X,Y )) ḡ(H,H) = 0(41)

for every X,Y ∈ TpS. If ḡ(H,H) did not vanish, then we would have L = g at p and, by (40), S
would be totally umbilical there against hypothesis. Thus, we deduce ḡ(H,H) = 0 at p. Using this

together with ÃH = 0 in Lemma 2 we derive B − J = 0 at p. Now, we can compute the Casorati
operator to check that it actually vanishes at p (and therefore so does J ): if {e1, . . . , en} is a local
orthonormal basis in TpS, by formula (5) we have

g(B(X), Y ) =

n∑
i=1

g(L(X, ei)H,L(Y, ei)H) = ḡ(H,H)

n∑
i=1

L(X, ei)L(Y, ei) = 0.

(3)⇒ (1): Trivial. �
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From a physical point of view, the Lorentzian n = 2 case is of particular interest. In fact,
spacelike surfaces immersed in a spacetime (a 4-dimensional Lorentzian manifold) satisfying the
property of having H null everywhere on the surface are of extreme importance in the framework
of gravitational theories. A complete classification of these surfaces can be found in [20]. In the
following section we will show an example of those.

9. Example: Kerr spacetime

The Kerr spacetime can be locally described as the manifold R2 × S2 endowed with the
Lorentzian metric [13]

ḡ =−
(

1− 2mr

ρ2

)
dv2 + 2 dvdr + ρ2 dθ2 − 4amr sin2 θ

ρ2
dϕdv+

− 2a sin2 θ dϕdr +
(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θ dϕ2,

given in the so-called Kerr coordinates {v, r, θ, ϕ}, where m and a are two constants called mass
and angular momentum. We assume that m is positive, and define the quantities ρ and ∆ by

ρ =
√
r2 + a2 cos2 θ, ∆ = r2 − 2rm+ a2.

The variables {θ, ϕ} are typical angular coordinates on S2 so that there is a trivial coordinate
problem at the axis of symmetry θ → 0. The spacetime has a more severe problem at ρ = 0,
where there is a curvature singularity and thus this set must be cut out of the manifold. For a
complete exposition about the Kerr metric and its physical interpretation, one can for example
consult [10, 12, 18, 25]. Let us just mention here that Kerr’s metric is of paramount importance
in general relativity because it is the unique solution of the vacuum field equations describing an
isolated black hole.

In Kerr’s spacetime there is a family of preferred spacelike surfaces defined by constant values
of v and r. Let S be one of these surfaces, then S is compact and topologically S2 —unless r = 0.
The vector fields ∂θ and ∂φ are tangent to S at every point of S, the first fundamental form reads
(with constant r)

g = ρ2 dθ2 +
(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θ dϕ2,

and the following vector fields constitute a frame on X(S)⊥ :

ξ =
1

ρ2

(
(r2 + a2) ∂v + ∆∂r + a ∂ϕ

)
,

η =
1

ρ2

(
a2 sin2 θ ∂v + (r2 + a2) ∂r + a ∂ϕ

)
.

Notice that ξ[ = dr and η[ = dv. In the basis {∂θ, ∂ϕ}, their corresponding shape operators are

Aξ =
∆

ρ2
M1

Aη =
1

ρ2

(
(r2 + a2)M1 − 2

m

ρ2
ra3 sin3 θ cos θM2

)
,

where

M1 =


r

ρ2
0

0
ρ2
(
r + m

ρ4 a
2(a2 cos2 θ − r2) sin2 θ

)
(r2 + a2)2 − a2∆ sin2 θ


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and

M2 =

 0
1

ρ2

ρ2

((r2 + a2)2 − a2∆ sin2 θ) sin2 θ
0

 .

