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Abstract 

The FMR1 gene contains an unstable CGG repeat in its 5’ untranslated region. Premutation 

alleles range between 55 and 200 repeat units and confer a risk for developing fragile X-

associated tremor/ataxia syndrome or fragile X-associated primary ovarian insufficiency. 

Furthermore, the premutation allele often expands to a full mutation during female germline 

transmission giving rise to the fragile X syndrome. The risk for a premutation to expand 

depends mainly on the number of CGG units and the presence of AGG interruptions in the 

CGG repeat. Unfortunately, the detection of AGG interruptions is hampered by technical 

difficulties. Here, we demonstrate that single-molecule sequencing enables the determination 

of not only the repeat size, but also the complete repeat sequence including AGG 

interruptions in male and female alleles with repeats ranging from 45 to 100 CGG units. We 

envision this method will facilitate research and diagnostic analysis of the FMR1 repeat 

expansion.  
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Introduction 

The fragile X mental retardation gene (FMR1; MIM *309550) is located on band q27.3 of the 

X chromosome and contains a CGG tandem repeat in its 5’ untranslated region 

(UTR)(Harrison et al. 1983; Verkerk et al. 1991). The size of the CGG repeat is variable and 

this characteristic is used to classify the repeats into 4 categories: normal (<45 units), gray-

zone (45-54 units), premutation (55-200 units) and full mutations (>200 units)(Biancalana et 

al. 2015). The repeat size influences the instability of the repeat and also the phenotype of the 

individual will be different. Carriers of a gray-zone allele have a normal phenotype. The 

small repeats of this category might be unstable upon transmission, but they rarely expand 

into a premutation allele (Biancalana et al. 2015). In contrast, individuals carrying a 

premutation allele are at risk for developing the late-onset neurodegenerative disorder fragile 

X-associated tremor/ataxia syndrome (FXTAS; MIM #300623) or fragile X-associated 

primary ovarian insufficiency (FXPOI; MIM #311360) (Sullivan et al. 2005; Hagerman and 

Hagerman 2013). Moreover, female premutation carriers are at risk of transmitting a full 

mutation (>200 CGG units) to their offspring (Oberlé et al. 1991; Yu et al. 1991; 

Penagarikano et al. 2007). This large expansion induces abnormal methylation of the 

promoter of the FMR1 gene which disrupts the production of the Fragile X Mental 

Retardation Protein (FMRP)(Pieretti et al. 1991). The absence of FMRP causes the fragile X 

syndrome (FXS; MIM #300624) which is the most frequent monogenic cause of X-linked 

Intellectual Disability (XLID) and autism. Other phenotypes often observed in patients with 

FXS are hypersensitivity, hyperactivity, attention deficit and mild dysmorphic features 

(Penagarikano et al. 2007; Usdin et al. 2014).  

Due to the severity of the FXS, an accurate estimate of the risk for a woman with a 

premutation allele to transmit a full mutation to her offspring is crucial in genetic counseling. 

For example, a woman with a high risk can decide to choose for preimplantation genetic 
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diagnosis (PGD) where one could select for unaffected males or non-carrier female embryos 

(Sermon et al. 1999; Burlet et al. 2006). On the other hand, women with only a minor risk 

would choose for normal conception, optionally in combination with prenatal diagnosis to 

monitor the fragile X status of their fetus (Biancalana et al. 2015). With an incidence of about 

1 in 200 females carrying a premutation allele, this is a pertinent question in genetic 

counseling (Tassone et al. 2012). 

The risk of a premutation to expand to a full mutation depends mainly on the size of the 

premutation allele, whereby larger alleles expand faster into full mutations. For example, 

alleles larger than 100 CGG repeat units have a risk of almost 100% to expand into a full 

mutation. In contrast, small premutation alleles (55 to 59 CGG units) have only 3% 

expansion risk to a full mutation and alleles ranging between 60 and 100 CGG tandem 

repeats have intermediate risks (Yrigollen et al. 2012). The FMR1 CGG repeat is often 

interrupted by 1-4 AGGs clustered towards the 5’ end. It has been shown that AGG 

interruptions will increase the stability and reduce the risk for expansions. (Eichler et al. 

1994; Nolin et al. 2014). Large population studies indicate that the risk reduction of AGGs is 

the biggest for repeat sizes between 55 and 85 CGG units (Nolin et al. 2014; Yrigollen et al. 

2014). For example, for a woman with 75 repeats interspersed with 2 AGG units the risk to 

transmit a full mutation to her offspring is 12% but increases to 77% if AGG interruptions are 

present(Yrigollen et al. 2012). For alleles smaller than 55 there is no risk difference with or 

without AGG interruptions. The differential risk reduces to less than 38% for alleles larger 

than 85 CGG units. Since for those large alleles the overall risk for an expansion is larger 

than 50% irrespective of the number of AGG interruptions, the clinical importance of 

mapping the interruptions in larger expansions drops. Hence, mapping the location and 

number of AGGs within the CGG repeat is essential for an accurate risk prediction and 

genetic counseling, especially for alleles with 55-85 CGG units. However, AGG 
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measurement is not yet a standard feature of FRM1 diagnostic work-up in most laboratories 

worldwide (Jacquemont et al. 2011; Monaghan et al. 2013; Biancalana et al. 2015). 