By Corollary 4 S is umbilical with respect to a normal direction if and only if [Aξ, Aη] = 0.
Explicitly:

−2∆
m

ρ6
ra3 sin3 θ cos θ[M1,M2] = 0.(42)

Equation (42) is satisfied if one of the following conditions holds: [M1,M2] = 0 (which is equivalent
to 4mr2 + ρ2(r −m) = 0 and implies r < m), or θ ∈ {0, π2 , π}, or r = 0, or a = 0 or ∆ = 0. The
case a = 0 leads to the Schwarzschild spacetime, describing a non-rotating black hole, and every
such S is actually totally umbilical. This is to be expected, because in this case the spacetime is
spherically symmetric, and all round spheres are then totally umbilical [20]. Letting this special
case aside, among the previous conditions, ∆ = 0 and r = 0 are the only possibilities that lead to
surfaces S entirely umbilical along a normal direction. We consider them in turn:

• For the case r = 0 with any constant v, we must keep in mind that the equator in any of
these surfaces lies on the spacetime singularity (ρ = 0 if θ = π/2), and thus they have to
be avoided. Thus, these surfaces are defined by non-compact, hemi-spherical caps, with
either θ ∈ [0, π/2) or θ ∈ (π/2, π]. In any of these options, it is easily seen from the above
that Aξ = Aη = M1/ cos2 θ with

M1 =

(
0 0

0
m

a2
tan2 θ

)
.

Thus we deduce thatAξ−η = 0. Note that ξ−η = ∂v on these surfaces, and that g(ξ, ∂v) = 0
too. Hence, every such surface is H-subgeodesic, and thus also ortho-umbilical, with H ∈
span{ξ}. One can further check that these hemi-spherical caps are locally flat.

• Suppose now that ∆ = 0. This requires m2 ≥ a2 and the hypersurface ∆ = 0 has two
connected components given by r = r± with

r± := m±
√
m2 − a2

except in the case m = |a|, called the extreme case, where both of them coincide. It

follows from the formulas above that Aξ = 0 at r = r+ or r = r−. Then Ãξ = 0 and
θξ = tr(Aξ) = g(ξ,H) = 0 too there, the former saying that any surface with constant v
in ∆ = 0 is umbilical along the normal vector field ξ and the second that ξ is proportional
to ?⊥H. Thus, every such surface is ortho-umbilical.

The total shear tensor for any of these surfaces is given by (with ρ2± = r2± + a2 cos2 θ)

h̃(∂θ, ∂θ) = a2 sin2 θ
4mr2± + ρ2±(r± −m)

2(r2± + a2)2
ξ

h̃(∂θ, ∂φ) = −a2 sin2 θ
2mr±a sin θ cos θ

ρ2±(r2± + a2)
ξ

h̃(∂φ, ∂φ) = −a2 sin2 θ
sin2 θ

(
4mr2± + ρ2(r± −m)

)
2ρ4±

ξ.

Its image is spanned by ξ and hence, by Theorem 1 (iii) and Corollary 5, these surfaces
are umbilical with respect to ?⊥ξ. But ?⊥ξ ∈ span{H} so that all these surfaces are also
pseudo-umbilical. As they are not totally umbilical, ξ and ?⊥ξ (equivalently H and ?⊥H)
must be proportional. This is indeed the case since ξ (equivalently H) is null at ∆ = 0.

We have proven the following result:

Proposition 3. In the Kerr spacetime with a 6= 0, the only surfaces defined by constant values of
v and r which are umbilical along a normal direction are those sitting on either
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(1) the (timelike) hypersurface r = 0 or
(2) the (null) hypersurface ∆ = 0 —these exist only when m ≥ |a|.

In case (1) they are locally flat, non-compact topological disks, which are ortho-umbilical and
H-subgeodesic. In case (2) the surfaces are compact topological spheres both pseudo- and ortho-
umbilical. They happen to have a non-vanishing null mean curvature vector field H, and thus they
are also marginally trapped.

The surfaces we have found in case (2), those characterized by constant values of v and by
r = r±, foliate the null hypersurface defined by ∆ = 0. In gravitational physics the two connected
components of ∆ = 0 are called the event horizon (r = r+) and the Cauchy horizon (r = r−),
and they enclose the black hole region of the Kerr spacetime [10, 12, 16, 25]: a region containing
closed trapped surfaces. In the present section we have thus proven that the horizons of the Kerr
black hole are foliated by marginally trapped surfaces which are both pseudo- and ortho-umbilical.
This fact is already well known in gravitational physics, where they say that the null hypersurface
∆ = 0 is expansion- and shear-free along its null generator.
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