Measurement of AGG interruptions has been hampered by technical difficulties. Traditional 

Southern blotting cannot localize the AGG interruptions. If determined, AGG interruptions 

are detected by a Triplet-Primed PCR (TP-PCR)(Chen et al. 2010). This is an indirect method 

whereby the forward and reverse primer of a standard PCR are complemented with a third 

primer which will anneal right into the repeat. By adding the third primer, the PCR will 

produce a ladder of peaks which will be visible on an agarose gel as a smear. The main 

advantage of this technique is that it indicates if a full mutation is present in an individual, 

even if the full mutation cannot be completely amplified. An additional advantage of TP-PCR 

is that it also points out the presence of AGG units in premutation carriers: if an AGG unit is 

present in the repeat, the third primer will fail to anneal at that particular site and a gap will 

be present in the profile. TP-PCR readily identifies the number and location of AGG units 

within the CGG repeat in males because at every AGG the signal will drop to the baseline. In 

contrast, interpreting TP-PCR results in females remains challenging as they carry two X-

chromosomes each containing a different CGG repeat with a specific set of AGG units. If the 

structure of those two repeats is different, TP-PCR does not allow to resolve the repeat 

structure (Chen et al. 2010). Further analysis requires 2 additional PCR reactions to decipher 

the exact repeat structure (Nolin et al. 2013). A disadvantage for both the diagnostic and 

scientific Fragile X community is that those PCRs are intellectual property of Asuragen 

(Texas, USA) and can only be performed on site.  

In order to circumvent the various limitations of TP-PCR, we explored single-molecule 

sequencing to determine the number and location of AGG interruptions in both males and 

females carrying FMR1 premutation alleles. Single-molecule sequencing technology is able 

to sequence through large and very GC-rich repeats, including CGG repeats (Loomis et al. 



 

 

This article is protected by copyright. All rights reserved. 

2013; Shin et al. 2013; Chaisson et al. 2015). Furthermore, Loomis et al. (2013) proved single 

molecule sequencing enabled the detection of AGG interruptions as they showed 1 AGG unit 

embedded in a CGG repeat cloned in a plasmid. Finally, the long reads generated by single-

molecule sequencing allow to cross a circulated double-stranded template molecule multiple 

times. By making a consensus from all different passes it is possible to eliminate sequencing 

errors which are randomly distributed across the reads and generate very accurate reads-of-

insert (Carneiro et al. 2012; Jiao et al. 2013; Hestand et al. 2016).  

We demonstrate that single-molecule sequencing enables reading through repeat- and GC-

rich regions with a very high accuracy which permits reconstruction of the complete repeat 

structure for gray zone and premutation alleles, not only for males, but also for females.  

Materials and Methods 

DNA samples. The structure of the CGG repeat in the FMR1 gene (Genebank Accession 

number NG_007529.2) was determined for 7 males (2 gray zone alleles, 5 premutation 

alleles) and 34 females (5 females with a normal and a gray zone allele, 28 females with a 

normal and a premutation allele and 1 female with 2 premutation alleles). The patients were 

referred for diagnostic testing because of either FXTAS, POI or because of a family history 

of FXS. The premutation alleles varied between 45 and 100 CGG units according to PCR. 

After informed consent was obtained from the patients, DNA was isolated from peripheral 

white blood cells according to standard procedures. This study was approved by the local 

ethics committee. 

Amplicon generation. First, the FMR1 CGG repeat was amplified using the PCRX Enhancer 

System (Invitrogen, Carlsbad, CA) with 40ng/ul DNA input and previously published 

specific primers (Figure 1A)(Filipovic-Sadic et al. 2010). In order to integrate barcodes, an 

M13 tail was attached at both the forward (M13-Forward tail: 
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TGTAAAACGACGGCCAGT) and the reverse primer (M13-Reverse tail: 

CAGGAAACAGCTATGACC). Next, a reaction mixture was prepared by combining 4 µl of 

10X PCRX Amplification Buffer, 1,2 µl 50 mM MgSO4, 4 µl of 2 mM dNTPs (Invitrogen), 16 

µl of 10X PCRX Enhancer Solution, 4 µl of a 2,5 uM mixture of both forward and reverse 

primer, 10 µl of DNA and finally 0.5 µl Taq Polymerase (Invitrogen). After gently mixing 

the reaction, the repeat was amplified starting with a heat denaturation at 95°C for 3 minutes, 

followed by 25 cycles of 95°C for 30 seconds, 64°C for 60 seconds and 68°C for 90 seconds, 

followed by a final extension step at 72°C for 5 minutes where after the samples were stored 

at 4°C. After checking the efficiency of the PCR on a Fragment Analyser (Advanced 

Analytical, Ankeny, IA), the samples were purified with 1X washed Agencourt AMPure XP 

beads (Beckman Coulter, Brea, CA) and eluted in 11 ul of water. Next, barcoded primers 

from PacBio’s 96-well barcoding kit were attached to the amplicons by their M13 tail, which 

allowed pooling different amplicons together. The reaction mixture was prepared as 

described above, but now the purified amplicons were used as DNA input together with 

PacBio’s barcoded primers. The second PCR mixture was subsequently denatured at 95°C for 

180 seconds followed by 5 cycles of 95°C for 30 seconds, 45°C for 60 seconds and 68°C for 

90 seconds, followed by another 5 cycles of 95°C for 30 seconds, 65°C for 60 and 68°C for 

90 seconds and a final elongation step at 72°C for 5 minutes. Afterwards, the amplicons were 

again purified by 1X washed Agencourt AMPure XP beads, visualized on the Fragment 

Analyser and pooled equimolar together. By using this strategy, 3 pools with a maximum of 

24 samples were generated. 

Single Molecule Real-Time Sequencing. The pooled amplicons were prepared for 

sequencing as described in PacBio’s standard 500 bp Template Preparation and Sequencing 

protocol, using the Template Prep kit 3.0 (Pacific Biosciences, Menlo Park, CA). Hereafter 

each library was sequenced on a PacBio RS II using the DNA/Polymerase binding Kit P6 v2 
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(Pacific Biosciences) for a 360 minutes movie (Figure 1B). All runs used PacBio’s DNA 

Sequencing Reagent Kit 4.0 v2. The 3 pools were sequenced in three different sequencing 

runs. The first pool was sequenced on 2 SMRT cells, whereas pool 2 and 3 only used a single 

SMRT cell. 

De novo assembly of the CGG repeat structure.  

 Generating reads-of-insert 

The long reads generated by single-molecule cross each molecule multiple times (Figure 1C). 

Therefore demultiplexed reads-of-insert were generated with the RS_ReadsOfInsert.1 

protocol from PacBio’s SMRT portal (v2.3.0) with a minimum of 10 full passes, a minimum 

predicted accuracy of 90% and demultiplexing with symmetric barcodes (Figure 1D).  

 Selecting on-target reads 

Next, only reads-of-insert derived from the FMR1 CGG repeat were selected by aligning all 

reads-of-insert using BWA-SW v0.7.10 (Li and Durbin 2009) against the human reference 

genome hg19 downloaded from UCSC (Karolchik et al. 2004). followed by conversion of 

SAM to BAM by Samtools v1.3.1 (Li et al. 2009). To finally convert to BED format and 

select the on-target reads-of-inserts BEDtools v2.20.1 was used (Quinlan and Hall 2010).  

 Seperation of the two alleles in females 

In females we separated the normal from the premutation allele by plotting the number of 

reads as a function of read size (Figure 1C), followed by separation of the normal from the 

premutation allele based on differences of the read size (Figure 1E). This is possible because 

normal alleles contain less CGG repeat units than premutation alleles and thus generate 

shorter reads-of-inserts. Reads-of-insert derived from the normal allele are called normal 

reads and reads-of-insert originating from the premutation alleles are called premutation 

reads.  
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 De novo assembly 

Subsequently, a de novo assembly (Figure 1F) was performed on the separated normal and 

premutation reads-of-insert using MIRA v4.0 (Chevreux et al. 2004). This specific assembler 

was chosen because it was conceived especially to resolve repeats and it has been used before 

to perform de novo assembly on single-molecule sequencing data of large repetitive regions 

(Guo et al. 2014). To perform an assembly on the normal reads, MIRA was run with custom 

tuned parameters which can be found in the Supplemental Methods. Afterwards, only 

assemblies with the highest quality were selected. Ideally, this means the quality per base is 

90. A custom python script was used to extract the repeat size, the number of AGG 

interruptions and the repeat structure from the assembly and reported according to 

nomenclature described by the Human Genome Variation Society (HGVS). To control the 

assembly process, the repeat structure extracted from the de novo assembly was compared to 

the repeat characteristics (repeat size, AGG interruptions) of the individual reads-of-insert. 

All variants are submitted to the FMR1 locus-specific database which can be found at 

http://www.lovd.nl/FMR1 (Fokkema et al. 2011).  

Determination of the precision and robustness of AGG interruption detection. In order 

to describe the precision of the described AGG interruption detection method we use the 

terminology proposed by Mattocks et al. (2010). Three females were randomly selected to 

determine the repeatability (within-run precision) and the intermediate precision (between-

run precision) . To determine the repeatability, 3 amplicons of each selected female were 

included in a single run. Next, to define the intermediate precision amplicons of 3 females 

were included in 3 separate sequencing runs. Finally, the robustness of the method was tested 

by using 5, 40 and 100 ng/µl of input DNA for one female.  

Validation of the sequencing results.  

http://www.lovd.nl/FMR1
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The size and structure of the repeat determined by single-molecule sequencing was validated 

by an ‘in-house’ PCR combined with an FMR1 TP-PCR assay (Abbott, Illininois, USA) 

carried out following the manufacturer’s instructions. AGG information was extracted from 

the TP-PCR result if the electropherogram generated an interpretable result. 

Results 

FMR1 CGG repeat structure determination  

To determine the FMR1 repeat structure we performed single-molecule sequencing of PCR 

amplicons from 34 different females and 7 males. Reads-of-insert were generated with a 

minimum of 10 full passes and a mean of 25 full passes. This ensured a high accuracy of the 

final reads-of-insert (Supp. Figure S1). The CGG repeat of the 7 males was supported by a 

mean coverage of 261 [84-614] reads (Supp. Figure S2A). In females, the premutation allele 

contains more CGG units than the normal allele and therefore amplifies worse during PCR. 

Consequently, the premutation will be covered by less reads. The female samples (1-34) had 

a mean coverage of 277 [83-458] and 158 [22-332] for the normal and premutation alleles 

respectively (Supp. Figure S2B-C).  

After sequencing, a de novo assembly was generated for the CGG repeats of the 7 males and 

the sizes of those assemblies were compared to the results from PCR. All assembled repeat 

sizes determined by single molecule sequencing fitted within the error range of PCR control 

runs (± 1 repeat unit up to 54 units, ± 3 repeat units up until 80 CGG units, ±10% of repeat 

size starting from 80 repeats; Figure 2A). Subsequently, the repeat structure was investigated 

(Table 1). For all male samples the number and position of AGG units observed by single 

molecule sequencing was 100% concordant with TP-PCR (Supp. Figure S3A). 
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Next, we investigated whether the repeat size and structure could also be determined for 

females. For 30 females the difference in repeat size between their 2 alleles was larger than 

10 repeat units as previously determined by PCR. For this group we first separated the normal 

from the premutation allele based on differences in read length and subsequently performed a 

de novo assembly on each group of reads separately (Table 2). All assembled normal and 

premutation repeat sizes fell within the error range of PCR (Figure 2B-C). The repeat 

structure of single-molecule sequencing was validated by TP-PCR for 6 females (Supp. 

Figure S3B). 

For 4 females (female 31-34) the difference in repeat size between their 2 alleles was smaller 

than 10 repeats. Although it was still possible to recognize the presence of 2 different alleles 

in the siz distribution of the reads-of-insert, it became difficult to separate the reads derived 

from the different alleles based on this characteristic (Figure 3A). Therefore the de novo 

assembly was performed on the mixture of reads. To make sure both alleles were generated 

by the assembler, also the distribution of the number of AGG interruptions as function of the 

repeat sizes of the individual reads-of-insert were mapped (Figure 3B). In this figure all 

differences in repeat size and the number of AGG units are visualized which allows to 

identify the most frequently occurring repeat structures representing the two female alleles. In 

figure 3B also smaller circles are present flanking the most frequently occurring repeat 

sequences which represent stutter products inherent to PCR amplification of repeat rich 

regions. An overview of the females with small repeat size differences between their alleles 

can be found in Table 3. We also tested PacBio’s Long Amplicon Analysis tool, but this 

performed overall worse than the MIRA assembly pipeline (see supplementary data). 

Precision and robustness of AGG interruption detection  
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The precision of AGG interruption detection was evaluated by investigating the repeatability 

and the intermediate precision by sequencing the PCR product of 3 females 3 times within 

the same sequencing run and spread over independent sequencing experiments. The number 

and position of AGG units in both the normal and premutation allele were always reproduced 

(Table 4). Except for female 17, also the size of the repeats was fully reproducible. In female 

17 a difference of 1 and 2 CGG units for 2 within-run repetitions was found. This small 

variation is caused by the low coverage of the premutation allele of those two samples (7 & 

19 reads respectively, Supp. Figure S2C) and the presence of more stutter in this sample due 

to the large repeat size (99 units). Finally, varying the input DNA concentration before PCR 

did not influence the result (Table 4; female 12). Thus, single-molecule sequencing generates 

results with a high precision and robustness.  

Discussion 

Knowledge of the presence of AGG interruptions is of great value to determine the risk a 

female with a premutation allele will transmit a full mutation to her offspring, especially for 

small premutation alleles (55-85 CGG repeats)(Nolin et al. 2014; Yrigollen et al. 2014). This 

is also increasingly recognized in international guidelines on FMR1 genetic testing 

(Monaghan et al. 2013; Biancalana et al. 2015). Here, we demonstrated that single-molecule 

sequencing enabled not only the determination of the repeat sizes, but also the complete 

repeat structure in male and female gray zone and premutation alleles. The findings of all 

males and females were confirmed, whenever possible, by (TP-)PCR.  

Single-molecule sequencing outperforms current strategies because it allows for an 

unambiguous separation of the normal from the expanded allele which permits the 

determination of the repeat structure for each allele in every male or female. In addition, this 

method is significantly cheaper (± 15 euro/sample) compared to other methods, an advantage 
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which will become even more strong thanks to PacBio’s new Sequel system which is more 

high-throughput and cost-effective as compared to the PacBio RS II used in this study. 

Finally, single-molecule sequencing detects not only AGG interruptions, but any sequence 

variation at the repeat loci. For example, this technology will also identify duplications 

adjacent or within the repeat which are present in some individuals (Mononen et al. 2007) 

and avoid false-negative results sometimes generated by TP-PCR when interruptions are 

present inside a repeat (Braida et al. 2010; Radvansky et al. 2011). As this is an amplicon 

based method, also stutter products will be present next to products with the true repeat size. 

Luckily those stutter products are mainly ± 1 repeat unit and therefore their influence on the 

expansion risk is negligible. In contrast to Loomis et al. (2013) who detected an AGG 

interruption in a plasmid, this is the first study to show the detection of AGG interruptions in 

males and the two alleles of females starting from genomic DNA. 

Knowledge of the risk for FMR1 CGG expansion to occur has a profound impact on 

reproductive choices. Couples at risk for offspring with FXS can choose for prenatal 

diagnosis with possible termination of an affected pregnancy (Burlet et al. 2006). This 

extremely difficult decision is often avoided by couples by not having children or choosing 

assisted reproduction associated with PGD to select only unaffected males or non-carrier 

female embryos. Unfortunately PGD for this indication has always been difficult because 

female carriers are often affected by FXPOI which makes the retrieval of oocytes difficult 

(Burlet et al. 2006). Furthermore the expanded allele cannot be detected in a single cell, 

making PGD for FXS also technically a challenging task, although this can now be overcome 

by using new haplotyping methods (Natesan et al. 2014; Zamani Esteki et al. 2015). The risk 

of expansion will determine which reproductive choices will be made. Therefore easy access 

to accurate AGG information will be extremely valuable in guiding and reassuring couples to 

make the right decisions.  
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In rare cases where women carry two expanded alleles, selection can target the allele with the 

highest risk. We already reported the CGG sequencing result obtained in this study to a 

female (female 34) carrying 2 premutations and who opted for PGD because she carried a 

translocation. The alleles of this woman have a size of 65 and 73 repeats and both carry 2 

AGG interruptions. This knowledge influences the respective risks for expansion and allowed 

selection for the allele with the lowest risk, which is for this woman the allele of 65 repeats 

and 2 AGG interruptions. 

Except for diagnostic use, single-molecule sequencing will also greatly facilitate large-scale 

studies which will be valuable to further fine tune risk estimates on the influence of AGG 

interruptions on the stability of the CGG repeat. Since full mutations can also be amplified 

and single-molecule sequenced (Loomis et al. 2013), AGG interruptions can possibly also be 

detected in this repeat category. Furthermore, recently a method using a PCR-free approach 

to do targeted enrichment was published (Pham et al. 2016), and further improvements can be 

expected in the near future. Those strategies will enable to detect the original repeat size 

distribution and will in addition simultaneously reveal the epigenetic signature of the repeat. 

In conclusion we have demonstrated that single-molecule sequencing correctly determines 

the repeat size of both the normal, gray zone and premutation alleles. Furthermore we also 

detected the number and position of all AGG interruptions not only in males, but also in the 

two alleles of females. Single-molecule sequencing enables for the first time to separate 

unambiguously the two female repeats which enabled the generation of the exact repeat 

structure for both the normal and premutation allele. It seems likely this methodology can 

also be applied to study other tandem repeat expansion disorders where interruptions also 

influence the stability of the allele such as in Friedreich’s ataxia (FRDA; MIM #229300), 

Myotonic dystrophy (DM1; MIM #160900) and different Spinocerebellar ataxia’s (Kroutil et 

al. 1996; Matsuura et al. 2006; Gao et al. 2008; Musova et al. 2009; Braida et al. 2010; 
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Holloway et al. 2011; Yu et al. 2011; Menon et al. 2013). We foresee that this technology 

will replace current tests and has the potential to improve risk estimates allowing for 

improved genetic counseling. 

Acknowledgements  

We are grateful to the patients and their families for their participation. We also would like to 

thank Wim Meert, Steve Smekens and Greet Peeters for their help with the laboratory work. 

Conflict of interest: The authors declare that there is no conflict of interest. 

Data access: The raw data is available at the European Nucleotide Archive (ENA) (Leinonen 

et al. 2011) under study accession number PRJEB15075 

(http://www.ebi.ac.uk/ena/data/view/PRJEB15075) 

References 

Biancalana V, Glaeser D, McQuaid S, Steinbach P. 2015. EMQN best practice guidelines for 

the molecular genetic testing and reporting of fragile X syndrome and other fragile X-

associated disorders. Eur J Hum Genet 23:417–425. 

Braida C, Stefanatos RKA, Adam B, Mahajan N, Smeets HJM, Niel F, Goizet C, Arveiler B, 

Koenig M, Lagier-Tourenne C, Mandel JL, Faber CG, et al. 2010. Variant CCG and GGC 

repeats within the CTG expansion dramatically modify mutational dynamics and likely 

contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol 

Genet 19:1399–1412. 

Burlet P, Frydman N, Gigarel N, Kerbrat V, Tachdjian G, Feyereisen E, Bonnefont JP, 

Frydman R, Munnich A, Steffann J. 2006. Multiple displacement amplification improves 

PGD for fragile X syndrome. Mol Hum Reprod 12:647–652. 

http://www.ebi.ac.uk/ena/data/view/PRJEB15075


 

 

This article is protected by copyright. All rights reserved. 

Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, Depristo MA. 2012. Pacific 

biosciences sequencing technology for genotyping and variation discovery in human data. 

BMC Genomics 13:375. 

Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci 

F, Surti U, Sandstrom R, Boitano M, Landolin JM, Stamatoyannopoulos JA, et al. 2015. 

Resolving the complexity of the human genome using single-molecule sequencing. Nature 

517:608–611. 

Chen L, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, Pan R, Hagerman PJ, 

Stenzel TT, Tassone F, Latham GJ. 2010. An information-rich CGG repeat primed PCR that 

detects the full range of fragile X expanded alleles and minimizes the need for southern blot 

analysis. J Mol Diagn 12:589–600. 

Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S. 2004. 

Using the miraEST assembler for reliable and automated mRNA transcript assembly and 

SNP detection in sequenced ESTs. Genome Res 14:1147–1159. 

Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, Richards CS, Ward 

PA, Nelson DL. 1994. Length of uninterrupted CGG repeats determines instability in the 

FMR1 gene. Nat Genet 8:88–94. 

Filipovic-Sadic S, Sah S, Chen L, Krosting J, Sekinger E, Zhang W, Hagerman PJ, Stenzel 

TT, Hadd AG, Latham GJ, Tassone F. 2010. A novel FMR1 PCR method for the routine 

detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin 

Chem 56:399–408. 

Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. 2011. 

LOVD v.2.0: The next generation in gene variant databases. Hum Mutat 32:557–563. 



 

 

This article is protected by copyright. All rights reserved. 

Gao R, Matsuura T, Coolbaugh M, Zühlke C, Nakamura K, Rasmussen A, Siciliano MJ, 

Ashizawa T, Lin X. 2008. Instability of expanded CAG/CAA repeats in spinocerebellar 

ataxia type 17. Eur J Hum Genet 16:215–222. 

Guo X, Zheng S, Dang H, Pace RG, Stonebraker JR, Jones CD, Boellmann F, Yuan G, 

Haridass P, Fedrigo O, Corcoran DL, Seibold MA, et al. 2014. Genome Reference and 

Sequence Variation in the Large Repetitive Central Exon of Human MUC5AC. Am J Respir 

Cell Mol Biol 50:223–232. 

Hagerman R, Hagerman P. 2013. Advances in clinical and molecular understanding of the 

FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 12:786–

798. 

Harrison CJ, Jack EM, Allen TD, Harris R. 1983. The fragile X: a scanning electron 

microscope study. J Med Genet 20:280–285. 

Hestand MS, Houdt J Van, Cristofoli F, Vermeesch JR. 2016. Polymerase Specific Error 

Rates and Profiles Identified by Single Molecule Sequencing. Mutat Res 784–785:39–45. 

Holloway TP, Rowley SM, Delatycki MB, Sarsero JP. 2011. Detection of interruptions in the 

GAA trinucleotide repeat expansion in the FXN gene of Friedreich ataxia. Biotechniques 

50:182–186. 

Jacquemont S, Birnbaum S, Redler S, Steinbach P, Biancalana V. 2011. Clinical utility gene 

card for: fragile X mental retardation syndrome, fragile X-associated tremor/ataxia syndrome 

and fragile X-associated primary ovarian insufficiency. Eur J Hum Genet 

19:doi:10.1038/ejhg.2011.55. 

Jiao X, Zheng X, Ma L, Kutty G, Gogineni E, Sun Q, Sherman T, Hu X, Jones K, Raley C, 

Tran B, Munroe DJ, et al. 2013. A Benchmark Study on Error Assessment and Quality 



 

 

This article is protected by copyright. All rights reserved. 

Control of CCS Reads Derived from the PacBio RS. J Data Min Genomics Proteomics 

4:pii16008. 

Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. 2004. 

The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32:493–496. 

Kroutil LC, Register K, Bebenek K, Kunkel TA. 1996. Exonucleolytic proofreading during 

replication of repetitive DNA. Biochemistry 35:1046–1053. 

Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tarraga A, Cheng Y, Cleland I, Faruque 

N, Goodgame N, Gibson R, Hoad G, Jang M, et al. 2011. The European nucleotide archive. 

Nucleic Acids Res 39:D28–D31. 

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics 25:1754–1760. 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin 

R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–

2079. 

Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, McCalmon S, Hagerman RJ, 

Tassone F, Hagerman PJ. 2013. Sequencing the unsequenceable: expanded CGG-repeat 

alleles of the fragile X gene. Genome Res 23:121–128. 

Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, Nelson DL. 2006. 

Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity 

as a disease modifier? Am J Hum Genet 78:125–129. 

Mattocks CJ, Morris MA, Matthijs G, Swinnen E, Corveleyn A, Dequeker E, Müller CR, 

Pratt V, Wallace A. 2010. A standardized framework for the validation and verification of 



 

 

This article is protected by copyright. All rights reserved. 

clinical molecular genetic tests. Eur J Hum Genet 18:1276–1288. 

Menon RP, Nethisinghe S, Faggiano S, Vannocci T, Rezaei H, Pemble S, Sweeney MG, 

Wood NW, Davis MB, Pastore A, Giunti P. 2013. The Role of Interruptions in polyQ in the 

Pathology of SCA1. PLoS Genet 9:e1003648. doi:10.1371/journal.pgen.1003648. 

Monaghan KG, Lyon E, Spector EB. 2013. ACMG Standards and Guidelines for fragile X 

testing: a revision to the disease-specific supplements to the Standards and Guidelines for 

Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. 

Genet Med 15:575–586. 

Mononen T, Von Koskull H, Airaksinen RL, Juvonen V. 2007. A novel duplication in the 

FMR1 gene: Implications for molecular analysis in fragile X syndrome and repeat instability. 

Clin Genet 72:528–531. 

Musova Z, Mazanec R, Krepelova A, Ehler E, Vales J, Jaklova R, Prochazka T, Koukal P, 

Marikova T, Kraus J, Havlovicova M, Sedlacek Z. 2009. Highly unstable sequence 

interruptions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet Part A 

149A:1365–1369. 

Natesan S a, Bladon AJ, Coskun S, Qubbaj W, Prates R, Munne S, Coonen E, Dreesen 

JCFM, Stevens SJC, Paulussen ADC, Stock-Myer SE, Wilton LJ, et al. 2014. Genome-wide 

karyomapping accurately identifies the inheritance of single-gene defects in human 

preimplantation embryos in vitro. Genet Med 16:838–45. 

Nolin SL, Glicksman A, Ersalesi N, Dobkin C, Brown WT, Cao R, Blatt E, Sah S, Latham 

GJ, Hadd AG. 2014. Fragile X full mutation expansions are inhibited by one or more AGG 

interruptions in premutation carriers. Genet Med 17:358–364. 

Nolin SL, Sah S, Glicksman A, Sherman SL, Allen E, Berry-Kravis E, Tassone F, Yrigollen 



 

 

This article is protected by copyright. All rights reserved. 

C, Cronister A, Jodah M, Ersalesi N, Dobkin C, et al. 2013. Fragile X AGG analysis provides 

new risk predictions for 45-69 repeat alleles. Am J Med Genet Part A 161:771–778. 

Oberlé I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boué J, Bertheas MF, Mandel 

JL. 1991. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X 

syndrome. Science 252:1097–1102. 

Penagarikano O, Mulle JG, Warren ST. 2007. The pathophysiology of fragile x syndrome. 

Annu Rev Genomics Hum Genet 8:109–129. 

Pham TT, Yin J, Eid JS, Adams E, Lam R, Turner SW, Loomis EW, Wang JY, Hagerman PJ, 

Hanes JW. 2016. Single-locus enrichment without amplification for sequencing and direct 

detection of epigenetic modifications. Mol Genet Genomics 291:1–14. 

Pieretti M, Zhang F, Fu Y-H, Warren ST, Oostra BA, Caskey CT, Nelson DL. 1991. Absence 

of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–822. 

Quinlan AR, Hall IM. 2010. BEDTools: A flexible suite of utilities for comparing genomic 

features. Bioinformatics 26:841–842. 

Radvansky J, Ficek A, Minarik G, Palffy R, Kadasi L. 2011. Effect of unexpected sequence 

interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 

testing. Diagn Mol Pathol 20:48–51. 

Sermon K, Seneca S, Vanderfaeillie A, Lissens W, Joris H, Vandervorst M, Van Steirteghem 

A, Liebaers I. 1999. Preimplantation diagnosis for fragile X syndrome based on the detection 

of the non-expanded paternal and maternal CGG. Prenat Diagn 19:1223–1230. 

Shin SC, Ahn DH, Kim SJ, Lee H, Oh T-J, Lee JE, Park H. 2013. Advantages of Single-

Molecule Real-Time Sequencing in High-GC Content Genomes. PLoS One 8:e68824. 



 

 

This article is protected by copyright. All rights reserved. 

doi:10.1371/journal.pone.0068824. 

Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, Paquin JJ, Sherman SL. 2005. 

Association of FMR1 repeat size with ovarian dysfunction. 20:402–412. 

Tassone F, Iong KP, Tong T-H, Lo J, Gane LW, Berry-Kravis E, Nguyen D, Mu LY, Laffin 

J, Bailey DB, Hagerman RJ. 2012. FMR1 CGG allele size and prevalence ascertained 

through newborn screening in the United States. Genome Med 4:100. 

Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, Zhao XN. 2014. Repeat-

mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related 

disorders. Front Genet 5:226. 

Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, 

Victoria MF, Zhang FP, Eussen BE, van Ommen GB, et al. 1991. Identification of a gene 

(FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting 

length variation in fragile X syndrome. Cell 65:905–914. 

Yrigollen CM, Durbin-Johnson B, Gane L, Nelson DL, Hagerman R, Hagerman PJ, Tassone 

F. 2012. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with 

fragile X syndrome. Genet Med 29:997–1003. 

Yrigollen CM, Martorell L, Durbin-Johnson B, Naudo M, Genoves J, Murgia A, Polli R, 

Zhou L, Barbouth D, Rupchock A, Finucane B, Latham GJ, et al. 2014. AGG interruptions 

and maternal age affect FMR1 CGG repeat allele stability during transmission. J Neurodev 

Disord 6:24. 

Yu S, Pritchard M, Kremer E, Lynch M, Nancarrow J, Baker E, Holman K, Mulley JC, 

Warren ST, Schlessinger D, Sutherland GR, Richards RI. 1991. Fragile X genotype 

characterized by an unstable region of DNA. Science 252:1179–1181. 



 

 

This article is protected by copyright. All rights reserved. 

Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, Kalb RG, 

Trojanowski JQ, Lee VMY, van Deerlin VM, Gitler AD, Bonini NM. 2011. PolyQ repeat 

expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS One 6:14–19. 

Zamani Esteki M, Dimitriadou E, Mateiu L, Melotte C, Vander Aa N, Kumar P, Das R, 

Theunis K, Cheng J, Legius E, Moreau Y, Debrock S, et al. 2015. Concurrent Whole-

Genome Haplotyping and Copy-Number Profiling of Single Cells. Am J Hum Genet 96:894–

912. 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

This article is protected by copyright. All rights reserved. 

Figure Legends 

Figure 1: Overview of the workflow. First, PCR amplicons are generated whereby a different 

barcode is introduced for each amplicon (A). Next, different amplicons are pooled together 

and sequenced by PacBio single-molecule sequencing (B). The long reads generated by 

single-molecule sequencing allow to cross a circulated double-stranded template molecule 

multiple times (C) from which reads-of-insert with a high quality are generated (C). After 

selecting the on-target reads, the distribution of the read sizes of those reads-of insert was 

plotted (D), followed by separating reads-of-insert belonging to the normal allele from the 

premutation allele based on differences in read size (E). Finally, a de novo assembly was 

performed on the separated normal and premutation reads (F) from which the repeat structure 

was extracted (G). Note that the CGG repeat is described as a GGC repeat according to the 

nomenclature of the Human Genome Variation Society (HGVS). 
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Figure 2: Correlation of the repeat size between single-molecule sequencing (Y axis) and 

PCR (X-axis) for: 7 male samples (A). The normal allele of all female samples (B). The grey-

zone/premutation allele of all female samples (C). Samples are indicated by a dot, the grey 

lines show the error range of PCR which is ± 1 repeat unit for repeats smaller than 54 repeat 

units, ± 3 repeat units up until 80 CGG units and ±10% of the repeat size for repeats larger 

than 80 repeats. 
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Figure 3: (A) Distribution of the read sizes of the reads-of insert for female 32 (A). The two 

alleles only differ by 5 repeat units and hence are difficult to separate based on differences in 

the size of the reads-of-insert. (B) Relation between the number of CGG units (X axis) and 

AGG interruptions (Y axis) for the individual reads-of-inserts of female 32. The surface of 

the circles is relative to the number of supporting reads. Some minor circles with the same 

amount of AGG units but a different repeat size can also be observed and represent stutter 

products.  
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Table 1: Repeat characteristics for all male individuals. 

  (TP)-PCR SINGLE-MOLECULE SEQUENCING 

Male # Units # Units  # GGA  Repeat structure* 

1 45 45 0 GGC[45] 

2 52 52 2 GGC[32]GGA[1]GGC[9]GGA[1]GGC[9] 

3 58 60 2 GGC[40]GGA[1]GGC[9]GGA[1]GGC[9] 

4 68 69 2 GGC[49]GGA[1]GGC[9]GGA[1]GGC[9] 

5 76 78 1 GGC[68]GGA[1]GGC[9] 

6 77 79 2 GGC[59]GGA[1]GGC[9]GGA[1]GGC[9] 

7 90 93 2 GGC[73]GGA[1]GGC[9]GGA[1]GGC[9] 

* Genomic DNA change relative to hg19/GRCh37 at g.146993570 (chrX)  
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Table 2: Repeat characteristics for all females with a difference between normal and premutation allele >10 repeat units. 

  

(TP)-PCR SINGLE-MOLECULE SEQUENCING 

NORMAL  PREMUTATION NORMAL  PREMUTATION 

N° # Units # Units # Units  # GGA  Repeat structure* # Units  # GGA   Repeat structure* 

1 29 56 29 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[9] 58 1 GGC[47]GGA[1]GGC[10] 

2 33 51 32 2 

GGC[9]GGA[1]GGC[12]GGA[1]GGC[9] 

51 4 

GGC[10]GGA[1]GGC[9]GGA[1]GGC[9] 

GGA[1]GGC[9]GGA[1]GGC[10] 

3 40 68 40 2 GGC[20]GGA[1]GGC[9]GGA[1]GGC[9] 70 1 GGC[60]GGA[1]GGC[9] 

4 30 65 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 67 0 GGC[67] 

5 30 71 29 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[9] 73 2 GGC[53]GGA[1]GGC[9]GGA[1]GGC[9] 

6 32 68 31 2 GGC[10]GGA[1]GGC[9]GGA[1]GGC[10] 70 2 GGC[50]GGA[1]GGC[9]GGA[1]GGC[9] 

7 31 71 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 72 2 GGC[52]GGA[1]GGC[9]GGA[1]GGC[9] 

8 26 89 26 1 GGC[16]GGA[1]GGC[9] 92 2 GGC[72]GGA[1]GGC[9]GGA[1]GGC[9] 

9 32 60 31 2 GGC[10]GGA[1]GGC[9]GGA[1]GGC[10] 61 1 GGC[49]GGA[1]GGC[11] 

10 31 61 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 64 1 GGC[54]GGA[1]GGC[9] 

11 30 86 29 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[9] 89 1 GGC[79]GGA[1]GGC[9] 

12 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

13 31 79 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 76 0 GGC[76] 

14 30 89 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 93 2 GGC[73]GGA[1]GGC[9]GGA[1]GGC[9] 

15 31 70 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 72 1 GGC[62]GGA[1]GGC[9] 

16 23 67 23 1 GGC[9]GGA[1]GGC[13] 69 1 GGC[59]GGA[1]GGC[9] 

17 36 99 36 1 GGC[25]GGA[1]GGC[10] 102 1 GGC[92]GGA[1]GGC[9] 

18 31 66 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 69 0 GGC[69] 

19 24 61 24 1 GGC[9]GGA[1]GGC[14] 63 1 GGC[53]GGA[1]GGC[9] 

20 32 77 31 2 GGC[9]GGA[1]GGC[11]GGA[1]GGC[9] 77 1 GGC[67]GGA[1]GGC[9] 

21 32 100 31 2 GGC[10]GGA[1]GGC[9]GGA[1]GGC[10] 104 2 GGC[86]GGA[1]GGC[7]GGA[1]GGC[9] 

22 31 64 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 65 2 GGC[45]GGA[1]GGC[9]GGA[1]GGC[9] 

23 27 52 27 1 GGC[17]GGA[1]GGC[9] 53 2 GGC[33]GGA[1]GGC[9]GGA[1]GGC[9] 

24 31 66 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 67 2 GGC[47]GGA[1]GGC[9]GGA[1]GGC[9] 

25 30 62 29 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[9] 63 2 GGC[43]GGA[1]GGC[9]GGA[1]GGC[9] 
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26 23 60 23 1 GGC[10]GGA[1]GGC[12] 62 2 GGC[42]GGA[1]GGC[9]GGA[1]GGC[9] 

27 34 77 33 2 GGC[13]GGA[1]GGC[9]GGA[1]GGC[9] 81 1 GGC[71]GGA[1]GGC[9] 

28 39 64 39 0 GGC[39] 65 2 GGC[45]GGA[1]GGC[9]GGA[1]GGC[9] 

29 30 60 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 61 1 GGC[51]GGA[1]GGC[9] 

30 20 64 20 1 GGC[9]GGA[1]GGC[10] 64 2 GGC[44]GGA[1]GGC[9]GGA[1]GGC[9] 

* Genomic DNA change relative to hg19/GRCh37 at g.146993570 (chrX) 

 

 

Table 3: Repeat characteristics for four females with similarly sized repeats. 

  

 

(TP)-PCR SINGLE-MOLECULE SEQUENCING 

ALLELE 1 ALLELE 2 ALLELE 1 ALLELE 2 

N° # Units # Units # Units  # GGA  Repeat structure* # Units  # GGA  Repeat structure* 

31 41 46 41 2 GGC[20]GGA[1]GGC[9]GGA[1]GGC[10] 45 2 GGC[25]GGA[1]GGC[9]GGA[1]GGC[9] 

32 42 47 42 1 GGC[21]GGA[1]GGC[20] 47 2 GGC[27]GGA[1]GGC[9]GGA[1]GGC[9] 

33 40 45 41 2 GGC[21]GGA[1]GGC[9]GGA[1]GGC[9] 43 2 GGC[23]GGA[1]GGC[9]GGA[1]GGC[9] 

34 65 73 65 2 GGC[45]GGA[1]GGC[9]GGA[1]GGC[9] 74 2 GGC[56]GGA[1]GGC[7]GGA[1]GGC[9] 

* Genomic DNA change relative to hg19/GRCh37 at g.146993570 (chrX)  
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Table 4: Repeat characteristics for 3 females repeated both within and between different sequencing runs and with different DNA concentrations. 

 

(TP)-PCR SINGLE-MOLECULE SEQUENCING 

NORMAL  PREMUTATION NORMAL PREMUTATION 

N° Run  

Input 

(ng/ul) # Units # Units # Units  # GGA  Repeat structure* # Units  # GGA  Repeat structure* 

2 1 40 33 51 32 2 GGC[9]GGA[1]GGC[12]GGA[1]GGC[9] 51 4 

GGC[10]GGA[1]GGC[9]GGA[1] 

GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 

  2 40 33 51 32 2 GGC[9]GGA[1]GGC[12]GGA[1]GGC[9] 51 4 

GGC[10]GGA[1]GGC[9]GGA[1] 

GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 

  2 40 33 51 32 2 GGC[9]GGA[1]GGC[12]GGA[1]GGC[9] 51 4 

GGC[10]GGA[1]GGC[9]GGA[1] 

GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 

  2 40 33 51 32 2 GGC[9]GGA[1]GGC[12]GGA[1]GGC[9] 51 4 

GGC[10]GGA[1]GGC[9]GGA[1] 

GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 

  3 40 33 51 32 2 GGC[9]GGA[1]GGC[12]GGA[1]GGC[9] 51 4 

GGC[10]GGA[1]GGC[9]GGA[1] 

GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 

12 1 40 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

  2 40 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

  2 40 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

  2 40 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

  3 40 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

  3 5 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

  3 100 31 55 30 2 GGC[9]GGA[1]GGC[9]GGA[1]GGC[10] 55 2 GGC[37]GGA[1]GGC[7]GGA[1]GGC[9] 

17 1 40 36 99 36 1 GGC[25]GGA[1]GGC[10] 104 1 GGC[94]GGA[1]GGC[9] 

  2 40 36 99 36 1 GGC[25]GGA[1]GGC[10] 102 1 GGC[92]GGA[1]GGC[9] 

  2 40 36 99 36 1 GGC[25]GGA[1]GGC[10] 103 1 GGC[93]GGA[1]GGC[9] 

  2 40 36 99 36 1 GGC[25]GGA[1]GGC[10] 104 1 GGC[94]GGA[1]GGC[9] 

  3 40 36 99 36 1 GGC[25]GGA[1]GGC[10] 104 1 GGC[94]GGA[1]GGC[9] 

* Genomic DNA change relative to hg19/GRCh37 at g.146993570 (chrX)  

 


